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Abstract

Medical Image Segmentation by Deep Convolutional Neural Networks

Qingbo Kang

Medical image segmentation is a fundamental and critical step for medical image analysis. Due to

the complexity and diversity of medical images, the segmentation of medical images continues to be

a challenging problem. Recently, deep learning techniques, especially Convolution Neural Networks

(CNNs) have received extensive research and achieve great success in many vision tasks. Specifically,

with the advent of Fully Convolutional Networks (FCNs), automatic medical image segmentation

based on FCNs is a promising research field. This thesis focuses on two medical image segmentation

tasks: lung segmentation in chest X-ray images and nuclei segmentation in histopathological images.

For the lung segmentation task, we investigate several FCNs that have been successful in semantic

and medical image segmentation. We evaluate the performance of these different FCNs on three

publicly available chest X-ray image datasets.

For the nuclei segmentation task, since the challenges of this task are difficulty in segmenting

the small, overlapping and touching nuclei, and limited ability of generalization to nuclei in different

organs and tissue types, we propose a novel nuclei segmentation approach based on a two-stage

learning framework and Deep Layer Aggregation (DLA). We convert the original binary segmentation

task into a two-step task by adding nuclei-boundary prediction (3-classes) as an intermediate step.

To solve our two-step task, we design a two-stage learning framework by stacking two U-Nets. The

first stage estimates nuclei and their coarse boundaries while the second stage outputs the final

fine-grained segmentation map. Furthermore, we also extend the U-Nets with DLA by iteratively

merging features across different levels. We evaluate our proposed method on two public diverse

nuclei datasets. The experimental results show that our proposed approach outperforms many

standard segmentation architectures and recently proposed nuclei segmentation methods, and can

be easily generalized across different cell types in various organs.
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Chapter 1

Introduction

In the first chapter, I will give a brief introduction of my thesis. First of all, I will describe the

medical image segmentation problem. Secondly, how the deep learning techniques used for medical

image segmentation will be discussed. Thirdly, the contributions of this thesis will be mentioned

and finally, I give the outline of this thesis.

1.1 Medical Image Segmentation

Medical imaging techniques play a prominent role and have been widely used for the detection,

diagnosis, and treatment of diseases [14]. There are many medical imaging modalities including X-

ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission

tomography (PET) and so on. A typology of common medical imaging modalities used for different

parts of human body which are generated in radiology is shown in Fig. 1.

Since this thesis focus on X-ray images and pathological images, we provide some details about

these two kinds of imaging techniques in the following.

X-ray Images Since the German physicist Roentgen discovered X-rays in 1895, X-ray images have

been used for clinical diagnosis for more than 100 years. Medical X-ray images are electron density

metric images of different tissues and organs in human body. X-ray based imaging including 2D

computer radiography, digital X-ray photography, digital subtraction angiography, mammography

and 3D spiral computed tomography, etc., have been widely used in orthopedics [129], lungs , breast

and cardiovascular [106] and other clinical disease detection and diagnosis. However, 2D X-ray

images can not provide three-dimensional information of human tissues and organs. The automatic

identification for 2D X-ray images is also difficult since there are overlaps in tissues and organs.

Pathological Images Pathological images refer to cutting a certain size of diseased tissue, using

hematoxylin and eosin (H&E) or other staining methods to make the sliced tissue into a pathological

slide, and then utilizing microscopic imaging techniques for cells and glands. By analyzing the

pathological images, the causes, pathogenesis of the lesions can be explored to make a pathological

1
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Figure 1: Typology of medical imaging modalities. Image is from [118].

diagnosis. Recently, with the advent of whole-slide imaging (WSI), it can obtain tumor spatial

information such as nuclear direction, texture, shape, and structure and allows quantitative analysis

of sliced tissue. A prerequisite for identifying these quantitative features is the need of detection

and segmentation of histological primitives such as nuclei and glands [99].

Medical image segmentation is a complex and critical step in medical image processing and anal-

ysis. The purpose of medical image segmentation is dividing an image into multiple non-overlapping

regions based on some criterion or rules such as similar gray level, color, texture etc.. Based on var-

ious traditional techniques, many researchers proposed a great number of automated segmentation

approaches such as thresholding, edge detection, active contours and so on [115, 123]. After that,

machine learning based methods have dominate this field for a long period. Machine learning rely

on hand-crafted features, therefore how to design suitable features in different field and different

2



imaging modalities has become a primary concern and a key factor for the success of such a segmen-

tation system. However, due to the complexity and diversity of medical images, the segmentation

of medical images continues to be a challenging problem.

1.2 Deep Learning for Medical Image Segmentation

Deep learning has been widely used and achieves great success in many areas such as computer

vision, speech analysis and natural language processing [83]. In contrast to traditional machine

learning techniques which based on hand-craft features for different task, deep learning directly

learns representation features from huge amount of data. Specific to medical image segmentation

field, deep leaning techniques based approaches especially approaches based on Convolution Neural

Networks (CNNs) have received extensive attention and research, many works have been proposed

and achieved superior performance compared to segmentation methods based on other techniques

[94, 124]. Many CNNs based segmentation network such as FCN [95], U-Net [120], V-Net [102] and

their variants or improvements [28, 39, 162, 76, 110, 3, 114, 51, 50] have been proposed and achieve

state-of-the-art performance on numerous medical image segmentation tasks.

1.3 Contributions of this Thesis

In this thesis, we focus on two medical image segmentation tasks, lung segmentation in chest X-ray

images and nuclei segmentation in histopathological images.

For the lung segmentation problem, we apply FCN and U-Net, the two most widely used seg-

mentation model for medical image segmentation, on this task. We evaluate the performance of

these models on three publicly available chest X-ray datasets, the experimental results demonstrate

the superior performance of deep learning based segmentation models.

For the nuclei segmentation problem, we propose a novel nuclei segmentation approach based on

a two-stage learning framework and Deep Layer Aggregation (DLA) [156]. We convert the original

binary segmentation task into a two-step task by adding nuclei-boundary prediction (3-classes) as

an intermediate step. To solve our two-step task, we design a two-stage learning framework by

stacking two U-Nets. The first stage estimates nuclei and their coarse boundaries while the second

stage outputs the final fine-grained segmentation map. Furthermore, we also extend the U-Nets

with DLA by iteratively merging features across different levels. We evaluate our proposed method

on two public diverse nuclei datasets. The experimental results show that our proposed approach

outperforms many standard segmentation architectures and recently proposed nuclei segmentation

methods, and can be easily generalized across different cell types in various organs.

3



1.4 Outline of this Thesis

This thesis is organized as follows: Chapter 2 will reviews some related works of this thesis, specif-

ically the literature reviews for the two segmentation tasks, some details of CNN and two segmen-

tation model: FCN and U-Net. Chapter 3 will presents our lung segmentation work in chest X-ray

images and the associated experimental results. Chapter 4 will presents our nuclei segmentation

work and the corresponding experimental results. In Chapter 5, we will conclude this thesis and

discuss some future work and research directions.

4



Chapter 2

Related Works

This chapter will cover related works of this thesis. Specifically I will briefly review some literature

for the two segmentation tasks which this thesis focuses on, i.e. lung segmentation in chest X-rays

and nuclei segmentation in histopathological images. After literature reviews, CNNs and the Fully

Convolutional Neural Networks will be described in this chapter.

2.1 Literature Reviews for Medical Image Segmentation

In this section, the existing approaches for the two medical image segmentation tasks will be respec-

tive reviewed.

2.1.1 Lung Segmentation in Chest X-rays

Over the past decades, researchers have proposed a number of methods to segment the lung field

from chest X-ray images. These methods can be divided into four categories [141, 62]: rule-based

segmentation [116, 149, 15, 18, 89], pixel classification-based segmentation [101, 55, 145, 138, 5, 142,

25], deformable model-based segmentation [67, 157, 4, 32, 140, 125, 52] and hybrid segmentation

[142, 34, 17].

Rule-based Segmentation

The rule-based segmentation methods aim to obtain the expected target region of interest after

image pixels are processed through a series of steps and rules. Most of the early proposed lung

field segmentation algorithms fall into this category [116, 149, 15]. Some techniques like threshold

segmentation, region growth, edge detection, ridge detection, mathematical morphology, geometric

models, and so on are used to find the edge of the lung area based on the characteristics of lung

structure [18, 89].
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Pixel Classification-based Segmentation

A series of feature vectors are calculated for each pixel in the image, and some pattern recognition

techniques are used to mark the category of each pixel belongs to according to the feature vector

[101]. For the digital X-ray chest radiology segmentation problem, the pixel classification method

is to assign each pixel in the chest radiograph image with the corresponding anatomical structure

(such as lung and background, or heart, mediastinum and diaphragm, etc.) through a classifier.

The classifier can use pixel point gray information, spatial position information, texture statistics

information, etc. as feature vectors then obtain the labels through training of neural network

[55, 138, 5], K nearest neighbor (KNN) classifier [142], support vector machine (SVM) [25], Markov

random field model [145], etc.

Deformable Model-based Segmentation

The segmentation method based on deformable model belongs to the top-down strategy. Firstly,

an overall model for understanding the target is generated according to the content of the image,

and then the image feature is applied to fit the model to the best match and the target object is

segmented. After more than 20 years of research, from elastic model, active contour model [67, 157, 4]

to active shape model [32, 140, 125, 52], the deformable model has been developed and widely used

in the field of image segmentation. In the field of lung segmentation, active contour models and

active shape models have received the most attention from researchers. Iglesias et al. [67] first use

the active contour model with shape constraints for lung segmentation, and studied the effects on

the segmentation results of different parameters in the active contour model. Yu et al. [157] propose

a lung segmentation method based on shape regularized active contour. Annangi et al. [4] present

a work by using level set energy to segment the lungs from chest X-rays. Cootes et al. [32] propose

active shape models. Van et al. [140] present a segmentation method based on active shape models

with optimal features. Shi et al. [125] use the active shape model based on scale-invariant feature

transform (SIFT) features to segment the lungs. Guo and Fei [52] develop a minimal path searching

method for active shape model based segmentation for chest X-rays.

Hybrid Segmentation

Combining multiple segmentation methods and overcoming shortcomings of one method by another

method. It is hoped that the combined use of multiple methods can complement each other and

make the segmentation result better. After using the Active Shape Model (ASM), Active Appear-

ance Model (AAM), and Pixel Classification (PC) to segment the lungs, Van Ginneken et al. [142]

proposed a joint ASM, AMM, and PC method to segment images. In order to obtain the inde-

pendent segmentation results of the pixels of ASM, AMM, and PC, each pixel is voted by using

the classification results of the three methods, and each pixel is classified according to the majority

principle. Another strategy is utilizing the segmentation result of one method as the input of another

method for the second segmentation, such as ASM/PC, PC/ASM, and so on. Candemir et al. [17]

present a hybrid method based on nonrigid registration and anatomical atlas as a guide combined
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with graph cuts for refinement.

