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ABSTRACT

A NOVEL NMF-BASED DWI CAD FRAMEWORK FOR PROSTATE CANCER

Patrick McClure

August 12, 2014

In this thesis, a computer aided diagnostic (CAD) framework for detect-

ing prostate cancer in DWI data is proposed. The proposed CAD method con-

sists of two frameworks that use nonnegative matrix factorization (NMF) to learn

meaningful features from sets of high-dimensional data. The first technique, is

a three dimensional (3D) level-set DWI prostate segmentation algorithm guided

by a novel probabilistic speed function. This speed function is driven by the fea-

tures learned by NMF from 3D appearance, shape, and spatial data. The second

technique, is a probabilistic classifier that seeks to label a prostate segmented from

DWI data as either alignat, contain cancer, or benign, containing no cancer. This

approach uses a NMF-based feature fusion to create a feature space where data

classes are clustered. In addition, using DWI data acquired at a wide range of

b-values (i.e. magnetic field strengths) is investigated. Experimental analysis in-

dicates that for both of these frameworks, using NMF producing more accurate

segmentation and classification results, respectively, and that combining the infor-

mation from DWI data at several b-values can assist in detecting prostate cancer.
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CHAPTER I

INTRODUCTION

This chapter overviews one of the most important, interesting, and chal-

lenging problems in oncology, early diagnosis of prostate cancer. Developing ef-

fective diagnostic techniques for prostate cancer is of great clinical importance and

can improve the effectiveness of treatment and increase the patient’s chance of

survival. The main focus of this study is to overview the different in-vitro and

in-vivo technologies for diagnosing prostate cancer. This review discusses the cur-

rent clinically used in-vitro cancer diagnostic tools, such as biomarker tests and

needle biopsies, including their applications, advantages, and limitations. In ad-

dition to the in-vitro techniques, the current study discusses in detail developed

in-vivo non-invasive state-of-the-art Computer-Aided Diagnosis (CAD) systems

for prostate cancer based on analyzing Transrectal Ultrasound (TRUS) and differ-

ent types of magnetic resonance imaging (MRI), e.g., T2-MRI, Diffusion Weighted

Imaging (DWI), Dynamic Contrast Enhanced (DCE)-MRI, and multi-parametric

MRI, focusing on their implementation, experimental procedures, and reported

outcomes. Furthermore, the chapter addresses the limitations of the current prostate

cancer diagnostic techniques, outlines the challenges that these techniques face,

and introduces the recent trends to solve these challenges.

Introduction

Prostate cancer is the second most fatal cancer experienced by American

males [1]. The average American male has a 16.15% chance of developing prostate
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cancer, which is 8.38% higher than lung cancer, the second most likely cancer [1].

Therefore, early detection of prostate cancer is crucial in decreasing prostate can-

cer related deaths [2]. Recent reports indicate that the mortality rate of prostate

cancer has decreased by approximately 42% between 1991 and 2005 [3]. Approxi-

mately 45% of this decrease is due to the increased use of screening techniques [4].

While in-vitro techniques that are based on analyzing a patient’s blood, urine, or

tissue samples are commonly used, they have several limitations concerning their

accuracy and the invasive nature of most methods. Thus far, non-biopsy screen-

ing techniques, predominantly prostate specific antigen (PSA) blood-based screen-

ing [5], have a high chance of false positive diagnosis, ranging from 28%-58% [4].

More accurate, non-invasive diagnostic systems would aid clinicians in early de-

tection of prostate cancer. To accomplish this, in-vivo computer aided diagnos-

tic (CAD) systems have been developed to locate and to classify prostate tumors

based on extracting information from medical images. The goal of this chapter is

to overview common in-vitro and in-vivo techniques for prostate cancer. This in-

cludes the several types of in-vitro techniques such as biomarker tests and needle

biopsies. In addition, this chapter overviews common techniques used in the three

basic steps of start-of-the-art prostate cancer CAD systems developed throughout

the last decade. These are prostate segmentation, feature extraction, and classifi-

cation. Furthermore, several complete CAD systems for the diagnosis of prostate

cancer, as well as their developed computational methods and reported experi-

mental procedures, will be discussed. In order to introduce the related work for

prostate cancer diagnosis, a brief overview of the anatomy and the function of the

prostate is given below.

The prostate is the largest male accessory organ [6]. It surrounds the urethra

as it exits the bottom of the bladder (see Fig. 1) [7]. The prostate is a gland with an

approximately elliptical shape, an approximate width of 4 cm, and approximate

thickness of 3 cm, although the size varies widely. [6].
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Figure 1. Diagram of the three prostate zones.

Mainly, the prostate gland has two functions. First, it produces seminal fluid

that is injected into the urethra along with sperm when a male is sexually aroused

[6]. Second, it controls the diameter of the urethra, thereby controlling the flow

of urine [6]. To accomplish these functions, the prostate contains three main cell

types: (1) gland cells that excrete seminal fluid, (2) muscles cells that control the

diameter of the urethra for urine flow and ejaculation, and (3) fibrous cells that

make up the supportive structure of the prostate [6].

In pathology, the prostate is divided into three different regions (zones): the

central zone (CZ), the transition zone (TZ), and the peripheral zone (PZ) [8–10].

Fig. 1 illustrates the anatomy of the prostate and its glandular zones. The CZ, TZ,

and PZ constitute 25%, 5%, and 70% of the prostate, respectively [8]. Each of these

zones consists of different cell types and consequently have different cancer oc-

currence rates. The PZ is mainly derived from the urogenital sinus and the TZ is

derived from similar cell types. The CZ, however, is derived from the Wolffian

duct [11]. The vast majority (70%) of cancerous prostate tumors develop in the

PZ, while only 25% occur in the TZ and 5% in the CZ [11]. This makes sense be-

cause the PZ and TZ have similar embryological origins. To detect and diagnose

the cancerous cells in the prostate, several diagnosis techniques can be employed.

The methods reviewed can be categorized as in-vitro techniques and in-vivo tech-
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niques. In, Section A, the basic in-vitro techniques for prostate cancer diagnosis.

Section B details the current in-vivo CAD systems for prostate cancer using the

different types of medical image modalities are outlined. Discussion of the work

in this review is presented in section C and the challenges that faced by current

CAD systems for prostate cancer and the recent trends to solve these challenges

are highlighted. Finally, section D concludes the work done in this review.

A In-Vitro Prostate Cancer Diagnostic Technologies

In the literature, several methods and techniques have been investigated to

provide tools for prostate cancer. These tools include one or more types of in-

vitro diagnostic techniques, which involve collecting a physical sample (i.e., blood,

urine, or tissue) from the patient. Before a physical sample is taken from a patient,

a digital rectal exam (DRE) is often performed. This consists of a skilled physician

manually feeling for any abnormalities in the prostate gland through the rectum.

The DRE examination is inexpensive and easy to perform. However, the accuracy

of a DRE examination is not high and depends on the physician’s experience. Also,

it can only detect sufficiently large tumors. For detecting smaller tumors, in-vitro

and/or in-vivo tests should be conducted [12]. The two major categories of in-

vitro techniques are biomarker tests needle biopsies [12, 13]. In this section, a brief

overview of in-vitro cancer diagnostic tools and related research studies conducted

in the past decade will be given.

Biomarker tests are common methods for detecting prostate cancer in a pa-

tient. These tests can be categorized as blood-based tests, urine-based tests, and

hybrid tests (see Fig. 2). Each of these tests have different accuracies and applica-

tions.

Blood-based tests are the most common biomarker examinations for diagno-

sis. These methods require drawing blood from a patient, and are therefore classi-

fied as invasive techniques. The main type of blood-based biomarker used in the
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Figure 2. Different in-vitro biomarkers that are clinically used for prostate cancer
diagnosis.

literature and in a clinical setting is PSA, which is a serine protease produced by

correctly functioning and cancerous prostates [14]. Malignant prostates expel sig-

nificantly more PSA into the human circulatory system [14]. This increased level

of PSA in the blood can then be used to indicate a cancerous prostate. Several

studies [15–24] evaluated the effectiveness of testing the overall amount of PSA

for detecting whether a patient currently suffers from prostate cancer. These stud-

ies [15–24] reported different diagnostic accuracies, where the AUC ranged from

0.492-0.72. A PSA study by Sreekumar et al. [15] showed an AUC of 0.492 for 126

subjects. A 2,034 patient study was performed by Le et al. [16], which showed an

AUC of 0.50. Additionally, Marks et al. [25] showed PSA diagnosis had an AUC of

0.524 for 233 subjects. Similarly, Catalona et al. [17] found PSA diagnosis to have
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an AUC of 0.525 for 1,372 subjects. Chun et al. [18] conducted an 809 patient study

that showed an AUC of 0.53 for PSA. Another study by Deras et al. [19] had an

AUC of 0.55 for 570 subjects. An additional study by van Gils et al. [20] concluded

that PSA had an AUC of 0.57 for 583 subjects. Roobol et al. [21] found PSA diag-

nosis to have an AUC of 0.58 for 721 patients. Haese et al. [22] conducted a 463

subject study that showed an AUC of 0.60 for PSA. Another study by Ankerst et

al. [23] found PSA to have an AUC of 0.607 for 443 patients. In a study conducted

by Salami et al. [24], PSA had an AUC of 0.72 for 45 subjects. Other applications of

PSA include the prediction of future advanced prostate cancer. study conducted

by Ulmert et al. considered predicted cancer up to 25 years after the test as a suc-

cessful diagnosis and had an AUC of 0.791 for 21,277 subjects [26]. However, this

could be useful in long term care, but not necessarily in diagnosing whether or

not a patient currently has prostate cancer. The main limitation of PSA-based di-

agnosis is its association with a high-risk of over diagnosis of prostate cancer as

higher PSA levels may reflect other conditions, such as an enlarged or inflamed

prostate [27].

In addition to the overall PSA in a blood sample, the amount of several spe-

cific types of PSA in a sample have also been used for diagnosing prostate cancer.

Two common types of PSA used in prostate cancer diagnosis are the free prostate

specific antigen (fPSA), PSA not bound to serum proteins, and the [-2] isoform of

proenzyme prostate specific antigen (p2PSA). Additionally, the ratio of fPSA to

PSA (%fPSA) and the ratio of p2PSA to PSA (%p2PSA) are common PSA mea-

sures for diagnosing prostate cancer. A 2,034 subject study by Le et al. [16] found

that %fPSA-based diagnosis had an AUC of 0.68, %p2PSA-based diagnosis had an

AUC of 0.76, and the Beckman Coulter prostate health index (PHI), a combined

measurement of fPSA and p2PSA, had an AUC of 0.77. A similar study was per-

formed by Catalona et al. [17], which found that diagnosing using %fPSA had an

AUC of 0.525, using fPSA had an AUC of 0.615, using p2PSA had an AUC of 0.557,
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and using PHI had an AUC of 0.703 for 1,372 subjects. Additionally, Ferro et al. [28]

found that fPSA had an AUC of 0.60, %fPSA had an AUC of 0.62, %p2PSA had an

AUC of 0.76, and PHI had an AUC of 0.77 for 300 subjects.

Other blood-based biomarkers have been researched for diagnosing prostate

cancer, such as the early prostate cancer antigen (EPCA) [29, 30]. EPCA is a nu-

clear matrix protein that showed a promising results for diagnosing prostate can-

cer [31, 32]. For example, Paul et al. [33] developed an EPCA assay technique and

testing using 46 subjects demonstrated a sensitivity of 92% and a specificity of 94%

for the technique. In addition, α-methylacyl-CoA racemase (AMACR) is yet an-

other researched biomarker [30]. It can be used in a blood-based, a urine-based, or

a tissue-based (after biopsy) test for diagnosing prostate cancer [29]. AMACR is an

enzyme utilized in the synthesis and the oxidative metabolism of branched fatty

acids [30]. A reduced level of AMACR has been linked to prostate cancer [34]. Lin

et al. [35] developed and tested a new blood-based nanoparticle electrochemical

AMACR biosensor assay. This device was shown to have an accuracy of 100% for

24 subjects. However, due to the limited number of test subjects, their developed

device needs further investigation.

Urine-based biomarker tests have been investigated as a non-invasive method

to indicate prostate cancer. A common urine-based biomarker is PCA3 (formerly

DD3), a prostate specific non-coding RNA [29, 30, 32, 36]. The reported studies [20,

21, 25, 28, 37–39] showed an AUC ranging from 0.64-0.74 for PCA3. Hessel et al.

[37] studied the effectiveness of this biomarker in diagnosing prostate cancer. This

108 subject study showed a sensitivity of 67%, a specificity of 83%, and an AUC of

0.717. A study performed by Marks et al. [25] showed that a PCA3-based assay test

had a sensitivity of 58%, a specificity of 72%, and an AUC of 0.68 for 233 subjects.

Another PCA3 study conducted by van Gils et al. [20] tested a fluorescence-based

PCA3 technique using 583 subjects. It had a sensitivity of 65%, a specificity of 66%,

and an AUC of 0.66. Roobol et al. [21] also tested PSA and PCA3 biomarkers for
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721 subjects and found an AUC of 0.58 for PSA-based tests and an AUC of 0.64

for PCA3-based tests. In addition, Ferro et al. [28] performed a PCA3 study that

resulted in an AUC of 0.73 for 300 subjects.

Other urine-based biomarkers have been researched for diagnosing prostate

cancer, which include AMACR (which also can be performed using blood and tis-

sue samples) and the gene fusion of the serine 2 and E-twenty-six related genes

(ERGs) known as TMPRSS2-ERG or T2E. Since a reduced level of AMACR has

been linked to prostate cancer [34], a study by Sreekumar et al. [15] used AMACR

in a urine-based assay technique and achieved a sensitivity of 77.8%, a specificity

of 80.6%, and an AUC of 0.789 for 128 subjects. Other studies [24, 30, 40, 41] used

TMPRSS2-ERG for cancer detection, since it becomes rearranged in approximately

80% of prostate cancer cases [12, 30, 42]. These studies reported AUC values rang-

ing from 0.63-0.88 for cancer diagnosis. A study by Stephan et al. [41] compared

TMPRSS2-ERG, PCA3, and PHI and found that they had an AUC of 0.63, 0.74, and

0.68, respectively. However, there were no statistical differences between PCA3

and PHI for the 110 subjects tested.

Hybrid-based tests investigate the integration of both blood and urine tests to

increase the accuracy of diagnosis. For example, TMPRSS2-ERG has been used in

conjunction with PCA3 and PSA to diagnose prostate cancer from urine samples

[30]. Salami et al. [24] compared the effectiveness of TMPRSS2ERG, PCA3 and the

combination of PSA, PCA3, and TMPRSS2-ERG for prostate cancer diagnosis on

45 subjects. TMPRSS2-ERG alone had a sensitivity of 67%, a specificity of 87%,

and an AUC of 0.77. PCA3 alone had a sensitivity of 93%, a specificity of 37%, and

an AUC of 0.65. Finally, the combined test had a sensitivity of 90%, a specificity

of 80%, and an AUC of 0.88. Also, Leyten et al. [40] developed a multivariate

regression model using PCA3, TMPRSS2ERG, PSA, DRE, PV, and the outcome of

manual Transrectal Ultrasound (TRUS) analysis, which had an AUC of 0.842 for

443 patients. Additionally, Lin et al. [43] tested TMPRSS2-ERG, PCA3, and the
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combination of PSA, PCA3, and TMPRSS2-ERG for prostate cancer diagnosis on

387 subjects. This resulted in AUCs of 0.66, 0.66, and 0.70, respectively.

In addition, hybrid analysis of PSA (from a blood sample) and PCA3 (from

a urine sample) has been investigated to increase the diagnostic accuracy. Craw-

ford et al. [38] tested PSA, PCA3, and their sequential combination for diagnosing

prostate cancer. The results were AUCs of 0.569, 0.706, and 0.720 for 1,913 subjects,

respectively. Groskopf et al. [39] investigated the PCA3 to PSA ratio as a diagnostic

measure and found that it had an AUC of 0.746 for 143 patients. Also, Ankerst et

al. [23] tested a Bayesian probability model built using PSA, PCA, DRE, and family

history data for diagnosing prostate cancer. However, this technique had an AUC

of 0.696, which was not significantly more accurate than the AUC of PCA alone,

0.653, for the 443 subjects used in the study.

Multi-variable regression models have also been developed for prostate can-

cer diagnosis based on combing values of PSA and PCA3 with other diagnostic

features. These models had an AUC ranging from 0.45-0.83. For example, Deras et

al. [19] performed assay-based experiments that achieved an AUC of 0.55 for PSA,

an AUC of 0.69 for PCA, and an AUC of 0.75 for a logistic regression technique [44]

that utilized PSA, PCA3, prostate volume (PV), and DRE results for 570 subjects.

Chun et al. [18] developed another logistic regression model that utilized PSA and

PCA3 assay data. Testing using 809 subjects showed an AUC of 0.53 for PSA, an

AUC of 0.68 for PCA3, and an AUC of 0.73 for a logistic regression model based

on PSA, PCA3, PV, DRE, the patient’s age, and the patient’s biopsy history (Bx-H).

