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Chapter 1

Preface

This book has been written as lecture notes for students who need a grasp
of the basic principles of stream ciphers.

The scope and level of the lecture notes are considered suitable for (un-
der)graduate students of Mathematical Sciences and Computer Sciences at the
Faculty of Mathematics, Natural Sciences and Information Technologies at the
University of Primorska.

It is not possible to cover here in detail every aspect of stream ciphers, but I
hope to provide the reader with an insight into the essence of the stream ciphers.

Main resource is Chapters 5 and 6 from Handbook of Applied Cryptography,
by A. Menezes, P. Oorschot, S. Vanstone.

Enes Pasalic
enes.pasalic@upr.si
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Chapter 2

Content Description

1. Introduction to stream ciphers, motivation and basic modes of operations.

2. Statistical testing of pseudorandom sequences. Introduction to cryptanal-
ysis.

3. Simple cryptanalysis, and statistical testing (Exercise).

4. Generating sequences. Theory of LFSR, Berlekamp-Massey algorithm and
linear complexity of sequences.

5. Examples of generation of periodic sequences, applications of Berlekamp-
Massey algorithm (Exercise).

6. Stream cipher design. Simple LFSR-based ciphers: nonlinear combin-
ing generator, nonlinear filtering generator. Theory of Boolean functions.
Stream ciphers based on FCSR (Feedback Carry Shift Registers).

7. Boolean functions, design and cryptographic properties. 2-adic theory
(Exercise).

8. Other LFSR-based stream ciphers. Shrinking, summation and alternating
generator. Application examples: E0 Bluetooth encryption and GSM
encryption algorithm A5. Modern design of hardware oriented stream
ciphers: Trivium and Grain-128.

9. Software oriented stream ciphers: SNOW 2.0, RC4. Design principles
and suitable cryptographic primitives: S-boxes, modular addition. Some
theory of groups and finite fields.

10. S-box design, cryptographic properties. Selecting suitable mappings over
fields in S-box design. (Exercise).

11. Theory of algebraic attacks. Classical and fast algebraic attacks.

12. Distinguishing, fast correlation attacks, synchronization and side-channel
attacks.

13. Examples of algebraic attacks and application of distinguishing attacks
(Exercise).

14. Cryptanalysis of real-life ciphers; how do we break the ciphers.

15. Cryptanalysis of real-life ciphers; eSTREAM candidate ciphers in focus.
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Chapter 3

Introduction to Stream
Ciphers

Content of this chapter:

• History of stream ciphers.

• Synchronous and asynchronous stream ciphers.

• Practical usage and design principles.

• Time-memory-data trade-o↵ attack on stream ciphers.
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Stream ciphers - overview

� History of stream ciphers

� Synchronous and asynchronous stream ciphers.

� Practical usage and design principles.

� Time-memory-data trade-o� attack on stream ciphers.

Introduction to stream ciphers 1:56

��

��

Cryptographic services

� Cryptography is there to protect the information. “Endless” range
of applications. Fundamental security aspects are:

• Confidentiality

• Integrity

• Non-repudation

• Authentication

• Confidentiality (secrecy) is usually achieved throug symmetric-key
primitives. These primitives can also support integrity service (through
MAC feature).

Introduction to stream ciphers 2:56
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Applications of cryptography

Introduction to stream ciphers 3:56
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Model of a classic cryptosystem

m
Decryption

Attack

Encryption
plaintext

estimate

m*

Km=D   (c)

K

Alice

Eve

Bob

ciphertext

Kc=E   (m)

key

Model  of a  classic  cryptosystem 

Introduction to stream ciphers 4:56
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Symmetric-key cryptography

� Commonly divided into:

• block ciphers

• stream ciphers (we focus on this technique)

� Sender and reciever share the same key. N users must exchange
�
N
2

�
= N(N � 1)/2 keys !

� A fast implementation both in hardware and software.

� Relatively short key length compared to public key cryptography
for the ’same security’ level.

Introduction to stream ciphers 5:56
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Why stream ciphers . . . ?

� . . . when we have so many good block ciphers ?

� IDEA, KASUMI, FEAL . . .

� DES (never broken, been around for 25 years)

� Triple DES (incresed key length)

� AES (Advanced Encryption Standard)

� Dozens of block ciphers; do we need dozens of stream cipher ?

“Stream ciphers - Dead or Alive”
Asiacrypt 2004, invited talk by Adi Shamir

� Block ciphers are : well understood and analyzed, standardized, and
can work in stream cipher mode .

Introduction to stream ciphers 6:56
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Block ciphers in stream cipher mode

• Block cipher in OFB (Output Feedback Mode) = stream cipher.

Introduction to stream ciphers 7:56
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Requirements on the design of stream cipher

� Towards standardization, open competition (Call for Proposals) was
initiated by eSTREAM project,

http://www.ecrypt.eu.org/stream/.

� To compete with block ciphers two profiles of stream cipher:

� Faster in software applications than BC (Profile I SW)

� Stream cipher for low circuit complexity (Profile II HW).

• Main advantage of stream ciphers - speed . Important when en-
crypting a huge ammount of data , e.g. video streaming, hard disc
encryption

• E.g. RFID tag - no more than 5000 gates (AES 4-10.000 gates).

Introduction to stream ciphers 8:56
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eSTREAM proposals - SW

� There were 34 submissions,

� 32 synchronising and 2 self-synchronising

� 7 submissions o�ering encryption and integrity

Introduction to stream ciphers 9:56
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eSTREAM proposals - HW

• Hardware proposals seem to be more resistant to cryptanalysis

Introduction to stream ciphers 10:56
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Prominent stream ciphers

� Prominent applications include:

• E0 stream cipher - privacy in Bluetooth applications

• A5 family of ciphers - encryption in GSM standard

• RC4 cipher - used in SSL/TLS, WEP
(Wired Equivalent Privacy), wireless network security standard.

DESIGN IDEA : Process a finite key to derive very long stream
of pseudorandom keystream bits.

• In between Vigenere and Vernam cipher.

Introduction to stream ciphers 11:56
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Vigenère cipher- symmetric key scheme

� Polyalphabetic substitution stream/block cipher.

� Message and key from the English alphabet, i.e., M, K � {A, B, . . . , Z}.
Then m = m0, m1, . . . is encrypted to c = c0, c1, . . . as follows.

� Make a transformation

A � 0, B � 1, . . . , Z � 25.

� The same transformation is applied to the key

K = K0, K1, . . . , Kl�1.

� Corresponding message and key sequence are denoted m� and K�,
respectively.

Introduction to stream ciphers 12:56
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Vigenère cipher cont.

� Encrypted integer sequence c� = c�
0, c�

1, . . . is obtained using,

c�
i = m�

i + K�
i mod l mod 26, i = 0,1,2, . . . . (1)

� Ciphertext c is derived from c� using the reverse transformation,

0 � A,1 � B, . . . ,25 � Z

� To recover the sequence of the original message one applies

m�
i = c�

i + (26 � K�
i mod l) mod 26, i = 0,1,2, . . . .

� The same transformation as above is applied to m� to retrieve m.

Introduction to stream ciphers 13:56
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Vigenère cipher example.

� Let m = THISCIPHERISNOTSECURE, and K = UNSECURE.

� First derive,

m� = 19, 7, 8, 18, 2, 8, 15, 7, 4, 17, 8, 18, 13, 14, · · · ;
K� = 20, 13, 18, 4, 2, 20, 17, 4| 20, 13, 18, 4, 2, 20, · · · .

� The encrypted sequence c� is then computed,

c� = 13,20,0,22,4,2,6,11,24,4,0,22,15,8,10,22,24,15,12,21,6.

� The resulting ciphertext is c = NUAWECGLYEAWPIKWYPMVG.

Introduction to stream ciphers 14:56
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Vernam and One time pad ciphers

� Consider the encryption scheme of message m � {0,1}� using the
key k � {0,1}� given by,

ci = mi � ki, i = 1,2,3, . . . , �

� Known as Vernam cipher - example of a stream cipher .

� Decryption is performed using ci � ki = mi � ki � ki = mi.

� If the keystream bits are generated independently and at random
then we call the cipher one-time pad..

Introduction to stream ciphers 15:56
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One time pad impractical

� It is unconditionally secure provided that the length of the key is
at least as the length of the message, and the key is never reused.

� A practical scheme would use a key of finite length (only k = 128
bits) and generate a pseudo random sequence (keystream) for en-
cryption and decryption.

� Such a scheme is never unconditionally secure , and the aim is to
make it computationaly secure .

Introduction to stream ciphers 16:56
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Design perspectives

� The idea is to expand a fixed lenth key into pseudorandom keystream
sequence. The keystream should look as random as possible !

S e c r e t  k e y

K P r o c e s s  t h e  k e y  t o
g e n e r a t e  k e y  d e p e n d e n t  
p s e u d o r a n d o m  k e y s t r e a m  
s e q u e n c e s

K e y s t r e a m

� Processing through a Finite State Machine (FSM); periodicity.

Introduction to stream ciphers 17:56
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Security objectives

� The keystream sequnce should satisfy:

� Large period

� Good statistical properties

� Low correlation between keystream sequence and secret state/key

� Security against current cryptanalysis (and forthcoming)

� Speed and/or hardware e�ciency

Introduction to stream ciphers 18:56
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Implementation targets

� To compete in hardware complexity less challenging than speed in
software.

� Not iterated cipher as block cipher (10 rounds - 20 rounds)

� Unrolling the loop (iteration) increases speed but also hardware
complexity.

� Streamciphers process small amount of data (bit level)

� Processing on a bit level in software is disadvantegous

• AES generates blocks of 128 bits, works on a byte level.

Software and hardware design substantially di�er (rare examples sat-
isfy both)

Introduction to stream ciphers 19:56
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General structure of a synchronous stream cipher

f

k

h
ct

g
zt�t

Plaintext

Ciphertext

mt

�t+1 = f(�t, k),

zt = g(�t, k),

ct = h(zt, mt),

� Keystream does not depend on plaintext and ciphertext.