2.1.2 Nuclei Segmentation in Histopathological Images

Nuclei segmentation has been studied for decades and a large number of methods have been proposed

[147]. Most of the traditional nuclei segmentation methods based on these following algorithms: in-

tensity thresholding (such as OTSU [112, 150, 122]), image morphological operations [160], watershed

transform algorithm [151, 144], active contours [73, 111, 104, 29, 19, 100, 153, 20, 148, 21, 143, 54,

35, 137], clustering (such as K-means [98] ), graph-based segmentation methods [42], supervised

classification and their variants or combinations.

Intensity Thresholding

The most basic and simplest algorithm for nuclei segmentation may be intensity thresholding. Using

a global threshold value or some locally adaptive threshold values to convert the input image to

a binary image is widely used in image processing field. The method for choosing the specific

thresholding value is related to the task and the input image. Specific for nuclei segmentation, the

intensity distribution of pixel values between nuclei (foreground) and the background is persistently

distinct. One of the most famous locally adaptive algorithms is OTSU [112], which selects a threshold

by maximizing the variance between the foreground and the background. In order to tackle the

problem of non-consistent intensity values within an image, an extension of this method is to divide

the full image into numerous sub-images and perform thresholding individually [122], but it requires

additional parameters thus can’t perform automatically.

Image Morphological Operations

Mathematical morphology is one of the most widely used techniques in image processing field.

The basic operations including erosion, dilation, opening and closing. For nuclei segmentation

task, morphological operations often cooperate with other methods to achieve better segmentation

performance. For example, [160] presents an unsupervised nuclei segmentation method which using

morphology to enhance the gray level values of the nuclei.

Watershed

Watershed transform is one of the most important image segmentation algorithms. It can be clas-

sified as a region-based segmentation method which utilizing a region growing strategy, specifically,

it starts with some seed points and then iteratively adds image pixels which satisfies some require-

ments to regions. [151] proposed a marker-controlled watershed to avoid over-segmentation problem

in segmenting clustered nuclei. [144] utilized marker-controlled watershed segmentation for nuclei

segmentation in H&E stained breast biopsy images.
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Active Contours

Active contour models or deformable models are extensively studied and used for nuclei segmenta-

tion. With some initial starting points, an active contour evolves toward the boundaries of desired

region or objects by minimizing an energy functional. The energy of the active contour model (also

known as Snake) is formulated as a linear combination of three terms [73]: internal energy, image

energy and constraint energy. The internal energy controls the smoothness and continuity of the con-

tour, the image energy encourages the Snake to move toward features of interest and the constraint

energy can be based on the specific object. The two major implementations of active contour models

for nuclei segmentation are geodesic snakes (or level set models) which are with implicit contour rep-

resentations and parametric snakes which are with explicit contour representations [147]. A contour

is implicitly represented as the zero level set of a high-dimensional manifold in a geodesic model

[35, 111]. There are mainly two types geodesic models: edge-based level set models [19, 100, 153, 20]

which rely on the image gradient to terminate contour evolution and region-based level set models

[21, 143] which based on the Mumford-Shah functional [104]. Region-based models are more robust

to noise and weak edges compared with edge-based models [147]. Han et al. [54] present a topology

preserving level set model to preserve the topology of the implicit curves or surfaces throughout

the deformation process. Taheria et al. [137] propose a nuclei segmentation approach which utilizes

a statistical level set approach along with topology preserving criteria to evolve the nuclei border

curves. While in a parametric active contour model, a continuous parameter is explicitly used to

represent a contour. The traditional Snake model [73] moves contours toward desired image edges

while preserving them smooth by searching for a balance between the internal and external force. A

balloon snake [29] is formed by introducing a pressure force to increase the capture range of the ex-

ternal force. On the other hand, [148] replaced the external force with a gradient vector flow (GVF)

to handle the problems of poor convergence to boundary concavities and sensitive initialization.

Clustering

Clustering is the process of dividing a collection of data objects into multiple subsets. Each subset

is called a cluster. Clustering makes the objects in the cluster have high similarity, but it is not very

similar to objects in other clusters. Different clustering algorithms may produce different clusters

on the same dataset. Cluster analysis is used to gain insight into the distribution of data, observe

the characteristics of each cluster, and further analyze the characteristics of specific clusters. Since a

cluster is a subset of data objects, the objects in the cluster are similar to each other and not similar

to the objects in other clusters. Therefore, the cluster can be regarded as a ”recessive” classification

of the dataset, and cluster analysis may find the unknown subset of the dataset. Clustering is

unsupervised learning, unsupervised learning refers to the search for implicit structural information

in unlabeled data. For nuclei segmentation task, clustering is usually used as an intermediate step

such as extract object boundary. Popular clustering algorithms including K-means [98], Fuzzy c-

means [10] and EM algorithm [36]. [78] presented a K-means clustering based approach for nuclei

segmentation in H&E and immunohistochemistry (IHC) stained pathology images. [6] designed a

nuclei segmentation method based on manifold learning which utilizing K-means to segment nuclei
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and nuclei clumps. [16] proposed a parallel Fuzzy c-means based approach for nuclei segmentation

in large-scale images, which can be used to process image which has high resolution such as WSI.

Graph-based Methods

A graph-based image segmentation method [42] treats an image as a weighted graph. Each node in

the graph represents a pixel or super-pixel in the image, and each edge weight between the nodes

corresponds to the similarity of adjacent pixels or super-pixels. In this way, a graphic can be divided

into multiple regions according to a criterion, each region represents an object in the image. Typical

example graph-based methods including Max-Flow/Min-Cut algorithms [49, 13, 12], normalized

cut [146] and Conditional Random Fields (CRF) [82]. The Max-Flow/Min-Cut algorithms solve the

image segmentation problem by minimizing an energy function. While the normalized-cut algorithm

attempts to divide the set of vertices of an undirected graph into multiple disjoint classes, so that

the similarity between classes is very low, the similarity within the class is very high, and the

size of the class should be as balanced as possible. CRF formulates segmentation task as a pixel-

wise classification or labelling task and assigns the labels of each pixel or super-pixel based on the

observations, this method can be classified as a discriminative graphical model.

Supervised Classification

A number of nuclei segmentation methods based on supervised machine learning have also been

proposed. There are two categories methods for this task, i.e. pixel-wise classification or superpixel-

wise classification. For pixel-wise, the label of each pixel of determined by a learned model with

some criteria. While for superpixel-wise classification, a set of candidate regions for nuclei are first

segmented from the input by a learned model. The general pipeline of this method is first apply

some feature extraction algorithms to extract image features from input image and then feed into

classifiers such as K-NN, SVM [133], Bayesian, etc. [77] presents a supervised learning algorithm

for nuclei segmentation in follicular lymphoma pathological images. The local Fourier transform

features are firstly extracted from the image, then a K-NN classifier is applied to determine the label

of each pixel.

2.2 Convolutional Neural Network

Deep learning [48] has been widely used and achieved notable success in many domains such as

computer vision [79, 128, 119, 95, 45], natural language processing [30, 31, 154], speech recognition

[60, 37, 161]. CNNs [86] are a special kind of feed-forward network with sparse connectivity and

parameter sharing, which are particular designed for dealing with data that has grid-like topology

such as image data [48]. CNNs have achieved remarkable performance in plenty of computer vision

tasks including image classification [79, 128, 58, 59, 63], image segmentation [95, 109, 7, 56, 24], face

recognition [113, 22], image style transfer [45, 96] etc.

CNNs are motivated by the mechanism of receptive field in biology. In 1959, David Hubel and

Torsten Wiesel discovered that there are two types of cells in cat’s primary visual cortex: simple
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cells and complex cells. These two kinds of cells responsible for tasks in different levels of visual

perception [64, 65, 66]. The receptive field of the simple cell is long and narrow, and each simple

cell is only sensitive to the light with the specific orientation in the field, while the complex cell is

aware of the light of an orientation in the field moving along a specific direction. Inspired by this

observation, in 1980, Kunihiko Fukushima proposed a multi-layer neural network with convolution

and sub-sampling operations: Neocognitron [44]. After that, Yann LeCun introduced the back-

propagation (BP) algorithm into CNNs in 1989 [84] and achieved great success in handwritten digit

recognition [85].

AlexNet [79] is the first modern deep CNN model, which can be considered as the beginning of

a real breakthrough of deep learning techniques for image classification. AlexNet does not require

pre-training and layer-wise training, on the contrary, it uses many techniques that are widely used in

modern deep CNNs, such as parallel training using GPU, ReLU as a nonlinear activation function,

dropout [61, 130] to prevent over-fitting, and data augmentation to improve the performance of the

model, etc. These techniques have greatly promote the development of end-to-end deep learning

models. There are many CNN models have been proposed after AlexNet, such as VGG [128],

Inception v1 [135], v2 [136], v4 [134], ResNet [58, 59] DenseNet [63] and so on.

Currently, CNNs have become the dominating models in the field of computer vision. By intro-

ducing skip connection across layers, the depth of a CNN may beyond one thousand layers. However,

no matter how deep a CNN model is, the basic building blocks of it stay the same. In general, it

may consists of convolution layers, pooling layers and fully-connected layers. This section will give

some details of each building blocks in a CNN model.

2.2.1 Artificial Neural Network

Artificial Neural Networks (ANNs) are artificial computational systems which were mainly motivated

by biological neural systems in human brain. The most fundamental element in ANNs is neurons or

nodes, a typical ANN consists of numerous neurons and weighted connections between these neurons.

Neurons receive input signals from connections and perform some operations then generate outputs

[70, 152]. Neurons are grouped by layer and ANNs may have multiple layers, the number of layers is

called the depth of ANNs. An ANN can be trained to approximate a particular function by adjusting

the weights of connection. According to the connection pattern, ANNs can be divided into feed-

forward networks in which there is no loop or feedback connections, and recurrent networks in

which there has feedback connections [48]. In particular, a feed-forward network with all neurons in

current layer have connections with all neurons in the next layer is called fully-connected network.

Fig. 2 shows an example of 3 layers (input layer, hidden layer and output layer) fully-connected

feed-forward network.

2.2.2 Convolution Operation

Convolution operation initially is an important operation in mathematics, it also has a broad usage

in signal and image processing. Since the convolution used in neural networks has some slightly

differences compared to the convolution used in pure mathematics, the convolution described here is
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input layer

hidden layer

output layer

Weight Matrix

Weight Matrix

Figure 2: A typical fully-connected feed-forward neural network with depth 3.

just used in neural networks. When apply on imaged, the convolution usually has a two-dimensional

discrete form. Formally, let I be an image and K be a kernel, the two-dimensional discrete convo-

lution is:

P (i, j) = (I ∗K)(i, j) =

i∑
u=0

j∑
v=0

I(u, v)K(i− u, j − v) (1)

where the range of u is [0, i) and the range of v is [0, j), i and j are the width and height of the kernel,

respectively. In the context of deep learning and image processing, the main function of convolution

is to obtain a new set of features or representations by sliding a convolution kernel (i.e. filter) on

an image. In practice, many deep learning libraries such as TensorFlow [1], Theano [9] and Caffe

[72] use cross-correlation operation instead of convolution operation, which can reduce unnecessary

computation cost significantly. Given an image I and kernel K, the cross-correlation is defined as:

P (i, j) = (I ∗K)(i, j) =

i∑
u=0

j∑
v=0

I(i+ u, j + v)K(u, v) (2)

For the purpose of feature extraction, convolution and cross-correlation are equivalent, the only

difference between convolution and cross-correlation is whether the kernel is flipped. Fig. 3 shows

an example of 2-D convolution operation without kernel flipping.

input
kernel output

* =
1

-1

-2 -1

0

-1

1

0

0 1

1 2
1 0

0 -1

0 -2 0

0 2 2

Figure 3: An example of 2-D convolution operation without kernel flipping. The output in the red
square is the convolution result of the red squared input region and the kernel.
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2.2.3 Local Connectivity and Parameter Sharing

Compared to ordinary neural network layers, convolution layer has two important properties: local

connectivity and parameter sharing.