Additionally, Haese et al. [22] proposed another logistic regression model based

technique that used biomarker assays. This 463 subject study showed an accuracy

of 0.60 for PSA, an accuracy of 0.58 for %fPSA, an accuracy of 0.66 for PCA3, and

an accuracy of 0.71 for a logistic regression model based method that used PSA,

%fPSA, PCA3, PV, DRE, and patient age for 463 subjects. Also, a PCA3 assay was

developed by Auprich et al. in [45] based on the study performed in [39]. This
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method created a logistic regression model that utilized PCA3 data acquired us-

ing this assay as well as PSA, PV, DRE, age and Bx-H data. This model had an

AUC of 0.75 for 621 patients. An additional logistic regression model that used

PSA, %fPSA, PCA3, PV, DRE, Bx-H, family history, patient age, number of biopsy

cores, and clinical analysis if TRUS images was developed and tested by Perdona

et al. [46]. This method had a sensitivity of 70%, a specificity of 81%, and an AUC

of 0.83 for 218 subjects. Hansen et al. [47] analyzed another regression model that

used PSA, PCA3, DRE, and PV data. This technique had a sensitivity of 79%, a

specificity of 59%, and an AUC of 0.69 for 692 subjects. PSA and PCA3 biomarkers

have been used in several studies to determine whether a patient has a tumor with

a volume greater than 0.5 ml. Nakanishi et al. [48] employed these biomarkers for

142 subjects and achieved AUCs of 0.63 for PSA and 0.76 for PCA3 for diagnosing

tumors with a volume greater than 0.5 ml. Auprich et al. [49] created a logistic

regression model based on PSA, PPC, PCA3, and biopsy Gleason score data and

reported an AUC of 0.84 for diagnosing tumors with a volume greater than 0.5 ml

for 160 patient. Table 1 summarizes the in-vitro studies that investigate the use of

fluid-borne biomarkers for diagnosing prostate cancer, including the biomarkers

used in each study, the number of test subjects, and the reported performance.

Needle biopsies usually follow a DRE or biomarker analysis, commonly a

PSA blood test, in order to collect a tissue sample for cancer diagnosis. This is due

to the fact that there is a high potential for the current clinical biomarker tests to

classify incorrectly [50, 51]. A TRUS guided prostate biopsy is the standard tech-

nique for collecting these tissue samples [52]. Once they have been acquired, tissue

analysis is conducted to diagnose the prostate tumors either visually or by ana-

lyzing tissue-based extracted biomarkers. The most common method to analyze

the tissue sample is the Gleason grading system [53], which is performed visu-

ally by a physician. The Gleason score was developed by Gleason and Mellinger

in 1974 [54]. This measure is based on the two most prevalent cancer patterns in
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the collected tissue sample. A physician grades each pattern on a scale from 1-5,

going from non-cancerous to highly cancerous, via visual analysis. The Gleason

score is then calculated by summing these two values. If only one cancer pattern

is present, the Gleason score is twice the individual pattern score. A score greater

than or equal to six is seen as a strong indicator of cancer [53]. Even though this

method is widely used, it is not a completely quantitative technique and different

observers may classify a sample differently, leading to discrepancies in the diagno-

sis [55]. In addition to the visually-assessed Gleason scores, other tissue tests has

been performed based on analyzing specific biomarkers in the sample tissue. For

example, Jiang et al. [56] proposed a method that used the real-time polymerase

chain reaction technique [57] to test tissue samples for AMACR. This method had

a sensitivity of 97% and a specificity of 92% for 807 subjects [56].

In summary, DRE, biomarker analysis, and needle biopsies are common di-

agnostic techniques for prostate cancer. However, they have several disadvan-

tages. DRE is highly invasive and is subject to a physicians subjective analysis.

Also, biomarker tests can have high false positive and false negative rates [50, 51].

This can lead to patients in need of treatment not receiving it while patients with-

out prostate cancer are treated. Additionally, these tests require a physical sample,

wether it be blood or urine [29]. This is also true for needle biopsies, which are

highly invasive and can cause physical harm to patients (e.g., bleeding). Glea-

son scores require biopsies to invasively collect tissue samples and are dependent

on the observer analyzing the sample [53]. However, biopsies remain the gold

standard for diagnosis of prostate cancer, but are the last resort because of their in-

vasive nature, high cost, and potential morbidity rate. Additionally, the relatively

small needle biopsy samples have a higher possibility of producing false positive

diagnosis. A non-invasive and quantitative method for diagnosing prostate cancer

would eliminate the need for collecting physical patient samples and increase the

overall accuracy of diagnosis.
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TABLE 1: Summary of in-vitro studies for diagnosing

prostate cancer based on fluid-borne biomarkers, including

the biomarkers used in each study, the number of test sub-

jects, and the reported performance.

Study Data Biomarkers Performance

Paul et al. [33] 46 Subjects (34

Control and 12

Cancerous)

• EPCA
• SEN: 0.92

• SPE: 0.94

Sreekumar et al.

[15]

126 Subjects

(36 Control

and 90 Can-

cerous)

• PSA

• AMACR

• SEN (PSA):

0.456

• SPE (PSA):

0.50

• AUC (PSA):

0.492

• SEN

(AMACR):

0.778

• SPE

(AMACR):

0.806

• AUC

(AMACR):

0.789

Jiang et al. [56] 807 Subjects • AMACR
• SEN: 0.97

• SPE: 0.92

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

Le et al. [16] 2,034 Subjects • PSA

• %fPSA

• %p2PSA

• PHI

• AUC (PSA):

0.50

• AUC

(%fPSA):

0.68

• AUC

(%p2PSA):

0.76

• AUC (PHI):

0.77

Catalona et

al. [17]

1,372 Subjects • PSA

• fPSA

• p2PSA

• PHI

• AUC (PSA):

0.525

• AUC (fPSA):

0.615

• AUC

(%fPSA):

0.648

• AUC (p2PSA):

0.557

• AUC (PHI):

0.703

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

Hessel et al. [37] 108 Subjects • PCA3
• SEN: 0.67

• SPE: 0.83

• AUC: 0.717

Groskopf et al.

[39]

143 Subjects • PSA

• PCA3

• SEN

(PCA3/PSA):

0.69

• SPE

(PCA3/PSA):

0.79

• AUC

(PCA3/PSA):

0.746

Marks et al. [25] 233 Subjects • PSA

• PCA3

• AUC (PSA):

0.524

• SEN (PCA3):

0.58

• SPE (PCA3):

0.72

• AUC

(PCA3):0.68

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

Ferro et al. [28] 300 Subjects • fPSA

• %fPSA

• p2PSA

• PHI

• PCA

• AUC (fPSA):

0.60

• AUC

(%fPSA):0.62

• AUC (p2PSA):

0.63

• AUC (PHI):

0.77

• AUC (PCA):

0.73

van Gils et al. [20] 583 Subjects • PSA

• PCA3

• AUC (PSA):

0.57

• SEN (PCA3):

0.65

• SPE (PCA3):

0.66

• AUC (PCA3):

0.66

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

Haese et al. [22] 463 Subjects • PSA

• %fPSA

• PCA3

• ACC (PSA):

0.60

• ACC (%fPSA):

0.58

• ACC(PCA):

0.66

• ACC (PSA,

%fPSA, PCA3,

PV, DRE,

Age): 0.71

Ankerst et al. [23] 443 Subjects • PSA

• PCA3

• AUC (PSA):

0.607

• AUC (PCA):

0.665

• AUC (PSA,

PCA3, DRE,

FH): 0.696

Deras et al. [19] 570 Subjects • PSA

• PCA3

• AUC (PSA):

0.55

• AUC (PCA3):

0.69

• AUC (PSA,

PCA3, PV,

DRE): 0.75

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

Chun et al. [18] 809 Subjects • PSA

• PCA3

• AUC (PSA):

0.53

• AUC (PCA3):

0.68

• AUC (PSA,

PCA3, PV,

DRE, Age,

Bx-H): 0.73

Roobol et al. [21] 721 Subjects • PSA

• PCA3

• AUC (PSA):

0.58

• AUC

(PCA3):0.64

Auprich et al. [45] 621 Subjects • PSA

• PCA3

• AUC (PSA,

PCA3, PV,

DRE, Age,

Bx-H): 0.75

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

Hansen et al. [47] 692 Subjects • PSA

• %fPSA

• PCA3

• SEN (PSA,

PCA3, PV,

DRE, Age):

0.79

• SPE (PSA,

PCA3, PV,

DRE, Age):

0.59

• AUC (PSA,

PCA3, PV,

DRE, Age):

0.69

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

Perdona et al. [46] 218 Subjects • PSA

• %fPSA

• PCA3

• SEN (PSA,

PCA3, PV,

DRE, Age,

Bx-H, TRUS,

nBC): 0.70

• SPE (PSA,

PCA3, PV,

DRE, Age,

Bx-H, TRUS,

nBC): 0.81

• AUC (PSA,

PCA3, PV,

DRE, Age,

Bx-H, TRUS,

nBC): 0.83

Crawford et al.

[38]

1913 Subjects • PSA

• PCA3

• AUC (PSA):

0.569

• AUC (PCA3):

0.706

• AUC (PSA,

PCA3): 0.720

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

Salami et al. [24] 45 Subjects • PSA

• PCA3

• T2E

• AUC (PSA):

0.72

• SEN (PCA3):

0.93

• SPE (PCA3):

0.37

• AUC (PCA3):

0.65

• SEN (T2E):

0.67

• SPE (T2E):

0.87

• AUC (T2E):

0.77

• SEN (PSA,

PCA3, T2E):

0.80

• SPE (PSA,

PCA3, T2E):

0.90

• AUC (PSA,

PCA3, T2E):

0.88

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

Leyten et al. [40] 443 Subjects • PSA

• PCA3

• T2E

• AUC (PCA3,

T2E, PSA,

DRE, PV,

TRUS): 0.842

Lin et al. [35] 24 Subjects • AMACR
• ACC: 1.0

Lin et al. [43] 387 Subjects • PSA

• PCA3

• T2E

• AUC (PSA):

0.68

• AUC (PCA3):

0.66

• AUC (T2E):

0.66

• AUC (PSA,

PCA3, T2E):

0.70

Stephan et al. [41] 110 Subjects • PHI

• PCA3

• T2E

• AUC (PHI):

0.68

• AUC (PCA3):

0.74

• AUC (T2E):

0.63

*ACC denotes accuracy.

*ROC denotes receiver operating characteristic.

*AUC denotes area under the ROC curve.

*PPV denotes positive predictive value.

Continued on next page
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TABLE 1 – continued from previous page

Study Data Biomarkers Performance

*SEN denotes sensitivity.

*SPE denotes specificity.

*DRE denotes digital rectal exam.

*PV denotes prostate volume.

*Bx-H denotes biopsy history.

*FH denotes family history.

*nBC denotes number of biopsy cores.

*T2E denotes TMPRSS2-ERG.

B In-vivo Prostate Cancer Diagnostic Techniques

(a) (b) (c)

Figure 3. Typical CT (a), TRUS (b) and T2-MR (c) images of a prostate.

Recently, in-vivo image-based techniques have demonstrated the proven-

ability to detect prostate cancer without the associated deleterious side effects of

invasive techniques. These noninvasive methods for prostate cancer diagnosis are

based on acquiring scans of the prostate and analyzing these scans for cancer detec-

tion. To acquire scans of the prostate, different medical imaging techniques, such

as TRUS, magnetic resonance imaging (MRI) and computed tomography (CT),
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have been used (see Fig. 3). Each of these image modalities has its own mechanism

for providing relevant physiological information of the prostate as well as its own

advantages and limitations. For example, CT is currently used for post-therapy

evaluation by physicians to assess the effectiveness of treatment [58]. However, it

is expensive, uses radiation, and has poor contrast between soft tissues [58]. As a

result, TRUS and MRI are more commonly used in CAD systems for diagnosing

prostate cancer.

TRUS is the most frequently used technique for prostate imaging [58]. It is

often used in planning and guiding needle biopsies [59]. In addition, TRUS is used

in estimating the volume of the prostate gland, which can be used in biomarker

screening [58]. TRUS is often chosen because it is relatively inexpensive and allows

for real-time imaging. However, it does have several disadvantages for use in

CAD systems. TRUS images have low contrast and a low signal-to-noise (SNR)

ratio [60]. As a result, it can be difficult to accurately detect tumors and locate

cancerous cells using TRUS images.

MRI is another widely used imaging modality for detecting prostate cancer.

The main advantage of MRI is that it offers the best soft tissue contrast compared

to other image modalities, such as CT and TRUS [61]. However, MRI is sensitive

to noise and image artifacts, has a relatively long and complex acquisition, and has

a relatively high cost [58].

Several different MRI techniques have been extensively used in prostate can-

cer CAD systems. T1-weighted (T1-MRI) and T2-weighted (T2-MRI) are two basic

MRI techniques that measure the spin-lattice (T1) and spin-spin (T2) relaxation

times to create an image [62]. Although these MRI techniques provide excellent

soft tissue contrast, they lack functional information. Therefore, these MR imag-

ing techniques have limited ability to effectively locate and classify prostate can-

cer [63]. Dynamic contrast-enhanced MRI (DCE-MRI) is another MR technique

based on using contrast agents to provide information about the anatomy,
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(a)

(b)

Figure 4. Different MR images of the prostate: (a) DWI-MRI, T2-MR (first column

on the left in DWI-MRI; i.e., DWI-MRI at b0) , and (b) DCE-MRI. Segmentation (red

contour) is outlined by an expert.

function, and metabolism of target tissues [64]. In recent years, DCE-MRI has had

considerable success in detecting and locating prostate cancer. However, intra-

venous administration of a contrast agent can potentially harm a patient’s kid-
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neys [65]. In addition, injecting and waiting for the contrast agent to settle in the

prostate increases the time required to scan the patient. Diffusion weighted imag-

ing (DWI) [66] is an alternative MRI technique that avoids using contrast agents.

DWI is a functional MRI technique that measures the micromovements (random,

Brownian) of extracellular water molecules inside the body [67]. These move-

ments provide indirect information about the structures surrounding these water

molecules. Images collected using this modality have been shown to be useful for

determining the size and shape of the prostate as well as detecting and locating

cancerous tumors [66]. Typical MRI prostate images are shown in Fig. 4. In several

CAD systems, a combination of these MRI techniques has been used for diagnos-

ing prostate cancer [68–74]. This is often called multi-parametric imaging. These

systems seek to extract different information from each type of image to detect,

locate, and classify prostate tumors more accurately.

Development of CAD systems for detecting prostate cancer using these dif-

ferent image modalities is an ongoing area of research [75]. The success of CAD

systems can be measured based on the diagnostic accuracy, speed, and automation

level. Of the image modalities discussed, the most popular image modalities used

for the diagnosis of prostate cancer are TRUS, T2-MRI, DCE-MRI, and DWI MRI.

A typical CAD system for detecting prostate cancer, shown in Fig. 5, generally

consists of three main processing steps: (1) prostate segmentation and/or tumor

localization, (2) feature extraction, and (3) classification of the prostate tissue. The

input to any CAD system is a set of medical images–a set of 2D time-series images

or a series of 3D volumes– that contain the prostate. The first step in this sys-

tem is the segmentation of the prostate or regions of interest (ROIs). This step can

be performed automatically, semi-automatically, or manually by a radiologist. In

the second step, a set of features (e.g., average grey level intensities) are extracted

from the segmented prostate region and used to create a feature space. Finally,

these features are used to classify prostate tissue as either benign or malignant us-
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ing one or more classifiers such as neural networks or support vector machines

(SVM) [76]. The accuracy of these classification techniques is compared against a

gold standard, usually a needle biopsy [77]. Below, several complete CAD sys-

tems for each image modality, their advantages, limitations, the computational

techniques implemented in each system, as well as their reported experimental

results are overviewed.

Figure 5. Diagram of a general fully-automated CAD system for prostate cancer.

1 TRUS-based CAD systems

Several fully automated CAD systems for prostate cancer detection have

been proposed for TRUS. As illustrated in Fig 5, these systems take medical im-

ages as input, segment the prostate or ROIs, extract features from the selected im-

age region, and then classify the selected region as cancerous or benign. In this

section, the segmentation methods, the extracted features from TRUS images, and

the current prostate cancer CAD systems developed in the last 10 years will be
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overviewed.

Prostate segmentation from in vivo TRUS images: Segmentation of the

prostate from in vivo TRUS images is a very challenging problem for the following

reasons: (1) TRUS images are often noisy, (2) the prostate boundary is not clearly

defined, and (3) shadow artifacts can be present. Although manual outlining of the

prostate border enables the prostate volume to be determined, it is time consuming

and observer dependent. Therefore, different segmentation techniques have been

proposed to address these challenges and accurately segment the prostate. The

most popular techniques used for prostate segmentation are edge detection-based

techniques, deformable model-based techniques, and statistical-based techniques.

Edge detection-based techniques use image information to find the pixels,

or voxels in three dimensions (3D), that correspond to the edge of the prostate

[78]. This method has been frequently used to segment the prostate from TRUS

images. For example, Abolmaesumi and Sirouspour [79] proposed an automated

technique to locate the prostate edges based on a probabilistic data estimator [80].

Also, Sahba et al. [81] proposed an automated technique that used morphological

information [82], a Kalman estimator [83], and fuzzy inference to extract the edges

of the prostate. The main limitation of edge detection techniques is that they do

not work well with noisy images and/or objects with unclear or diffused edges.

Deformable models (DMs), developed by Kass et al. [84] and Caselles et al.

[85], delineate an object’s border in an image by evolving a deformable boundary

towards the objects’ edge based on image-derived features [86–93]. Various stud-

ies have employed different types of DMs for TRUS prostate segmentation, such

as level set DMs [85, 94], curve-fitted deformable boundaries, and active shape

models (ASMs) [95]. Level set DM is a popular technique for medical image seg-

mentation [96–99]. It has been widely used due to its flexible evolution and no

need for parametrization [100]. For example, Wang et al. [101] proposed an au-

tomated technique for 2D prostate segmentation using a level set DM guided by
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the prior information of prostate shape and appearance. Level sets have also been

used for 3D prostate segmentation, as can be seen by the method developed by

Zhan et al. [102] that used a level set DM guided by prostate texture and shape

information to perform 3D prostate segmentation.

Other DMs for prostate segmentation include curve-fitted deformable bound-

aries, e.g., fitting the prostate borders to an ellipse due to its approximation of the

prostate’s shape. For example, Gong et al. [103] used a semi-automated technique

that represented a prostate’s edge as a deformable super-ellipse that evolved to the

prostate borders based on extracted region-based image features. Saroul et al. [104]

proposed another technique which involve an appearance-guided DM and curve

fitting to segment a prostate’s border. Also, a semi-automated technique devel-

oped by Baidiei et al. [105] used an elliptical curve fitting to segment the prostate

boundary. Additionally, Mahdavi et al. [106] proposed a semi-automated tech-

nique that applied ellipsoid curve fitting for segmenting the prostate from 3D

TRUS images. However, ellipsoids have not been the only surface used for 3D

prostate segmentation. Tutar et al. [107] proposed a DM for TRUS prostate seg-

mentation that used spherical harmonics (SHs) [108] to model the 3D shape of the

prostate.

