811 research outputs found

    Victoria Amazonica Optimization (VAO): An Algorithm Inspired by the Giant Water Lily Plant

    Full text link
    The Victoria Amazonica plant, often known as the Giant Water Lily, has the largest floating spherical leaf in the world, with a maximum leaf diameter of 3 meters. It spreads its leaves by the force of its spines and creates a large shadow underneath, killing any plants that require sunlight. These water tyrants use their formidable spines to compel each other to the surface and increase their strength to grab more space from the surface. As they spread throughout the pond or basin, with the earliest-growing leaves having more room to grow, each leaf gains a unique size. Its flowers are transsexual and when they bloom, Cyclocephala beetles are responsible for the pollination process, being attracted to the scent of the female flower. After entering the flower, the beetle becomes covered with pollen and transfers it to another flower for fertilization. After the beetle leaves, the flower turns into a male and changes color from white to pink. The male flower dies and sinks into the water, releasing its seed to help create a new generation. In this paper, the mathematical life cycle of this magnificent plant is introduced, and each leaf and blossom are treated as a single entity. The proposed bio-inspired algorithm is tested with 24 benchmark optimization test functions, such as Ackley, and compared to ten other famous algorithms, including the Genetic Algorithm. The proposed algorithm is tested on 10 optimization problems: Minimum Spanning Tree, Hub Location Allocation, Quadratic Assignment, Clustering, Feature Selection, Regression, Economic Dispatching, Parallel Machine Scheduling, Color Quantization, and Image Segmentation and compared to traditional and bio-inspired algorithms. Overall, the performance of the algorithm in all tasks is satisfactory.Comment: 45 page

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Large-Scale Evolutionary Optimization Using Multi-Layer Strategy Differential Evolution

    Get PDF
    Differential evolution (DE) has been extensively used in optimization studies since its development in 1995 because of its reputation as an effective global optimizer. DE is a population-based meta-heuristic technique that develops numerical vectors to solve optimization problems. DE strategies have a significant impact on DE performance and play a vital role in achieving stochastic global optimization. However, DE is highly dependent on the control parameters involved. In practice, the fine-tuning of these parameters is not always easy. Here, we discuss the improvements and developments that have been made to DE algorithms. The Multi-Layer Strategies Differential Evolution (MLSDE) algorithm, which finds optimal solutions for large scale problems. To solve large scale problems were grouped different strategies together and applied them to date set. Furthermore, these strategies were applied to selected vectors to strengthen the exploration ability of the algorithm. Extensive computational analysis was also carried out to evaluate the performance of the proposed algorithm on a set of well-known CEC 2015 benchmark functions. This benchmark was utilized for the assessment and performance evaluation of the proposed algorithm

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    Currency recognition using a smartphone: Comparison between color SIFT and gray scale SIFT algorithms

    Get PDF
    AbstractBanknote recognition means classifying the currency (coin and paper) to the correct class. In this paper, we developed a dataset for Jordanian currency. After that we applied automatic mobile recognition system using a smartphone on the dataset using scale-invariant feature transform (SIFT) algorithm. This is the first attempt, to the best of the authors knowledge, to recognize both coins and paper banknotes on a smartphone using SIFT algorithm. SIFT has been developed to be the most robust and efficient local invariant feature descriptor. Color provides significant information and important values in the object description process and matching tasks. Many objects cannot be classified correctly without their color features. We compared between two approaches colored local invariant feature descriptor (color SIFT approach) and gray image local invariant feature descriptor (gray SIFT approach). The evaluation results show that the color SIFT approach outperforms the gray SIFT approach in terms of processing time and accuracy