Local Connectivity

�1 �2 �3 �4 �5

�1 �2 �3 �4 �5

�1 �2 �3 �4 �5

�1 �2 �3 �4 �5

Figure 4: Schematic diagram of local connectivity. The upper half is fully connected layer and the
bottom half is locally connected layer. Image is from [48].

All the neurons in one convolution layer only connect with neurons in a small local region of

previous layer. The local region is called the receptive filed of this neuron. Local connectivity (also

known as sparse connectivity, sparse weights and sparse interactions) ensures that the learned filter

has the strongest response to local input features and also can decrease the number of parameters

of a CNN model dramatically. Fig. 4 schematically illustrates the local connectivity property. More

precise, the upper half of Fig. 4 shows the connectivity pattern of a fully connected layer while the

bottom half describes the local connectivity pattern of a convolution layer. In the upper half, the

above row is the matrix multiplication result with fully connectivity, the blue circles in the bottom
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row affect the result output y3 and are called the receptive field of y3. Since it’s fully connected,

all the inputs affect y3. While in the bottom half, the above row is the convolution result of kernel

with width 3 applies on the bottom row. With local connectivity, only 3 inputs affect y3.

Parameter Sharing

�1 �2 �3 �4 �5

�1 �2 �3 �4 �5

�1 �2 �3 �4 �5

�1 �2 �3 �4 �5

Figure 5: Schematic diagram of parameter sharing. The upper half is without parameter sharing
and the bottom half is with parameter sharing. Image is from [48].

In a CNN, the parameters are the same for a convolution operation applies for every neurons

in one layer. This means for one layer, we do not need learning separate sets of weights for every

location, we just need learning one set of weights and then applying them everywhere. This property

further reduces the number of parameters. Fig. 5 demonstrates the parameter sharing property.

The red arrows in Fig. 5 represent the connections that use an unique parameter in two different

situations. In the upper half, the situation without parameter sharing, the parameter is unique and

used only once. While in the bottom half, the parameter of the central element of a convolution of

kernel with width 3 is used at all input locations because of parameter sharing.
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2.2.4 Activation Function

The main purpose of an activation function in a neural network is to provide nonlinear modeling

ability for the neural network. A neural network without nonlinear activation function can only

express linear mapping, and no matter how many layers this network has, it is equivalent to one

single-layer neural network. In general, neurons receive some input signals, perform some operations

or functions such as weighted sum, and optionally followed by nonlinear activation functions. Typical

activation functions including Sigmoid, tanh, Rectified Linear Units (ReLU) [105] and Leaky-ReLU

[97]. Fig. 6 gives the corresponding formula and figure of some widely used activation functions in

neural networks.

tanh
tanh(x)

ReLU
max (0, x)

Sigmoid
σ(x) =

1

1 + e
−x

Leaky	ReLU
max (0.1x, x)

Figure 6: Some widely used activation functions in neural networks.

The Sigmoid function is the most widely used non-linear activation function historically, it con-

verts the continuous real-valued input to an output between 0 and 1 and particularly suitable for

classification problems. But in recent years, it has fallen out of favor and rarely ever used since it

has three major drawbacks. The first drawback is that it can saturate and kill gradients and cause

gradient exploding/vanishing problem [47]. The second drawback of Sigmoid is the outputs is not

zero-centered and this will slow down the convergence of deep neural networks. The last drawback

is that the Sigmoid has a power operation which is a relatively time-consuming operation and will

increase the training time for deep networks. The tanh function solves the second drawback of

Sigmoid, i.e. the not zero-centered problem, but the gradient exploding/vanishing and the power

operation problems still exist. The ReLU solves the gradient exploding/vanishing problem in posi-

tive interval and is computational efficient but the outputs of ReLU is not zero-centered. It also has

dead ReLU problem which means some neurons may never be activated (the corresponding param-

eters never be updated). However, the ReLU function is still the most commonly used activation

function nowadays [79]. In order to tackle the dead ReLU problem, the Leaky ReLU function was

proposed [57] which has a small negative slope. In theory, the Leaky ReLU is better than ReLU

since there will be no dead ReLU problem, but in practice, it does not fully prove that the Leaky

ReLU is always better than ReLU.
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There are a great number of activation functions used in neural networks and each of them has

different properties, how to choose the right activation function is depending on the specific task you

are perform (i.e. the function that you are trying to approximate). In addition, different activation

functions can be used in different layers in one CNN architecture, for example, many deep CNNs for

image classification use ReLU as activation function in hidden layers and use Sigmoid as activation

function in output layer [79, 128, 135].

2.2.5 Pooling

Pooling layer, also known as sub-sampling layer, it performs down sampling operation on the feature

maps thus decreasing the dimension of feature maps and thereby reducing the number of parameters.

Since pooling operation summaries some statistics of the neighboring outputs in previous layer,

it enables the feature representations after pooling operation approximately unchanging to small

translation. The size of the pooling layer is the window size which used for calculation, and the stride

of the pooling layer is the number of pixels between every calculation. There are two commonly used

pooling functions: max-pooling which choose the maximum value and average-pooling, in contrast,

selects the average value. Fig. 7 illustrates a max-pooling operation with size 2× 2 and stride 2× 2.

0 4
2 0

0 1 2 2
0 0 3 0

3 4
1 3

1 3
1 0

Input Feature Maps

Output Feature Maps

Input Feature
Output Feature

Max-pooling

Figure 7: Max-pooling operation (size 2× 2 and stride 2× 2).

2.2.6 Typical CNN Structure

For a classification task, the architecture of a typical CNN is composed of a stack of convolution

layers, pooling layers and fully-connected layers. At present, the pattern of most widely used CNN

structure is shown in Fig. 8. A convolution layer usually involves a convolution operation followed

by an activation function. A convolution block consists of successive M convolution layers and b
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pooling layers. N consecutive convolution blocks can be stacked in a CNN, finally followed by K

fully-connected layers.

Convolution Activation Pooling

× M × b

× N

Fully-connected

× K

softmaxinput

Figure 8: A typical CNN structure for a classification task.

The purpose of fully-connected layers in a classification task is to map the result features of the

convolution layers and pooling layers to class labels. Clearly, since the fully-connected layers have

a huge number of parameters, they are wasteful and cost a large amount of computational power,

thus cannot scale to large input image. In some CNN architectures such as GoogLeNet [135], there

is no fully-connected layers.

2.2.7 Training Neural Networks

Training of a neural network means solving one particular case of optimization problem: finding the

parameters or the weights of the connections θ in a neural network that minimize a predefined loss

function L(Y, f(X, θ)). The loss function measures the performance of the neural network on the

data , specifically, it evaluates the degree of inconsistency between the predicted labels f(X, θ)of the

model given the current weights θ of the model and the ground truth labels Y . Two commonly used

loss functions are Mean Squared Error (MSE) and Cross-Entropy (CE). MSE calculates the average

of the squared differences between the predicted labels and the true labels:

MSE =
1

m

m∑
i=1

(Yi − Ŷi)2 (3)

where m is the number of data samples and Ŷi is the i-th predicted label. MSE is usually used

in regression problem, while CE is often used in classification problem, for a binary classification

problem (i.e. Yi = {0, 1}), the CE can be defined as:

CE = − 1

m

m∑
i=1

(Yi log Ŷi + (1− Yi) log(1− Ŷi)) (4)

where Yi and Ŷi are the ground truth labels and predicted labels, respectively. In the context

of machine learning, gradient based learning algorithms are widely used to train neural networks.

Specifically, BP algorithm [84] is used to compute the gradients for each parameter based on the total

loss value of the model. The core idea of BP is utilizing chain rule repeatedly to calculate partial

derivatives for each parameter in the model. Basically, it starts from the last layer, calculates
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the error vector in reverse, continuously applies the chain rule to calculate the loss value of the

cumulative gradient inversely, thus minimizes the loss function. After obtain all the gradients,

gradient based learning algorithms is generally used to update the parameters. Specifically, gradient

descent technique add an appropriate negative gradient on the original parameter:

θn+1 = θn + ∆θ(n)

∆θ(n) = −α ∂L
∂θ(n)

where α is called learning rate, L is the total loss value and n is the iteration number. When just

part of the examples (mini-batch) from the training set are used for loss function calculation, the

algorithm used for updating parameters based on this loss value is known as stochastic gradient

descent (SGD). Since different initialization strategies of the parameters and the use of only partial

samples during the parameter update process, SGD can only find the local optimal solution.

Based on the gradient descent learning algorithm, many optimization algorithms for training

neural network are proposed. Momentum [117] is a method designed for accelerating learning process

of SGD by introducing a hyper-parameter called momentum which is derives from physical analogy.

Recently, many adaptive learning rate based optimization methods have been introduced, such as

AdaGrad [40], Adam [75] and AdaDelta [158].

The training process can be divided into two categories, online learning and batch learning.

Online learning usually selects one data sample randomly from the training set then learn one by

one. The main advantage of online learning is small computational cost, however it converges pretty

slow. Batch learning utilizes all data samples in the training set which benefits the loss calculation

based on all data, but the computation is huge and only suits for the situation when has very small

data samples. In practice, the most widely used training strategy is mini-batch learning which is

a trade-off between the above mentioned two categories. Generally, the traversing of the entire

training set of learning process is defined as one epoch.

2.2.8 The Initialization of Parameters

The initialization strategy of parameters in a CNN model has a big influence on the convergence

speed and the performance of the model. Next, three most widely used parameters initialization

methods will be described.

Gaussian Initialization

In this initialization, parameters are initialized with random values which selected from a specified

Gaussian distribution N(µ, σ2), the mean value and the variance of the Gaussian distribution are

pre-defined and fixed.

Xavier Initialization

Xavier initialization was proposed by Glorot and Bengio [47], the initial variance of Gaussian distri-

bution is no longer pre-defined and fixed but determined by the input layer of the current layer and
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the number of neurons in the input layer. Suppose the number of neurons in the input layer is nin,

and the number of neurons in the output layer is nout. The initial variance is:

V ar =
2

nin + nout
(5)

then a Gaussian distribution with zero mean and V ar variance is used for parameters initialization.

MSRA Initialization

MSRA initialization was presented by He et al. [57]. Unlike the Xavier initialization, MSRA ini-

tialization uses different initial variance for Gaussian distribution to obtain a much more robust

initialization. The initial variance of MSRA is:

V ar =

√
2

nl

nl = k2l dl−1

(6)

where kl is the kernel size of convolution, and dl−1 is the number of convolution kernel in (l− 1)-th

layer.