In medical image processing, more sophisticated shape models can be inte-

grated to provide more accurate segmentation [109–123]. ASMs, developed by

Cootes et al. [95], are popular DMs that allow for a compact representation of

an object’s shape that adjusts for shape variance, but still maintain their general

shape [124]. This method has been used extensively for TRUS prostate segmenta-

tion. Shen et al. [125] proposed an automated technique that utilized Gabor [126]-

based appearance features to guide an ASM for prostate segmentation. Another

automated technique proposed by Betrouni et al. [127] was based on optimizing

an ASM to segment the prostate. Zaim and Jankun [128] used an ASM, guided by

extracted image appearance features to find the prostate boundary. Additionally,

28



Yan et al. [129] proposed an ASM-based technique that incorporated a priori shape

model [130] for segmentation. Also, Hodge et al. [131] proposed a semi-automated

technique for 3D prostate segmentation by propagating 2D segmentations on a

slice-by-slice basis.

Extensions of ASMs, such as active appearance models (AAM) [132], have

also used for segmentation. For example, Ghose et al. [133] proposed an auto-

mated technique that utilized Haar-wavelet [134]-based features and a statistical

shape model to guide an AAM for segmentation. Additionally, Ghose et al. [135]

proposed an automated technique that utilized an AAM to segment the prostate

based on appearance and shape information, derived using principle component

analysis (PCA) [136]. Medina et al. [137] proposed another automated technique

that used appearance and shape information to guide an AAM for 3D prostate

segmentation.

In addition to edge detection and DM-based approaches, statistical-based

methods [138–147] have been proposed for TRUS prostate segmentation, such as

pixel classification and graph-cut [148] methods. In pixel classification techniques,

each pixel is defined as object or non-object based on a set of extracted image fea-

tures. An automated pixel classification technique was proposed by Mohamed et

al. [149] that used Gabor [126]-based features and SVM [76] classification. Ghose

et al. [150] performed 3D TRUS prostate segmentation using a graph-cut [148]

method and an ASM. Table 2 summarizes the current in vivo studies for prostate

segmentation from TRUS images with the validation data sets and achieved per-

formance for each study. Overall, the segmentation of the prostate from TRUS

images is a still a challenge due to its low contrast and low SNR. Therefore, there

is a need for developing more accurate methods and more advanced capturing

techniques to overcome these problems. Once the prostate region is determined,

the next step is to extract diagnostics features from the prostate region in order to

perform diagnosis.
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TABLE 2: Summary of in vivo studies for prostate seg-

mentation from TRUS images, outlining the validation

data sets, the segmentation method, and the experi-

mental performance for each study.

Study In vivo Data Method Performance

Abolmaesumi

and Sirous-

pour [79]

6 Images
• Automated

• Edge Detec-

tion

• OAE: 2%

Sahba et al.

[81]

19 Images • Automated

• Edge Detec-

tion

• MAD: 3.3 ± 1.3

(pixels)

• Area Error: 2.4 ±

1.05%

Zaim et

al. [128]

10 Images (3

Subjects)

• Automated

• Active

Shape

Model

• Mean Distance Er-

ror: 15.3 (pixels)

• OAE: 5.0%

• ACC: 92%

Shen. et al.

[125]

8 Images • Automated

• Active

Shape

Model

• MAD: 3.20 ± 0.87

(pixels)

• OAE: 3.98 ± 0.97

(%)

Continued on next page
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TABLE 2 – continued from previous page

Study In vivo Data Method Performance

Betrouni et al.

[127]

35 Images (11

Subjects)

• Automated

• Active

Shape

Model

• Mean Distance Er-

ror: 2.55 (mm)

Hodge et al.

[131]

36 Volumes • Semi-

automated

• Active

Shape

Model

• 3D

• MAD: 1.09 ± 0.49

(mm)

• AVE: 3.28 ± 3.16

(%)

Gong et

al. [103]

16 Subjects

(125 Images)

• Automated

• Curve fit-

ting

• MAD: 0.54 ± 0.20

(mm)

• HD: 1.32 ± 0.62

(mm)

Badiei et al.

[105]

17 Images • Automated

• Curve Fit-

ting

• MAD: 0.67 ± 0.18

(mm)

• ACC: 93%

• SEN: 97%

Continued on next page
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TABLE 2 – continued from previous page

Study In vivo Data Method Performance

Mahdavi et

al. [106]

40 Volumes • Semi-

automated

• Curve Fit-

ting

• 3D

• AVE: 5.82 ± 4.15%

Yan et

al. [129]

301 Images • Automated

• Active

Shape

Model

• MAD: 2.01 ± 1.02

(mm)

Zhan and

Shen [102]

3 Volumes • Automated

• Level-set

• 3D

• MAD: 0.81 (voxels)

• Overlap Volume

Error: 3.93%

• Total Volume Er-

ror: 1.5%

Medina et al.

[137]

95 Images • Automated

• Active

Shape

Model

• MAD: 3.58 ± 1.49

(pixels)

Continued on next page
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TABLE 2 – continued from previous page

Study In vivo Data Method Performance

Ghose et al.

[133]

25 Images • Automated

• Active

Shape

Model

• DSC: 0.95 ± 0.01

• HD: 5.08 ± 1.18

(mm)

• MAD: 1.48 ± 0.36

(mm)

Ghose et al.

[135]

23 Volumes • Automated

• Active

Shape

Model

• 3D

• DSC: 0.97 ± 0.01

• MAD: 0.49 ± 0.20

(mm)

• HD: 1.78 ± 0.73

(mm)

• SPE: 0.95 ± 0.01

• SEN: 0.99 ± 0.00

• ACC: 0.98 ± 0.00

Tutar et

al. [107]

30 Volumes • Semi-

automated

• Spherical

Harmonics

• 3D

• Average Volume

Overlap: 83.5 ±

4.2%

• MAD: 1.26 ± 0.41

(mm)

*ACC denotes accuracy.

*ROC denotes receiver operating characteristic.

*AUC denotes area under the ROC curve.

Continued on next page
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TABLE 2 – continued from previous page

Study In vivo Data Method Performance

*AVE denotes average volume error.

*DSC denotes Dice’s similarity coefficient.

*HD denotes Hausdorff distance error.

*F-M denotes F-Measure.

*MAD denotes mean absolute distance.

*PPV denotes positive predictive value.

*OAE denotes overlapping area error.

*RMSD denotes root mean squared distance.

*SEN denotes sensitivity.

*SPE denotes specificity.

TRUS feature extraction and diagnosis: The most intuitive feature for clas-

sifying an image region is the intensity of the pixels/voxels inside the region. From

the pixel/voxel intensities, several features can be obtained. For example, Gaus-

sian statistics (mean and standard deviation) of pixel/voxels intensities are used

as features in several TRUS studies [151–155]. The Nakagami distribution has also

been used for extracting features from pixel intensities in various studies [153,

154]. More advanced features, such as the energy, entropy, correlation, and homo-

geneity, can be obtained using the gray level dependence matrix (GLDM) [156].

These features are frequently used in TRUS-based CAD systems, such as in [152,

157, 158]. Other intensity-based features can be obtained using the gray level dif-

ference vectors (GLDV) method [159]. This technique can be used to calculate the

contrast, angular second moment, the entropy, the mean, and the inverse differ-

ence moment. These features were employed in the prostate CAD system pro-

posed in [158].

In addition to these intensity-based features, several other TRUS features

can be used in prostate cancer CAD systems. Examples of these include wavelet
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coefficients [160] and their polynomial fitting [160], which were used in [153–155],

the autocorrelation coefficients [151], and a tumor’s shape metric [151]. In ad-

dition, fractal texture features [161] and spectral features [162] were also used in

prostate CAD systems, such as in [155] and [153–155], respectively. Another fea-

ture utilized is the total least square estimation of signal parameters [157], which is

estimated via rotational invariance techniques (TLS-ESPRIT) [163, 164]. After ex-

tracting the diagnostics features from the TRUS images, the final step of a CAD

system is to diagnose whether the prostatic a tissue is cancerous or non-cancerous

using the selected features as an input. To perform this task, several classifica-

tion methods can be used, such as SVM [76], linear discriminant analysis (LDA)

[165, 166], K-means [167], K-nearest neighbors (kNN) [167], decision trees [167],

Bayesian inference, and relevance vector machines (RVM) [168].

In the literature, several CAD systems have been developed to diagnose

prostate cancer based on different extracted features from TRUS images and dif-

ferent classification techniques. For example, Maggio et al. [153, 154] proposed an

automated CAD system that utilized the tissue intensities, features extracted using

the Nakagami distribution, Haralick textual features, and Unser textual features to

classify prostate tissues as benign or malignant. Using an LDA classifier, this sys-

tem had a sensitivity of 75±9%, a specificity of 93±2%, an accuracy of 93±2%,

and an AUC of 0.95±0.02. Scebran et al. [155] proposed a three step automated

CAD system. First, possible tumor ROIs were segmented using a combination

of k-means and Bayesian pixel classification. Second, three types of feature were

extracted from these ROIs: intensity, textural, and spectral parameters. The in-

tensity parameters were extracted as the parameters of Gaussian and Nakagami

distributions that model the visual appearance the image. The textural parameters

were extracted using Unser, Gabor, and fractal [161] textural models. The spec-

tral parameters were selected as the central frequency, mid-band and slope, and

the polynomial fitting of the wavelet spectrum. Finally, classification of the ROIs
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was performed using SVM with a radial basis function kernel. The validation re-

sults showed that this method had an average specificity of 92% and an accuracy

of 90%. However, the sensitivity was considerably lower, having a value of 78%.

The authors report that this was caused by the system overestimating the size of

possible tumors. Additionally, Mohamed et al. [149] proposed another automated

CAD system that consists of three steps. First, ROIs were segmented by applying

a Gabor filter [126] to the TRUS image and then performing multiresolution analy-

sis [169, 170]. Second, GLDM and GLDV features were extracted from these ROIs.

Finally, these features were used to classify the ROIs. Two classifiers were found to

be equally effective in this system, a decision tree and SVMs. Testing showed that

using only GLDV features resulted in the highest classification accuracy. Valida-

tion with GLDV found both classifications had a sensitivity of 83.33%, a specificity

of 100%, and an accuracy of 93.75%. In [171], Mohamed et al. [171] extended the

method in [149] by using features calculated using the TLS-ESPRIT spectral feature

method [163, 164]. The resulting feature vector was classified using SVM. The re-

ported results showed the system had a sensitivity of 83.3%, a specificity of 100%,

and an accuracy of 94.4%. In the CAD system developed by Han et al. [151], the

prostate was segmented and then the intensity information was used to find possi-

ble tumor ROIs. Four features were extracted for diagnosis: pixel intensity values,

autocorrelation coefficients of image signals, tumor location, and the tumor shape.

The shape of the tumor was quantified by how similar a possible tumor was to an

ellipse. After these features were extracted, each ROI was classified using SVM.

This technique showed a sensitivity and specificity of 92% and 95.6%, respectively.

A summary of the discussed CAD systems using in vivo TRUS images with their

computational methods, validation data sets, and validation accuracy are given in

Table 3. While these systems are effective, they are limited to extracting intensity

and textural features from the images. For this reason, recent research has focused

on MRI-based CAD systems to extract more sophisticated features in order to en-
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hance the accuracy of prostate cancer diagnosis.

TABLE 3: Summary of TRUS prostate cancer CAD sys-

tems on in-vivo data, including their prostate segmen-

tation method, features, classifier, and experimental

performance.

Study In vivo

Data

Prostate

Segmen-

tation

Features Classifier Performance

Han et

al. [151]

51 Sub-

jects

Otsu

Thresh-

old

• Intensity

Gaussian

Model

• Auto-

correlation

Coeffi-

cients

• Tumor Lo-

cation

• Tumor

Shape

SVM • ACC:

0.87

• SEN:

0.92

• SPE:

0.96

Continued on next page
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TABLE 3 – continued from previous page

Study In vivo

Data

Prostate

Segmen-

tation

Features Classifier Performance

Llobert

et

al. [152]

303 Sub-

jects

Manual

ROIs

• Intensity

Gaussian

Model

• GLDM

kNN

and

HMM

• AUC

(HMM):

0.600

±0.7

• AUC

(kNN):

0.601

±0.7

Maggio

et

al. [154]

37 Sub-

jects

None • Intensity

Gaussian

Model

• Intensity

Nakagai

Model

• Spectral

Features

• Wavelet

Coeffi-

cients

LDA • AUC:

0.95

±0.02

• ACC:

0.93

±0.02

• SEN:

0.75

±0.09

• SPE:

0.93

±0.01

Continued on next page
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TABLE 3 – continued from previous page

Study In vivo

Data

Prostate

Segmen-

tation

Features Classifier Performance

Scebran

et

al. [155]

37 Sub-

jects

K-means

and

Bayes

Classifier

• Spectral

Features

• Wavelet

Coeffi-

cients

• Fractal

SVM • SEN:

0.78

• SPE:

0.92

• ACC:

0.90

Mohamed

et

al. [157]

21 Sub-

jects (33

Images)

Gabor

Filter

• GLDV SVM

and De-

cision

Tree

• SEN:

0.833

• SPE:

1.000

• ACC:

0.938

Mohamed

et

al. [149]

108 ROIs Gabor

Filter and

Multi-

resolution

Analysis

• ESPRIT SVM • SEN:

0.833

• SPE:

1.000

• ACC:

0.944

*ACC denotes accuracy.

*ROC denotes receiver operating characteristic.

Continued on next page
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TABLE 3 – continued from previous page

Study In vivo

Data

Prostate

Segmen-

tation

Features Classifier Performance

*AUC denotes area under the ROC curve.

*DSC denotes Dice’s similarity coefficient.

*F-M denotes F-Measure.

*PPV denotes positive predictive value.

*SEN denotes sensitivity.

*SPE denotes specificity.

2 MRI-based CAD systems

Recent research studies focus on developing CAD systems for prostate diag-

nosis using MRI due to its ability to offer better soft tissue contrast. As with TRUS,

these systems segment the prostate, extract features, and then perform diagnosis

based on these features (see Fig 5). In this section, the segmentation techniques,

the MRI extracted features, and the MRI-based CAD systems developed in the last

10 years are overviewed.

Prostate segmentation from in vivo MR images: MRI offers the best soft

tissue contrast compared to the other image modalities used in prostate visualiza-

tion. Therefore, the prostate can be defined more clearly in MR images than in

TRUS images. However, segmentation is still challenging due to patient move-

ment, intra-patient anatomical variations of the prostate shape and appearance,

noise and inhomogeneities, and discontinuities of boundaries due to occlusions

and similar visual appearance of adjacent structures. To address these challenges,

many techniques have been developed to extract the prostate from MR images

such as DM-based methods and statistical-based methods.

DMs have been applied extensively to segment the prostate from MRI data.

40



For example, a hybrid 2D/3D ASM-based methodology for segmentation of the

3D MRI prostate data was proposed by Zhu et al. [172]. Toth et al. [173] presented

an algorithm for the automatic segmentation of the prostate in multi-modal MRI

(T2-MRI and magnetic resonance spectroscopy (MRS)). Their algorithm starts by

isolating the region of interest (ROI) from MRS data. Then, an ASM within the ROI

is used to obtain the final segmentation. Gao et al. [174] aligned the MR images be-

fore segmenting the prostate using a level-set guided by appearance information

and a learned shape prior. Ghose et al. [175] used a similar approach that aligned

T2-MRI data then an AAM was used to segment the prostate. Martin et al. [176]

used a probabilistic anatomical atlas to constrain a DM-based framework for seg-

menting the prostate from 3D MR images. Allen et al. [177] proposed a framework

for 3D prostate segmentation from T2-MRI based on voxel classification and a sta-

tistical shape model. Liu et al. [178] proposed a level-set technique guided by a

shape prior and intensity information for 2D DWI prostate segmentation. Liu et

al. [179] proposed a shape-based level-set method for 3D DWI prostate segmenta-

tion guided by an initial coarse segmentation.

Statistical-based techniques have also been used to segment the prostate

from MRI data such as graph-cut [148] methods, random walk classification [180],

and probabilistic anatomical atlases. For example, Ghose et al. [181] proposed

a probabilistic graph-cut-based framework for 3D T2-MRI prostate segmentation

based on a probabilistic atlas. Firjany et al. [147] proposed a Markov random field

(MRF) image model [182–196] for 2D DCE-MRI prostate segmentation that com-

bined a graph-cut approach with a prior shape model of the prostate and the visual

appearance of the prostate image, modeled using a linear combination of discrete

Gaussian (LCDG) [197–208] Their method was later extended in [209, 210] to al-

low for 3D prostate segmentation from DCE-MRI volumes. The main limitation

of graph-cut techniques is that they are prone to minimizing the size of the seg-

mented region [211]. A Maximum A Posteriori (MAP) [212]-based framework was
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proposed by Makni et al. [213] to perform automated 3D MRI prostate segmenta-

tion using a MRF model [214] and statistical shape information. Similarly, Firjani

et al. used a MAP-based method that incorporated an LCDG intensity model, an

MRF spatial model, and a shape prior for 3D prostate segmentation from DWI-

MRI volumes [67, 146, 215]. Random walk classification [180] was used for MRI

prostate segmentation by Khurd et al. [216]. Also, Klein et al. [217] presented an

atlas-based segmentation approach to extract the prostate from MR images based

on averaging the best atlases that match the image to be segmented. Another au-

tomated technique, proposed by Dowling et al. [218], used an automated atlas ap-

proach to segment the prostate region based on a Selective and Iterative Method

for Performance Level Estimation (SIMPLE) [219]-based alignment technique.

In addition to DMs and statistical-based techniques, several other meth-

ods have been proposed to segment the prostate from MR images. Flores-Tapia

et al. [220] proposed a semi-automated edge detection technique for MRI prostate

segmentation based on a static wavelet transform [221] to locate the prostate edges.