Introduction to stream ciphers 20:56
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Decryption procedure

f

k

g
zt�t

h�1

Ciphertext

Plaintext

ct

mt

�t+1 = f(�t, k),

zt = g(�t, k),

mt = h�1(zt, ct),

Introduction to stream ciphers 21:56
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Additive stream ciphers

� No complicated mechanism is required for function h, just to be
invertible.

� Take h to be bitwise modulo two addition, i.e. h(zt, mt) = zt � mt =
ct, and h�1 is same as h.

Keystream
generator

General model of an additive stream cipher

k zt

mt

ct

Introduction to stream ciphers 22:56
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Two time pad

� One problem with additive stream ciphers is that using the same key
in multiple sessions you get the same keystream blocks.

� Then these keystream blocks induce,

c1i = m1
i � zi, c2i = m2

i � zi � c1i � c2i = m1
i � m2

i , i = 1,2, . . .

Using redudancy of plaintext we can recover m1 and m2.

� Changing the key for each session or lost synchronization is imprac-
tical, e.g. encryption of streaming video sequence.

� Solution (first reason) is to use initialization vector (IV) which is
changed upon re-synchronization.

Introduction to stream ciphers 23:56
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Properties of synchronous stream ciphers

� Each symbol is encrypted independently, limited error propagation
due to transmission or malicious modification.

� The problem is deletion or insertion of symbols. All decrypted plain-
text is erroneous. Need for perfect synchronization.Possibility of
detecting data manipulation.

� One solution is to split the message into frames numbered with
frame numbers. Need for Initialization Vector (IV) publicly known
(second reason).

� Each new frame uses new IV value together with the same key.

Introduction to stream ciphers 24:56
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Use of frames for resynchronization

� IV value is derived from frame number through pubicly known algo-
rithm

.

.

.

F r a m e  n u m b e r   1

F r a m e  n u m b e r   2

F r a m e  n u m b e r   m

.

.

.

E n c r y p t e d  d a t a

E n c r y p t e d  d a t a

E n c r y p t e d  d a t a

1  2  3  .    .   .               n

Introduction to stream ciphers 25:56

��

��

General structure of a self-synchronous stream cipher

Encryption Decryption
h h�1mt

g
k

ct

ut

ct

k
g

mt

zt zt

ut

� Keystream depends on say v bits of ciphertext . Worse error propa-
gation, a single bit error causes v incorrect bits .

� However it recovers from the loss of synchronisation after v correct
cyphertext symbols.

Introduction to stream ciphers 26:56
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Comparison of main features - synchronous vs. asynschronous

� Asynchronous stream are better in case of synchronization loss.

� Synchronous ciphers have no error propagation.

� Larger error propagation implies that it is easier to detect mallicious
modification of ciphertext.

� Harder to detect insertion or deletion of ciphertext digits due to self-
synchronization property than in case of synchronous ciphers. Need
for data integrity protection as well.

Introduction to stream ciphers 27:56
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Malleability of binary additive stream ciphers

� What happens if we intentionally flip one bit in the ciphertext?

� Say c�
j = cj � 1, where cj = pj � zj. Then p�

j = c�
j � zj = pj � 1.

� There is no way to detect this if the flip is suitably placed , 200$
may become 2000$ !

� This can be prevented by MAC (message authentication code) ap-
pended to the message.

Introduction to stream ciphers 28:56
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Appending MAC for stream ciphers

M e s s a g e C h e k s u m
R C 4  s t r e a m
c i p h e r = C i p h e r t e x t

P l a i n t e x t   P

� Flipping a bit in the ciphertext still result in the change of one bit
in plaintext !

� But the computed MAC on the plaintext is not the same as one
transmitted. Enough for protection ?

Introduction to stream ciphers 29:56
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Attacking MAC

1 0 0 1 0 0 1 1 1 1 Plaintext
0 1 1 0 0 0 1 1 0 1 Keystream
1 1 1 1 0 0 0 0 1 0 Ciphertext

• Append 2 bit linear CRC; (first bit = sum of odd bits, second
bit = sum of evens).

1 1 1 1 0 0 0 0 1 0 1 0 Ciphertext with CRC
0 1 1 1 0 0 0 0 1 0 0 0 Flip 1st bit and 1st bit of CRC
0 0 0 1 0 0 1 1 1 1 Decrypted plaintext

• CRC check is approved at intended receiver !

Introduction to stream ciphers 30:56
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Selecting CRC

� Do we solve the problem by encrypting CRC ?

� If the CRC is linear then encryption does not help.

� Encrypted CRC provides redundancy to test the key

• Encrypt nonlinear CRC: Typical CRC lengths are 16 or 32 bits. On
average 28 or 216 bit flips enough (birthday paradox).

• Increase the value of CRC, overload the frame and smaller e�-
ciency of the cipher.

• Stream cipher may provide data integrity but these seems to be
hard to design.

Introduction to stream ciphers 31:56
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Operation phases

� Solution is to use initialization vector (IV) which is changed upon
re-synchronization or for multiple sessions.

1. In the setup phase, the key and publicly known IV are used to
initialize the internal state of the cipher.

2. In encryption/decryption phase the next state is updated (com-
pute �t+1) and next block of encrypted/decrypted data is gener-
ated.

3. In the case of synchronisation loss or for a new session with the
same key use another (known) IV and the same key.

Introduction to stream ciphers 32:56



��

��

State of the cipher

� IV is added to the key so that the cipher has larger initial state
(prevents from TMD attacks), usually S � 2k.

secret key
 k  bits

public
initial value

initialization

x0 T
transition

x1 T

f f

0 1keystream

filter

int. state
2k

, S bits
S>=

z z

Introduction to stream ciphers 33:56
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Selecting IV

� The value of IV is not secret , can be sent through a public channel.

� Still, it should be chosen at random to avoid precomputation
attacks.

� IDEA If IV is known in advance to the attacker, he may precompute
the output keystream sequence for di�erent keys . Birthday paradox
implies the complexity well beyond brute force attacks.

� In practice IV is commonly of same length as key, the internal state
of the cipher S = 2k.

Introduction to stream ciphers 34:56
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Reusing IV

� There must me a mechanism to prevent from resuing IV with same
key !

� Main reason for the failure of many protocols, such as WEP.

� Reusing IV with the same key implies generating the same keystream
sequence. Two-time pad applies.

� Even worse if c(1)
i = p(1)

i � zi and c(2)
i = p(2)

i � zi then the knowledge

about p(1)
i gives:

p(2)
i = c(1)

i � c(2)
i � p(1)

i

Introduction to stream ciphers 35:56
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RC4 example

� Byte oriented popular cipher used in e.g. SSL/TLS, WEP. Designed
by Ron Rivest (Rivest Cipher 4); Rivest is the first R in RSA.

� It’s been around from 1987; designed at RSA security.

� The main feature is its exceptional speed both in software and hard-
ware. Approximately 2-3 times faster than AES.

� Measurement depends on the platform, optimization etc. You may
expect around 120 MB/sec as encryption speed.

� Requires a proper use to avoid known attacks

Introduction to stream ciphers 36:56
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RC4 example

� The early design did not include the IV vector; easiest to append IV
to key - might lead to certain weaknesses.

� Consists of 256 element array of 8-bit integers, state vector denoted
by S.

� The design of WEP is flawed as IV is only 24 bits long. We assume
that length of key and IV are same 128 bits.

� The content of IV and key is treated as a sequence of 16 integers
in the range 0 to 255.

Introduction to stream ciphers 37:56
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RC4 example cont.

1. Initialize state vector S[0 1 2 . . .255] = [0 1 2 . . .255]

2. Use temporary vector T of 256 bytes, and fill with key and IV values.

3. Use vector T to produce the initial permutation of S:

j = 0

for i = 0 to 255

j = (j + S[i] + T [i]) (mod 256)

SWAP (S[i],S[j])

Introduction to stream ciphers 38:56
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RC4 example keystream generation

i  =  0 ;   j  =  0

w h i l e  t r u e

i  =  (  i +1 )  %  256 ;
j  =  (  j+  S [  i  ] )  % 256 ;
swap (S  [  i  ] ,  S  [  j  ] ) ;
t  =  (  S  [  i  ]  +  S  [  j  ] )  % 256 ;
Ks  =  S  [  t  ] ;

.  .  ..  .  .S

0 1 S [ i ]  +  S[  j  ] i j 2 5 4 2 5 5

i j

K s

Introduction to stream ciphers 39:56
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RC4 summary

� RC4 starts as identity permutation but changes with time - the only
operation is SWAP.

� The internal state at any time is 256 � 8 + 2 � 8 = 2064 bits. The
latter stands for indices i, j.

� However, e�cient state size (entropic) is

|S| = log2(256!(28)2) � 1700bits.

� Knowledge of all |S| state bits enough to predict remaining keystream
sequence. Though hard to go backwards and deduce the key from
given state.

� Knowledge about key reveals of course everything. Period is di�cult
to estimate, empirically very long.

Introduction to stream ciphers 40:56
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eSTREAM performance testing framework

Encryption rate for long stream Likely the most important criterion,

EncSpeed =
NmbofBytes

250µs
= cycles/byte.

Stream cipher candidates should be superior to AES

Packet encryption rate Measure performance for packet transmission
(40, 576, 1576 Bytes)

Agility Encryption of many streams on a single processor: initiate many
sessions (16MB RAM) and encrypt 250 Byte for each session

Key and IV setup + MAC generation Least crucial test, e�ciency
of IV setup is already in packet rate. Key setup is negligible to key
generation and exchange.

Introduction to stream ciphers 41:56
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SNOW 2.0 - software oriented stream cipher

SW oriented cipher, designed in Lund - eSTREAM candidate.

S

running key

S

.