In conclusion, Xavier initialization is more suitable for the network which uses Sigmoid as acti-

vation while MSRA initialization works better for the network uses ReLU as activation.

2.2.9 Batch Normalization

Training deep neural networks including deep CNNs is extremely challenging, one of the most impor-

tant reasons is that deep neural networks may consist of a large number of layers, and the parameters

of all layers are updated simultaneously. Every parameter update in one layer will change the input

data distribution of all subsequent layers, even a small change in low layers’ data distribution will

cause exponentially change of high layers’ data distribution. In order to train the model, we need

to be very careful to set the learning rate, parameters initialization method and parameter update

strategy. This kind of data distribution change in different layers is called the internal covariate

shift [68]. In order to solve this problem, Ioffe and Szegedy [68] proposed an approach called batch

normalization. Basically, batch normalization is an adaptive reparametrization approach which is

aiming for making the training of deep neural networks easier. The details of batch normalization

will be described in the following.

For a mini-batch with size m, it has m activation values which can be denoted as B = {x1...m}.
Firstly, the mean and variance of the batch are computed:

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi − µB)2
(7)

where µB is the mean value and σ2
B is the variance of the mini-batch. After that, the normalized

activation values x̂1...m are:

x̂1...m =
xi − µB√
σ2
B + ε

(8)
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where ε is a small constant which used to avoid division by 0. Finally, the normalized activation

values can be obtained by:

yi = γx̂i + β (9)

where γ and β are learned parameters that allow the normalized activation values to have any mean

and standard deviation. Batch normalization can apply on any types of layer in neural networks,

[68] places the batch normalization layer before the activation function,

z = g(BN(Wx)) (10)

where BN stands for batch normalization and g(∗) is the activation function.

2.3 Fully Convolutional Neural Networks

For image segmentation task, since the proposal of FCN [95], which FCN stands for Fully Convo-

lutional Networks, it attracts active research and many works based on FCN have been proposed

[109, 120, 136, 102, 23, 7, 92]. Considering the output of image segmentation is a pixel-wise classifica-

tion map instead of one single class label for image classification, the main idea of FCN is replacing

fully-connected layers in a classification network with convolution layers thus make the network

fully convolutional. Furthermore, U-Net [120] is an architecture based on FCN and has been widely

proven to have superior performance for medical image segmentation. These two networks will be

discussed in this section.

2.3.1 FCN
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Figure 9: The FCN-32 network structure. Green box represents pooling operation, blue box repre-
sents convolution and activation operation and red box represents up-sampling operation.
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As mentioned above, the main contribution of FCN is convolutionalization which means replacing

fully-connected layers with convolution layers. There are various advantages of FCN compared to

CNN with fully-connected layers. First of all, the FCN can process input image in different sizes,

i.e. the resolution of the input image for a FCN is not fixed. Secondly, fully-connected layer usually

has a huge amount of learnable parameters compared with convolution layer, and thus needs lots of

memory to store the model and computation to train the model. The replacing of fully-connected

layers with convolution layers in FCN make the whole network architecture fully convolutional.

Furthermore, FCN introduces up-sampling operation to recover the dimension of output feature

maps back to original input dimension. In this way, a 2-dimensional feature map can be obtained,

followed by a softmax function to generate a pixel-wise labelling map. Fig. 9 demonstrates the

detailed structure of FCN32, in which the name FCN32 means it directly up-samples the features

in the lowest resolution (32x up-sampling) back to the original resolution.

Transposed Convolution

FCN adopts transposed convolution (also known as deconvolution, backwards convolution) [159]

to perform up-sampling. Although it is called transposed convolution, in fact, it’s not the inverse

operation of convolution. Transposed convolution is a special kind of forward convolution, it first en-

larges the size of the input image by padding, then rotates the convolution kernel (matrix transpose)

and performs forward convolution. The kernel weights of transposed convolution can be learned by

backpropagation from the network loss. The transposed convolution enables the prediction of the

segmentation network is pixel-wise, therefore make the learning of the whole network end-to-end.

Skip Layer

For the task of image segmentation, global information contains semantics of the whole image and

local information indicates specific location of each object. In order to obtain accurate segmentation

map, it needs the cooperation of coarse, deep, semantic information and fine, shallow, local infor-

mation [95]. FCN introduces skip layer (or skip connection) to accomplish that. Fig. 10 describes

the skip layer used in FCN. In general, it up-samples feature maps from different deep layers with

different scales, then add with feature maps in shallow layers, in this manner, the predictions can

combine both global and local information.

2.3.2 U-Net

U-Net [120] is a popular segmentation network specially designed for medical imaging which is built

upon FCN [95]. The detailed architecture of U-Net is shown in Fig. 11, it consists of a down-sampling

(contracting) path and an up-sampling (expanding) path, this kind of architecture is also known as

encoder-decoder. In the down-sampling path, image representations are extracted with successive

convolution and pooling operations at different scales. After each down-sampling operation, the

number of image features is doubled. In total, the down-sampling path has 5 convolution blocks

with each has two 3 × 3 convolution layers with ReLU activation, followed by a max-pooling with
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pool3
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16x upsampled
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8x upsampled
prediction (FCN-8s)

Figure 10: The skip connections in FCN. Pooling layers and prediction are shown as grids, convolu-
tion layers are omitted for clarity. Image is from [95].

stride 2 × 2 operation except the last block which is also called bottleneck block. While in the

up-sampling path, the purpose of it is to recover resolution of the contextual information extracted

from the down-sampling path and enable precise localization by utilizing the local information.

Deconvolution operation with stride 2 × 2 is applied to up-sample the feature resolution, then

concatenate with the features that have the same dimension from the down-sampling path, this is

the skip connection in U-Net. After concatenation operation, two 3 × 3 convolution layers with

ReLU activation are used to reduce the number of feature maps. Finally, a 1× 1 convolution [93] is

used to map the features to the desired number of segmentation classes.

In conclusion, U-Net has two major differences compared to FCN. Firstly, the architecture of

U-Net is symmetric, it has a u-shaped structure. Secondly, U-Net applies concatenation operation

instead of summation operation in FCN to fuse feature maps in skip connection. And the skip

connection (or skip layer, residual connection [59]) in a CNN is extra connection between different

layers that skips one or more layers.

The Overlap-tile Strategy

The resolution of medical image sometimes is extremely large. It’s very challenging for training deep

network with such large input images even with a modern GPU. U-Net [120] introduces a seamless

patching strategy - the overlap-tile strategy. Basically, the whole image is divided into patches and
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Figure 11: The U-Net architecture. Image is from [120].

all the patches are predicted one by one. In order to obtain prediction of a small part, we need

image data from an area which is much more bigger than the small part of the input image. The

explanation of this strategy is shown in Fig. 12. The area in green line of the input image is predicted

using the area in blue line as the input. Image data is extrapolated by mirroring at image boundary.
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Figure 12: The Overlap-tile strategy. Left image is input image and right image is the corresponding
segmentation mask. Images are from [107].

23



Chapter 3

Lung Segmentation in Chest X-ray

by Fully Convolutional Networks

This chapter will present the first work of this thesis, the lung segmentation in chest X-ray by fully

convolutional networks.

3.1 Introduction

A variety of imaging techniques are now available in the medical diagnosis field, such as X-ray imag-

ing, computed tomography (CT) and magnetic resonance imaging (MRI). Despite the higher precise

and sensitivity of CT and MRI, traditional X-ray imaging is still the most commonly used technique

in medical diagnostic examinations and lung examinations because of less radiation dose and low

cost. Chest radiography, as a cost-effective procedure and most widely used imaging techniques, is

account for about one-third of all radiological procedures [141]. It provides a powerful tool to study

various structures inside the thoracic cavity. Therefore chest radiography is widely used for the

diagnosis of several diseases in clinical practices including emphysema, lung cancer and tuberculosis.

Since the information extracted directly from lung regions such as size measurements, irregular shape

and total lung volume can provide clues about early manifestations of life threatening diseases like

emphysema [33, 103], pneumothorax, cardiomegaly and pneumoconiosis, accurate segmentation of

lung regions in chest X-ray is a primary and fundamental step in computer-aided diagnosis (CAD)

and plays a vital role for subsequent medical image analysis pipeline.

There are a number of difficulties and challenges for accurate lung segmentation in chest X-ray

images. First of all, the shape and appearance of lung is greatly diverse due to differences in gender,

age and health status. Secondly, the existence of external objects such as sternal wire, surgical clips

and pacemaker will further makes the lung segmentation task much more difficult. Finally, some

anatomical structures of lung may cause hardness for segmentation. For instance, the strong edges

of the ribs and clavicle regions lead to local minima for many minimization methods.
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3.2 Method

Most of the traditional segmentation methods for lung segmentation in chest X-ray rely on hand-

crafted features. Recently, the progress of deep learning, especially CNNs based models have achieved

huge success in many medical image analysis tasks.

In this study, we focus on applying robust deep CNN models to directly learn from image pixels

for segmenting lung region in chest X-ray images. Specifically, we develop an automated framework

based on FCN [95] and U-Net [120] for lung segmentation and demonstrates the superior performance

of deep learning based approaches. Finally, we perform comparison study on 3 public chest X-ray

image datasets to evaluate the performance of these models.

3.2.1 FCN

Since FCNs have 3 different architectures: FCN32, FCN16, FCN8, the only difference between these

architectures is the skip connection. Specifically, FCN32 has no skip connection, FCN16 has one

skip connection and FCN8 has two skip connections. In order to study the effect of skip connection,

we adopt two FCNs for this study, FCN32 and FCN8. Following will give some details of these two

architectures.

The architecture of FCN32 is shown in Fig. 13. It has five pooling layers, so the dimension

of input image will be reduced to 1
32 of the original input size, e.g. for an input image with size

512 × 512, the size in the smallest scale with be 16 × 16. Every level in FCN32 has two 3 × 3

convolution followed by ReLU activation except the last level. For the last level, it uses a 7 × 7

convolution with ReLU activation. After the 7×7 convolution, two 1×1 convolution with ReLU are

used. Finally, it directly uses a transposed convolution with stride 32× 32 to up-sample the 16× 16

feature maps back to the original size, i.e. 512 × 512. Since the up-sampling rate is 32x, this type

of FCN is called FCN32.

The architecture of FCN8 is shown in Fig. 14. Same with the FCN32, It also has five pooling

layers. The major difference of FCN8 compared with FCN32 is that it uses feature addition operation

to merge features in the previous layers. More specific, it firstly uses a transposed convolution with

stride 2 × 2 to up-sample the 16 × 16 feature map back to 32 × 32, then a 1 × 1 convolution with

ReLU is applied on the previous features map after the fourth pooling operation which has the same

size 32 × 32, then uses addition operation to add these two feature maps with size 32 × 32. After

addition operation, another transposed convolution with stride 2× 2 is applied on the result feature

maps. The feature map now has resolution 64 × 64, then add with another 64 × 64 feature map

which is obtained from 1× 1 convolution on the previous features after the third pooling operation.

Finally, a transposed convolution with stride 8 × 8 is applied on the result feature after addition

operation to obtain the final 512× 512 segmentation map.