A semi-automated approach by Vikal et al. [222] used priori knowledge of the

prostate shape to detect the contour in each slice and then refined them to form

a 3D prostate surface. Table 4 summarizes the current in vivo studies for prostate

segmentation from MRI images with the validation data sets and achieved perfor-

mance for each study. In sum, a tremendous number of studies have been devel-

oped for the segmentation of prostate MRI data. However, prostate segmentation

is still an ongoing area of research due to challenging prostate images that have

different MRI noise sources, have poor image resolutions and diffused or occluded

prostate boundaries.
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TABLE 4: Summary of in vivo studies for prostate seg-

mentation from MRI, including their validation data

sets, the segmentation method, and the experimental

performance.

Study Data Imaging

Modality

Method Performance

Flores-Tapia

et al. [220]

19 Images T2-MRI • Automated

• Edge Detection

• DSC: 0.93 ± 0.005

Zhu et

al. [172]

26 Vol-

umes (288

Images)

T2-MRI • Automated

• Active Shape

Model

• 3D

• MAD: 5.48 ± 2.91

Toth et

al. [173]

19 data sets

(148 slices)

T2-MRI +

MRS

• Automated

• Active Shape

Model

• 3D

• Average OR: 0.83,

average SEN: 0.89,

average SPE: 0.86,

and average PPV:

0.93

Vikal et

al. [222]

3 data sets

(39 slices)

T2-MRI • Semi-

automated

• Active Shape

Model

• 3D

• DSC: 0.93±0.3 and

MAD: 2.00±0.6

(mm)

Allen et al.

[177]

22 Subjects T2-MRI • Automated

• Active Shape

Model

• 3D

• MAD: 4.1 ± 1.1

• AVE: 11.1 ± 9.5%

Continued on next page
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TABLE 4 – continued from previous page

Study Data Imaging

Modality

Method Performance

Martin et al.

[176]

36 Volumes T2-MRI • Automated

• Active Shape

Model

• 3D

• Median DSC: 0.86

• Average Surface

Error: 2.41 (mm)

Ghose et al.

[175]

15 Volumes T2-MRI • Automated

• Active Shape

Model

• 3D

• DSC: 0.88 ± 0.11

• HD: 3.38 ± 2.81

(mm)

Klein et al.

[217]

38 Volumes T2-MRI • Automated

• Atlas Registra-

tion

• 3D

• Median DSC: 0.85

Dowling et

al. [218]

50 Volumes T2-MRI • Automated

• Atlas Registra-

tion

• 3D

• Median DSC: 0.86

• Average Surface

Error: 2.00 (mm)

Makni et al.

[213]

12 Volumes T2-MRI • Automated

• Graph Cut

• 3D

• HD: 9.94 (mm)

• AVE: 0.163

• DSC: 0.91

Ghose et al.

[181]

15 Volumes T2-MRI • Automated

• Graph cut

• 3D

• DSC: 0.91 ± 0.04

• HD: 4.69 ± 2.62

(mm)

Gao et

al. [174]

33 Subjects T1-MRI

and

T2-MRI

• Automated

• Atlas Registra-

tion

• Level-set

• DSC: 0.84 ± 0.03

• HD: 8.10 ± 1.50

(mm)

Continued on next page
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TABLE 4 – continued from previous page

Study Data Imaging

Modality

Method Performance

Firjani et al.

[147]

14 Volumes

(98 Images)

DCE-

MRI

• Automated

• Graph Cut

• AVE: 5.2 ± 1.2%

Firjani et al.

[215]

15 Sub-

jects (270

Volumes)

DCE-

MRI

• Automated

• 3D

• MAP

• DSC: 0.92 ± 0.004

• PPV: 0.98 ± 0.004

• SEN: 0.85 ± 0.004

Liu et

al. [178]

10 Subjects DWI • Automated

• Level-set

• DSC: 0.91 ± 0.03

Liu et

al. [179]

10 Subjects DWI • Automated

• Level-set

• 3D

• DSC: 0.810± 0.05

• MAD: 2.67 ± 0.650

(mm)

• HD: 9.07 ± 1.64

(mm)

Firjani et al.

[67]

28 Subjects DWI • Automated

• MAP

• 3D

• DSC: 0.991± 0.004

• PPV: 0.952± 0.004

• SEN: 0.816± 0.004

*ACC denotes accuracy.

*ROC denotes receiver operating characteristic.

*AUC denotes area under the ROC curve.

*AVE denotes average volume error.

*DSC denotes Dice’s similarity coefficient.

*HD denotes Hausdorff distance error.

*F-M denotes F-Measure.

*MAD denotes mean absolute distance.

*PPV denotes positive predictive value.

*OAE denotes overlapping area error.

*RMSD denotes root mean squared distance.

*SEN denotes sensitivity.

*SPE denotes specificity.

MRI feature extraction and diagnosis: Just as in TRUS-based CAD systems,
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MRI-based systems extract features in order to detect cancerous tumors. These fea-

tures can be extracted from any MR image modality used in prostate CAD systems,

e.g., T1-MRI, T2-MRI, DCE, and DWI MRI. Several proposed CAD systems in the

literature have used multi-parametric MRI, a combination of multiple MRI modal-

ities, to increase the number and quality of the features that the systems can utilize.

Below, the common features extracted from each of these MRI modalities as well

as the basic CAD systems developed in the last 10 years using these modalities are

overviewed.

T2-MRI-based diagnostic systems extract several features from T2-MRI for

classifying a prostate region as cancerous or noncancerous. These features include

the pixel/voxel intensity values of T2-MR images [69–71, 73, 74, 223–228]. In addi-

tion, the 25 percentile [70], the variance and entropy of the T2-MRI intensities [71],

the 2D [71] and 3D [223] intensity gradients, and the T2-MRI image texture [223]

are commonly exploited as candidate features to discriminate between malignant

and nonmalignant prostate tissues. In addition to pixel/voxel intensities, image

filters were frequently used in order to extract features from T2-MRI. Image filter-

ing applies a transform that maps each pixel/voxel on the image to a new value,

from which new features can be extracted, such as the mean, standard deviation,

average deviation, and median of the intensities of a pixel’s neighbors [71, 229].

Several image filters, such as the Gabor filter [126] and the Sobel filter [230], were

used for feature extraction in [223, 225, 227] and [71], respectively. Another T2-MRI

feature is the relaxation time, the time it takes for protons to revert to their original

energy state after the magnetic pulse created by an MRI machine. This feature was

used in [223, 225].

Several T2-MRI CAD systems have been developed based on the extracted

features from the baseline MRI methodology for prostate cancer detection (the ini-

tial image type used in prostate cancer CAD systems, i.e., T2-MRI). The main fea-

tures extracted from T2-MRI images are signal intensities and texture-based fea-
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tures. These values have been utilized in multiple T2-MRI systems. One such

semi-automated CAD system was proposed by Madabhushi et al. [223]. Pixels in-

side manually selected regions were labeled as tumourous or non-tumourous us-

ing a Bayesian classifier. The classification was then performed using a large set of

features that included: gray levels statistics (intensity values, mean, and standard

deviation), intensity gradient, and Gabor filter features. This pixel classification

technique had a sensitivity of 42.35%, a specificity of 97.25% and a PPV of 42.85%.

This system was improved in [227]. The Bayesian classifier was replaced with a

kNN classifier that was built using Bayesian learners. This modified system had

an AUC of 0.957. An automated T2-MRI CAD system was developed by Lopes et

al. [228]. Each pixel in the image was labeled as either cancerous or non-cancerous

based on their features. The fractal dimension and the multifractal spectrum cal-

culated using a multifractional Browninan motion model were used as sources of

features. Two classifiers were trained, SVM and AdaBoost [231]. The sensitivity

and the specificity were 83% and 91% for SVM and 85% and 93% for AdaBoost.

DCE-MRI-based diagnostic systems were developed for prostate cancer di-

agnosis for several reasons. The addition of a contrast agent helps to distinguish

objects of interest in MR images. In addition, the diffusion of the contrast agent

can be used to add two common sources of DCE-MRI features, parametric (phar-

macokinetic) and nonparametric parameters, in addition the intensity informa-

tion. Pharmacokinetic parameters are measures of the kinetics of contrast agents

through an organ in a DCE-MR image. The three standard pharmacokinetic pa-

rameters are the volume transfer constant (Ktrans), the extravascular extracellular

space fractional volume (ve), and the rate constant (kep) [232]. These parameters

have been used as features in several DCE-MRI prostate cancer CAD systems [225,

229]. In addition, these features have also been used in many multi-parametric

MRI CAD systems [69–71, 73, 74, 225, 226]. Specifically, the 75 percentile Ktrans

value [70–73, 225], the mean kep [69, 225], the 75 percentile kep [72, 233], and the
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75 percentile ve [70] have been utilized as discriminating features.

In addition to the pharmacokinetic parameters, established dynamic per-

fusion analysis of extracellular extravascular agents, such as gadolinium agents,

have also used empirical measures, including peak signal intensity, time-to-peak,

wash-in slope, wash-out slope, and Area Under the Gadolinium Curve (AUGC).

The time-to-peak is defined as the time from the injection of the contrast agent un-

til the peak intensity is observed. The wash-in rate is defined as the maximum

change in intensity during the time between the start of the inflow of the contrast

agent and the time where the highest signal intensity is recorded [234]. This fea-

ture was used in [73, 229, 235, 236]. The wash-out rate is defined as the maximum

change in intensity during the time the highest signal intensity is recorded and a

specified end time [237] and was used in the system proposed in [235, 236]. The

gadolinium curve is the plot of the gadolinium concentration versus time and the

AUGC is the area under this curve [238]. This feature was used in the CAD system

proposed in [71].

Based on the extracted features from DCE-MRI, several DCE-MRI CAD sys-

tems were developed for prostate cancer diagnosis. For example, Viswanath et al.

[224] proposed a semi-automated DCE-MRI-based system, where the prostate was

segmented using an ASM initialized by a manually placed bounding-box and then

guided by image intensity, image texture and mutual information. To extract di-

agnostics features, local linear embedding (LLE) [239] was used to create a feature

vector using local neighborhood intensities. K-means clustering was then used to

classify the pixels within the segmented prostate as tumorous or non-tumourous.

Validation showed that this system had a sensitivity of 41.73%, a specificity of

84.54%, and an accuracy of 77.20%. A study by Engelbrecht et al. [240] used DCE-

MRI to evaluate which MRI parameters would result in optimal discrimination of

prostatic carcinoma from normal PZ and CZ of the prostate. Using the ROC curves,

their study concluded that the relative peak enhancement was the most accurate
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perfusion parameter for cancer detection in the PZ and CZ of the gland. Addition-

ally, a semi-automated CAD system by Kim et al. [241] demonstrated that para-

metric imaging of the wash-in rate was more accurate for the detection of prostate

cancer in the PZ than was T2-MRI alone. However, they also observed significant

overlap between the wash-in rate for cancer and normal tissue in the TZ. Fütterer

et al. [242] developed a CAD system to compare the accuracies of T2-MRI, DCE-

MRI, and MRS imaging for prostate cancer localization. The results showed higher

accuracy in DCE-MRI than were achieved with T2-MRI in prostate cancer localiza-

tion. A similar study was conducted by Rouvière et al. [243] for the detection of

postradiotherapy recurrence of prostate cancer. Their study also concluded that

DCE-MRI possesses the ability to depict the intraprostatic distribution of recurrent

cancer after therapy more accurately and with less inter-observer variability than

T2-MRI. Ocak et al. [244] developed a CAD system using PK analysis for prostate

cancer diagnostics in patients with biopsy-proven lesions. In their framework, the

K trans, the kep, the ve, and the area under the gadolinium concentration curve were

determined and compared for cancer, inflammation, and healthy peripheral. Their

results showed improvement in prostate cancer specificity using the K trans and kep

parameters over that obtained using conventional T2-MRI. Puech et al. [235, 236]

developed a semi-automated dynamic MRI-based CAD system for the detection

of prostate cancer. Candidate lesion ROIs were selected either manually or by us-

ing a region growing technique initiated by a user-selected seed point. Lesions are

classified as benign, malignant or indeterminate based on the analysis of the me-

dian wash-in and wash-out values. Their CAD system demonstrated a sensitivity

and specificity of 100% and 45% for the PZ, and sensitivity and specificity of 100%

and 40% for the TZ. Sung et al. [229] proposed another semi-automated system

where ROIs were manually selected. These were then classified as cancerous or

non-cancerous using Ktrans, kep, ve, wash-in rate, wash-out rate, and time-to-peak

values. Testing showed that the system had a sensitivity of 90%, specificity of 77%,
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and accuracy of 83%. In [245] and [233], Vos et al. proposed a semi-automated

system and an automated system, respectively. In both, possible cancerous tumors

in the PZ were classified as either tumorous or non-tumorous. ROIs were manu-

ally selected in the first system [245] and selected using a combination of an Otsu

threshold segmentation [246] and a Hessian-based blob detection method [247] in

the second system [233]. In both systems, the ROIs were then classified using the

pharmacokinetic parameters and an SVM classifier. The average accuracies of 88%

and 80% were shown for the semi-automated and automated approaches, respec-

tively. However, these techniques were only capable of detecting and classifying

tumors in the PZ and not the rest of the prostate.

Another automated DCE-MRI CAD system was proposed by Firjani et al.

[248]. The first step in this system was performing probabilistic segmentation us-

ing the MAP algorithm and image intensity, spatial information modeled using

an MRF, and a shape prior. The wash-in and wash-out curves were then used as

sources of features for classification with a kNN classifier. This technique had an

accuracy of 100% using a data set of 21 subjects.

DWI-MRI-based diagnostic systems acquire images at varying b-values (i.e.

magnetic field strengths). This allows the Apparent Diffusion Coefficient (ADC)

and other diagnostics features to be extracted. The ADC, a common intensity-

based feature for DWI, is a measure of the impedance of water diffusion and is

determined by evaluating the difference between two diffusion weighted images

taken at different magnetic field strengths (e.g. b-values). The ADC values at each

pixel/voxel are known as the ADC maps. They have been shown to be effective

in differentiating between prostates containing cancerous tumors and those that

do not [249]. In addition, it was shown that cancerous regions have a lower aver-

age ADC than non-cancerous regions [249]. Consequently, ADC maps have been

used as a source of features in several MRI prostate cancer CAD systems [67, 69–

73, 225, 226]. The mean ADC [69, 70] and the median ADC value [71] are also com-
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mon features for prostate cancer diagnosis. In addition, the 25 percentile ADC

value [70–72], and the 10 percentile ADC value [73] are popular features. Also, a

Sobel filter was applied to the ADC map to extract additional features in [71]. T2

shine-through and T2 wash-out represent two additional DWI features. These fea-

tures measure how much the intensity of a pixel/voxel changes between two DWI

images acquired at different b-values. Typically, a b-value of 0 (i.e. T2-MRI) is used

as a baseline and compared to a second, higher b-value. The intensities of these

images are often referred to as S0 and S1, respectively. Shine-through occurs when

the intensity increases drastically with an increase in b-value, whereas wash-out

occurs when the intensity decreases drastically with an increase in b-value [250].

The change in the intensity has been used as a feature for CAD systems that utilize

DWI [70, 72]. Once a combination of these features are selected to form the feature

space of a CAD system, classification can be performed. For example, Firjani et

al. [67, 145] developed a CAD system for prostate diagnosis using DWI-MRI. The

prostate is automatically segmented based on a prior shape, spatial interactions,

and appearance information. Possible tumor locations were then found using a

level set DM. The average DWI intensity at b-values of 800 and 0 s/mm2 and the

mean value of the ADC map were then extracted from these locations. Finally, a

kNN classifier labeled benign and malignant regions of the prostate. Validation

testing showed that the system had an accuracy of 100% using a dataset of 28 sub-

jects, 13 of which were used for training and 15 for testing.

Multi-parametric-based diagnostic systems for prostate cancer use several

MRI imaging modalities in conjunction as input data. This allows systems to se-

lect the most meaningful features from any of the modalities. These systems have

used different combinations of MRI modalities and features. For example, T2-MRI

and DCE-MRI were used as inputs in a semi-automated system proposed by Vos

et al. [225]. This system classified manually-delineated ROIs in the PZ as malig-

nant or benign using T2-MRI intensities, T2-MRI relaxation time, and pharmacoki-
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netic parameters as features. This approach showed an accuracy of 89% using an

SVM classifier. Ampeliotis et al. [251] proposed a another semi-automated multi-

parametric CAD system that used T2-MRI and DCE-MRI. The T2-MRI pixel inten-

sities and the four low-frequency coefficients of the discrete cosine transform were

used as features and probabilistic neural networks were employed as the classifier.

Based on the ROC analysis (AUC of 0.898), their study concluded that the fused

T2-MRI and dynamic MRI features outperform the use of either modality’s fea-

tures alone. Another semi-automated system that utilized T2-MRI and DCE-MRI

as input was developed by Viswanath et al. [68]. An ASM model was initialized

by a manually placed bounding-box and then guided by image intensity, image

texture and mutual information to segment the prostate region. After segmenta-

tion, prostate tissues were classified as cancerous or non-cancerous using a ran-

dom forest, which is made of multiple decision trees that vote on the classification.

Classification integrated three features: T2 intensity, textual, and pharmacokinetic

parameters. The system validation showed that the integration of both modalities

(AUC of 0.815) has a better performance of either individual modalities (0.704 for

T2-MRI and 0.682 for DCE-MRI).