FSM

= S−box

= bitwise XOR= addition  mod 2      

= 32 bits registers 

  

st+15

��1

st+11 st+5 st+2 st

�

R2R1

LFSR
32 bits

32

R1, R2

Introduction to stream ciphers 42:56
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Software performance of SNOW 2.0

� Key=IV=128 bits; CPU speed 1.65 GHz

Encrypted 22 blocks of 4096 bytes (under 1 keys, 22 blocks/key)

Total time: 415015 clock ticks (244.87 µsec)

Encryption speed (cycles/byte): 4.61

Encryption speed (Mbps): 2943.95

Encrypted 350 packets of 40 bytes (under 10 keys, 35 packets/key)

Total time:411499 clock ticks(242.80 µsec)

Encryption speed (cycles/packet): 1175.71

Encryption speed (cycles/byte): 29.39

Encryption speed (Mbps): 461.29

Overhead: 538.2%

Introduction to stream ciphers 43:56
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IV setup - performance bottleneck

� In a frame based transmission IV is di�erent for each frame.

� Stream cipher must induce IV and Key - all state bits are complex
functions of key and IV bits.

Simple key initialization � faster cipher; security may be compromized

• Excellent example is usage of RC4 in WEP protocol. Only 3 Bytes
of IV (?!) are prepended to the Key; enough to break RC4 in WEP !

for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256

swap(S[i],S[j])

Introduction to stream ciphers 44:56
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Scenario of attacks

ciphertext-only The cryptanalyst tries to recover the key , or a part
of the key, or more plaintext by only observing the ciphertext.

known-plaintext The goal is to recover the key or a part of the key,
having some plaintext and the corresponding ciphertext .

chosen-plaintext Like above but cryptanalyst is able to choose any
plaintext and to obtain the corresponding ciphertext.

chosen-ciphertext Attacker has access to the decryption equipment ;
can decrypt any ciphertext. The goal is to find the key, (securely
embedded in the equipment), from the ciphertext-plaintext pairs.

Introduction to stream ciphers 45:56
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Measuring attacks’ complexity

Time (computational) complexity Expected number of operations
to perform the attack.

Memory complexity Expected number of storage units .

Data complexity Expected number of data needed for attack (ci-
phertext blocks, ciphertext/plaintext pairs ...).

Definition No attack on stream cipher should have all the complexities
less than brute force attack , i.e. checking for all possible keys.

Introduction to stream ciphers 46:56
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Trading the complexities

There are always trade-o�s between these complexities !

Computational brute force Check exhaustively all states and com-
pare with the keystream. Data and memory complexity O(S), time
complexity O(2S).

Memory brute force Precompute O(S) keystream bits for any possible
state. On-line attack, find the keystream sequence in the list. Time
and data complexity O(S), memory complexity O(2S).

Can we do better than that ?

Introduction to stream ciphers 47:56
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Time-Memory-Data trade-o� attack

� There are 2S di�erent initial states of the cipher.

1. Generate 2r di�erent states and observe S keystrem bits

z1, . . . , zS. Call this list Lr.

2. Observe a keystream of length 2m + S � 1 from unknown

state S0. Collect 2m overlapping sequences of length S, list Lm.

3. If we find the same sequence in the lists, go backwards to get
S0.

4. Probability of match is 0.5 for r + m = s (birthday paradox)!

Introduction to stream ciphers 48:56
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Visualizing the lists

S e q u e n c e    f r o m   S 0

S e q u e n c e    f r o m   S 1

S e q u e n c e    f r o m   S
2

r

S e q u e n c e s  f r o m  
d i f f e ren t  s t a tes

L is t   L r

x  x  x  x  x  x  x  x  x  x  x  x  x

S e q u e n c e s  f r o m  k e y s t r e a m  
o f  u n k n o w n  s t a t e

L is t   L m

x  x  x  x  x  x  x  x  x  x  x  x  x

Introduction to stream ciphers 49:56
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Time-Memory-Data trade-o� attack cont.

Time complexity is O(rS2m) – test 2m sequences of
length S using logarithmical search in list Lr.

Memory complexity O(S2r) for storing the list Lr.

Data complexity O(2m), observed keystream.

� The best trade-o� is to take r = m then the all complexities are
O(2S/2) using r + m = S.

� Thus if S < 2k, we have an attack that breaks the cipher.

Introduction to stream ciphers 50:56
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Size of the state

� Increased state size does protect cipher from TMD attacks (and
some similar) BUT

• Stream ciphers are supposed to be extremely fast

• Loss of synchronization is a common scenario; re-initialization

� The larger the state size the more time is needed for initialization.
Thus, choose the state size reasonably large !

Introduction to stream ciphers 51:56
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Ocupancy problem

n  ba l l s1
2

...

n - 1 n

D r a w  a  b a l l ,  w r i t e  d o w n  t h e  
n u m b e r  p u t  i t   b a c k  i n  t h e  u r n

� What is the probability, after drawing u balls, that there was at least
one collision.

Introduction to stream ciphers 52:56
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Birthday paradox

� SETUP: Given an urn with n balls numbered z1 to zn. Suppose
that u < n balls are drawn one at the time, with replacement and
the numbers are listed. What is the probability of at least one
coincidence ?

� Assume we draw u balls, say zi1, . . . , ziu, where i1, . . . , iu � [1, n].

� The choice of zi1 is arbitrary. The probability that zi2 �= zi1 is 1 � 1
n.

� Also Pb(zi3 �= zi2, zi3 �= zi1) = 1 � 2
n, and so on.
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Birthday paradox cont.

� The probability of no collision is,

(1 �
1

n
)(1 �

2

n
) · · · (1 �

u � 1

n
) =

u�1�

i=1
(1 �

i

n
). (2)

� The series expansion of exponential function gives,

e�x = 1 � x +
x2

2!
�

x3

3!
+ . . .

� For a small x (x � 0) we have e�x � 1 � x.

� Then the equation (2) becomes

u�1�

i=1
(1 �

i

n
) =

u�1�

i=1
e� i

n = e�u(u�1)
2n
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Birthday paradox cont.

� Hence the probability of at least one collision is � = 1 � e�u(u�1)
2n .

� Easy to show that u �
�

2nln 1
1�� = c

�
n.

� For n = 365 and u = 23 this probability is � 0.5. That is, among
23 persons in the same room with probability 0.5 two persons were
born on the same day.

� Identifying n = 2S we need to store u = 2
S
2 sequences then with

probability 1
2 we have a collision.
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Further reading

� Section 6.1 in Menezes et al. “Handbook of applied cryptography”

� Internet survey articles such as:

� “On the role of the inner state size in stream ciphers”, by Eric
Zenner, available at http://eprint.iacr.org

� “ Some Thoughts on Time-Memory-Data Tradeo�s”, by Alex
Biryukov.
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Chapter 4

Statistical Tests

Content of this chapter:

• Statistical properties of sequences.

• NIST statistical test.

• PRNG examples and cryptographically secure PRNG.

• LFSR and its usage in stream cipher design.

• Introduction to cryptanalysis.
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PRNG and Stream ciphers

S t r e a m  C i p h e r

I N P U T   S e e d

P R N G

K e y s t r e a m   o r  
p s e u d o - r a n d o m
s e q u e n c e

K e y  a n d  I V

Almost identical notions, though we reserve the usage of stream cipher
for fast and IV related applications.

Statistical testing and basic cryptanalysis 1:55
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Pseudorandomness of the sequence

Sta t i s t i ca l  t es t i ng

I N P U T

B i n a r y  s e q u e n c e   
1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 . . .

P s e u d o r a n d o m

N o n - r a n d o m  -  r e j e c t

Idea: Input sufficiently long sequence (keystream) generated by stream
cipher. Apply as many statistical tests as necessary to establish pseu-
dorandom properties (sequence behaves almost as random sequence)

Statistical testing and basic cryptanalysis 2:55
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Statistical testing

� Many statistical tests, five basic tests suite, Mauer’s universal sta-
tistical test, NIST statistical test. Well-known (not sufficient ) is
Golomb’s tests

1. Measure the number of zeros and ones in the sequence, #1 = #0

2. Define run (1, . . . ,1) (or (0, . . . ,0)) of length k. Half the runs
have length 1, a quater have length 2 etc.

3. The autocorrelation function should be small (look for similarity
with shifted sequence)

r(�) =
1

T

T�1�

i=0
(�1)sn+sn+� .

Statistical testing and basic cryptanalysis 3:55
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Performing statistical testing

• Two hypothesis :

� A Null hypothesis H0: Sequence being tested is random

� An alternative hypothesis Ha:Sequence being tested is not random

• For each applied test either accept or reject null hypothesis - apply
relevant randomness statistic that has a distribution of possible values.

1. A theoretical reference distribution calculated using mathematical
models

2. From this a critical value is determined (typically, this value is “far
out” in the tails of the distribution, say 99 % point).

3. Compute test statistic value on the sequence - if this value exceeds
the critical value, reject the null hypothesis.

Statistical testing and basic cryptanalysis 4:55
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Statistical hyptothesis testing

CONCLUSION
TRUE SITUATION Accept H0 Accept Ha (reject H0)

Data is random (H0 is true) No error Type I error
Data is not random (Ha is true) Type II error No error

� Type I error has less significant impact - random sequence did not
pass the test (not often happens). The probability of Type I error
is called level of significance , denoted �.

� The value of � is set prior to test, commonly � = 0.01

� Probability of Type II error is denoted �. A “bad” generator produced
sequence that appears random. The value of � is harder to compute
than � due to many possible ways of nonrandomness.

Statistical testing and basic cryptanalysis 5:55
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Statistic on random sample

� Probabilities �, � and sample size n are related so that specifying
two of them the third value can be computed.

� Select sample size n and � (probability of Type I error)

� Choose cutoof point for acceptability so that � is minimized.

� Each test is based on a calculated test statistic value S which is a
function (statistic) of the data.

Important to specify proper statistic:

Statistic is efficiently computed

Follows approximately N(0,1) or �2 distribution

Statistical testing and basic cryptanalysis 6:55
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Probability density function

Definition: If the result X of an experiment can be any real number,
then X is said to be a continuous random variable .

Definition: A probability density function of X is a function f(x)
which can be integrated and satisfies:

(i) f(x) � 0, for all x � R
(ii)

� �

��
f(x)dx = 1;

(iii) �a, b � R, P (a < X � b) =
� b

a
f(x)dx.