3.2.2 U-Net

The detailed network structure of U-Net is shown in Fig. 15. It is identical with the U-Net except for

only one difference, in this study, we use convolution with padding instead of convolution without
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Figure 13: The architecture of FCN32 used in this study. Blue boxes represent image features. The
number of features is indicated on the right of the box. The resolution of each level (features have
the same resolution) is indicated on the left side of each level.

padding in the original U-Net. Therefore there is no dimension lose after every convolution operation.

3.3 Experimental Results

3.3.1 Datasets

Three publicly available datasets are used to evaluate the performance of different methodology in

this study.
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Figure 14: The architecture of FCN8 used in this study. Blue boxes represent image features. The
number of features is indicated on the right of the box. The resolution of each level (features have
the same resolution) is indicated on the left side of each level.

Montgomery County (MC) Dataset

The MC dataset [69] is from the department of Health and Human Services, Montgomery County,

Maryland, USA. It contains 138 frontal chest X-ray images, among them 80 images are normal cases

while 58 images are abnormal cases (i.e. tuberculosis). All images are provided in PNG format

as 12-bit gray-scale images. The resolution of these images are either 4020 × 4892 or 4892 × 4020.

The corresponding manual lung segmentation mask images are performed under the supervision of

a radiologist.
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Figure 15: The architecture of U-Net used in this study. Blue boxes represent image features. The
number of features is indicated on top of the box. The resolution of each level (features have the
same resolution) is indicated at the bottom left of each level.

Shenzhen Dataset

The Shenzhen dataset [69] is from Shenzhen No.3 People’s Hospital, Guangdong Medical College,

Shenzhen, China. It consists of 662 frontal chest X-ray images in total, 326 images are normal

cases while 336 images are abnormal cases. These images are also stored in PNG format and the

resolution of them are vary but roughly 3000 × 3000. The corresponding lung segmentation masks

are provided by [131]. However, for Shenzhen dataset, only 566 images have the corresponding

manual lung segmentation mask images. Therefore only 566 images in this dataset are actually used

for this study.

Japanese Society of Radiological Technology (JSRT) Dataset

The JSRT dataset [126, 142] is collected from 14 medical centers in Japan. It has 247 chest X-ray

images, among them 93 images are normal cases and 154 are abnormal cases. All images are in

PNG format and having 12-bit gray-scale with resolution 2048 × 2048. All the associated manual

lung segmentation mask images are also available.

Three example chest X-ray images and their corresponding lung segmentation masks are shown

in Fig. 16.

In addition, in order to evaluate the generalization ability of each segmentation model, we further

merge all the 3 datasets which we call it Combined dataset in this study.
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Figure 16: Example chest X-ray images and corresponding lung segmentation masks from 3 datasets
(left: MC dataset, middle: Shenzhen dataset, right: JSRT dataset).

3.3.2 Evaluation Metrics

In order to evaluate the lung segmentation performance of different method and make a comparison

in this study, we utilize 5 widely used evaluation criteria for medical image segmentation task, i.e.

overlap measure (Overlap, also known as the Jaccard similarity coefficient), dice similarity coefficient

(DSC), accuracy (ACC), specificity (SPE) and sensitivity (SEN, also known as recall).

Specifically, Overlap is the agreement between the segmented mask S and the ground truth

segmentation mask GT over all pixels in the image, formally,

Overlap =
|S ∩GT |
|S ∪GT |

=
|TP |

|FP |+ |TP |+ |FN |
(11)

where TP (True Positives) stands for pixels that are classified as foreground and are also foreground

in ground truth. FP (False Positives) represents pixels that are classified as foreground but are

background in ground truth. FN (False Negatives) means pixels that are classified as background

but are foreground in ground truth.

DSC is the overlap between the segmented mask S and the ground truth segmentation mask

GT , formally, it is defined as:

DSC =
|S ∩GT |
|S|+ |GT |

=
2|TP |

2|TP |+ |FN |+ |FP |
(12)
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ACC is the proportion of the model’s correct predictions. The definition of ACC is:

ACC =
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN |
(13)

where TN (True Negatives) represents pixels that are classified as background and are also back-

ground in ground truth.

Similarly, the SPE and SEN can be defined as:

SPE =
|TN |

|TN |+ |FP |

SEN =
|TP |

|TP |+ |FN |

(14)

all the metrics mentioned above are the higher the better.

3.3.3 Implementation and Training Details

For each dataset, we use 70% and 10% data samples as the training and validation set, respectively.

The remaining 20% data samples are used as the testing set. For the Combined dataset, the

training/validation/testing splitting follows the same. The details of each dataset are shown in

Table 1.

Table 1: Details of the chest X-ray image datasets used in this study.
Dataset Training (70%) Validation (10%) Testing (20%) Total (100%)

MC 97 14 27 138
Shenzhen 396 57 113 566

JSRT 173 25 49 247
Combined 666 95 190 951

Since the resolution of these images is diverse, we first re-size all the input chest X-ray images

to 512× 512 before passing them to the CNN model. In order to adjust image intensities for better

image contrast, we also perform histogram equalization operation on the input chest X-ray images.

To conclude, we trained three models, i.e. FCN8, FCN32 and U-Net on these 4 datasets indepen-

dently. In order to obtain stable performance results, for each model and each dataset, we perform

10 times running on 10 different random selected data split and average the final performance met-

rics results. All the models were trained by Adam optimizer with default suggested parameters [75].

The batch size for all the models is 4. We use the binary cross entropy loss as the loss function for all

models. For the consideration of training efficiency and combat over-fitting, we use early stopping

with patience 30 epochs, only the best model which has the lowest loss on validation set is used for

evaluation on testing set.

Fig. 17, Fig. 18 and Fig. 19 show some example training curves including model accuracy and

loss on these 4 datasets of FCN32, FCN8 and U-Net model, respectively. We can observe that all

the three models are convergence after a few epochs.
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Table 2: Lung segmentation results of different methods.
Method Overlap (%) ↑ DSC (%) ↑ SEN (%) ↑ SPE (%) ↑ ACC (%) ↑

MC dataset
Hybrid Nonrigid [17] 94.10 96.00 - - -

FCN32 90.36 94.77 94.82 98.48 97.57
FCN8 91.08 95.14 95.67 98.46 97.67
U-Net 94.20 96.95 96.63 99.17 98.54

Shenzhen dataset
FCN32 90.14 94.74 94.33 98.47 97.42
FCN8 91.05 95.23 94.46 98.78 97.67
U-Net 92.24 95.77 95.29 98.86 97.92

JSRT dataset
PC post [142] 94.50 - - - -

ASM [125] 87.00 - - - -
AAM [142] 84.70 - - - -

ASM-OF [140] 92.70 - - - -
Rule [2] 86.95 92.89 92.79 97.07 95.77

ShRAC [157] 90.70 - - - -
SSAM [91] 93.09 96.41 95.25 98.88 97.69

FCN32 92.74 96.22 96.00 98.48 97.75
FCN8 94.16 96.98 96.98 98.71 98.20
U-Net 94.97 97.46 97.07 99.09 98.49

Combined dataset
FCN32 90.65 95.04 95.52 98.10 97.43
FCN8 91.28 95.38 95.95 98.20 97.61
U-Net 91.99 95.76 96.50 98.28 97.81

3.3.4 Results and Discussions

Table 2 shows the segmentation performance results of different methods on MC, Shenzhen, JSRT

and Combined dataset. We compare our CNN based approaches with some traditional segmentation

techniques on the MC and the JSRT datasets, specifically, Hybrid Nonrigid [17] is a hybrid method

based on nonrigid registration, PC post [142] is a pixel classification based method, ASM [125] is a

method based on active shape model, AAM [142] is a method based on active appearance model,

ASM-OF [140] is an active shape model with optimal features, Rule [2] is a rule-based segmentation

approach, ShRAC [157] is an approach based on shape regularized active contour, and SSAM [91]

is an approach based on statistical shape and appearance model. The performance results of these

traditional approaches list in the Table 2 are directly from the respective literature. To the best of

our knowledge, the Shenzhen dataset has not been studied in terms of segmentation research.

From these results, first of all, we can observe that all deep learning based methods achieve

excellent performance in terms of all metrics on all the four datasets. This indicates that deep

learning technique is particularly suitable for the lung segmentation task. Secondly, for all the four

datasets, the performance of FCN8 is better than FCN32, this is the evidence that aggregating

image features from different scales will make the segmentation results much better. Finally, from

these obtained metrics, U-Net is much better than FCN8 and FCN32, the performance of U-Net
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ranked the top among all models in all the datasets. It again highlights that for medical image

segmentation, U-Net can achieve promising results.

Fig. 20, Fig. 21 and Fig. 22 show some example representative segmentation results comparison of

these three models and the corresponding manual ground truth in MC, Shenzhen and JSRT dataset,

respectively. From these visually comparison, we can observe that for some areas that are hardly

segmented by FCN8 and FCN32, U-Net can segment these areas satisfactorily.

3.4 Conclusion

In this study, we focus on the task of lung segmentation in chest X-ray images. We apply FCN and

U-Net on this task to demonstrate that the deep learning based approaches can achieve pretty good

results. The experimental results on three public datasets and their combined dataset illustrate that

U-Net achieved the best performance in terms of all metrics on all datasets for the lung segmentation

task.
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Figure 17: Training curves (accuracy and loss) of FCN32 on 4 datasets (From up to bottom: MC,
Shenzhen, JSRT, Combined).

33



Figure 18: Training curves (accuracy and loss) of FCN8 on 4 datasets (From up to bottom: MC,
Shenzhen, JSRT, Combined).
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Figure 19: Training curves (accuracy and loss) of U-Net on 4 datasets (From up to bottom: MC,
Shenzhen, JSRT, Combined).

35



Input Chest X-ray
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FCN32 Segmentation
Result & Difference

FCN8 Segmentation
Result & Difference

U-Net Segmentation
Result & Difference

Figure 20: Sample segmentation results and their corresponding difference of different methods on
the MC dataset. For the difference image, white color represents True Positives (TP), black color
represents True Negatives (TN), red color represents False Positives (FP) and green color represents
False Negatives (FN).

Input Chest X-ray
Image & Ground Truth

FCN32 Segmentation
Result & Difference

FCN8 Segmentation
Result & Difference

U-Net Segmentation
Result & Difference

Figure 21: Sample segmentation results and their corresponding difference of different methods on
the Shenzhen dataset. For the difference image, white color represents True Positives (TP), black
color represents True Negatives (TN), red color represents False Positives (FP) and green color
represents False Negatives (FN).
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FCN32 Segmentation
Result & Difference

FCN8 Segmentation
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U-Net Segmentation
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Figure 22: Sample segmentation results and their corresponding difference of different methods on
the JSRT dataset. For the difference image, white color represents True Positives (TP), black color
represents True Negatives (TN), red color represents False Positives (FP) and green color represents
False Negatives (FN).
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Chapter 4

A Two-Stage Learning Framework

for Nuclei Segmentation

This chapter will present the second work of this thesis, a two-stage learning framework for nuclei

segmentation in histopathological images.