Haider et al. [252] developed a semi-automated system that utilized T2-MRI

and DWI MRI. T2-MRI intensities and ADC values were extracted from manually

delineated ROIs. These regions were then classified using the maximum likeli-

hood method assuming a bivariate Gaussian distribution for benign and malig-

nant classes. The system showed a sensitivity of 81%, a specificity of 84%, a PPV

of 75%, and an accuracy of 83%. Chan et al. [166] developed a semi-automated

approach using T2-MRI, T2-mapping, and line scan DWI to detect possible PZ

prostate tumors. Both statistical maps and textural features were obtained from

manually selected ROIs. Then, a SVM and a linear discriminant analysis (LDA)

classifiers were employed for the classification. Their systems resulted in an AUC

of 0.839±0.064 and 0.761±0.043, respectively.
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The combination of T2-MRI, DCE-MRI, and DWI MRI is a common multi-

parametric input. In [74], Shah et al. [74] developed an automated CAD system uti-

lizing these modalities. In this system, prostate segmentation was performed using

a k-means clustering approach based on the pixel’s T2, Ktrans, kep, and ADC values.

Then, an SVM technique was implemented to create a cancer probability map for

each prostate pixel using those features in order to perform the final classification.

The system achieved a sensitivity of 90%, a specificity of 90%, and a precision of

90%. Another semi-automated multi-parametric system by Peng et al. [73] utilized

T2-MRI, DCE-MRI, and DWI-MRI. Candidate features, including the T2-MRI in-

tensity skew, the K trans, and the average and 10th percentile ADC, were calculated

from a manually-selected ROI. Then, an LDA classifier was used to differentiate

prostate cancer from normal tissue in those ROIs. Their CAD system concluded

that the best diagnostic performance (AUC of 0.95±0.02, sensitivity of 82.0%, and

specificity of 95.3%) is obtained by combining the 10th percentile ADC, average

ADC, and T2-MRI intensity skewness features. Another CAD system was pro-

posed by Litjens et al. [69] using T2-MRI, DCE-MRI, and DWI MRI. The prostate

is segmented using an ASM. In order to classify the segmented prostate voxels,

the ADC, K trans, and kep parameters were estimated and a SVM classifier with a

radial basis function kernel was used. The validation results showed a sensitivity

of 74.7% and 83.4% with seven and nine false positives per patient, respectively.

Vos et al. [70] utilized an automated CAD system for the detection of prostate can-

cer. Just as in [69], the prostate was segmented using an ASM-based technique.

Then, multiple ROIs were located within the segmented prostate using peak and

mean neighborhood intensity and ADC values. These values and the differences

between the peak and the mean were again used as features for ROI classification.

In addition, the 25 percentile T2, 25 percentile ADC, 25 percentile wash-out, 50

percentile T1, 75 percentile K trans, and 75 percentile ve were also used as features.

The resulting feature vector was classified using an LDA classifier. This system

53



had an AUC of 0.83±0.20. A maximum AUC of 0.88 was reported for high-grade

tumors, but the system had difficulty classifying lower grade tumors, achieving a

maximum AUC of 0.74.

In addition, several automated CAD systems that directly segment tumors

have also been proposed. Liu et al. [253] proposed an automated approach that

utilized fuzzy MRF modeling for prostate segmentation from multi-parametric

MRI (T2-MRI, DCE-MRI, and DWI MR images). Their framework exploited T2-

MR image intensities, pharmacokinetic (PK) parameter kep, and apparent diffu-

sion coefficient (ADC) values in a Bayesian approach to label prostate pixels as

cancerous or non-cancerous. The labeled pixels were then clustered using the k-

means algorithm. The system had a specificity of 89.58%, sensitivity of 87.50%,

accuracy of 89.38%, and a DSC of 62.2%. A similar approach developed by Artan

et al. [254] located cancerous regions using cost-sensitive support vector machine

(SVM). Prostate segmentation was performed using a conditional random field

and the same three features as in [253] were utilized for classification. The DSC for

prostate localization and segmentation was 0.46±0.26, and the area under the re-

ceiver operator characteristic (ROC) curves (Az) of the classification was 0.79±0.12.

Ozer et al. [226] also developed a technique that directly segmented prostate can-

cers using the same three features in [253, 254]. Both the SVM and RVM [168]

classifiers were used and the system showed a specificity of 0.78 and a sensitivity

of 0.74 for RVM and 0.74 and 0.79 for SVM. A summary of the discussed systems

along with their computational methods, validation data sets, and validation ac-

curacies are given in Table 5. As shown, the use of multi-parametric MRI in CAD

systems increases the possible number of features used for prostate cancer diag-

nosis. Consequently, using multiple MRI modalities has become the focus area for

many research studies for prostate cancer diagnosis.
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TABLE 5: Summary of prostate cancer CAD systems using in-

vivo MRI, including their imaging modality, prostate segmenta-

tion method, features, classifier, and experimental performance.

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Mada-

bhushi

et

al. [223]

5 Sub-

jects

T2-

MRI

Manual

ROIs

• T2 In-

tensity

• 3D T2

Inten-

sity

Gradi-

ent

• Gabor

Filter

Bayes

classifier

• SEN:

0.4285

• SPE:

0.9725

• PPV:

0.4285

Mada-

bhushi

et

al. [227]

5 Sub-

jects (33

Images)

T2-

MRI

Manual

ROIs

• T2 In-

tensity

• 3D T2

Inten-

sity

Gradi-

ent

• Gabor

Filter

kNN and

Bayesian

• AUC:

0.957

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Lopes et

al. [228]

17 Sub-

jects

T2-

MRI

None • Fractal

Dimen-

sion

• Multi-

fractional

Brow-

nian

Motion

AdaBoost • SEN:

0.85

• SPE:

0.93

Engel-

brecht et

al. [240]

36 sub-

jects

DCE-

MRI

Manual

ROIs

• Onset

time

• Time to

peak

• Peak

en-

hance-

ment

• T2

washout

• T2 re-

laxation

rate

N/A • AUC

PZ:

0.93

• AUC

CZ:

0.83

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Rouvière

et

al. [243]

22 sub-

jects

T2-

MRI

vs.

DCE-

MRI

Manual

ROIs

• N/A Evaluation

and scor-

ing by

three

inde-

pendent

readers.

The MRI

scoring

results

were cor-

related

against

biopsy

results

in 10

prostate

sectors.

• ACC:

0.59

(T2-

MRI),

• ACC:

0.75

(DCE-

MRI).

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Kim et

al. [241]

53 sub-

jects

T2-

MRI

vs.

DCE-

MRI

Manual

ROIs

• Wash-

in rate

A cut-off

threshold

selected

by a ra-

diologist

differ-

entiate

cancer

from

normal

tissue

• ACC:

0.62

(T2-

MRI),

• ACC:

0.88

(DCE-

MRI)

Fütterer

et

al. [242]

34 sub-

jects

T2-

MRI,

vs.

MRS,

vs.

DCE-

MRI

Manual

ROIs

• ve

• kep

• K trans

• wash-

out

slopes.

Evaluation

and scor-

ing of the

selected

features

by two

inde-

pendent

radiolo-

gists

• AUC:

0.68

(T2-

MRI)

• AUC:

0.91

(DCE-

MRI)

• AUC:

0.80

(MRS)

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Ocak et

al. [244]

50 sub-

jects

T2-

MRI

vs.

DCE-

MRI

Manual

ROIs

• ve

• K trans

• kep

• ve

• The

area un-

der the

gadolin-

ium

concen-

tration

curve

Logistic

regres-

sion

modeling

• For T2-

MRI

SEN:

0.94,

SPE:

0.37,

PPV:

50, and

NPV:

0.89,

• For

DCE-

MRI

SEN:

0.73,

SPE:

0.88,

PPV:

75, and

NPV:

0.75

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Puech et

al. [235]

84 Sub-

jects

DCE-

MRI

Manual

ROIs

• Image

Inten-

sity

• Wash-

in Rate

• Wash-

out

Rate

• Time-

to-Peak

Decision

Tree

• SEN

(PZ):

1.000

• SPE

(PZ):

0.486

• SEN

(TZ):

1.000

• SPE

(TZ):

0.400

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Puech et

al. [236]

84 Sub-

jects

DCE-

MRI

Manual

ROIs

• Image

Inten-

sity

• Wash-

in Rate

• Wash-

out

Rate

• Tumor

Loca-

tion

Decision

Tree

• SEN

(PZ):

1.00

• SPE

(PZ):

0.45

• PPV

(PZ):

0.77

• SEN

(TZ):

1.00

• SPE

(TZ):

0.40

• PPV

(TZ):

0.73

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Sung et

al. [229]

42 Sub-

jects

DCE-

MRI

Manual

ROIs

• Image

Inten-

sity

•

Pharma-

cokinetic

Map

• Wash-

in

• Wash-

out

• Time-

to-peak

SVM • SEN:

0.77

• SPE:

0.77

• ACC:

0.83

Vos et al.

[245]

34 Sub-

jects

DCE-

MRI

Manual

ROIs

•

Pharma-

cokinetic

Map

SVM • ACC:

0.88

Vos et al.

[233]

38 Sub-

jects

DCE-

MRI

Intensity

His-

togram and

Hessian-

based Blob

Detection

•

Pharma-

cokinetic

Map

SVM • ACC:

0.80

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Viswanath

et

al. [224]

6 Sub-

jects (21

Images)

DCE-

MRI

ASM • DCE In-

tensity

K-means • SEN:

0.4173

• SPE:

0.8454

• ACC:

0.7720

Firjani et

al. [248]

21 Sub-

jects

DCE-

MRI

MAP • Wash-

in

• Wash-

out

kNN • ACC:

1.00

Firjani et

al. [67]

28 Sub-

jects (17

Malig-

nant

and 11

Benign)

DWI MAP • DWI In-

tensity

• ADC

Map

kNN • ACC:

1.00

Viswanath

et al. [68]

6 Sub-

jects (18

Images)

T2-

MRI

and

DCE-

MRI

ASM • T2-MRI

Inten-

sity

• DCE In-

tensity

Random

Forest

• AUC:

0.815

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Chan et

al. [166]

5 Sub-

jects (33

Images)

T2-

MRI

and

DWI

Manual

ROIs

• T2 In-

tensity

• T2 In-

tensity

• ADC

Map

LDA and

SVM

• AUC

(LDA):

0.839

±0.064

• AUC

(SVM):

0.761

±0.043

Liu et al.

[253]

5 Sub-

jects (33

Images)

T2-

MRI,

DCE-

MRI

and

DWI

None • T2-MRI

Inten-

sity

•

Pharma-

cokinetic

Map

• ADC

Map

Bayes

classi-

fier and

k-means

• SPE:

0.8958

• SEN:

0.8938

• ACC:

0.8938

• DSC:

0.6222

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Ozer et

al. [226]

20 Sub-

jects

T2-

MRI,

DCE-

MRI

and

DWI

None • T2-MRI

Inten-

sity

•

Pharma-

cokinetic

Map

• ADC

Map

RVM and

SVM

• SPE

(RVM):

0.78

• SEN

(RVM):

0.74

• DSC

(RVM):

0.51

• SPE

(SVM):

0.74

• SEN

(SVM):

0.79

• DSC

(SVM):

0.52

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Vos et al.

[225]

34 Sub-

jects

T2-

MRI

and

DCE-

MRI

Manual • T2-MRI

Inten-

sity

• T2-MRI

Relax-

ation

Time

•

Pharma-

cokinetic

Map

SVM • ACC:

0.89

Litjens et

al. [69]

188

Subjects

T2-

MRI,

DCE-

MRI

and

DWI

Probabilistic

Model

• T2-MRI

Inten-

sity

•

Pharma-

cokinetic

Map

• ADC

Map

SVM • SEN:

0.834

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Niaf et

al. [71]

30 Sub-

jects

T2-

MRI,

DCE-

MRI

and

DWI

Manual

ROIs

• T2-MRI

Inten-

sity

• T2-MRI

Inten-

sity

Gradi-

ent

• T2-MRI

Sobel

filter

• DCE In-

tensity

• DCE

AUGC

• Wash-

in

• ADC

Map

• ADC

Sobel

filter

SVM • AUC:

0.89

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Shah et

al. [74]

24 Sub-

jects

T2-

MRI,

DCE-

MRI

and

DWI

K-means • T2-MRI

Inten-

sity

•

Pharma-

cokinetic

Map

• ADC

Map

SVM • F-M:

0.89

• SEN:

0.90

• SPE:

0.90

Hambrock

et al. [72]

34 Sub-

jects

T2-

MRI,

DCE-

MRI

and

DWI

Manual

ROIs

• T2

Wash-

out

• ADC

Map

LDA • AUC:

0.90

Vos et al.

[70]

29 Sub-

jects

T2-

MRI,

DCE-

MRI

and

DWI

Probabilistic

Model

• T2 In-

tensity

•

Pharma-

cokinetic

Map

• ADC

Map

SVM • ACC:

0.833

±0.052

Continued on next page
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TABLE 5 – continued from previous page

Study Data Imaging

Modal-

ity

Prostate

Seg-

men-

tation

Features Classifier Performance

Peng et

al. [73]

48 Sub-

jects

T2-

MRI,

DCE-

MRI

and

DWI

Manual

ROIs

• T2-MRI

Inten-

sity

• ADC

Map

LDA • AUC:

0.95

±0.02

• SEN:

0.82

• SPE:

0.95

*ACC denotes accuracy.

*ROC denotes receiver operating characteristic.

*AUC denotes area under the ROC curve.

*DSC denotes Dice’s similarity coefficient.

*F-M denotes F-Measure.

*PPV denotes positive predictive value.

*SEN denotes sensitivity.

*SPE denotes specificity.

C Discussion

Several in-vitro and in-vivo diagnostics technologies have been investigated

for the diagnosis of prostate cancer. While in-vitro techniques are commonly used

clinically, they have several limitations concerning their accuracy and the invasive

nature of most methods. Recent trends investigate developing in-vivo non-invasive

image-based CAD-systems to provide reliable diagnosis of prostate cancer in its

earliest stage, which would eliminate the need for collecting physical patient sam-

ples, improve the effectiveness of treatment, and increase the patient’s chance of

survival. This study covers both in-vitro and in-vivo techniques for prostate cancer
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diagnostics. In this section, the potentials and limitations of the current techniques,

the challenges they face, and the recent trends for prostate cancer diagnosis are

presented.

1 Potentials and limitations of the current prostate diagnostic techniques

Current prostate cancer diagnostic techniques have the following potentials

and limitations:

• DRE examination is invasive, inexpensive, and easy to perform. However, it

is subject to a physicians subjective analysis and can only detect sufficiently

large tumors.

• Current in-vitro studies that are based on urine biomarkers are non-invasive

and relatively inexpensive. However, they can have high false positive and

false negative rates [50, 51].

• Current in-vitro studies that are based on blood biomarkers are relatively

inexpensive. In addition, early diagnosis of prostate cancer is usually per-

formed using blood-based PSA analysis [4]. However, they are invasive, can

lead to bleeding, and can also have high false positive and false negative

rates [50, 51].

• Needle biopsies remain the gold standard for diagnosis of prostate cancer,

but are the last resort because of their invasive nature, high cost, and po-

tential morbidity rate. In addition, Gleason scores of biopsy-collected tissue

samples are dependent on the observer analyzing the sample [53]. More-

over, the relatively small needle biopsy samples have a higher possibility of

producing false positive diagnoses.

• Imaging-based CAD systems for prostate cancer depend on analyzing TRUS

and MRI images. They are highly non-invasive and can be used to provide
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early diagnosis, improve patent’s treatment, and assist in image-guided surg-

eries. However, several challenges still exist to continue improving these

techniques in terms of automation and accuracy.

2 Research Challenges

Several research challenges face current CAD techniques for prostate cancer.

These challenges include:

• Developing methods for accurate automated segmentation of the prostate

is still challenging due to (i) the noisy nature of MRI and TRUS images, (ii)

the proximity and similarity in intensity of surrounding non-prostate tissues,

such as the bladder, and (iii) the varying shape and size of the prostate be-

tween subjects.

• Developing CAD systems based on multi-modalities (e.g. TRUS, T1-MRI,

T2-MRI, DCE-MRI and DWI-MRI) are promising due to the increased set

of diagnostic features. However, they are challenging due to the different

resolutions of the varying image modalities and the inter-slice variability be-

tween the obtained images. To develop such systems, researchers face the

following challenges:

– Developing efficient registration algorithms to align the imaging modal-

ities is very challenging.

– Developing segmentations algorithm that work for the wide variety of

imaging modalities is very challenging.

– Determining the optimal set a features that accurately discriminate be-

tween the benign and malignant classes is challenging.
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3 Trends

Several trends have become apparent in the development of the segmenta-

tion, feature extraction and classification components of CAD systems:

• Recent trends for prostate segmentation develop more accurate shape models

to segment the noisy MRI images.

• In recent years, DCE-MRI has had considerable success in detecting and lo-

cating prostate cancer. However, intravenous administration of a contrast

agent can potentially harm a patient’s kidneys [65]. In addition, injecting

and waiting for the contrast agent to settle in the prostate increases the time

required to scan the patient. Diffusion weighted imaging (DWI) [66] and dif-

fusion tensor imaging are new alternative MRI techniques that avoid using

contrast agents and have shown promising results in detecting the prostate

cancer.

• Recent trends for developing CAD systems have increasingly combined the

features from several modalities for classification (e.g. multi-parametric MRI).

This allows for a larger set of possible features to be selected from when con-

structing discriminative feature vectors, thereby increasing the quality of a

system’s classification.

• Recent trends integrate both in-vitro biomarkers with imaging biomarkers to

increase the diagnostic efficiency.