Statistical testing and basic cryptanalysis 7:55

��

��

Normal distribution

Definition: Random variable X has a normal distribution with mean
value µ and variance �2 if its probability function is:

f(x) =
1

�
�

2�
exp{

�(x � µ)2

2�2
}, �� < x < �

Statistical testing and basic cryptanalysis 8:55
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Testing with normal distribution

We can compute probability P (X > x) = �,

� 0.1 0.05 0.025 0.01 0.005 0.001
x 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902

Entry � = 0.05, x = 1.645 means X exceeds 1.645 about 5% of time

• Assume statistic X of random sequence follows N(0,1) distri-
bution.

1. Given significance level � compute a treshold (critical value) x� so
that P (X > x�) = P (X < �x�) = �/2.

2. Compute XS for the sample output sequence:
� If XS > x� or XS < �x� the sequence fails the test .

� Otherwise sequence pass the test .

Statistical testing and basic cryptanalysis 9:55
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Example of modelling with normal distribution

Autocorrelation test: Given a binary sequence s = s0, . . . , sn�1. Let
1 � d � �n/2�.

� Calculate autocorrelation function,

A(d) =
n�d�1�

i=0
si � si+d

� The suitable statistic is,

XS = 2
�
A(d) �

n � d

2

�
/
�

n � d,

which approximately follows N(0,1) distribution.

� Both small and large values of A(d) are unexpected, two-sided test
should be performed.

Statistical testing and basic cryptanalysis 10:55
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�2 distribution

When squares of v independent normal random variables are summed .

Definition: Random variable X has a �2 distribution with v degrees of
freedom if its probability function is:

f(x) =
1

�(v/2)2v/2
xv/2�1e�x/2, x � 0,

Statistical testing and basic cryptanalysis 11:55
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�2 distribution - example

Frequency (monobit) test: Given a binary sequence s = s0, . . . , sn�1.
Detremine if the number of 0’s and 1’s in s are approximately the same.

� Let n0 and n1 be the number of 0’s and 1’s

� The suitable statistic is,

XS =
(n0 � n1)2

n
,

which approximately follows �2 distribution with 1 degree of freedom.

� For � = 0.01 the probability P (X > x) = � gives x� = 6.635. One-
sided test of course !

Statistical testing and basic cryptanalysis 12:55
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Modelling with normal and �2 distribution

• The test statistic for the standard normal distribution is of the form
z = (x � µ)/�, where x is the sample test statistic value, and µ and �2

are the expected value and the variance of the test statistic.

AC test: µ = (n � d)/2 and �2 = (n � d)/4; XS = 2(A(d) � n�d
2 )/

�
n � d

• The �2 distribution is used to compare the goodness-of-fit of the
observed frequencies of a sample measure to the corresponding expected
frequencies of the hypothesized distribution.

• The test statistic is of the form
�

((oi � ei)2/ei) , where oi and
ei are the observed and expected frequencies of occurrence of the mea-
sure, respectively.

Statistical testing and basic cryptanalysis 13:55
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Run test with �2 distribution

• Purpose: Determine whether the number of runs (of either zeros
of ones) of various lengths in the sequence s is as expected for a random
sequence.

Random seq.- Expected nmb. of runs of length i: ei = (n � i + 3)/2i+2.

• Run is either BLOCK or GAP, e.g. length 3 : 01110 or 10001
• Let k largest integer i for which ei � 5.

• Let Bi, Gi be the number of blocks and gaps, respectively, of

length i in s for each i, 1 � i � k. The statistic used is:

XS =
k�

i=1

(Bi � ei)2

ei
+

k�

i=1

(Gi � ei)2

ei
.

Statistical testing and basic cryptanalysis 14:55
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Statistical testing NIST suite I

1. The Frequency (Monobit) test determines whether the number of ones and zeros in
a tested sequence are approximately 1/2, as is expected for a truly random fair binary
sequence. All subsequent tests depend on the passing of this test.

2. The Test for Frequency within a Block determines whether the frequency of ones
in an M-bit block of the tested sequence is approximately M/2.

3. The Runs test : determine whether the total numbers of runs of ones and zeros of
various lengths is as expected for a random sequence. Oscillation between zeros and
ones is too fast or too slow.

4. The Test for the Longest-Run-of-Ones in a Block determines whether the longest

run of ones within an M-bit block of the tested sequence is consistent with the length

of the longest run of ones that would be expected in a random sequence of M bits.

Statistical testing and basic cryptanalysis 15:55
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Statistical testing NIST suite II

5. The Random Binary Matrix test uses disjoint submatrices formed from the entire
sequence to check for linear dependence among fixed length substrings.

6. The Discrete Fourier Transform (Spectral) test uses the peak heights of the Discrete
Fast Fourier Transform of the tested sequence to detect periodic features.

7. The Non-overlapping Template Matching test determines whether there are too
many occurrences of predefined aperiodic patterns.

8. The Overlapping Template Matching test also determines whether there are too

many occurrences of predefined patterns.

Statistical testing and basic cryptanalysis 16:55
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Statistical testing NIST suite

9. The Maurer’s "Universal Statistical" test determines whether or not the tested
sequence can be significantly compressed without loss of information.

10. The Lempel-Ziv Compression test examines the number of cumulatively distinct
patterns to determine how far the sequence can be compressed.

11. The Linear Complexity test determines whether or not the sequence is complex
enough to be considered random: Determine the length of an LFSR that would produce
the sequence. A short feedback register implies non-randomness.

12. The Serial test checks for the uniformity of the distribution(s) of overlapping m-bit

patterns for varying pattern lengths,m. Random sequences exhibit uniformity: every

m-bit pattern should appear as frequently as every other m-bit pattern, on average.

Statistical testing and basic cryptanalysis 17:55
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Statistical testing NIST suite IV

13. The Approximate Entropy test compares the frequency of overlapping blocks
of two consecutive lengths (m and m+1) against the expected result for a random
sequence.

14. The Cumulative Sums (Cusums) test determines whether the maximum absolute
value of the cumulative sum of the partial sequences occurring in the tested sequence
is too large or too small relative to the expected behavior of such a cumulative sum
for random sequences.

15. The Random Excursions test determines if the numbers of visits of the cumulative
sum random walk to integer levels (“states”) between successive zero level crossings
distribute as expected for a truly random sequence.

16. The Random Excursions Variant test extends the Random Excursions test by

examining level crossing distributions across multiple excursions between zero level

crossings.

Statistical testing and basic cryptanalysis 18:55
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Linear congruential generator

Produces pseudorandom sequence of numbers,

xn = axn�1 + b (mod m), n � 1,

using secret seed x0, and generator parameters.

• Cryptographic security : NONE. Given a part of the output se-
quence, the remainder of the sequence can be reconstructed (linear
recursion).

• No need to know a, b, m. Commonly a single bit is outputed.

� Still it passes many statistical tests, except few sophisticated ones.

• MORAL: Statistical tests are necessary but not sufficient.

Statistical testing and basic cryptanalysis 19:55
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(k, l)-Linear congruential generator

Let M � 2, and 1 � a, b � M � 1. Define k = �log2 M�
and let k +1 � l � M �1. For a seed x0, 0 � x0 � M �1,
define

xi = axi�1 + b (mod M)

for 1 � i � l, and define

f(x0) = (z1, z2, . . . , zl),

where

zi = xi mod 2, 1 � i � l.

Then f is a (k, l)-Linear congruential generator.

Statistical testing and basic cryptanalysis 20:55
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(5,10)-LCG (toy example)

Example: We can obtain (5,10)-PRBG by taking M = 31, a = 3 and
b = 5 in the LCG.
Associated linear mapping is

x �� 3x + 5 (mod 31)

For instance the seed x0 = 1 gives sequence, (anything but 13 !)

8, 29, 30, 2, 11, 7, 26, 21, 6, 23, . . .
0, 1, 0, 0, 1, 1, 0, 1, 0, 1, . . .

The sequence is easily distinguished from truly random sequence

• We construct a next bit predictor for the sequence.

Statistical testing and basic cryptanalysis 21:55
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Constructing the next bit predictor

Next bit predictor: Probabilistic algorithm Bipredicts i-th bit with Pb �
1/2 + �, based on observation of previous i � 1 bits.

Theorem: Let f be a (k, l)-PRBG. Then Bi is an �-next bit predictor
iff,

�

(z1,...,zi�1)�(Z)i�1
2

p(z1, , . . . , zi�1) � p(zi = Bi|(z1, , . . . , zi�1)) � 1/2 + �.

Example: For any 1 � i � 9 define Bi = 1 � zi�1, Bi predicts that
0 � 1 or 1 � 0 is more likely than 0 � 0 or 1 � 1.

• Each Bi for our (5,10)-LCG is a 9/62- next bit predictor. The
next bit predicted correctly with Pb = 1/2 + 9/62 = 20/31.
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Constructing distinguisher from the next bit predictor

Input: an l-tuple (z1, . . . , zl)
1. Compute z := Bi(z1, . . . , zi�1)
2. if z = zi then

A(z1, . . . , zl) = 1
else

A(z1, . . . , zl) = 0

Theorem: Let Bi be an �-next bit predictor of a (k, l)-PRBG f . Let p1
be the probability distribution induced on (Z2)l by f , and p0 uniform
probability distribution on (Z2)l. Then, A is an �-distinguisher of p1
and p0.

Meaning |E(p0)� E(p1)| � �; E(pj) is expected value of the output of A

over distributions pj.

Statistical testing and basic cryptanalysis 23:55
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1/P pseudo random generator

Cryptographically insecure, given here for historical reasons. Modern
variant is called FCSR.

� Usual setup is:
� Prime P and base b related to expansion of 1/P , gcd(b, P ) = 1.

� Sequence of base b with period P � 1.

Example: Let b = 10, P = 503. Then

1/P = 00198 80715 . . . 43339 96023 . . . 33001 98807� �� �
502 digits

. . .