4.1 Introduction

Histopathology plays a critical role in the understanding, prognosis, diagnosis and treatment of al-

most all discovered diseases [127]. The histopathological image data of a patient can be checked

by a Pathologist in order to determine following treatment. Tissue slides are informative for many

diseases such as cancer grade and sub-type. The studies of nuclear distribution, morphometric and

appearance features in tissue slides provide important clues in clinical practice. Since histopatho-

logical images provide extensive information regarding cell morphology and tissue architecture, they

are used in a broad range of applications in clinical practice, e.g., medical diagnosis [53], cancer

malignancy grading [26] and treatment effectiveness prediction [43]. Moreover, nucleus contains a

large number of epigenetic and genetic codes that can control and regulate cell type, morphology

and function. With the advent of cellular staining methods such as hematoxylin and eosin (H&E)

in which some useful specific structures such as cells, cell nuclei and collagen are highlighted, the

interpretation and determination of abnormal phenotypes in these stained tissue slides has been

interpreted by human that is prone to be subjective and time-consuming.

Digital pathology has been widely studied from both image analysis researchers and pathologists,

especially with the introduction of whole-slide imaging (WSI). WSI is a technology that can digitally

capture images that represent the whole stained tissue from a glass slide in a high-speed and high-

resolution way [41]. The advantage of WSI is not only provides a convenient way to store and share

these digitized tissue slides, but also paves a way for analyzing these informative images automatically

using image analysis techniques. Specific to histopathological images, digital histopathological image

analysis aims to automatically analyze histopathological images, which can significantly improve the
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reproducibility and objectivity of diagnosis [53]. Segmentation of nuclei in stained tissue images is

a fundamental and essential step for interpreting and analyzing these images. Accurate and robust

nuclei segmentation is a key pre-requisite step for Computer Aided Diagnosis (CAD). The purpose

of nuclei segmentation is obtain the detailed contours of each nucleus and separate individual nuclei

from input images for further processing.

4.2 Motivation

Although much progress have been made for nuclei segmentation in histopathological images, there

are still several challenges associated with this task. First of all, nuclear appearance, morphometric,

shape, color and density may varies by different organs. Fig. 23 gives an example of this variation

from 5 different organs: liver, colon, prostate, stomach and kidney. Secondly, some nuclei which has

extremely small size may very difficult to detect and segment, for instance, the nuclei of kidney in

Fig. 23. Finally, as shown in Fig. 24, touching and overlapping nuclei are also especially difficult to

segment.

Liver Colon Prostate Stomach Kidney

Figure 23: Examples of H&E stained images (up) and corresponding nuclei segmentation map
(bottom) for different organs (columns). Images are from [81].

Figure 24: Examples of overlapping and touching nuclei, green lines outline the boundary of each
nuclei in H&E stained images. Images are from [81].

In conclusion, nuclei segmentation still has several challenges such as difficulty in segmenting
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the overlapping and touching nuclei, detecting the nuclei which have small size, and limited gen-

eralization ability to different organs and tissue types. In order to tackle these challenges, many

approaches have introduced the nuclei-boundary prediction as part of nuclei segmentation to help

segment overlapping and touching nuclei. Kumar et al. [81] propose a CNN model that predicts nu-

clei and boundary segmentation map based on a patch-wise approach. Naylor et al. [108] convert the

binary segmentation task into a regression task by predicting the distance map of nuclei. Although

these methods have lead to some performance improvements, they still have some disadvantages

such as needing complex post-processing and excessive redundant computation.

4.3 Background

4.3.1 Stacking U-Nets

There are many works attempt to make some improvements based on FCN or U-Net [38, 102,

90, 27, 11, 121, 46, 74]. Drozdzal et al. [38] extend FCN by adding short skip connections from

residual networks [58, 59] and demonstrates that these short connections together with the long skip

connections originally in FCN and U-Net can alleviate the gradient exploding/vanishing problem

and enable us to build very deep networks for image segmentation. Milletari et al. [102] propose

a 3D FCN for dealing with 3D volumetric image segmentation in medical imaging. Li et al. [90]

utilize the dense connections in DenseNet [63] to design a 2D DenseUNet and a 3D counterpart

to propose a novel hybrid densely connected U-Net. On the other hand, the idea of cascading

or stacking multiple FCNs or U-Nets has attracted intensive and exhaustive research. Christ et

al. [27] cascade two FCNs and design a dense 3D conditional random fields for liver and lesion

segmentation in CT abdomen images. Sevastopolsky et al. [121] stack two kinds of building blocks,

U-Net or Res-U-Net which is U-Net extends with residual connection, for optic disc and cup image

segmentation. Ghosh et al. [46] stack multiple U-Nets extend with dilated convolution [155] for

ground material segmentation in remote sensing images. Khalel et al. [74] use a stack of U-Nets

for object segmentation in aerial imagery. However, these stacking approaches mentioned above do

not design different tasks or outputs for the sub-networks, i.e., in each case, their stacked networks

perform exactly the same task with the same output. The segmentation network designed by Bi et

al. [11] has multiple outputs but again performs the same task.

4.3.2 Deep Layer Aggregation

U-Net originally has skip connections to fuse image representations or features in different levels.

However, only features in the up-sampling path are merged with the corresponding features from the

down-sampling path, even in U-Nets extend with residual connections [38, 121] or dense connections

[90], they only merge features stay in the same level or have the same resolution. Thus may not

integrate the extracted features of different levels in an effective manner. In summary, the original

skip connections in U-Net are still linear and shallow [156]. Yu et al. [156] introduce two kinds of

Deep Layer Aggregation (DLA): iterative deep aggregation (IDA) and hierarchical deep aggregation
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Figure 25: The shallow aggregation, IDA and HDA. Image is from [156].

(HDA) to better fuse image representations across different levels. Specifically, connections are

extended in iterative (IDA) and hierarchical (HDA) manner to exploit the global (coarse) and local

(fine-grained) information. Fig. 25(a), Fig. 25(b) and Fig. 25(c) show the structure of shallow

aggregation which was used in U-Net, the structure of IDA and HDA, respectively.

4.3.3 Curriculum Learning

Curriculum learning was proposed by Bengio et al. [8]. The main motivation of curriculum learning

is to imitate the characteristics of human learning, from simple to difficult to learn the curriculum

(in the machine learning context, it can point to easy samples and hard samples), so that the model

can easily find better local optimum, and accelerate the speed of training. Curriculum learning can

be interpreted as a continuation method, it starts with easier or simpler concepts and progress to

more complex or hard concepts that depend on the previous learned easier concepts [48]. Curriculum

learning has been successful in numerous computer vision tasks [80, 88, 132].

4.4 Methodology

In this section, we give more details of our proposed approach for nuclei segmentation.

4.4.1 Overview

Inspired by the core idea of curriculum learning [8] and the aforementioned segmentation approaches,

we propose a novel nuclei segmentation approach based on a two-stage learning framework to solve

the above-mentioned challenges in nuclei segmentation. The core idea of curriculum learning is that

a complex task can be solved by dividing it into numerous sub-tasks, and one can start with the

easiest one, followed by subsequent tasks that have increased level of difficulty. Specifically, in order

to tackle small, overlapping and touching nuclei, we convert the original binary segmentation task

into a two-step task by adding the prediction of nuclei-boundary (3-classes) as an intermediate step.

Along with this two-step task, we design a two-stage learning framework by stacking two U-Nets that

have two different outputs. The coarse boundary from the first stage acts like auxiliary information

to guide the segmentation of small, overlapping and touching nuclei in the second stage, therefore

decreases the difficulty of segmenting nuclei directly from input images. In addition, we extend
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our U-Net with DLA, which has been demonstrated to have superior performance in many visual

applications.

Our segmentation network is an end-to-end learning framework. The only pre-processing step

is just color normalization and no post-processing step is needed. After color normalization, image

patches are seamlessly extracted by the overlap-tile strategy and then fed into our network. During

prediction phase, the predicted image patches of our network are merged together to obtain the final

segmentation map thus make our model can handle arbitrary size of images.

4.4.2 Color Normalization

Figure 26: Example image samples (up) and their corresponding color-normalized image samples
(bottom). The first column is the target image. Images are from [81].

H&E stain is one of the most widely used stains in histopathological images and is usually the

gold standard for medical diagnosis. However, H&E stained histopathology images in general have

diverse color variations due to differences in scanners, materials and staining process, therefore

color normalization techniques are widely used to eliminate color variations and preserve tissue

structures. Vahadane et al. [139] proposed a color normalization method based on sparse non-

negative matrix factorization (SNMF) and achieved superior performance. We adopt the technique

for color normalization and the target image was chosen by the recommendation of the dataset [81].

Fig. 26 shows some examples of color normalization.

4.4.3 Network Architecture

Fig. 27 illustrates the detailed architecture of our proposed network for nuclei segmentation. In the

first stage, a U-Net with DLA is utilized to predict the 3-classes nuclei-boundary segmentation map

from the color-normalized image patches. The first stage consists of a down-sampling path and an

up-sampling path, just the same as the U-Net. For the second stage, a much more light-weighted and
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Figure 27: The architecture of our proposed segmentation network. Blue boxes represent image
features. The number of features is indicated on top of the box. The resolution of each level
(features have the same resolution) is indicated at the bottom left of each level.

shallow U-Net with DLA is used to refine the coarse nuclei-boundary segmentation map generated

from the first stage for the final binary segmentation map. By a light-weighted and shallow U-Net,

we mean it only has two max-pooling layers compared to four in the original U-Net. Based on

our experiments, we did not notice considerable performance difference between deep and shallow

architectures for the second stage, so for the consideration of computational cost and efficiency, the

shallower one is used. The input of the second stage is the feature maps in the first stage before

1× 1 convolution and the output is the binary segmentation map.

Formally, let I be the input color-normalized image patch, therefore I belongs to RGB image

domain, I ∈ Ω = Rw×h×3, where w and h indicate image width and height, respectively. Let S1 be

the nuclei-boundary segmentation map achieved from the first stage S1 ∈ Ψ = {0, 1, 2}w×h, and S2

be the binary segmentation map obtained from the second stage S2 ∈ Φ = {0, 1}w×h. The task of

the first stage t1 can be defined as

t1 = Ω→ Ψ

and the task of the second stage t2 can be defined as
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t2 = Ψ→ Φ

These two tasks are trained simultaneously in an unified network model.

Following [156], IDA is defined as

I(x1, ..., xn) =

x1 if n = 1

I(N(x1, x2), ..., xn) otherwise
(15)

where the aggregation node is denoted as N . In our case, N is defined as

N(x1, x2) = Conv(Concat(x1, x2)) (16)

where Conv is a 3 × 3 convolution operation followed by ReLU activation, and Concat represents

the concatenation operation.

As illustrated in Fig. 27, deconvolution operation is applied to every last image features at each

level in the down-sampling (encoder) path, then merged iteratively with the features at previous

levels. After that, 3 × 3 convolution and ReLU is used in order to keep the same feature number

at each scale. Finally, these feature maps in each different scale after IDA still merge with the

corresponding feature maps in up-sampling (decoder) path. Same with the original U-Net, we use

1× 1 convolution to reduce the number of features and softmax activation function to generate the

segmentation map.