D Conclusion

Designing efficient in-vitro and in-vivo techniques for detecting prostate can-

cer is crucial for the management of prostate cancer progress in patients. When

there is an optimal opportunity to intervene using existing clinical strategies (i.e.,

chemo- or radiation-therapy), reliable and early detection of prostate cancer for
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an individual patient in the earliest stages may represent an important advance

in the personalized management of this condition. In recent years, several in-vitro

and in-vivo technologies have been proposed for the detection and characteriza-

tion of prostate cancer. This chapter presented a comprehensive overview of these

systems, covering in-vitro biomarker tests and needle biopsies, as well as in-vivo

non-invasive TRUS-based and MRI-based CAD systems. Current approaches that

were developed for each stage of prostate cancer CAD systems, with emphasis

on their strengths and limitations, were also addressed. An accurate diagnostic

CAD system could decrease the deaths resulting from prostate cancer due to ear-

lier disease diagnosis. Additionally, the challenges and new trends for improving

prostate cancer diagnosis have been discussed. Subsequently, there is a compelling

need for researchers to make significant strides in advancing the state of the art in

prostate cancer diagnostic methods to improve their clinical viability.
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CHAPTER II

A NOVEL NMF GUIDED LEVEL-SET FOR DWI PROSTATE

SEGMENTATION

In this chapter, a three dimensional (3D) level-set-based framework for the

segmentation of the prostate from diffusion weighted imaging (DWI) magnetic res-

onance imaging (MRI) is proposed. The level-set deformable model is guided by a

novel stochastic speed function that is derived using nonnegative matrix factoriza-

tion (NMF), which extracts meaningful features from a high-dimensional feature

space. The NMF attributes are calculated using information from the MRI inten-

sity, a probabilistic shape model, and the spatial interactions between prostate vox-

els. The shape model is constructed using a set of training prostate volumes and

then updated during the segmentation process using an appearance based method

that takes into account both a voxel’s location and its intensity value. The spatial

interactions are modeled using a second order pairwise 3D Markov-Gibbs ran-

dom field (MGRF). Experiments on in-vivo DWI-MRI prostate data for 9 subjects

show that using this information along with NMF-based feature fusion to guide

the level-set increases accuracy compared with previously proposed methods us-

ing two metrics, the dice similarity coefficient (DSC) and Hausdorf distance (HD).

The proposed method achieved an average DSC of 0.870 ± 0.03 and an average

HD of 5.72 ± 2.35 mm3 compared to an average DSC of 0.833 ± 0.07 and an aver-

age HD of 6.74 ± 2.04 for a maximum a posteriori (MAP)-based level-set and an

average DSC of 0.810± 0.05 and an average HD of 9.07± 1.64 for a level-set driven

only by intensity and shape information.
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A Introduction

In order to perform image-based analysis of the prostate (e.g. for the pur-

pose of prostate cancer detection), the prostate must first be located. However, this

can be challenging due to image noise, inter-patient anatomical differences, and

the similar intensities of the prostate and surrounding tissues (e.g. the bladder).

Several methods have been proposed to overcome these challenges as discussed

in the previous chapter. In this chapter, a novel nonnegative matrix factorization

(NMF) driven level-set algorithm is proposed for DWI prostate segmentation.

NMF is a method for extracting meaningful features from data sets to per-

form clustering [255]. This is done by calculating a weight matrix W that transform

a vector from the input space into a new feature space (H-space) through factor-

izing the input matrix A so that A ≈ WH . NMF has been applied to various data

analysis problems such as document clustering [256] and facial recognition [257].

In addition, it has been used in a few segmentation systems. This includes Xie

et al. [258] who used NMF to segment the spinal cord, corpus callosum, and hip-

pocampus regions of rats from diffusion tensor images (DTI) by k-means cluster-

ing the column vectors of the produced H matrix. Also, Sandler et al. [259] pro-

posed using NMF to factorize intensity histogram data for generic image segmen-

tation. While applying NMF to image segmentation appears promising, further

research is required to verify its usefulness.

Level-set segmentation is a geometric deformable model technique that is

commonly used in object segmentation. It has been applied to segment several

organs in the human body (e.g. the kidneys [97] and the heart [96]). In addition, it

has also been used to segment the prostate from DWI data with some success. In

[178], Liu et al. proposed a 2D level-set guided by intensity and shape information

for DWI prostate segmentation. Also, Liu et al. developed a 3D level-set method

that was also guided by intensity and shape information [179]. In this chapter,

a novel DWI prostate segmentation framework is proposed that utilizes NMF to
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Figure 6. A diagram of the proposed segmentation framework.

acquire better features for guiding the evolution of a 3D level-set.

B Methods

In this chapter, a novel DWI prostate segmentation framework (Fig. 6) is pro-

posed. It utilizes an NMF-based feature fusion approach that incorporates three

features, namely DWI intensity, shape, and spatial information. The features gen-

erated by performing NMF-based feature fusion are then used to guide the evolu-

tion of a 3D level-set deformable model to extract the prostate from DWI data. The

definition of this level-set is given below. The evolving surface of the level-set at

any time instant t is represented by the zero level, φn+1(x, y, z) = 0, of an implicit

level-set function, namely a distance map of the signed minimum Euclidean dis-

tance from each voxel to the surface. This formulation results in points inside the

surface having negative (or positive) values and voxels outside the surface hav-
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ing positive (or negative) values, respectively. Mathematically, the evolution of the

level-set is defined by [100]:

φn+1(x, y, z) = φn(x, y, z)− τVn(x, y, z)|∇φn(x, y, z)| (1)

where t is the discrete time instant t = nτ taken with a step τ , τ > 0 and ∇ =

[ ∂
∂x
, ∂
∂y
, ∂
∂z
] is the differential operator. This evolution is guided by the speed func-

tion Vn(x, y, z) [260].

Previous speed functions that use image intensities, object edges, and gradi-

ent vector flow have had difficulty segmenting noisy images and those with poor

object-background contrast. More effective speed functions have been developed

by using shape priors to incorporate shape information of the object of interest.

However, this has not completely overcome image inhomogeneities (e.g. large

image noise and discontinuous object boundaries). In order to more accurately

segment the prostate from DWI data, we propose a speed function that takes into

account the 3D appearance, shape, and spatial features of the DWI data. These fea-

tures are combined using an NMF-based fusion method to provide the voxelwise

guidance of the deformable model.

1 3D Appearance, Shape, and Spatial Features

Basic Notation: Let Q = {0, ..., Q − 1} and L = {0, 1} be the set of Q integer gray

levels and a set of object (1) and background (0) labels, respectively. Also, let a

3D arithmetic lattice R = {(x, y, z) : 0 ≤ x ≤ X − 1; 0 ≤ y ≤ Y − 1; 0 ≤ z ≤

Z − 1} support the grayscale DWI data g : R→ Q and their binary region maps

m : R→ L. Each voxel (x, y, z) is associated with its neighbors, {(x+ξ, y+η, z+ζ) :

(x + ξ, y + η, z + ζ) ∈ R; (ξ, η, ζ) ∈ N} where N was defined by ξ ∈ {−1, 0, 1},

η ∈ {−1, 0, 1}, and ζ ∈ {−1, 0, 1} (Fig. 7).

Appearance-Based Shape Model: Most prostates have a similar near-ellipsoidal

shape [6]. As a result, the inclusion of a shape prior can significantly improve the
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Figure 7. Illustration of a voxel’s neighborhood.

segmentation accuracy. In the proposed framework, an appearance-based shape

model is built that takes into account not only a voxel’s location, but also its inten-

sity information. A shape database was constructed by co-aligning training data

sets using a 3D affine transformation with 12 degrees of freedom (3 for the 3D

translation, 3 for the 3D rotation, 3 for the 3D scaling, and 3 for the 3D shearing)

and maximizing mutual information (MI) [261]. A shape prior is a spatially variant

independent random field of region labels for the co-aligned data. Mathematically,

this is defined as:

Pshape(m) =
∏

(x,y,z)∈R

Pshape:x,y,z(mx,y,z) (2)

where Pshape:x,y,z(l) is the voxel-wise empirical probability for label l ∈ L. For each

input DWI volume to be segmented, the shape prior is constructed by a process

guided by the visual appearance features of the DWI data. The appearance-based

shape prior is then estimated using the method summarized in Algorithm 1.

Spatial Voxel Interaction Model: In addition to the prostate shape prior,

analyzing the interactions of a voxel and its neighbors can improve segmentation

[67, 99]. In order to model these interactions, a second-order 3D MGRF model [262]
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Algorithm 1 Algorithm for Calculating an Appearance-based Shape Model

Calculate the value of the shape prior probability at each voxel using the following
steps:

1. Transform each test subject voxel to the shape database domain using the
calculated 3D affine transformation matrix (T).

2. Initialize an N1i ×N2i ×N3i search space centered at the voxel.

3. Find voxels inside the search space with corresponding gray levels to the
center voxel in all training data sets.

4. If no corresponding voxels are found, increase the search space size and re-
peat the previous step.

5. Calculate the label probabilities for each voxel based on the relative occur-
rence of each label in the search results.

is used. The MGRF model of the region map m is defined as:

Pspatial(m) =
1

ZN

exp
∑

(x, y, z)∈R

∑

(ε, ν, ζ)∈N

Veq(mx,y,z, mx+ε,y+ν,z+ζ) (3)

where Veq(mx,y,z, mx+ε,y+ν,z+ζ) is the Gibbs potential and ZN is the normalization

factor which can be approximated as [263]:

ZN ≈ exp
∑

(x, y, z)∈R

∑

(ε, ν, ζ)∈N

∑

l∈L

Veq(l,mx+ε,y+ν,z+ζ) (4)

The MGRF used can be viewed as a 3D extension of the auto-binomial, or

Potts, model with the exception that the Gibbs potential is estimated analytically.

The maximum likelihood estimate of the potential is given as [189]:

Veq = 2(feq(m)−
1

2
) (5)

where feq(m) is the relative frequency of equal (eq) labels in the voxel pairs ((x, y, z), (x+

ξ, y + η, z + ζ)).
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2 NMF-based Feature Fusion

NMF is a method for extracting meaningful features from data sets for rep-

resenting different categories in the data [255]. This is done by calculating a weight

matrix W that transforms a vector from the input space into a new feature space

(H-space) through factorizing the input matrix A so that A ≈WH . NMF has been

applied to various data analysis problems such as document clustering [256] and

facial recognition [257]. In addition, it has been used in a few segmentation sys-

tems. This includes Xie et al. [258] who used NMF to segment the spinal cord,

corpus callosum, and hippocampus regions of rats from diffusion tensor imaging

(DTI) by k-means clustering of the column vectors of the produced H matrix. Also,

Sandler et al. [259] proposed using NMF to factorize intensity histogram data for

generic image segmentation.

In this chapter, NMF is proposed to find the weights for each feature in order

to create a feature space where object and background classes are better separated,

dimensionality is reduced, and information from the training data set is encoded.

NMF factorizes a k by n input matrix A into a k by r weight matrix W , which

contains the basis vectors of the new space as columns, and an r by n output matrix

H where k is the dimensionality of the input column vectors, n is the number of

input and output column vectors, and r is the dimensionality of the output column

vectors [255]. Mathematically, this is defined as:

A ≈WH (6)

W and H are calculated by minimizing the Euclidean distance between A

and WH with the constraint that W and H contain only non-negative values. This

results in the constrained optimization problem:
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minimize
W,H

1

2
‖A−WH‖2

subject to W,H ≥ 0

(7)

In the literature, several methods have been used to optimize this function. The

most prominent methods have been multiplicative gradient descent, alternating

least square (ALS), and projected gradient descent (PGD) [264]. In this chapter, the

multiplicative method [265] is used because of its ease of implementation. This

method iteratively updates W and H until convergence using the following rules:

Hαβ ← Hαβ

(W TA)αβ
(W TWH)αβ

(8)

Wγα ← Wγα

(AHT )γα
(WHHT )γα

(9)

where α : 1→ r, β : 1→ n, and γ : 1→ k.

In the proposed framework, NMF is performed on a matrix that has a kth di-

mensional, one dimension for each calculated feature, column vector for each voxel

(x, y, z) in the training volumes. The input features are the intensity values of the

voxe (x, y, z) and its neighbors, the spatial interactions between voxel (x, y, z) and

its neighbors, and the value of the shape prior at (x, y, z). The resulting W is used

as the basis vectors to transform new feature vectors into the new r-dimensional

space (H-space). The resulting H is used to find the r-dimensional centroids corre-

sponding to the object and background classes, Cobject and Cbackground, respectively.

For each voxel in a testing volume, a kth dimensional feature vector was calcu-

lated. This resulted in a k by n feature matrix B where n is the number of voxels in

the volume. The new r dimensional vectors corresponding to the input voxels are

calculated by multiplying B by the pseudo-inverse of W , which can be replaced

by W T assuming orthogonality of the columns of W [266]. Mathematically, this is

described as:
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HB = W TB (10)

3 Estimation of the Stochastic Speed Function

In this chapter, a novel speed function to control the evolution of the level-

set deformable model is proposed. This speed function is derived using the NMF-

based fusion of DWI features, HB:x,y,z for voxel (x, y, z). The proposed speed func-

tion Vn(x, y, z) is defined as Vn(x, y, z) = κϑ(x, y, z), where κ is the curvature and

ϑ(x, y, z) is defined as:

ϑ(x, y, z) =







−E1:x,y,z if E1:x,y,z > E0:x,y,z

E0:x,y,z otherwise
(11)

Here, E1:x,y,z =
Pnmf :x,y,z(1)+Pshape:x,y,z(1)+Pspatial:x,y,z(1)

3
where Pshape:x,y,z(1) is the object

shape prior probability and Pspatial:x,y,z(1) is the object MGRF model probability

(Eq. 3). Similarly, E0:x,y,z =
Pnmf :x,y,z(0)+Pshape:x,y,z(0)+Pspatial:x,y,z(0)

3
where Pshape:x,y,z(0) is

the background shape prior probability and Pspatial:x,y,z(0) is the background MGRF

model probability (Eq. 3). Pnmf :x,y,z(1) and Pnmf :x,y,z(0) are defined as:

Pnmf :x,y,z(1) =

1
d1(HB:x,y,z)

1
d1(HB:x,y,z)

+ 1
d1(HB:x,y,z)

(12)

Pnmf :x,y,z(0) =

1
d0(HB:x,y,z)

1
d0(HB:x,y,z)

+ 1
d0(HB:x,y,z)

(13)

where d1(x, y, z) and d0(x, y, z) are the Euclidean distances from the r-dimensional

vector in HB corresponding to the input voxel (x, y, z) to the centroids of the object

and background classes, C1 and C0, respectively, in H-space. The overall segmen-

tation framework is summarized by Algorithm 2.
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Algorithm 2 Proposed Algorithm for DWI Prostate Segmentation

Segment the prostate from a DWI volume by:

1. Align the input DWI volume with the training database using the MI-based
affine transformation.

2. Calculate the appearance-based shape prior using Algorithm 1.

3. Calculate the 3D pairwise voxel interactions (Eq. 3).

4. Perform NMF-based feature fusion.

5. Calculate the probabilities that each voxel is object or background using the
NMF-based features (Eq. 12 and Eq. 13).

6. Use these probabilities to guide the evolution of a level-set to segment the
prostate (Eq. 11).

C Performance Metrics

The performance of the proposed segmentation framework was evaluated

using two metrics: (1) Dice similarity coefficient (DSC) and (2) Hausdorf distance

(HD). These metrics are detailed below.

1 Dice Similarity Coefficient (DSC)

Many segmentation and classification metrics are based on the determina-

tion of true positive (TP), false positive (FP), true negative (TN), and false negative

(FN) values (see Fig. 8). The TP is the number of correctly positively labeled sam-

ples; the FP is the number of incorrectly positively labeled samples; the TN is the

number of correctly negatively labeled samples; and the FN is the number of incor-

rectly negatively labeled samples. These values can be used to calculate the DSC

given by:

DSC =
2TP

2TP + FP + FN
(14)
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The value of the DSC ranges from 0 to 1, where 0 means that there is no similarity

and 1 means that there is perfect similarity.

Figure 8. Diagram illustrating the meaning of TP, FP, TN and FP.

2 Hausdorf Distance (HD)

Distance measures are another type of performance metric used for evalu-

ating segmentation methods. The Euclidean distance is often utilized, but another

common measure is the HD (See Fig. 9). The HD from a set A1 to a set A2 is defined

as the maximum distance of the set A1 to the nearest point in the set A2 [267]:

HD(A1,A2) = maxa1∈A1
{mina2∈A2

{d(a1, a2)}} (15)

where a1 and a2 are points of sets A1 and A2, respectively, and d(a1, a2) is Eu-

clidean distance between these points. The bidirectional Hausdorff distance, de-

noted by HDBi(GT,SR), between the segmented region (SR) and its ground truth

(GT) is defined as:
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HDBi(GT,SR) = max{HD(GT,SR), HD(SR,GT)} (16)

The smaller the distance, the better the segmentation. The ideal case with perfect

segmentation is when the bidirectional Hausdorff distance is equal to 0.

Figure 9. Diagram illustrating the 2D HD of boundaries A1 and A2 for points a1
and a2.

D Experimental Results

1 Medical Images

The proposed system was tested on 9 subjects, each with DWI volumes ac-

quired at using a scanner (SIGNA Horizon, General Electric Medical Systems, Mil-

waukee, WI) with the following parameters: TE: 84:6 ms; TR: 8.000 ms; FOV 32

cm; slice thickness 3 mm; inter-slice gap 0 mm; and two excitations. The data was

with b-values ranging of 0, 100, 200, 300, 400, 500, 600, and 700 using a voxel size

of 1.25 x 1.25 x 3.00 mm3. The ground truth segmentations used in training and

in verifying the segmentation results were manually created by an MR expert for

each subject.
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S3 S4 S8 S9

Figure 10. Sample segmentation results presented in 2D for visualization of the
3D segmentation performed by the proposed nonnegative matrix factorization
(NMF)-based level-set approach at different cross sections for 5 different subjects
where the green and red curves correspond to the ground truth and our segmen-
tation, respectively.

2 Segmentation Results

Evaluation of the system was done using a leave-one-out methodology, where

8 subjects were used as training data and the remaining subject was used as test

data. This was repeated so that each subject was tested once. Sample 2D cross sec-

tions of the 3D segmentations generated using the proposed approach for different
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a

b

Figure 11. Example 2D projections of the 3D segmentation for 3 different patients
using the (a) NMF and (b) MAP guided level-set where the green and red curves
correspond to the ground truth and segmentation, respectively.

subjects are shown in Fig. 10. In order to evaluate the proposed method, its perfor-

mance has been compared to two different DWI prostate segmentation methods:

(1) the reported results for the 3D approach developed by Liu et al. [179] and (2) a

level-set guided by the MAP model proposed by [67] that utilized the probability

that a voxel was object or background based on its intensity, shape, and spatial

information. Note that the MAP-based method was tested on the same data as the

NMF-based approach, but the technique proposed by Liu et al. [179] was tested on

a different data set. The average DSC and HD values of the three compared meth-

ods are shown in Table 8. Additionally, an example is given in Fig. 11 that contrasts

the segmentations of the NMF-based and MAP-based approaches. The evaluation

metrics for these two approaches corresponding to each subject are shown in Ta-

ble 6 and Table 7. Also, the final 3D segmentations of two of the prostates in the

data set are shown in Fig. 12.