• We only need a segment of k = �log10(2 · 5032)� = 6 to recover P ,
and extend segment back and forward .

• Need just basic continued fraction representation.
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Recovering P in 1/P pseudo random generator

433,399

1,000,000
= 0.433399 =

1

2 + 1
3+ 1

3+ 1
1+ 1

16+ 1
6+ 1

1+...
� From the sequence :

1

a1
, . . . ,

1

a5
=

1

2
,
1

3
,
1

3
,
1

1
,

1

16

construct the convergents using the rule:
A1

B1
=

1

a1
;

A2

B2
=

a2

a1a2 + 1
;

Ai

Bi
=

aiAi�1 + Ai�2

aiBi�1 + Bi�2
;

until the first k = 6 digits are qm+1 . . . qm+k = 433399.
A1

B1
=

1

2
= 0.5;

A2

B2
=

3

7
= 0.48 . . . ;

A2

B2
=

10

23
= 0.434 . . . ;

A3

B3
=

13

30
= 0.43333 . . .

A4

B4
=

218

503
= 0.433399
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Cryptographically secure pseudorandom bit generator

Definition: A pseudorandom bit generator (PRGB) is said to pass the
next bit test if there is no polynomial time algorithm that using the
first l bits of sequence s can predict (l + 1)-bit with probability
significantly greater than 1/2.

Definition: A PRGB that passes the next bit test is called a
cryptographically secure pseudorandom bit generator (CSPRBG).

• Universality of the next-bit test : A pseudorandom bit generator
passes the next-bit test if and only if it passes all polynomial-time sta-
tistical tests. (see Stinson)
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Blum-Blum-Shub CSPRBG

� We can construct CSPRBG assuming that integer factorization is
intractable.

1. Generate two large primes p, q � 3 (mod 4) and compute n = pq.

2. Select a random seed s � [1, n � 1] such that gcd(s, n) = 1; and
compute x0 � s2 (mod n).

3. For i from 1 to l do the following:

xi � x2
i�1 (mod n)

zi � the least significant bit of xi(xi (mod 2))

Statistical testing and basic cryptanalysis 27:55
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Blum-Blum-Shub number theory framework

The condition p, q � 3 (mod 4) implies n � 1 (mod 4), each quadratic
residue has exactly one square root also a quadratic residue (exercise).

1. Forward direction Knowledge of N sufficient to generate x0, x1, . . .,
and z0, z1, . . .. Complexity roughly O(logn)2- low efficiency.

2. Backward direction Given n the factors of n are necessary and
sufficient to compute sequence backwards, x0, x1, x2, . . . (exercise)

3. The factors of n are necessary to find an poly time �-distinguisher
to guess parity of x�1 given x0 (see Stinson)

4. Period Select n s.t. ord�(n)/2(2) = �(�(n)) and the seed x0 s.t.
ordn = �(n)/2. Then T (x0) = �(�(n)).
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Usage of Blum-Blum-Shub

� There are two main reasons why we do not use BBS keystream gen-
erator:

� Though only one modular squaring is needed; BBS is much slower
than well-designed stream cipher.

� The key is much larger; 1024 bits are used for a secure RSA
setup.

� One may extract j = log logn least significant bits (asymptotically);
while not compromizing the security of BBS generator. Still, it is
not sufficiently fast.

• Good for generation of cryptographic keys

Statistical testing and basic cryptanalysis 29:55
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Asymptotically secure bounds

� Notions of asymptotically secure in sense of indidstinguishibility from
random sequence and next bit polynomial time �-distinguisher are
equivalent (Yao).

Definition: For n = size of seed and M = length of sequence, define:
G is said to be (T, �)-secure in the sense of indistinguishability if there
is no algorithm (statistical test) with running time bounded by T that
distinguish the sequence from truly random sequence with P � 1/2 + �.

(T, �/M) � next bit secure � (T, �) � indisting. secure

Expected running time for the number fieeld sieve to factor n-bit Blum
integer is,

L(n) � 2.8 · 10�3e1.9229(n ln 2)1/3(ln(n ln 2))2/3
.
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Asymptotical bounds for BBS

� For j = 1 (n large) BBS generator is (T, �)-secure in the sense of
indistinguishability if,

T � L(n)(�/M)2

6n logn
�

27n(�/M)�2 log(8n(�/M)�1)

logn

� For j > 1 BBS generator is (T, �)-secure if,

T � L(n)

36n(logn)��2 � 22j+9n��4; � = (2j � 1)�1(�/M).

n L(n) AB j = 1 AB j = logn
1024 278 2�79 �2�199

2048 2108 2�80 �2�206

3072 2130 2�80 �2�206

7680 2195 2115 �2�213

15360 2261 2181 �2�220
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DFFT test on Blum-Blum-Shub generator

• Sequence of 5000 bits, from BBS. Every 10-th bit set to 1.
• At most 5% of peaks larger than 95% cutoff (122 =

�
3 · 5000).
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Statistical testing of stream ciphers

� CSPRNG property could be proved for BBS generator (intractability
of factorization). For standard stream cipher schemes we cannot
prove this.

Sta t i s t i ca l  t es t i ng

I N P U T

B i n a r y  s e q u e n c e   
1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 . . .

P s e u d o r a n d o m

N o n - r a n d o m  -  r e j e c t

S e c u r e  c i p h e r  ?

K e y s t r e a m  s e q u e n c e s  ( m a n y )
o f  s t r e a m  c i p h e r

N O  ! !
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Distinguishing attack

� An attack that distinguish the keystream sequence from a truly ran-
dom sequence is called a distinguishing attack.

� If there is no distinction, then cipher acts as a One-time pad. Im-
possible to achieve with finite key length.

� In most cases, these attacks have no security implications on security
of stream ciphers.

� In practice, distinguishing attacks on stream ciphers are usually im-
possible to mount - though reduced trust in cipher construction .
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Distinguishing attack - some remarks

� For instance for the DES block cipher there is a straightforward
distinguishing attack that needs 232 blocks (words).

� This is due to the fact that DES belongs to the family of pseudo
random permutations on 64 bits, and after 232 encrypted blocks of
data some block must be repeated (birthday paradox).

� However no information about the key is revealed.

� Sometimes distinguishing attacks may be turned into key recovary
attacks.

Statistical testing and basic cryptanalysis 35:55
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Hypothesis testing

� Recognize a nonrandom behavior of keystream. Construct the cipher
distribution PC from the observed keystream sequence z = z1, z2, . . .,

Lt(z) =
|I|�

i=1
zt+I(i) �t, ; I some index set

� If approximations are “good” the samples from PC are very noisy but
not uniformly (randomly) distributed.

D I S T I N G U I S H E R

I N P U T
k e y s t r e a m  z ’
p o s s i b l y  f r o m  X

R a n d o m

S e q u e n c e  
f r o m   X
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SNOW 2.0 - software oriented stream cipher

� Distinguishing attack 2177 bits of keystream and 2172 operations.

S

running key

S

.

FSM

= S−box

= bitwise XOR= addition  mod 2      

= 32 bits registers 

  

st+15

��1

st+11 st+5 st+2 st

�

R2R1

LFSR
32 bits

32

R1, R2
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Design rationales - introduction

� No design strategies how to construct secure and fast stream cipher.

� An essential primitive is LFSR (Linear Feedback Shift Register):

� fast in hardware and low hardware complexity

� good statistical properties,

� drawback - low linear complexity, relatively slow in software

� Other primitives include NFSR (Nonlinear FSR), FCSR, S-boxes,
Boolean functions, addition (mod 2n) etc.
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Example - Linear Feedback Shift Registers (LFSR)

. . . s0

si

c1

sk�1 sk�2

ckck�1c2

s1

1. The content of stage 0 is output and forms a part of output sequence

2. The content of stage i is moved to stage i�1, for each 1 � i � k�1.

3. The new content of stage k � 1 is computed.
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Pseudorandom properties of LFSR

� LFSR is FSM so sequence is repeated after T (bits or blocks), i.e.
st = st+T , t � 0.

� If C(x) = 1 + c1x + · · · + ckxk � Fq[x] is primitive then the sequence
is of maximum length, i.e. T = qk � 1 .

� A maximum length LFSR satisfies pseudorandom postulates but the
problem is linear recursion. Given 2k output bits (blocks) one can
recover the initial state using Berlekamp-Massey algorithm.

� To destroy nonlinearity one commonly applies a nonlinear filtering,
e.g. a Boolean function.
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Low hardware implementation using LFSR

LFSR�1�

LFSR�2�

LFSR�n�

f�

+�

.�
:�

PLAINTEXT� CIPHERTEXT�

KEYSTREAM�

z�i�

y�i� c�i�

Nonlinear combining generator

� Many requirements on the choice of Boolean function. Both for
security reason and implementation (low number of gates).
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Attacks on stream ciphers - preliminaries

� It is assumed that the encryption algorithm and the keystream se-
quence is known to the attacker (known-plaintext attack)

� Known-plaintext attack is a reasonable assumption, e.g. guess the
ending or beginning of e-mail: Dear Sir, . . ., Sincerely yours.

� Having a huge ammount of keystream bits one can try (partial) key
recovery attack or to distinguish the cipher from a truly random
sequence ?

� Exhaustive key search tries each possible key and compares the re-
sulting keystreams. The key of k binary bits gives 2k operations.
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Designers viewpoint

Speed - simple structure; Security - good confusion and diffusion

� Designers often oversee plausible cryptanalysis; “our design with-
stand current cryptanalysis ...”

� Security is often traded against speed (not intentionaly)

� Nonlinearity and pseudorandomness must be introduced in a clever
way to acheive good performance and security.

Statistical testing and basic cryptanalysis 43:55
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General Shannon’s attack

� Encyphering can be seen as E = f(K, M).

� Given M = m1, m2, . . . , ms and E = c1, c2, . . . , cs cryptanalyst can set
up equations for different key elements k1, k2, . . . , kr

c1 = f1(m1, m2, . . . , ms; k1, k2, . . . , kr)
c2 = f2(m1, m2, . . . , ms; k1, k2, . . . , kr)

...
cs = fs(m1, m2, . . . , ms; k1, k2, . . . , kr).