4.4.4 Loss Function

Since our segmentation network has two outputs - one is the 3-classes nuclei-boundary segmentation

map for the first stage and another one is the final binary segmentation map for the second stage,

we have two loss functions. The loss function of each stage is the categorical cross entropy loss:

L(ŷ, y) = − 1

N

N∑
i=1

C∑
k=1

Ii,k log pi,k (17)

where N is the total number of image pixels and C is the number of segmentation categories. The

term Ii,k is the indicator function of whether the i-th pixel belongs to the k-th category. The pi,k is

the probability predicted by the model for the i-th pixel belonging to the k-th category. The overall

loss L of the network is the weighted summation of these two loss terms of the two stages,

L = αL1 + (1− α)L2 (18)

where α is the weight such that 0 ≤ α < 1, and L1 and L2 are the losses of the first and second

stage, respectively. The weight α is a hyper-parameter and will be tuned in experiments.

4.5 Experiments and Results

This section will give the details of experiments and the performance results our proposed approach.

44



4.5.1 Datasets

In order to make a comparison between other nuclei segmentation methods, we evaluate our proposed

approach on two publicly available nuclei datasets.

The first dataset is proposed in [81], it contains 30 H&E stained histopathology images and

each image has 1000 × 1000 resolution. These images are captured at 40x magnification from The

Cancer Genomic Atlas (TCGA) archive and taken from seven different organs (breast, liver, kidney,

prostate, bladder, colon and stomach). In total, more than 21000 nuclei are annotated in this

dataset. According to the training and testing protocol suggested by [81], 30 images are split into

three subsets, 12 images for training, 4 images for validation and 14 images for testing. In addition,

in order to test the generalization ability to images taken from organs that do not appear in the

training set, it further divides the testing set into two testing sets: same organ testing and different

organ testing. The images in the different organ testing set are taken from organs not represented

in the training set - bladder, stomach and colon. The details of this dataset are shown in Table 3.

This dataset will be referred as TCGA for convenience.

Table 3: Composition of the TCGA dataset and the associated training/testing protocol.

Data subset
Nuclei Images
Total Total Breast Liver Kidney Prostate Bladder Colon Stomach

Training 9669 12 3 3 3 3 - - -
Validation 3703 4 1 1 1 1 - - -

Testing
Same organ testing 4130 8 2 2 2 2 - - -

Different organ testing 4121 6 - - - - 2 2 2
Total 21623 30 6 6 6 6 2 2 2

The second dataset is proposed in [14, 15]. It consists of 50 H&E stained tissue images with

512 × 512 resolution and totally 4022 nuclei have been annotated. The maximum of number of

nuclei in one image is 293 and the minimum number is 5, with an average of 80 nuclei per image

and standard deviation of 58. All the images are taken from 11 Triple Negative Breast Cancer

(TNBC) patients, and include different cell types such as myoepithelial breast cells, endothelial cells

and inflammatory cells. This dataset will be referred as TNBC for convenience. Fig. 28 shows some

example images and annotations from the TNBC dataset.

4.5.2 Evaluation Metrics

Two types of metrics are used to evaluate the performance of different approaches in this study:

object-level and pixel-level metrics.

The Aggregated Jaccard Index (AJI) presented in [81] is used as an object-level evaluation metric.

Basically, the AJI is an extension of the Jaccard Index. Specifically, the AJI is defined as

AJI =

∑K
i=1 |GTi ∩ PD∗j (i)|∑K

i=1 |GTi ∪ PD∗j (i)|+
∑

l∈U |PDl|
(19)

where GT = ∪i=1,2,··· ,KGTi are the pixels of whole ground truth nuclei objects, and PD =

∪j=1,2,··· ,LPDj are the pixels of whole predicted nuclei objects. PD∗j (i) is the connected com-

ponent object from the predicted result that has the maximum Jaccard Index with the ground truth
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Figure 28: Example images (up) and associated ground truth segmentation masks (bottom) of the
TNBC dataset.

objects, and U is the union of predicted nuclei objects that does not correspond to any ground truth

objects (also known as ghost objects).

For pixel-level evaluation metrics, we use precision, recall and F1 score. These 3 metrics are

defined as

precision =
TP

TP + FP

recall =
TP

FN + TP

F1 = 2 · ( precision · recall
precision+ recall

)

(20)

where TP is true positives, FP is false positives and FN is false negatives.

4.5.3 Implementation Details

Considering the resolution of some images is 1000× 1000 and it’s very hard to process with a GPU,

we divide the input H&E images into small patches. For the consideration of performance and GPU

memory limitation, the size of image patch in our experiments is 256 × 256. The nuclei-boundary

mask images for training are obtained by image morphological operations on the ground truth of

segmentation maps. Specifically, the difference image of the dilation result of a mask image and

the erosion result of a mask image can be used as the nuclei-boundary mask. Fig. 29 gives some

examples of the nuclei-boundary masks.
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Figure 29: Example images (up) and associated ground truth binary masks (middle) and associated
ground truth nuclei-boundary masks (bottom). The first two columns are from the TCGA dataset
while the last one from the TNBC dataset.

Since we propose two different types of improvements in our approach compared to other seg-

mentation methods, in order to validate each of them, we implement three models in this study, i.e.,

U-Net (DLA) which is a U-Net extended with DLA, Ours which is our two-stage learning model

with the original U-Net and Ours (DLA) which combines two-stage learning and DLA. All the

three models are trained with the same configuration. We use an ADADELTA [158] optimizer with

the default values suggested by Zeiler [158] to train all the three models, all the weights were ini-

tialized with MSRA initialization [57] and trained from scratch. For training efficiency and combat

over-fitting, we use early stopping with patience 30, only the best model which has the lowest loss

on validation set is used for evaluation on testing set.
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4.5.4 Results and Discussions

First of all, in order to determine the loss weight α in equation 18, we perform experiments on the

TCGA dataset using Ours (DLA) model and the results are shown in Table 4. From Table 4, we

can observe that when α is set to 0.8, both F1 score and AJI achieve the highest value. Therefore,

for the rest of our experiments, the loss weight α is set to 0.8.

Table 4: Results by choosing different loss weight α.
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1 Score 0.793 0.797 0.800 0.800 0.801 0.804 0.804 0.805 0.808 0.806
AJI 0.567 0.571 0.571 0.575 0.578 0.581 0.581 0.586 0.590 0.586

For the TCGA dataset, in order to make a comparison with other methods, we follow the same

training and testing split suggested by Kumar et al. [81]. We compare our methods with numerous

standard segmentation architectures such as FCN-8 [95], Mask R-CNN [56], U-Net [120] and other

state-of-the-art nuclei segmentation methods like DIST [108] and CNN3 [81]. In addition, we also

stack two U-Nets, where both sub-nets have the same binary segmentation task, which we call

Stacked U-Net. In Table 5 and Fig. 30 we show the AJI for each organs of different methods on the

TCGA test set. While Table 6 and Fig. 31 show F1 scores for different organs of different methods

on the TCGA test set. From the results on the TCGA dataset, we can observe that our model rank

the top for overall in terms of both AJI and F1 score. For overall, the highest AJI of our model

is nearly 3 percent higher than the highest AJI achieved by other methods. The highest F1 score

of our model is roughly 1.5 percent higher than the highest F1 score obtained by other methods.

Specific to each organ, our models achieve the highest AJI in 5 out of 7 organs: bladder, colorectal,

stomach, breast and kidney, second in liver, third in prostate. On the other hand, in terms of F1

score, our models rank the top in 4 out of 7 organs: bladder, colorectal, breast and kidney, second

in stomach, liver and prostate.

Table 5: AJI of different methods on the TCGA test set.
Aggregated Jaccard Index (AJI) ↑

Organ Bladder Colorectal Stomach Breast Kidney Liver Prostate Overall
FCN-8 [95] 0.5376 0.4018 0.5279 0.5509 0.5267 0.5045 0.5709 0.5171

Mask R-CNN [56] 0.5011 0.3814 0.6151 0.4913 0.5182 0.4622 0.5322 0.5002
U-Net [120] 0.5403 0.4061 0.6529 0.4681 0.5426 0.4284 0.5888 0.5182
CNN3 [81] 0.5217 0.5292 0.4458 0.5385 0.5732 0.5162 0.4338 0.5083
DIST [108] 0.5971 0.4362 0.6479 0.5609 0.5534 0.4949 0.6284 0.5598

Stacked U-Net 0.6138 0.5188 0.5845 0.5605 0.5647 0.4594 0.5300 0.5474

U-Net (DLA) 0.6215 0.5322 0.5938 0.5747 0.5624 0.4642 0.5602 0.5584
Ours 0.6263 0.5346 0.6352 0.6037 0.5928 0.4961 0.5606 0.5784

Ours (DLA) 0.6285 0.5376 0.6620 0.6096 0.6024 0.5142 0.5720 0.5895

In addition, we also perform the same/different organ testing protocol described in [81], the AJI

and F1 scores of different methods are shown in Table 7. From the table, we can see our model

obtained the highest AJI and F1 score both on the same organ testing set and the different organ

testing set. One interesting thing is that our models perform better on different organ testing set
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Figure 30: Comparative analysis of AJI for each organs on the TCGA test set.

Table 6: F1 scores of different methods on the TCGA test set.
F1 Score ↑

Organ Bladder Colorectal Stomach Breast Kidney Liver Prostate Overall
FCN-8 [95] 0.8084 0.6934 0.7982 0.8113 0.7597 0.7589 0.8367 0.7809

Mask R-CNN [56] 0.7610 0.6820 0.8269 0.7481 0.7554 0.7157 0.7401 0.7470
U-Net [120] 0.7953 0.7360 0.8638 0.7818 0.7913 0.6981 0.7904 0.7795
CNN3 [81] 0.7808 0.7399 0.8948 0.7181 0.7222 0.6881 0.7922 0.7623
DIST [108] 0.8196 0.7286 0.8534 0.8071 0.7706 0.7281 0.7967 0.7863

Stacked U-Net 0.8249 0.7685 0.8498 0.7990 0.7986 0.7276 0.7829 0.7930

U-Net (DLA) 0.8296 0.7756 0.8530 0.8025 0.7994 0.7296 0.7895 0.7970
Ours 0.8213 0.7773 0.8700 0.8068 0.8066 0.7437 0.7890 0.8021

Ours (DLA) 0.8360 0.7808 0.8629 0.8183 0.8022 0.7513 0.8037 0.8079

compared to same organ testing set, one of the reasons may be that segmenting the nuclei in the

different organ testing set is much easier than segmenting the nuclei in the same organ testing set,

this phenomenon happened on other methods too (Stacked U-Net, DIST and U-Net).

For the TNBC dataset, we follow the same leave-one-patient-out scheme used by Naylor et

al. [107] to evaluate our method. Table 8 shows the experimental results of the different methods.

We make a comparison with DeconvNet [109], FCN-8 [95], Ensemble method [107], U-Net [120] and

Stacked U-Net. On the TNBC dataset, our model achieved the highest score both in terms of F1

and AJI compared to other method, again. Compared to the highest obtained by other method, our

model approximately 3.1 percent higher in AJI and 1.3 percent higher in F1. Moreover, for AJI and

F1, all of our three models are perform better than all other methods.