In addition to DSC and HD, another common metric for evaluating seg-
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TABLE 6. The DSC segmentation performances of the NMF and MAP guided
level-set methods for each of the subjects, Si where i = 1...9.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9

NMF 0.822 0.861 0.907 0.862 0.905 0.828 0.851 0.886 0.905
MAP 0.816 0.858 0.881 0.836 0.900 0.827 0.849 0.647 0.880

Figure 12. Two example 3D prostate segmentation visualizations.

TABLE 7. The HD segmentation performances of the NMF and MAP guided level-
set methods for each of the subjects, Si where i = 1...9.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9

NMF 5.30 3.00 6.00 6.00 5.96 8.72 9.75 3.49 3.25
MAP 5.30 3.00 6.34 6.00 6.93 8.75 9.08 9.27 6.00

TABLE 8. A comparison of the average DSC and HD values over all subjects for
the compared methods.

Metric NMF MAP Liu et al. [179]
DSC 0.870 ± 0.03 0.833 ± 0.07 0.810 ± 0.05

HD (mm3) 5.72 ± 2.35 6.74 ± 2.04 9.07 ± 1.64
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Figure 13. Sample ROC curve for the proposed (red) and the MAP-based (blue)
level-set segmentation approaches.

mentations is the receiver operating characteristic (ROC). The ROC measures the

sensitivity of a segmentation using different classification thresholds by demon-

strating the interaction between the ration of the TP and FP rates. The ROC curves

of both the NMF and MAP guiding forces for subject 3, as well as the areas under

the curves (Az), are shown in Fig. 13. Additionally, an example is given in Fig.

11 that contrasts the segmentations of the NMF-based and MAP-based level-set

methods. The evaluation metrics for these two approaches corresponding to each

subject are shown in Table 6 and Table 7. Also, the final 3D segmentations of two

of the prostates in the data set are shown in Fig. 12.

E Conclusion

In summary, using 3D intensity, shape, and spatial features combined with

NMF-based feature fusion is significantly better at guiding a level-set for DWI

prostate segmentation than either using MAP with the same input information

or intensity and shape information alone. The addition of NMF-based feature fu-

sion allows the proposed method to perform robust prostate segmentation despite

image noise, inter-patient anatomical differences, and the similar intensities of the
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prostate and surrounding tissues. In future work, this segmentation framework

will be tested with a larger data set in order to verify its robustness. Also, segmen-

tation will be performed using several different values of the NMF parameter r. In

addition, the effectiveness of using the proposed method to segment the prostate

at varying b-values will be investigated.
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CHAPTER III

A NOVEL NMF-BASED DWI PROSTATE CANCER

DETECTION FRAMEWORK

In this chapter, a novel framework for detecting cancer in a segmented dif-

fusion weighted imaging (DWI) prostate is proposed. This method uses a large

feature space that includes the maximum and mean apparent diffusion coefficient

(ADC) and intensity values at b-values of 100, 200, 300, 400, 500, 600 and 700 as

well as the mean intensity at a b-value of 0. Nonnegative matrix factorization

(NMF)-based feature fusion is performed to determine the most discriminant fea-

tures and cluster the data in a lower-dimensional space. After this, a probabilistic

classifier based on the k-nearest neighbors (kNN) and k-means methods is used

to label subjects as malignant (i.e. containing cancer) or benign (i.e. containing

no cancer). Experimentation shows that the use of NMF-based feature fusion im-

proved the separability of the feature space and results in increased classification

accuracy. A traditional kNN classifier achieved an accuracy of 0.667, while the

NMF-based classifier achieved an accuracy of 0.833 ± 0.078.

A Introduction

Large amounts of information can be retrieved from DWI data sets (e.g.

mean, maximum, and minimum image intensities and ADC values) for each b-

value pair, as well as the intensity information at the reference b-value, usually 0.

In particular, the ADC is a common feature in prostate cancer CAD systems [67, 69–

73, 225, 226]. (The equation to calculate the ADC can be found in Chapter 1.) The
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ADC is the measure of the diffusion of water through tissues and is calculated

by comparing DWI magnetic resonance (MR) images taken using magnetic fields

with different field strengths (i.e. b-values). Several techniques can be used to ex-

tract the most meaningful features or weight the features in accordance with their

discriminatory power. Common techniques are k-means clustering [167], principle

component analysis (PCA) [167], and information gain [268]. Another technique

that has been proposed for this task is NMF. In this chapter, an NMF-based clas-

sification framework is proposed for detecting cancer in prostates that have been

segmented from DWI volumes.

B Methods

In this section, the proposed NMF-based DWI prostate cancer detection

framework (Fig. 14) is described in detail. This approach has three main steps:

(1) NMF-based feature fusion, (2) classification, and (3) refinement. The input to

this system is a set of DWI volumes with the prostate segmented. ADC maps, dis-

cussed in Chapter 1, were calculated for each segmented prostate using a b-value

of 0 as reference.

1 NMF

As in the previous chapter, NMF was used to learn a transformation from

the original feature space to a lower dimensional space where the data classes are

better separated. As before, the multiplicative gradient descent algorithm [265]

was used to approximate a weight matrix W for an input matrix A such that

A ≈ WH . The columns of the input matrix A corresponded to the mean and

maximum image intensities and ADC values at b-values of 100, 200, 300, 400, 500,

600, and 700 as well as the mean intensity at a b-value of 0. In the proposed ap-

proach, the feature vectors of both training and testing data are included in A. As

in the segmentation approach proposed in the previous chapter, r, the dimension-

92



Figure 14. Diagram of the DWI NMF-based cancer detection framework for
prostate cancer.

ality of the transformation space, was set to 3. Classification of a new subject was

performed using the k-nearest neighbors (kNN) [167] algorithm. This method was

used instead of a W T -based approach, similar to the technique described in the

previous chapter, because there was better 3D data separation in H-space versus

HA-space where HA = W TA. This is illustrated in Fig. 15. Once NMF was per-

formed, the resulting H matrix was used as the input to the classification step.

2 Classification

Once each data sample was transformed to H-space, classification of benign

and malignant subjects was performed using a probabilistic model derived using

the kNN algorithm and the distances to class centroids. Each subject Si was given

a label L as benign (0) or malignant (1) per the following rule:
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(a)

(b)

Figure 15. Example H-space vectors for the 12 subjects created using W (a) and
W T (b) where the blue points correspond to benign subjects and the red points
correspond to subjects with a malignant tumor.
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L(Si) =







1 if P1:Si
> P0:Si

0 otherwise
(17)

Here, P1:Si
= Pknn(1 : Si) ∗ Pc(1 : Si) and P0:Si

= Pknn(0 : Si) ∗ Pc(0 : Si) where

Pknn(1 : Si) and Pknn(0 : Si) are the kNN-based probabilities that the subject is

malignant or benign, respectively, and Pc(1 : Si) and Pc(0 : Si) are the centroid-

based probabilities that the subject is malignant or benign, respectively. The kNN-

based probabilities were calculated by finding the k = 5 training subjects with

the smallest Euclidean distance to a test subject Si in H-space. The number of k-

nearest training points with label l is defined as nl and is used to estimate the label

probabilities as defined by:

Pknn(1|Si) =
nl

k
(18)

Pknn(0|Si) =
n0

k
(19)

The centroid-based probabilities were calculated by finding the Euclidean dis-

tances of a test subject Si to the centroids of the malignant and benign training

subjects in H-space, d1 and d0, respectively. The corresponding label probabilities

are defined as follows:

Pc(1|Si) =
1
d1

1
d1

+ 1
d0

(20)

Pc(0|Si) =
1
d0

1
d1

+ 1
d0

(21)

3 Refinement

Due to the random initialization of W and H , the use of gradient descent,

and the low number of data points, the accuracy of classifying in H-space signif-

icantly varied when NMF was performed. In order to overcome these issues and

classify more consistently, Algorithm 3 was used to determine the final classifica-

tion of a subject.
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Algorithm 3 Algorithm for Refining NMF-Based Classification

Determine the label L of Si by:

1. Calculate W and H using NMF on the training and testing data.

2. Calculate the k-means-based and the kNN-based probabilities of Si.

3. Label Si according to the class probabilities (Eq. 17).

4. Repeat Steps 1-3 τ times

5. Combine the τ results using an ensemble-based method [269] to classify Si

C Results

Testing was performed using a leave-one-out methodology and 12 subjects,

each with a DWI scan at b-values ranging from 0 to 700. 6 of the subjects were

malignant and 6 were benign. The above approach was tested with a refinement

using τ = 10. For comparison, kNN classification without NMF-based feature

fusion was performed using only the input data, similar to the approach proposed

by Firjani et al. [67]. The accuracies of these methods are shown in Table 9. It may

be noted that the minimum accuracy of this approach is equivalent to the accuracy

of the kNN method. In addition, the mode accuracy of the NMF approach was

0.917, occurring in 4 of the 10 runs.

TABLE 9. A comparison of the accuracies of the kNN classifier without NMF and

the NMF-based method with refinement (NMF+R).

Method ACC Range

kNN 0.667 —

NMF+R 0.833 ± 0.078 0.667 - 0.917
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D Conclusion

In this chapter, a novel NMF-based DWI prostate cancer detection frame-

work was proposed. It was shown to improve upon the use of a traditional kNN

classifier in high-dimensional space. This was achieved by reducing the dimen-

sionality of the classification space by using NMF-based feature fusion. In addi-

tion, it is shown that the use of NMF leads to better clustering of malignant and

benign data points allowing for increased classification accuracy. Also, this ap-

proach shows that the fusion of DWI features from multiple b-values can be used

for detecting prostate cancer. To further test and validate this approach, it should

be tested on larger data sets. Future work will also include testing using high b-

values(≥ 800) and investigating techniques to improve the consistency of the NMF

approximation of W , such by using alternative initialization procedures.

97



CHAPTER IV

CONCLUSION AND FUTURE WORK

In this thesis, a novel computer aided diagnostic (CAD) framework was pro-

posed for detecting prostate cancer in diffusion weighted imaging (DWI) data.

This method had two main components: (1) a framework for DWI prostate seg-

mentation and (2) a framework for cancer detection. One major contribution of

this work is the use of nonnegative matrix factorization (NMF) to find the most

discriminating attributes in high-dimensional feature spaces and combine them in

order to create a lower-dimensional space where classes were better clustered and

training data was encoded. Specifically:

• In the segmentation component, NMF-based feature fusion of three dimen-

sional (3D) intensity, shape, and spatial information was utilized to guide the

evolution of a 3D level-set using a novel probabilistic speed function. The

proposed 3D appearance-based shape model takes into consideration both

the ground truth segmentation as well as the intensity similarity of voxels

when constructing a shape prior. Additionally, the spatial information was

modeled using a 2nd order Markov-Gibbs random field (MGRF).

• In the cancer detection component, NMF-based feature fusion was used to

extract meaningful features from a large attribute space consisting of inten-

sity and ADC information at a wide range of b-values. Also, a probabilistic

classifier that takes advantage of the clustering of classes performed by NMF

was proposed.
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For both frameworks, experimentation found that the NMF-based approaches were

more accurate than other traditional methods. Another contribution of this work is

the investigation of combining the information of several different b-values in clas-

sification. The classification results show that this is promising for discriminating

between malignant and benign prostates using DWI data.

In addition, several possibilities for future work relating to and extending

this thesis are:

• Testing the proposed segmentation and classification frameworks on larger

data sets, with a wider range of b-values, and using a variety of method

parameters.

• Integrating the proposed NMF-based frameworks into a contiguous CAD

system for prostate cancer and testing this system.

• Applying these NMF-based frameworks to other medical image analysis ap-

plications such as dyslexia [87, 109, 120, 270–275], autism [111, 123, 276–285],

acute renal rejection [88, 183, 184, 202, 286–302], and lung cancer [114, 141, 142,

262, 303, 304, ?, 304, ?, 304, ?, 304, ?, 304, ?, 304, ?, 304, ?, 304, ?, 304, ?–306, ?–306, ?–

306, ?–306, ?–306, ?–306, ?–306, ?–306, ?–307, ?–307, ?–307, ?–307, ?–307].
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De Kaa, Jelle Barentsz, and Henkjan H Huisman, “Effect of calibration

on computerized analysis of prostate lesions using quantitative dynamic

contrast-enhanced magnetic resonance imaging,” in Proceedings of the SPIE

Conference on Medical Imaging. International Society for Optics and Photonics,

2007, pp. 65140U–65140U.

[246] Nobuyuki Otsu, “A threshold selection method from gray-level his-

tograms,” Automatica, vol. 11, no. 285-296, pp. 23–27, 1975.

[247] Alejandro F Frangi, Wiro J Niessen, Koen L Vincken, and Max A Viergever,

“Multiscale vessel enhancement filtering,” in Proceedings of the Conference on

Medical Image Computing and Computer-Assisted Interventation (MICCAI’98),

Cambridge, Massachusetts, USA, October 11-13 1998, pp. 130–137, Springer.

[248] A Firjani, F Khalifa, A Elnakib, G Gimel’farb, M Abo El-Ghar, A Elmaghraby,

and A El-Baz, “Non-invasive image-based approach for early detection of

prostate cancer,” in Developments in E-systems Engineering (DeSE’11), Dubai,

United Arab Emirates, December 6-8 2011, IEEE, pp. 172–177.

[249] Tsutomu Tamada, Teruki Sone, Yoshimasa Jo, Shinya Toshimitsu, Takenori

Yamashita, Akira Yamamoto, Daigo Tanimoto, and Katsuyoshi Ito, “Ap-

parent diffusion coefficient values in peripheral and transition zones of the

prostate: comparison between normal and malignant prostatic tissues and

correlation with histologic grade,” J. Magn. Reson. Imaging, vol. 28, no. 3, pp.

720–726, 2008.

[250] Luis C Maas and Pratik Mukherjee, “Diffusion MRI: Overview and clinical

applications in neuroradiology,” Appl. Radiol., vol. 34, no. 11, pp. 44, 2005.

[251] D Ampeliotis, A Antonakoudi, K Berberidis, EZ Psarakis, and A Kounoudes,

“A computer-aided system for the detection of prostate cancer based on

139



magnetic resonance image analysis,” in Proceedings of the 3rd International

Symposium on Communications, Control and Signal Processing (ISCCSP’08), St.

Julians, Malta, March 12-14 2008, IEEE, pp. 1372–1377.

[252] Masoom A Haider, Theodorus H van der Kwast, Jeff Tanguay, Andrew J

Evans, Ali-Tahir Hashmi, Gina Lockwood, and John Trachtenberg, “Com-

bined T2-weighted and diffusion-weighted MRI for localization of prostate

cancer,” Am. J. Roentgenol., vol. 189, no. 2, pp. 323–328, 2007.

[253] Xin Liu, Deanna L Langer, Masoom A Haider, Yongyi Yang, Miles N Wer-

nick, and Imam Samil Yetik, “Prostate cancer segmentation with simultane-

ous estimation of Markov random field parameters and class,” IEEE Trans.

Med. Imaging, vol. 28, no. 6, pp. 906–915, 2009.

[254] Yusuf Artan, Masoom A Haider, Deanna L Langer, Theodorus H van der

Kwast, Andrew J Evans, Yongyi Yang, Miles N Wernick, John Trachten-

berg, and Imam Samil Yetik, “Prostate cancer localization with multispectral

MRI using cost-sensitive support vector machines and conditional random

fields,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2444–2455, 2010.

[255] Daniel D Lee and H Sebastian Seung, “Learning the parts of objects by non-

negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[256] Farial Shahnaz, Michael W Berry, V Paul Pauca, and Robert J Plemmons,

“Document clustering using nonnegative matrix factorization,” Inform. Pro-

cess. Manag., vol. 42, no. 2, pp. 373–386, 2006.

[257] Stefanos Zafeiriou, Anastasios Tefas, Ioan Buciu, and Ioannis Pitas, “Ex-

ploiting discriminant information in nonnegative matrix factorization with

application to frontal face verification,” IEEE T. Neural Networ., vol. 17, no. 3,

pp. 683–695, 2006.

140



[258] Yuchen Xie, Jeffrey Ho, and Baba C Vemuri, “Nonnegative factorization of

diffusion tensor images and its applications,” in Inform. Process. Med. Imag-

ing. Springer, 2011, pp. 550–561.

[259] Roman Sandler and Michael Lindenbaum, “Nonnegative matrix factoriza-

tion with earth mover’s distance metric for image analysis,” IEEE T. Pattern

Anal., vol. 33, no. 8, pp. 1590–1602, 2011.

[260] Stanley Osher and Ronald Fedkiw, Level set methods and dynamic implicit sur-

faces, New York: Springer-Verlag, 2006.

[261] P. A. Viola and W. M. Wells III, “Alignment by maximization of mutual

information,” Int. J. Comput. Vision, vol. 24, no. 2, pp. 137–154, 1997.

[262] Ayman El-Baz, Ahmed Soliman, Patrick McClure, G Gimel’farb, Mo-

hamed Abou El-Ghar, and Robert Falk, “Early assessment of malignant lung

nodules based on the spatial analysis of detected lung nodules,” in Proceed-

ings of the IEEE International Symposioum on Biomedical Imaging: From Nana to

Macro (ISBI’12). IEEE, 2012, pp. 1463–1466.

[263] Julian Besag, “Spatial interaction and the statistical analysis of lattice sys-

tems,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 192–

236, 1974.