� Each equation must be complex in ki and involve many of them.
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Shannon’s attack applied to stream ciphers

� The scenario is usually known-plaintext attack. Thus, knowing c

and m the keystream z is known and the system becomes:

z1 = f1(s1, s2, . . . , sv)

z2 = f2(s1, s2, . . . , sv)
...

zl = fs(s1, s2, . . . , sv).

� Each equation must be complicated equation in the secret state bits
si and involve many of them.

� Closely related to algebraic attacks.
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Generic attacks on stream ciphers

� Called generic since they are applicable to any stream cipher.

� Among others the most important ones are:

1. Correlation attacks

2. Algebraic attacks

3. Guess-and-determine attacks

4. Distinguishing attacks

5. Side channel attacks etc..
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Guess and determine attacks

� Simple but can be very powerfull. Especially if the design is “bad”.

� IDEA: Guess a part of internal state and try to determine the re-
maining key bits by observing the keystream.

� The guess is tested using some statistical method.

Statistical testing and basic cryptanalysis 47:55
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Guess and determine attacks - an example

LFSR R1

LFSR R2

LFSR R3

AND

AND

sys. clock

zt

� Guess the content of LFSR R1.

� If the lengths of LFSR’s are l1, l2, l3 then observe l2 + l3 keystream
bits. A linear system that can be easily solved. The time complexity
is only 2l1.
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Correlation attacks

� Correlation attacks are key recovary attacks , correlation between
secret state/key bits and keystream.

� Especially applicable to LFSR-based stream ciphers .

� An eStream candidate, for a new stream cipher standard, ABC was
successfully broken using correlation attacks.

� The attack might not be as obvious as in the following example.
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Correlation attacks - an example

LFSR1

LFSR2

LFSRn LFSRi

TEST

length

l1

l2

ln

keystream

Correlated ?

f : Fn
2 � F2

zt

x2

x1

xn

� Exhaustive search is performed trying
�n

i=1(2
li � 1) different keys.

� Assume Pb(xt
i = zt) = 1

2 + �. Try each state of LFSRi and measure
the number of zeros in the XORed sequence. Complexity drops to

n�

i=1
(2li � 1).
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Defending correlation attacks

� Use function f which is resilient to this attack. This means that
Pb(xt

i = zt) = 1
2 for each i. No correlation between single LFSR’s

and the keystream.

� But similar attack may be performed by considering a pair of LFSR’s,
tripple of LFSR’s . . ..

� A “good” cryptographic design of such functions will be treated in
depth.
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Algebraic attack on stream ciphers with linear transition

� Derived from Shannon’s attack, lowering the degree of equations.

� Set up the enciphering equations:

z0 = f(k0, k1, . . . , kn�1)

z1 = f � L(k0, k1, . . . , kn�1)
...

zt = f � Lt(k0, k1, . . . , kn�1).

� System of equations in n variables of degree d = deg(f). The number
of terms is � �d

i=0

�
n
i

�
. Observe more than

�d
i=0

�
n
i

�
� nd

d! bits and

solve in time (nd

d! )
3.
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Algebraic attack - degree of equations

s 1 s 2 s 3 s n

F u n c t i o n  f  o f  d e g r e e  d

O u t p u t
z t

I N P U T

Output is then in the form:

f(s1, s2, . . . , sn) = s1s2 · · · sd + s2s3 · · · sd+1 + ... + s1sd + ...
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Algebraic attacks- decreasing the degree of f

� Assume d = deg(f) = 7. Then if the key length is k = 128 bits and
the size of internal state n = 2k = 256 then the time complexity is,

(
d�

i=0

�2k

i

�
)3 � (

�256

7

�
)3 = 2129.

� Let now g s.t. f(x)g(x) = 0 and deg(g) = 3. Then if zi = 1,

f(x) = zi = 1 =� g(x) = 0.

� The time complexity becomes,
��3

i=0

�
2k
i

��3
�

��
256
3

��3
= 263.
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Side channel attacks

� Utilize information leakage form other channels than keystream.

� Two examples are power analysis and timing analysis

� The power usage is measured for instance on a smart card when
different operations are performed. More power for complicated
operations.

� Timing attacks are similar but they measure execution time of vari-
ous steps in algorithms.
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Chapter 5

Pseudo-random Sequences

Content of this chapter:

• LFSR and generating functions.

• Design of periodic sequences.

• Berlekamp-Massey synthesis algorithm.

• Linear complexity of finite sequences.

• Applications of LFSR in stream ciphers.
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Pseudo-random sequences suitable for stream ciphers

� The main objective is to design cryptographically secure PRNG:

� Keystream sequence should have large period

� It should pass diverse statistical tests

� What are the suitable period and tests ?

Example: Assume encryption speed of 100MB/sec (realistic) and
the period of sequence T = 232. A sequence repeat itself after only
5 seconds !

� For real-life applications the period should be at least 260

Finite Period Sequences 1:47

��

��

Repetition of keystream implies two-time pad

S t r e a m  c i p h e r

S N O W  2 . 0  
R C 4  
A5 .  .  .

K e y

I V
K e y s t r e a m

z 1 , z 2 , .  .  . , z
T , z T + 1

� Means that zi+T = zi for all i � 1 thus,

ci � ci+T = mi � zi + mi+T � zi+T = mi � mi+T .
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Ensuring the long period

� It is desirable to obtain a lower bound on the period.

� How do we generate sequences of long period ?

� Common approach is to use simple finite state machines such as
LFSR (Linear Feedback Shift Register)

� Given a number of stages L (length of LFSR) it can generate a
maximum length sequences 2L � 1.

Finite Period Sequences 3:47
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Linear Feedback Shift Registers (LFSR)

s 3 s 2 s 1 s 0

Ou t p u t
0 1 1 1

1 1 10 t =1

1 10 0 t =2
.
.
.

0 1 1 1 t = 1 5

t =0

� The recurrence is st+4 = st+3 + st, t � 0.
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LFSR - a general depiction

- c- c - c L1 2

ss s s 01L - 2L - 1

s i.  .  .

1. The content of stage 0 is output and forms a part of output sequence

2. The content of stage i is moved to stage i�1, for each 1 � i � L�1.

3. The new content of stage L � 1 is computed.

Finite Period Sequences 5:47
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Some further notions related to LFSR-s

� If the initial content of stage i is si � GF (2m) for each i, 0 � i � L�1,
then [sL�1, . . . , s1, s0] is called initial state of LFSR.

� The polynomial C(x) = 1 + c1x + · · · + cLxL � GF (2m)[x] is called
the connection polynomial.

� The output sequence s = s0, s1, . . . is uniquely determined via,

sj = �(c1sj�1 + c2sj�2 + · · · + cLsj�L) for j � L.

� The state at time t is St = (st+L�1, st+L�2, . . . , st)
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Maximum length LFSR

� LFSR is FSM so sequence is repeated after T (bits or blocks), i.e.
st = st+T , t � 0. Clearly, 1 � T � 2L � 1 as zero state cannot appear
(why ?).

� In the previous example we get the sequence of maximum period
T = 24 � 1 = 15.

� This is because we have chosen a primitive connection polynomial

C(x) = 1+ x+ x4

�
0 = st+4+ st+3+ st

Finite Period Sequences 7:47
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Example cont.

� In the previous example starting at S = (0,1,1,1) we have:
t s3 s2 s1 s0 = zt

0 0 1 1 1
1 1 0 1 1
2 0 1 0 1
3 1 0 1 0
4 1 1 0 1
5 0 1 1 0
6 0 0 1 1
7 1 0 0 1
8 0 1 0 0
9 0 0 1 0
10 0 0 0 1
11 1 0 0 0
12 1 1 0 0
13 1 1 1 0
14 1 1 1 1
15 0 1 1 1
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Periodic cycles

1111

1110

11011011

0111

1000

0001

0011

1100

0110

0100

1010

0101

1001

0010

Cycles for irreducible C(x) = 1 + x + x2 + x3 + x4

Finite Period Sequences 9:47
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Period of connection polynomial

� The period of C(x) =
�L

i=0 cix
i � Fq[x] is the least positive integer

T s.t. C(x)|xT � 1.

� Do long division of 1
C(x) until the rest is xT ; i.e. 1

C(X) = Q(x)+ xT

C(x).

� E.g. if C(x) = 1 + x + x2 + x3 + x4 � F2[x] we have,

1 = (1+x)·(1+x+x2+x3+x4)+x5 � 1+x5 = (1+x)·(1+x+x2+x3+x4)

� Thus the period of C(x) is T = 5.
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Generating functions

� We need a concept of generating functions .

� We say the sequence is causal if it starts at t = 0. A periodic
sequence (of period T ) is given as

s = s0, s1, . . . , sT�1, s0s1 . . . = [s0, s1, . . . , sT�1]
�.

� Let us represent s as a polynomial,

S(x) = s0 + s1x + s2x2 + · · · =
��

k=0
skxk.

Finite Period Sequences 11:47
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Generating functions

� Then for given S(x) and C(x) we have,

S(x)C(x) =
��

k=0
skxk

L�

i=0
cix

i =
��

k=0

L�

i=0
skcix

k+i = j � k + i

=
��

j=0
[

L�

i=0
cisj�i]x

j.

� But we also have
�L

i=0 cisj�i = 0 for j � L, hence

S(x)C(x) =
L�1�

j=0
[

L�

i=0
cisj�i]x

j = P (x),

where P (x) = p0 + p1x + · · · pL�1xL�1 and

pj =
L�

i=0
cisj�i =

j�

i=0
cisj�i, j = 0,1, . . . , L � 1.
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Generating function of periodic sequence

� Thus any sequence from LFSR has the transform,

S(x) =
P (x)

C(x)
, deg(P ) < deg(C).

� Also [1,0,0, . . . ,0]�� �� �
Tpositions

� 1 + xT + x2T + · · · = 1
1�xT .

