12 research outputs found

    Contributions to Confidentiality and Integrity Algorithms for 5G

    Get PDF
    The confidentiality and integrity algorithms in cellular networks protect the transmission of user and signaling data over the air between users and the network, e.g., the base stations. There are three standardised cryptographic suites for confidentiality and integrity protection in 4G, which are based on the AES, SNOW 3G, and ZUC primitives, respectively. These primitives are used for providing a 128-bit security level and are usually implemented in hardware, e.g., using IP (intellectual property) cores, thus can be quite efficient. When we come to 5G, the innovative network architecture and high-performance demands pose new challenges to security. For the confidentiality and integrity protection, there are some new requirements on the underlying cryptographic algorithms. Specifically, these algorithms should: 1) provide 256 bits of security to protect against attackers equipped with quantum computing capabilities; and 2) provide at least 20 Gbps (Gigabits per second) speed in pure software environments, which is the downlink peak data rate in 5G. The reason for considering software environments is that the encryption in 5G will likely be moved to the cloud and implemented in software. Therefore, it is crucial to investigate existing algorithms in 4G, checking if they can satisfy the 5G requirements in terms of security and speed, and possibly propose new dedicated algorithms targeting these goals. This is the motivation of this thesis, which focuses on the confidentiality and integrity algorithms for 5G. The results can be summarised as follows.1. We investigate the security of SNOW 3G under 256-bit keys and propose two linear attacks against it with complexities 2172 and 2177, respectively. These cryptanalysis results indicate that SNOW 3G cannot provide the full 256-bit security level. 2. We design some spectral tools for linear cryptanalysis and apply these tools to investigate the security of ZUC-256, the 256-bit version of ZUC. We propose a distinguishing attack against ZUC-256 with complexity 2236, which is 220 faster than exhaustive key search. 3. We design a new stream cipher called SNOW-V in response to the new requirements for 5G confidentiality and integrity protection, in terms of security and speed. SNOW-V can provide a 256-bit security level and achieve a speed as high as 58 Gbps in software based on our extensive evaluation. The cipher is currently under evaluation in ETSI SAGE (Security Algorithms Group of Experts) as a promising candidate for 5G confidentiality and integrity algorithms. 4. We perform deeper cryptanalysis of SNOW-V to ensure that two common cryptanalysis techniques, guess-and-determine attacks and linear cryptanalysis, do not apply to SNOW-V faster than exhaustive key search. 5. We introduce two minor modifications in SNOW-V and propose an extreme performance variant, called SNOW-Vi, in response to the feedback about SNOW-V that some use cases are not fully covered. SNOW-Vi covers more use cases, especially some platforms with less capabilities. The speeds in software are increased by 50% in average over SNOW-V and can be up to 92 Gbps.Besides these works on 5G confidentiality and integrity algorithms, the thesis is also devoted to local pseudorandom generators (PRGs). 6. We investigate the security of local PRGs and propose two attacks against some constructions instantiated on the P5 predicate. The attacks improve existing results with a large gap and narrow down the secure parameter regime. We also extend the attacks to other local PRGs instantiated on general XOR-AND and XOR-MAJ predicates and provide some insight in the choice of safe parameters

    Stream ciphers

    Get PDF

    Lightweight cryptography on ultra-constrained RFID devices

    Full text link
    Devices of extremely small computational power like RFID tags are used in practice to a rapidly growing extent, a trend commonly referred to as ubiquitous computing. Despite their severely constrained resources, the security burden which these devices have to carry is often enormous, as their fields of application range from everyday access control to human-implantable chips providing sensitive medical information about a person. Unfortunately, established cryptographic primitives such as AES are way to 'heavy' (e.g., in terms of circuit size or power consumption) to be used in corresponding RFID systems, calling for new solutions and thus initiating the research area of lightweight cryptography. In this thesis, we focus on the currently most restricted form of such devices and will refer to them as ultra-constrained RFIDs. To fill this notion with life and in order to create a profound basis for our subsequent cryptographic development, we start this work by providing a comprehensive summary of conditions that should be met by lightweight cryptographic schemes targeting ultra-constrained RFID devices. Building on these insights, we then turn towards the two main topics of this thesis: lightweight authentication and lightweight stream ciphers. To this end, we first provide a general introduction to the broad field of authentication and study existing (allegedly) lightweight approaches. Drawing on this, with the (n,k,L)^-protocol, we suggest our own lightweight authentication scheme and, on the basis of corresponding hardware implementations for FPGAs and ASICs, demonstrate its suitability for ultra-constrained RFIDs. Subsequently, we leave the path of searching for dedicated authentication protocols and turn towards stream cipher design, where we first revisit some prominent classical examples and, in particular, analyze their state initialization algorithms. Following this, we investigate the rather young area of small-state stream ciphers, which try to overcome the limit imposed by time-memory-data tradeoff (TMD-TO) attacks on the security of classical stream ciphers. Here, we present some new attacks, but also corresponding design ideas how to counter these. Paving the way for our own small-state stream cipher, we then propose and analyze the LIZARD-construction, which combines the explicit use of packet mode with a new type of state initialization algorithm. For corresponding keystream generator-based designs of inner state length n, we prove a tight (2n/3)-bound on the security against TMD-TO key recovery attacks. Building on these theoretical results, we finally present LIZARD, our new lightweight stream cipher for ultra-constrained RFIDs. Its hardware efficiency and security result from combining a Grain-like design with the LIZARD-construction. Most notably, besides lower area requirements, the estimated power consumption of LIZARD is also about 16 percent below that of Grain v1, making it particularly suitable for passive RFID tags, which obtain their energy exclusively through an electromagnetic field radiated by the reading device. The thesis is concluded by an extensive 'Future Research Directions' chapter, introducing various new ideas and thus showing that the search for lightweight cryptographic solutions is far from being completed

    A Highly Nonlinear Cellular FSM-Combiner for Stream Ciphers

    No full text

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    2003-2004 Graduate Catalog

    Get PDF

    2001-2002 Graduate Catalog

    Get PDF

    2004-2005 Graduate Catalog

    Get PDF
    corecore