[264] Michael W Berry, Murray Browne, Amy N Langville, V Paul Pauca, and

Robert J Plemmons, “Algorithms and applications for approximate non-

negative matrix factorization,” Computat. Stat. Data An., vol. 52, no. 1, pp.

155–173, 2007.

[265] Daniel D Lee and H Sebastian Seung, “Algorithms for non-negative matrix

factorization,” in Adv. Neural Inf. Process. Syst., 2000, pp. 556–562.

141



[266] Aapo Hyvärinen, “Sparse code shrinkage: Denoising of nongaussian data

by maximum likelihood estimation,” Neural Comput., vol. 11, no. 7, pp. 1739–

1768, 1999.

[267] Kolawole Oluwole Babalola, Brian Patenaude, Paul Aljabar, Julia Schnabel,

David Kennedy, William Crum, Stephen Smith, Tim Cootes, Mark Jenkin-

son, and Daniel Rueckert, “An evaluation of four automatic methods of

segmenting the subcortical structures in the brain,” Neuroimage, vol. 47, no.

4, pp. 1435–1447, 2009.

[268] Solomon Kullback and Richard A Leibler, “On information and sufficiency,”

Ann. Math. Stat., pp. 79–86, 1951.

[269] Robi Polikar, “Ensemble based systems in decision making,” IEEE Circuits

Syst. Mag., vol. 6, no. 3, pp. 21–45, 2006.

[270] E. L. Williams, A. El-Baz, M. Nitzken, A. E. Switala, and M. F. Casanova,

“Spherical harmonic analysis of cortical complexity in autism and dyslexia,”

Translat. Neurosci., vol. 3, no. 1, pp. 36–40, 2012.

[271] M. Nitzken, M. F. Casanova, G. Gimel’farb, A. Elnakib, F. Khalifa, A. Switala,

and A. El-Baz, “3D shape analysis of the brain cortex with application to

dyslexia,” in Proc. IEEE Int. Conf. Image Process., (ICIP’11), 2011, pp. 2657–

2660.

[272] M. F. Casanova, A. El-Baz, A. Elnakib, J. Giedd, J. M. Rumsey, E. L. Williams,

and A. E. Switala, “Corpus callosum shape analysis with application to

dyslexia,” Translat. Neurosci., vol. 1, no. 2, pp. 124–130, 2010.

[273] A. Elnakib, A. El-Baz, M. F. Casanova, G. Gimel’farb, and A. E. Switala,

“Image-based detection of corpus callosum variability for more accurate dis-

crimination between dyslexic and normal brains,” in Proc. IEEE Int. Symp.

Biomed. Imaging: From Nano to Macro, (ISBI’10), 2010, pp. 109–112.

142



[274] A. Elnakib, A. El-Baz, M. F. Casanova, and A. E. Switala, “Dyslexia diagnos-

tics by centerline-based shape analysis of the corpus callosum,” in Proc. Int.

Conf. Pattern Recogni., (ICPR’10), 2010, pp. 261–264.

[275] A. El-Baz, M. Casanova, G. Gimel’farb, M. Mott, A. Switala, E. Vanbogaert,

and R. McCracken, “Dyslexia diagnostics by 3D texture analysis of cerebral

white matter gyrifications,” in Proc. Int. Conf. Pattern Recogni., (ICPR’08),

2008, pp. 1–4.

[276] M. Nitzken, M. F. Casanova, F. Khalifa, G. Sokhadze, and A. El-Baz, “Shape-

based detection of cortex variability for more accurate discrimination be-

tween autistic and normal brains,” in Handbook of Multi Modality State-of-

the-Art Medical Image Segmentation and Registration Methodologies, A. El-Baz,

R. Acharya, A. Laine, and J. Suri, Eds., chapter 7, pp. 161–185. Springer, 2011.

[277] A. Elnakib, M. F. Casanova, G. Gimel’farb, A. E. Switala, and A. El-Baz,

“Autism diagnostics by centerline-based shape analysis of the corpus callo-

sum,” in Proceedings of the IEEE International Symposium on Biomedical Imag-

ing: From Nano to Macro, (ISBI’11), 2011, pp. 1843–1846.

[278] A. El-Baz, A. Elnakib, M. F. Casanova, G. Gimel’farb, A. E. Switala, D. Jor-

dan, and S. Rainey, “Accurate automated detection of autism related corpus

callosum abnormalities,” J. Med. Sys., vol. 35, no. 5, pp. 929–939, 2011.

[279] M. F. Casanova, A. El-Baz, A. Elnakib, A. E. Switala, E. L. Williams, D. L.

Williams, N. J. Minshew, and T. E. Conturo, “Quantitative analysis of the

shape of the corpus callosum in patients with autism and comparison indi-

viduals,” Autism, vol. 15, no. 2, pp. 223–238, 2011.

[280] M. Nitzken, M. F. Casanova, G. Gimel’farb, F. Khalifa, A. Elnakib, A. E.

Switala, and A. El-Baz, “3D shape analysis of the brain cortex with ap-

143



plication to autism,” in Proceedings of the IEEE International Symposium on

Biomedical Imaging: From Nano to Macro, (ISBI’11), 2011, pp. 1847–1850.

[281] Manuel F Casanova, Brynn Dombroski, and Andrew E Switala, Imaging and

the Corpus Callosum in Patients with Autism, Springer, 2014.

[282] Manuel F Casanova, Ayman S El-Baz, and Jasjit S Suri, Imaging the Brain in

Autism, Springer.

[283] B. Dombroski, M. Nitzken, A. Elnakib, F. Khalifa, A. El-Baz, and M. F.

Casanova, “Cortical surface complexity in a population-based normative

sample,” Transl. Neurosci., vol. 5, no. 1, pp. 1–8, 2014.

[284] M. F. Casanova, A. El-Baz, S. S. Kamat, B. A. Dombroski, F. Khalifa, A. El-

nakib, A. Soliman, A. Allison-McNutt, and A. E. Switala, “Focal cortical

dysplasias in autism spectrum disorders,” Acta Neuropathol. Commun., vol.

1, no. 1, pp. 67, 2013.

[285] A. Elnakib, M. F. Casanova, G. Gimel’farb, and A. El-Baz, “Autism diag-

nostics by 3D shape analysis of the corpus callosum,” in Machine Learning in

Computer-aided Diagnosis: Medical Imaging Intelligence and Analysis, K. Suzuki,

Ed., chapter 15, pp. 315–335. IGI Global, Berlin, 2012.

[286] M. Mostapha, F. Khalifa, A. Alansary, A. Soliman, J. Suri, and A. El-Baz,

“Computer-aided diagnosis systems for acute renal transplant rejection:

Challenges and methodologies,” in Abdomen and Thoracic Imaging, A. El-Baz

and L. saba J. Suri, Eds., pp. 1–35. Springer, 2014.

[287] A. Rudra, A. Chowdhury, A. Elnakib, F. Khalifa, A. Soliman, G. M. Beache,

and A. El-Baz, “Kidney segmentation using graph cuts and pixel connectiv-

ity,” Pattern Recogni. Letters, vol. 34, no. 13, pp. 1470–1475, 2013.

144



[288] F. Khalifa, A. Elnakib, G. M. Beache, G. Gimel’farb, M. A. El-Ghar,

G. Sokhadze, S. Manning, P. McClure, and A. El-Baz, “3D kidney segmenta-

tion from CT images using a level set approach guided by a novel stochastic

speed function,” in Proceedings of the Medical Image Computing and Computer-

Assisted Intervention (MICCAI’11), Toronto, Canada, September 18-22 2011,

pp. 587–594.

[289] F. Khalifa, A. El-Baz, G. Gimel’farb, and M. Abo El-Ghar, “Non-invasive

image-based approach for early detection of acute renal rejection,” in Pro-

ceedings of the Medical Image Computing and Computer-Assisted Intervention

(MICCAI’10), 2010, pp. 10–18.

[290] F. Khalifa, A. El-Baz, G. Gimel’farb, R. Ouseph, and M. A. El-Ghar, “Shape-

appearance guided level-set deformable model for image segmentation,” in

Proceedings of the Intertional Conference on Pattern Recognition (ICPR’10), 2010,

pp. 4581–4584.

[291] A. El-Baz and Georgy Gimel’farb, “Robust medical images segmentation

using learned shape and appearance models,” in Proceedings of the Medical

Image Computing and Computer-Assisted Intervention (MICCAI’09), 2009, pp.

281–288.

[292] A. El-Baz, G. Gimel’farb, and M. Abo El-Ghar, “A novel image analysis

approach for accurate identification of acute renal rejection,” in Proceedings

of the IEEE International Conference on Image Processing (ICIP’08), San Diego,

California, USA, October 12-15 2008, pp. 1812–1815.

[293] A. El-Baz, G. Gimel’farb, and M. Abo El-Ghar, “Image analysis approach

for identification of renal transplant rejection,” in Proceedings of the IEEE In-

ternational Conference on Pattern Recognition (ICPR’08), San Diego, California,

USA, October 12-15 2008, pp. 1–4.

145



[294] A. El-Baz and G. Gimel’farb, “Image segmentation with a parametric de-

formable model using shape and appearance priors,” in Proceedings of

the IEEE International Conference on Computer Vision and Pattern Recognition

(CVPR’08), Anchoarge, Alaska, USA, June 24-26 2008, pp. 1–8.

[295] A. El-Baz, A. A. Farag, S. E. Yuksel, M. E. A. El-Ghar, T. A. Eldiasty, and

M. A. Ghoneim, “Application of deformable models for the detection of

acute renal rejection,” in Deformable Models, A. A. Farag and J. S. Suri, Eds.,

vol. 1, chapter 10, pp. 293–333. 2007.

[296] A. El-Baz, G. Gimel’farb, and M. Abou El-Ghar, “New motion correction

models for automatic identification of renal transplant rejection,” in Proceed-

ings of the Medical Image Computing and Computer-Assisted Intervention (MIC-

CAI’07), Brisbane, Australia, USA, October 29 - November 2 2007, pp. 235–

243.

[297] A. M. Ali, A. A. Farag, and A. El-Baz, “Graph cuts framework for kidney

segmentation with prior shape constraints,” in Proceedings of the Medical

Image Computing and Computer-Assisted Intervention (MICCAI’07), Brisbane,

Australia, USA, October 29 - November 2 2007, vol. 1, pp. 384–392.

[298] A. El-Baz, A. Farag, R. Fahmi, S. Yuksel, W. Miller, M. Abou El-Ghar, T. El-

Diasty, and M. Ghoneim, “A new CAD system for the evaluation of kid-

ney diseases using DCE-MRI,” in Proceedings of the Medical Image Computing

and Computer-Assisted Intervention (MICCAI’08), New York, New York, USA,

September 6-10 2006, pp. 446–453.

[299] A. El-Baz, A. Farag, R. Fahmi, S. Yuksel, M. Abo El-Ghar, and T. Eldiasty,

“Image analysis of renal DCE MRI for the detection of acute renal rejec-

tion,” in Proceedings of the IEEE International Conference on Pattern Recognition

(ICPR’06), Arlington, Virgina, USA, April 6-9 2006, pp. 822–825.

146



[300] A. Farag, A. El-Baz, S. Yuksel, M. Abou El-Ghar, and T. Eldiasty, “A frame-

work for the detection of acute rejection with dynamic contrast enhanced

magnetic resonance imaging,” in Proceedings of the IEEE International Sympo-

sium on Biomedical Imaging: From Nano to Macro (ISBI’06), Arlington, Virgina,

USA, April 6-9 2006, pp. 418–421.

[301] Seniha E Yuksel, Ayman El-Baz, and Aly A Farag, “A kidney segmentation

framework for dynamic contrast enhanced magnetic resonance imaging,” in

Proceedings of the International Symposium on Mathmatical Methods in Engineer-

ing, (MME’06), 2006, pp. 55–64.

[302] Seniha E. Yuksel, Ayman El-Baz, Aly A. Farag, M. E. Abo El-Ghar, Tarek A.

Eldiasty, and Mohamed A. Ghoneim, “Automatic detection of renal rejection

after kidney transplantation,” in International Congress Series, 2005, vol. 1281,

pp. 773–778.

[303] A El-Baz, Aly A Farag, Robert Falk, and Renato La Rocca, “Automatic iden-

tification of lung abnormalities in chest spiral CT scans,” in Proceedings

of the IEEE International Conference on Acoustic, Speech, and Signal Processing

(ICASSP’03), Hong Kong, Hong Kong, April 6-10 2003, vol. 2, pp. 261–264.

[304] Ayman El-Baz, Aly A Farag, Robert Falk, and Renato La Rocca, “A unified

approach for detection, visualization, and identification of lung abnormali-

ties in chest spiral CT scans,” in International Congress Series, 2003, vol. 1256,

pp. 998–1004.

[305] Ayman El-Baz, Aly A Farag, Robert Falk, and Renato La Rocca, “Detection,

visualization and identification of lung abnormalities in chest spiral CT scan:

Phase-I,” in Proceedings of the International Conference on Biomedical Engineer-

ing, 2002, pp. 38–42.

147



[306] Aly A Farag, Ayman El-Baz, Georgy Gimel’farb, and Robert Falk, “Detection

and recognition of lung abnormalities using deformable templates,” in Pro-

ceedings of the International Conference on Pattern Recognition (ICPR’04), Cam-

bridge, UK, August 23-26 2004, vol. 3, pp. 738–741.

[307] Aly A Farag, Ayman El-Baz, Georgy G Gimelfarb, Robert Falk, and

Stephen G Hushek, “Automatic detection and recognition of lung abnor-

malities in helical CT images using deformable templates,” in Proceedings of

the Medical Image Computing and Computer-Assisted Intervention (MICCAI’04),

pp. 856–864. Sint-Malo, France, September 26-29 2004.

148



CURRICULUM VITAE

Patrick McClure

Contact Information:

Address: 903 1/2 W. 7th St., Corbin, KY 40701

E-mail: patrick.s.mcclure@gmail.com

Phone: 1-606-344-2116

Education:

• B.S. in Bioengineering, University of Louisville (2013)

• M.S. in Computer Science, University of Louisville (2014)

Honors and Awards:

• Barry M. Goldwater Scholarship (2012)

• Jerry and Pat Sturgen Academic Excellence Award (2013)

• University of Louisville Undergraduate Research Grant (2012)

• First Place in J. B. Speed School Undergraduate Research Competition (2012)

• University of Louisville Trustees Scholarship (2009-2013)

• Kentucky Educational Excellence Scholarship (2009-2013)

• Dean‘s Scholar (7 Semesters)

• Dean‘s List (1 Semesters)

149



Employment:

• Research Assistant, Bioimaging Lab, University of Louisville, Louisville, KY

(Jan. 2011 - June 2014)

• Supplemental Instruction Tutor (Calculus III), University of Louisville,

Louisville, KY (Aug. 2013 - Dec. 2013)

• Electronic Data Interchange (EDI) Engineering Intern, Epic Systems, Verona,

WI (Jan. 2013 - May 2013)

• Research Assistant, Vision Lab, Johns Hopkins University, Baltimore, MD

(May 2012 - Aug. 2012)

• Teacher‘s Assistant (Calculus III), University of Louisville, Louisville, KY

(Jan. 2012 - May 2012)

• Manufacturing Engineering Co-op, Boston Scientific Coporation, Spencer,

IN (Aug. 2011 - Dec. 2011)

• Supplemental Instruction Tutor (Differential Equations), University of

Louisville, Louisville, KY (May 2011 - July 2011)

• Supplemental Instruction Tutor (Calculus II), University of Louisville,

Louisville, KY (Aug. 2010 - Dec. 2010)

Academic Interests:

• Machine Learning

• Computer Vision

• Medical Image Analysis

150



Professional Societies:

• Institute of Electrical and Electronics Engineers (IEEE)

• Biomedical Engineering Society (BMES)

• Tau Beta Pi Engineering Honors Society

Publications:

Journal

• A. El-Baz, A. Elnakib, F. Khalifa, M. Abou El-Ghar, P. McClure, Ahmed

Soliman, and G. Gimel‘farb, Precise Segmentation of 3D Magnetic

Resonance Angiography, IEEE Transactions on Biomedical Engineering,

2012, pp. 2019-2029.

Conference

• A. Jain, L. Zappella, P. McClure, R. Vidal, Visual Dictionary Learning for

Object Categorization and Segmentation, European Conference for

Computer Vision (ECCV 2012), 2012, pp. 718-731.

• A. El-Baz, F. Khalifa, A. Elnakib, M. Nitzken, A. Soliman, P. McClure, M.

Abo El-Ghar, G. Gimel‘farb, A Novel Approach for Global Lung

Registration Using 3D Markov-Gibbs Appearance Model, Proc.

International Conference on Medical Image Computing and Computer

Assisted Intervention (MICCAI 2012), 2012, pp. 114-121.

• A. El-Baz, F. Khalifa, A. Elnakib, M. Nitzken, A. Soliman, P. McClure, M.

Abo El-Ghar, G. Gimel’farb, A Novel Approach for Global Lung

Registration Using 3D Markov-Gibbs Appearance Model, Proc.

International Conference on Medical Image Computing and Computer

Assisted Intervention (MICCAI 2012), 2012, pp. 114-121.

151



• F. Khalifa, G. Sokhadze, S. Manning, P. McClure, G. Gimelfarb, M. Abo

El-Ghar, R. Ouseph, and A. El-Baz , ” 3D Kidney Segmentation from CT

Images Using Level Set Approach Guided by a Novel Stochastic Speed

Function,” Proc. International Conference on Medical Image Computing

and Computer Assisted Intervention (MICCAI 2011), 2011, pp. 569-577.

• F. Khalifa, G. Sokhadze, S. Manning, P. McClure, G. Gimelfarb, M. Abo

El-Ghar, R. Ouseph, and A. El-Baz , ”A New Deformable Model-based

Segmentation Approach for Accurate Extraction of the Kidney from

Abdominal CT Images,” Proc. International Conference on Image

Processing (ICIP 11), 2011, pp. 3393 - 3396.

152


	A novel NMF-based DWI CAD framework for prostate cancer.
	Recommended Citation

	main_thesis.dvi