� [0,1,0, . . . ,0]�� �� �
Tpositions

� x + xT+1x2T+1 + · · · = x
1�xT

� Thus, the generating function of periodic sequence [s0, s1, . . . , sT�1]
�

is,

S(x) =
s0 + s1x + · · · + sT�1xT�1

1 � xT
; si � Fq.

Finite Period Sequences 13:47
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Uniqueness of representation

� The coefficients pj of P (x) are expressed as,

pj =
j�

i=0
cisj�i, j = 0,1, . . . , L � 1.

�

����

p0
p1...

pL�1

�

���� =

�

����

1 0 · · · 0
c1 1 · · · 0

...
cL�1 cL�2 · · · 1

�

����

�

����

s0
s1...

sL�1

�

���� .

• Nonsingular matrix, unique solution for initial state given [pL�1, . . . , p0].

Theorem: Given LFSR and C(x) the set of all possible sequences that
can be generated is the set of sequences with gen. function

S(x) =
P (x)

C(x)
, deg(P ) < deg(C).

Finite Period Sequences 14:47
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Fibonacci versus Galois model

- c- c - c L1 2

ss s s 01L - 2L - 1

s i.  .  .

G a l l o i s

• The two models are equivalent. Galois takes [sL�1, . . . , s1, s0] as
initial state and Fibonacci [pL�1, . . . , p1, p0].

- c- c - c 1L L - 1

pp p p 01L - 2L - 1

s i.  .  .

F i b o n a c c i

Finite Period Sequences 15:47
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Equivalence of Fibonacci and Galois model

The same recursion is valid for Fibonacci model,

sj = �(c1sj�1 + c2sj�2 + · · · + cLsj�L) for j � L.

• Do we really get s0, . . . , sL�1 using initial state [pL�1, . . . , p1, p0] ?

p0 = s0
p1 = s1 + c1s0
p2 = s2 + c1s1 + c2s0

...
pL�1 = sL�1 + c1sL�2 + · · · + cL�1s0

We compute outputs as follows,

z0 = p0 = s0
z1 = �c1s0 + p1 = �c1s0 + s1 + c1s0 = s1

...

Finite Period Sequences 16:47
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Some other applications of LFSR

• Easy to implement multiplication in the field with Fibonacci model.

� Assume we want to multiply � = a0 + a1� + a2�2 + a3�3 with � in
the GF (24), � primitive element, the root of f(x) = x4 + x + 1.

aa a a 3210

� Since � = �i the content of LFSR will be �i, �i+1, �i+2, . . ..

Finite Period Sequences 17:47
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Multiplication with � cont.

aa a a 3210

aa a a 2103 + a 3

• Exactly what we need as (using �4 = � + 1),

�(a3�3 + a2�2 + a1� + a0) = a2�3 + a1�2 + (a0 + a3)� + a3.

Finite Period Sequences 18:47
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Period of sequence

Theorem: If gcd(P (x), C(x)) = 1 then the period of C(x) is the same
as period of

S(x) =
P (x)

C(x)
, deg(P ) < deg(C)

Proof: Assume period of C(x) is T and period of S(x) is T �. So there
is Q(x) � Fq[x] s.t. C(x)Q(x) = 1 � xT . So,

S(x) =
P (x)

C(x)
=

P (x)Q(x)

C(x)Q(x)
=

s0 + s1x + · · · + sT�1xT�1

1 � xT
,

for some (s0, . . . , sT�1). Hence T � � T .

Finite Period Sequences 19:47
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Period of sequence cont’d

Proof: But also, s = [s0, s1, . . . , sT ��1]
� so we have,

S(x) =
P (x)

C(x)
=

s0 + s1x + · · · + sT ��1xT ��1

1 � xT � ,

which can be written as,

(1 � xT �
)P (x) = (s0 + s1x + · · · + sT ��1xT ��1)C(x).

But as gcd(P (x), C(x)) = 1 then C(x)|1 � xT �
. Since the period of

C(x) is T it must be that T � T � so T = T �.
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Primitive versus irreducible connection polynomial

� Thus irreducible C(x) implies gcd(C, P ) = 1 so the period of S

is actually the order of C(x), i.e. the least e � qk � 1 such that
C(x)|xe � 1. We recall a result from finite field theory:

Theorem: A polynomial C � Fq[x] of degree k is primitive if and
only if ord(C) = qk � 1.

� Thus, only primitive polynomials have the largest possible period.

Finite Period Sequences 21:47
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Golomb postulates

� Number of zeros and ones in the sequence, #1 = #0 ± 1

� A run of length k is (1, . . . ,1) (or (0, . . . ,0)). Half the runs have
length 1, a quater have length 2 etc.

� The autocorrelation function of a binary periodic sequence defined
by

r(�) =
1

T

T�1�

i=0
(�1)sn+sn+� ,

should be small.

� All above satisfied by maximum-length LFSR sequence.

Finite Period Sequences 22:47
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Statistical properties - example

� In our example C(x) = 1 + x + x4 and the sequence was:

s = 111010110010001|11101 · · ·

� Number of ones is 8, and nmb. of zeros 7.

� Number of runs is 8. For instance there are two runs of length
2, in red colour.

� For any � �= 0 we get r(�) = ±1.

� Knowing previous values in the sequence does not help in deducing
current value !

Finite Period Sequences 23:47
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Period of s1 + s2

Theorem: Let s1 and s2 be periodic sequences with

S1(x) =
P1(x)

C1(x)
and S2(x) =

P2(x)

C2(x)

so that

gcd(P1(x), C1(x)) = gcd(P2(x), C2(x)) = gcd(C1(x), C2(x)) = 1.

Then the period of s = s1 + s2 is T = lcm(T1, T2).

Proof: Let � = lcm(T1, T2). Clearly si+�
1 = si

1 and si+�
2 = si

2 for all
i � 0. Therefore,

si+� = si+�
1 + si+�

2 = si
1 + si

2 = si i � 0,

thus T � �.
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Period of s1 + s2 cont’d

Proof: Further we have,

S(x) = S1(x) + S2(x) =
P1(x)C2(x) + P2(x)C1(x)

C1(x)C2(x)
=

P (x)

C(x)
.

The condition on relative primality gives gcd(P, C) = 1. The period of
s is the same as period of C(x), and we must have,

C(x) = C1(x)C2(x)|xT � 1 =� C1(x)|xT � 1 � C2(x)|xT � 1.

This means,

T1 | T T2 | T =� T � lcm(T1, T2) = �.

Therefore, T = �.

Finite Period Sequences 25:47
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Linear complexity of sequence

� Let s = s0, s1, . . . be an infinite sequence over Fq. Linear complexity
is the length of the shortest LFSR that generates s.

� Sequence s of linear complexity L and t finite subsequence of length
at least 2L.

� If L unknown recover LFSR by Berlekamp-Massey.

� If L known either BM or direct linear algebra.

� Known plaintext attack on a stream cipher based purely on LFSR is
easily performed with knowledge of 2L consecutive bits (blocks).
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LFSR synthesis

� Let sN = s0, s1, . . . , sN�1 denote the first N symbols of the sequence
s = s0, s1, . . ..

� The main problem is to find the shortest LFSR that generates these
N symbols.

� Trivially, any LFSR of length L � N can be used as we can assign
the initial state of LFSR with sN .

� We assume L < N , and also we allow that deg(C(x)) � L. Hence
LFSR is specified by (C(x), L).

Finite Period Sequences 27:47
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Deciding whether LFSR can generate given sequence

� Since L < N check if sL, . . . , sN�1 satisfies LFSR equation, that is,

L�

i=0
cisj�i = 0 for j = L, L + 1, . . . , N � 1.

� Thus if (C(x), L) can generate sN we have to check for sN+1,

� Define d = sN � ŝN = sN ��L
i=1(�ci)sN�i, where sN is the (N +1)-th

bit of s and ŝ is generated by (C(x), L).

� Then (C(x), L) can generate sN+1 iff d = 0. But if d �= 0 we have
to find another (C�(x), L�) that generates sN+1.
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Massey’s lemma

Lemma: If (C(x), L) can generate sN but not sN+1, which can be
generated by (C�(x), L�) then,

L� > N � L or LN+1 � N + 1 � LN.

Example: The LFSR of length 2 and C(x) = 1 + x2 can generate

s9 = 1,0,1,0,1,0,1,0,1 but not s10 = 1,0,1,0,1,0,1,0,1,1.

Recurence is si = si�2 for i � 2

Then any LFSR which can generate s10 has the length

L� > N � L = 9 � 2 = 7.

Finite Period Sequences 29:47

��

��

Massey’s theorem

� LN is nondecreasing function, so Massey’s Lemma gives LN+1 �
max[LN, N + 1 � LN ].

Theorem: If an LFSR with C(x) can generate SN and is of length
LN then,

LN+1 =

�
LN, dN = 0;
max(LN, N + 1 � LN), dN �= 0.

� This result implies that LN+1 > LN if and only if N � 2LN .

� For a sequence with LC = LN we need 2LN bits to recover the
LFSR.
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��

��

The Berlekamp-Massey algorithm

C(x) � 1

d0 � 1
C0(x) � 1

e � 1

L � 0

N � 0

d = 0?

N < 2L?

d0 � d
e � 1

C(x) � C(x) � dd�1
0 xeC0(x)

e � e + 1

N � N + 1

No

Y es

Y es

d � sN � �L
i=1(�ci)sN�i

No
C1(x) � C(x)

C1(x) � C(x) � dd�1
0 xeC0(x)

L � N + 1 � L
C0(x) � C1(x)
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The Berlekamp-Massey algorithm -example

LFSR synthesis for s = 1,0,0,1,1,1,0,1 looks like:

s N
d C 1

(x ) C (x ) L Sh i f t  r eg i s te r  C 0 (x ) d 0 e N

- - - 1 1 1 1 0

1 1 1 1 +  x 1

0

1 1 1 1

0

0 0

0

0

00

1

1

1

1

1

1

1

"

"

"

"

"

"

"

1 + x + x
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"
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Known plaintext attack on LFSR-based stream ciphers

� Assume we use LFSR of length L and C(x) as a connection polyno-
mial.