    Um arcabouço para seleção e fusão de classificadores de padrão

    Get PDF
    Orientadores: Ricardo da Silva Torres, Anderson RochaTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O crescente aumento de dados visuais, seja pelo uso de inúmeras câmeras de vídeo monitoramento disponíveis ou pela popularização de dispositivos móveis que permitem pessoas criar, editar e compartilhar suas próprias imagens/vídeos, tem contribuído enormemente para a chamada ''big data revolution". Esta grande quantidade de dados visuais dá origem a uma caixa de Pandora de novos problemas de classificação visuais nunca antes imaginados. Tarefas de classificação de imagens e vídeos foram inseridos em diferentes e complexas aplicações e o uso de soluções baseadas em aprendizagem de máquina tornou-se mais popular para diversas aplicações. Entretanto, por outro lado, não existe uma ''bala de prata" que resolva todos os problemas, ou seja, não é possível caracterizar todas as imagens de diferentes domínios com o mesmo método de descrição e nem utilizar o mesmo método de aprendizagem para alcançar bons resultados em qualquer tipo de aplicação. Nesta tese, propomos um arcabouço para seleção e fusão de classificadores. Nosso método busca combinar métodos de caracterização de imagem e aprendizagem por meio de uma abordagem meta-aprendizagem que avalia quais métodos contribuem melhor para solução de um determinado problema. O arcabouço utiliza três diferentes estratégias de seleção de classificadores para apontar o menos correlacionados e eficazes, por meio de análises de medidas de diversidade. Os experimentos mostram que as abordagens propostas produzem resultados comparáveis aos famosos métodos da literatura para diferentes aplicações, utilizando menos classificadores e não sofrendo com problemas que afetam outras técnicas como a maldição da dimensionalidade e normalização. Além disso, a nossa abordagem é capaz de alcançar resultados eficazes de classificação usando conjuntos de treinamento muito reduzidosAbstract: The frequent growth of visual data, either by countless available monitoring video cameras or the popularization of mobile devices that allow each person to create, edit, and share their own images and videos have contributed enormously to the so called ''big-data revolution''. This shear amount of visual data gives rise to a Pandora box of new visual classification problems never imagined before. Image and video classification tasks have been inserted in different and complex applications and the use of machine learning-based solutions has become the most popular approach to several applications. Notwithstanding, there is no silver bullet that solves all the problems, i.e., it is not possible to characterize all images of different domains with the same description method nor is it possible to use the same learning method to achieve good results in any kind of application. In this thesis, we aim at proposing a framework for classifier selection and fusion. Our method seeks to combine image characterization and learning methods by means of a meta-learning approach responsible for assessing which methods contribute more towards the solution of a given problem. The framework uses three different strategies of classifier selection which pinpoints the less correlated, yet effective, classifiers through a series of diversity measure analysis. The experiments show that the proposed approaches yield comparable results to well-known algorithms from the literature on many different applications but using less learning and description methods as well as not incurring in the curse of dimensionality and normalization problems common to some fusion techniques. Furthermore, our approach is able to achieve effective classification results using very reduced training setsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Media aesthetics based multimedia storytelling.

    Get PDF
    Since the earliest of times, humans have been interested in recording their life experiences, for future reference and for storytelling purposes. This task of recording experiences --i.e., both image and video capture-- has never before in history been as easy as it is today. This is creating a digital information overload that is becoming a great concern for the people that are trying to preserve their life experiences. As high-resolution digital still and video cameras become increasingly pervasive, unprecedented amounts of multimedia, are being downloaded to personal hard drives, and also uploaded to online social networks on a daily basis. The work presented in this dissertation is a contribution in the area of multimedia organization, as well as automatic selection of media for storytelling purposes, which eases the human task of summarizing a collection of images or videos in order to be shared with other people. As opposed to some prior art in this area, we have taken an approach in which neither user generated tags nor comments --that describe the photographs, either in their local or on-line repositories-- are taken into account, and also no user interaction with the algorithms is expected. We take an image analysis approach where both the context images --e.g. images from online social networks to which the image stories are going to be uploaded--, and the collection images --i.e., the collection of images or videos that needs to be summarized into a story--, are analyzed using image processing algorithms. This allows us to extract relevant metadata that can be used in the summarization process. Multimedia-storytellers usually follow three main steps when preparing their stories: first they choose the main story characters, the main events to describe, and finally from these media sub-groups, they choose the media based on their relevance to the story as well as based on their aesthetic value. Therefore, one of the main contributions of our work has been the design of computational models --both regression based, as well as classification based-- that correlate well with human perception of the aesthetic value of images and videos. These computational aesthetics models have been integrated into automatic selection algorithms for multimedia storytelling, which are another important contribution of our work. A human centric approach has been used in all experiments where it was feasible, and also in order to assess the final summarization results, i.e., humans are always the final judges of our algorithms, either by inspecting the aesthetic quality of the media, or by inspecting the final story generated by our algorithms. We are aware that a perfect automatically generated story summary is very hard to obtain, given the many subjective factors that play a role in such a creative process; rather, the presented approach should be seen as a first step in the storytelling creative process which removes some of the ground work that would be tedious and time consuming for the user. Overall, the main contributions of this work can be capitalized in three: (1) new media aesthetics models for both images and videos that correlate with human perception, (2) new scalable multimedia collection structures that ease the process of media summarization, and finally, (3) new media selection algorithms that are optimized for multimedia storytelling purposes.Postprint (published version
    corecore