As a whole, these experimental results indicate that our model with two improvements (Ours

(DLA)) performs significantly better and achieved the highest overall AJI and F1 scores compared

with other segmentation methods both on the TCGA and TNBC datasets. Even the performance

of our model with just one improvement (U-Net (DLA) or Ours) is better than the majority of

the other methods.

Specifically, the proposed two-stage learning framework with stacking U-Nets (Ours) obtained
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Figure 31: Comparative analysis of F1 scores for each organs on the TCGA test set.

Table 7: AJI and F1 scores of different methods on the same organ testing set and different organ
testing set of the TCGA dataset.

Method
AJI↑ F1 Score ↑

Same organ testing Different organ testing Same organ testing Different organ testing
FCN-8 [95] 0.5382 0.4891 0.7916 0.7667

Mask R-CNN [56] 0.5010 0.4992 0.7398 0.7566
U-Net [120] 0.5070 0.5331 0.7654 0.7984
CNN3 [81] 0.5154 0.4989 0.7301 0.8051
DIST [108] 0.5594 0.5604 0.7756 0.8005

Stacked U-Net 0.5286 0.5724 0.7770 0.8144

U-Net (DLA) 0.5403 0.5825 0.7802 0.8194
Ours 0.5633 0.5987 0.7865 0.8229

Ours (DLA) 0.5746 0.6094 0.7939 0.8266

much more superior performance metrics than the model which just stack two U-Nets without two-

stage learning framework (Stacked U-Net) both on these two datasets, therefore demonstrating that

the proposed two-stage learning framework can achieve performance improvements dramatically for

nuclei segmentation task. On the other hand, U-Net (DLA) achieved higher AJI and F1 scores

compared to the original U-Net architecture both on the TCGA and TNBC datasets, it proves

that DLA can boost the performance of U-Net in nuclei segmentation via learning better image

representations. Finally, our model with these two main improvements (Ours (DLA)) surpass all

other methods including Ours and U-Net (DLA) with a large margin, further indicates that our

two improvements can combine together effectively and achieves great performance beneficial with

the corporation of them.

In addition, the experimental results of same organ testing and different organ testing of the

TCGA dataset illustrate that our proposed approach has an excellent generalization ability to images

come from different organs which do not appear in the training set.
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Table 8: Quantitative comparison of different methods on the TNBC dataset.
Method Recall↑ Precision↑ F1 ↑ AJI↑

DeconvNet [109] 0.773 0.864 0.805 -
FCN-8 [95] 0.752 0.823 0.763 -

Ensemble [107] 0.900 0.741 0.802 -
U-Net [120] 0.800 0.820 0.810 0.578

Stacked U-Net 0.802 0.830 0.816 0.580

U-Net (DLA) 0.812 0.826 0.818 0.586
Ours 0.818 0.824 0.821 0.595

Ours (DLA) 0.833 0.826 0.829 0.611

4.5.5 Qualitative Analysis

Fig. 32 shows some example segmentation output images of our best model (Ours (DLA)). Since our

model has two outputs, we show the nuclei-boundary and nuclei output and the nuclei segmentation

output. From these results, we can observe that except even though there are still some small

imperfections inside the segmentation result, the overall segmentation quality is quite good.

Generalization Ability

In order to compare with some traditional nuclei segmentation methods, we implement two of them,

one is OTSU adaptive intensity thresholding algorithm, another one is a method based on watershed

segmentation algorithm. Fig. 33 and Fig. 34 show the results of our model compared to the results

of these two traditional nuclei segmentation methods on the testing set of TCGA. And Fig. 35 gave

some example results of our proposed approach compare with the results of the two conventional

nuclei segmentation methods on the TNBC dataset. From these results, we can see that our CNN

based approach achieved the best performance than traditional approaches, this also can be reflect

on the corresponding AJI and F1 metrics. The results of the two traditional methods often lead

to merged nuclei (under-segmentation), but our model handle these challenging situations properly,

i.e. nuclei come from different organs and have different size, shape, appearance and density.

Small Nuclei Segmentation

As mentioned before, one of the key challenges in nuclei segmentation is segmenting nuclei which has

extremely small size. Fig. 36 gives a concrete comparison example of segmentation results between

our model and U-Net. The nuclei in red rectangles are not detected by U-Net but segmented

by our proposed model precisely. This may due to that the addition of nuclei boundaries force

the segmentation network to pay more attention on small nuclei and therefore can segment them

correctly.

Overlapping and Touching Nuclei Segmentation

Another challenging case in nuclei segmentation is the overlapping and touching nuclei. Fig. 37

demonstrates segmentation examples of our proposed model on this kind of situation. We can
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clearly observe that the core idea of our proposed model - the addition of nuclei boundaries can

improve the performance of segmenting such nuclei compared to baseline widely used medical image

segmentation model (i.e. U-Net).

4.6 Conclusion

In this study, we propose a two-stage learning framework based on stacking two U-Nets with DLA

for nuclei segmentation. We convert the binary segmentation task into a two-step task inspired by

the idea of curriculum learning. The difficulty of segmenting small, overlapping and touching nuclei

directly from histopathological images is addressed by introducing nuclei-boundary prediction as

the intermediate step. Furthermore, along with the two-step task, we design a two-stage learning

framework by stacking two U-Nets, where the task of each U-Net is different but highly-related and

trained simultaneously. Finally, DLA is adopted to extend the skip connections in U-Net to better

fuse features across different levels for nuclei segmentation.

The experimental results on two public and diverse nuclei datasets demonstrate that our proposed

approach outperforms many standard segmentation architectures and the most recently proposed

nuclei segmentation methods and can be easily generalized to different organs, tissue and cell types.

In addition, the segmentation results of our proposed model achieved superior performance quan-

titatively and qualitatively on some challenges cases such as small, overlapping and touching nuclei

compared to traditional nuclei segmentation methods and some CNN-based models like U-Net. It

verifies that the addition of nuclei-boundary will improve the performance of CNN-based segmenta-

tion model significantly.
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H&E Ground Truth Binary Output Nuclei-Boundary Output

Figure 32: Overall segmentation results. Example input H&E stained images (first column) and
associated ground truth (second column) and corresponding binary output (third column) and nuclei-
boundary output (forth column). Here we use the outputs of our best model (Ours (DLA)). The
images of first three rows are from the TCGA dataset and the last one come from the TNBC dataset.
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AJI: 0.27  F1: 0.51AJI: 0.23  F1: 0.41

AJI: 0.66  F1: 0.84AJI: 0.34  F1: 0.57AJI: 0.28  F1: 0.46

H&E OTSU Watershed Ours (DLA)

AJI: 0.73  F1: 0.89AJI: 0.31  F1: 0.65AJI: 0.26  F1: 0.54

AJI: 0.68  F1: 0.85AJI: 0.33  F1: 0.57AJI: 0.26  F1: 0.51

Figure 33: Segmentation results of different methods for different organs (liver, kidney, bladder
and breast) on the TCGA dataset. White area indicates True Positives, black area indicates True
Negatives, while red area represents False Positive and green area represents False Negative. The
associated AJI and F1 score are shown on the bottom of each result image.
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Figure 34: Segmentation results of different methods for different organs (prostate, colon and stom-
ach) on the TCGA dataset. White area indicates True Positives, black area indicates True Negatives,
while red area represents False Positive and green area represents False Negative. The associated
AJI and F1 score are shown on the bottom of each result image.
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Figure 35: Segmentation results of different methods for different patients on the TNBC dataset.
White area indicates True Positives, black area indicates True Negatives, while red area represents
False Positive and green area represents False Negative. The associated AJI and F1 score are shown
on the bottom of each result image.
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H&E Ground Truth U-Net Result Our Result

Figure 36: Segmentation results of small nuclei. Example input H&E stained images (first column)
and associated ground truth (second column) and corresponding segmentation result of U-Net (third
column) and corresponding segmentation result of our model (the last column).
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H&E Ground Truth U-Net Result Our Result

Figure 37: Segmentation results of overlapping and touching nuclei. Example input H&E stained
images (first column) and associated ground truth (second column) and corresponding segmentation
result of U-Net (third column) and corresponding segmentation result of our model (the last column).
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Chapter 5

Conclusion and Future Work

This chapter will give the conclusion and future work of this thesis.

5.1 Conclusion

In this thesis, we focus on CNN based approaches for two different medical image segmentation tasks,

i.e. fully convolutional networks for lung segmentation task in chest X-ray images, and two-stage

learning framework extends with DLA for nuclei segmentation task in histopathological images.

For the lung segmentation problem, we apply two widely used segmentation model based on

fully convolutional networks, i.e. FCN and U-Net, on this task. The experimental results on three

publicly available chest X-ray datasets and their combined dataset demonstrate that all CNN based

models achieve promising results and the performance of U-Net is the best compared to the FCN

models.

For the nuclei segmentation task, since the principle challenge of it is how to segment the small,

overlapping and touching nuclei precisely, we propose a two-stage learning framework based on the

idea of curriculum leaning. Specifically, we firstly divide the binary segmentation task into a two-

step task by introducing the nuclei-boundary prediction as an intermediate step. The addition of

boundary areas will force the segmentation network pay more attention on the small nuclei and

the overlapping, touching areas between nuclei, also this will decrease the difficulty of segmenting

the nuclei directly from input images. To solve the two-step task, we design a two-stage learning

framework by cascading two U-Nets, the purpose of the first U-Net is nuclei-boundary prediction

while the task of the second U-Net is the prediction of final fine-grained nuclei segmentation map.

Furthermore, since the images may come from different medical sites and operated by different

physician, and the nuclei have a great diversity in size, shape, appearance and density, in order to

increase the generalization ability of our method, we extend the U-Nets with DLA by iteratively

merging features across different levels. We adopt two public diverse H&E stained nuclei datasets.

The experimental results show that our proposed approach outperforms many standard segmentation

architectures and recently proposed nuclei segmentation methods, and can be easily generalized

across different cell types in various organs.
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5.2 Future Work

In this section, we discuss some possible directions for future research.

5.2.1 More Effective Loss Function for Medical Segmentation Task

In this thesis, only the binary cross entropy loss and the categorical cross entropy loss are used for

these two segmentation tasks, one possible research direction is design different loss function suits

for different tasks. For example, the loss function for the nuclei segmentation task can give large

weight to the pixels inside small nuclei and overlapping or touching areas between nuclei, thus can

differentiate these pixels from background pixels.

5.2.2 More Useful Strategies for Training Deep CNNs

The training process is critical for the success of a CNN model, however, this is still be a challenge

for deep learning community. Except for the optimization techniques, some other techniques such as

deep supervision [87], which the core idea of this technique is to provide additional direct supervision

to the hidden layer and propagate it to lower layers instead of just the direct supervision to the output

layer, can be used for these two segmentation tasks.

5.2.3 More Deeper and Powerful Networks

For these two research works, we only focus on the application of FCN and U-Net. However, there

exist some segmentation works with much deeper networks, for example, the network proposed by

[71] has more than 100 layers and dense connections [63], it achieved state-of-the-art performance

on urban scene segmentation benchmark. How to apply such a deeper network effectively in the

medical image segmentation field remains further research.
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