� The knowledge of 2L consecutive bits of m and c gives

mk, mk+1, . . . , mk+2L�1

ck, ck+1, . . . , ck+2L�1

zk, zk+1, . . . , zk+2L�1, zi = mi + ci.

� Berlekamp-Massey algorithm returns L and C(x).

� Feed the LFSR found by BM and generate the remainder of the
sequence.
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Linear complexity of LFSR

� Linear complexity of infinite binary sequence s is defined as the short-
est linear recurrence that generates s; such was st+4 = st+3 + st.

� The definition coincides with LFSR’s structure; linear complexity of
LFSR of length L is L.

� Berlekamp-Massey algorithm has running time O(n2) applied to a
sequence of length n.

� Implies that linear complexity > 230 for practical applications.
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Linear complexity - example

� High linear complexity is necessary but not sufficient requirement

Example: Every sequence of period T satisfies si+T = si for all
i � 0. Let sT be infinite sequence of period T ,

sT = 100 · · ·0� �� �
T�1

100 · · ·0� �� �
T�1

. . .

� The linear complexity is T as there is no linear relation shorter than
si+T = si.

� Clearly the sequence is completely useless for cryptographic use.
Apply several tests , e.g. sequence does not pass Golomb’s tests !
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Linear complexity profile

� Given a binary sequence s = s0, s1, s2, . . ., denote sN = s0, s1, . . . , sN�1
and LN its corresponding linear complexity.

� Linear complexity profile is calculated for each new bit added to the
sequence, starting from the first bit. Profile is then plotted as a
function of sequnce’s length.

� It was established that linear complexity profile for perfectly random
source closely follows the line y = x

2(y = LN, x = N).

� Good pseudo-random sequence should have linear complexity � N/2
for its first N bits.
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Linear complexity profile - example

For a periodic s20 = 10010011110001001110 we may plot:

N

L
N

5

1 0

1 0 2 0

L   =  N  / 2
N

LCP of a non-random sequence s defined as si = 0 unless i = 2j � 1 for
j � 0, also follows the line LN = N/2 closely !
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Increasing the linear complexity of sequence

� What is the linear complexity of S1 + S2 and of S1S2 ?

� Linear complexity increases for a proper choice of connection poly-
nomials and length of LFSRs !

� Enough to prove the cases S1 + S2 and S1S2, the rest by induction
easily, S1S2S3 = (S1S2)S3!
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Linear complexity of S1 + S2

� Let S1(x) = P1(x)
C1(x)

and S2(x) = P2(x)
C2(x)

. Then,

S1(x) + S2(x) =
P1(x)C2(x) + P2(x)C1(x)

C1(x)C2(x)
=

P (x)

mcm(C1(x)C2(x))

� Hence L(S1 + S2) � deg(mcm(C1, C2)). We also have

deg(mcm(C1, C2)) � deg(C1) + deg(C2) � deg(gcd(C1, C2)),

so if gcd(C1, C2) = 1 then L(S1 + S2) � deg(C1) + deg(C2).
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Linear complexity of S1 + S2 cont.

� Then L(S1 + S2) = deg(C1)+ deg(C2) exactly when gcd(C1, C2) = 1
, assuming gcd(P1, C1) = gcd(P2, C2) = 1.

� Assume Q|C1C2 in,

S1(x) + S2(x) =
P1(x)C2(x) + P2(x)C1(x)

C1(x)C2(x)
,

then either Q|C1 or Q|C2 as gcd(C1, C2) = 1.

� So let Q|C1. Then if Q|P1C2 + P2C1 it must divide P1C2, a contra-
diction, as Q � |P1.
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Linear complexity of S1S2

� Note that we do not consider S1(x)S2(x) - not memoryless. Our
sequence is s1,0s2,0, s1,1s2,1, s1,2s2,2 . . .

� We assume (for simplicity) that C1(x) and C2(x) are primitive over
Fq of coprime degree n1 resp. n2. The LFSR recursion is,

s(i)j = �(c1sj�1 + c2sj�2 + · · · + cnisj�ni
) for j � k, i = 1,2.

� Recall that Ci(x) = 1 + c1x + . . . cnix
ni.

� We treat sequences using finite field theory: now look at the char-
acteristic polynomial ( Galois �Fibonacci) Ci(x) � xniCi(1/x) =
cni + cni�1x + . . . + xni.

Finite Period Sequences 41:47
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The linear complexity of S1S2 cont.

� Both polynomials splits into linear factors over Fqn1n2,

C1(x) =
n1�

j=1
(x � �j), C2(x) =

n2�

i=1
(x � �i); �j, �i � Fqn1n2.

Roots of C1 are in Fqn1 given by �, �q, . . . , �qn1�1
and roots of C2 are

in Fqn2, �, �q, . . . , �qn2�1
.

� Then Selmer proved that C(x) =
�

i,j(x � �j�i) is a degree n = n1n2

primitive polynomial over Fq !!!
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Linear complexity of S1S2

� Idea : Instead of time recursion, the sequence is given as linear
combinations of the roots of characteristic polynomial !

Theorem: Assume C irreducible with roots �1, . . . , �n � Fqn, then,

si =
n�

j=1
�j�

i
j, i = 0,1, . . . ,

where �1, . . . , �n are uniquely determined by si and are in the
splitting field of C(x) over Fq.

� But also C(x) = cn + cn�1x + . . . + xn implies the time recursion,

cnsi+n + cn�1si+n�1 + . . . + si = 0

Finite Period Sequences 43:47
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Linear complexity of S1S2

Proof: �1, . . . , �n are obtained from the system of linear equations,

si =
n�

j=1
�j�

i
j, i = 0,1, . . . ,

Vandermonde determinant �= 0, so �1, . . . , �n unique in the splitting field
of C(x) over Fq.

Now we check that
�n

j=1 �j�
i
j satisfy the time recurence above,

cn

n�

j=1
�j�

i+n
j + cn�1

n�

j=1
�j�

i+n�1
j + . . . +

n�

j=1
�j�

i
j =

n�

j=1
�jC(�j)�

i
j = 0.
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Summary on combining sequences

� We have actually proved that L(S1S2) = deg(C) = n1n2.

� Combining several LFSR-s L1, . . . , Ln (primitive connection polyno-
mials of cooprime degree) we get,

1. Linear complexity of Boolean function applied to LFSR’s se-
quences S1, . . . , Sn is

L(f(S1, . . . , Sn)) = f(S1, . . . , Sn).

2. Period is equal to
�n

i=1(2
Li � 1).
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Increasing linear complexity - example

Example: Take L = 128 be a length of LFSR, thus given 256 output
bits one reconstruct initial state.

Now given 8 maximum-length LFSR of co-prime lengths

7,9,11,13,17,19,23,29 �
�

Li = 128

linear complexity of the sequence S1S2 · · · S8 + S2S3 · · · S7 is

LC =
8�

i=1
Li +

7�

i=2
Li � 230

BM algorithm needs: 2 · 230 keystream bits and runs in complexity 260.
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Nonlinear combiner

LFSR�1�

LFSR�2�

LFSR�n�

f�

+�

.�
:�

PLAINTEXT� CIPHERTEXT�

KEYSTREAM�

z�i�

y�i� c�i�

• Period of length
�n

i=1(2
Li � 1).

• Linear complexity is evaluation of Boolean function over integers !
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Chapter 6

Nonlinear Combiners and
Boolean functions

Content of this chapter:

• Nonlinear combiners (repetition).

• Introduction to Boolean functions.

• Correlation attacks and correlation immunity.

• Nonlinear filtering generators.

• Feedback Carry Shift Register (FCSR) and stream ciphers.

95



��

��

Nonlinear combiner

LFSR�1�

LFSR�2�

LFSR�n�

f�

+�

.�
:�

PLAINTEXT� CIPHERTEXT�

KEYSTREAM�

z�i�

y�i� c�i�

• Period of length
�n

i=1(2
Li � 1).

• Linear complexity is evaluation of Boolean function over integers !
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Increasing linear complexity - example

Example: Take L = 128 be a length of LFSR, thus given 256 output
bits one reconstruct initial state.

Now given 8 maximum-length LFSR of co-prime lengths

7,9,11,13,17,19,23,29 �
�

Li = 128

linear complexity of the sequence S1S2 · · · S8 + S2S3 · · · S7 is

LC =
8�

i=1
Li +

7�

i=2
Li � 230

BM algorithm needs: 2 · 230 keystream bits and runs in complexity 260.
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Nonlinear combiners - susceptibility to correlation attacks

� Evaluation over integers due to previous results, meaning,

f(x1, . . . , xn) =
�

a
caxa � LC =

�

a
caxa,

where xa means xa1
1 · · · xan

n .

� Problem is correlation attacks which are completely defended only
if combining function is linear.

� Solution is e.g. combiners with memory (summation generators),
E0 in Bluetooth.

Combiners, filtering generators and Boolean functions 3:46
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Implementation complexity vs. linear complexity

� Note that a fixed total length of LFSRs gives different LC depending
on n (exercise)

� It turns out that increasing linear complexity implies increased com-
plexity of implementation (quite intuitive) !

� Nonlinear combiner aims for efficient implementation thus too large
n is not acceptable.
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Boolean functions definitions

� Boolean functions map n binary inputs to a single binary output.

� More formaly f : Fn
2 � F2 maps (Fn

2 = GF (2)n)

(x1, . . . , xn) � Fn
2 �� f(x) � F2

� Since f : Fn
2 � F2 is a mapping it can be represented as a polynomial

in the ring F2[x1, . . . , xn]/ < x2
1 = x1, . . . , x2

n = xn >.

� This ring is simply a set of all polynomials with binary coefficients
in n indeterminates with property that x2

i = xi.

Combiners, filtering generators and Boolean functions 5:46
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Boolean functions-definitions II

� This may be formalized further by defining,

f(x) =
�

c�Fn
2

acx
c =

�

c�Fn
2

acx
c1
1 xc2

2 · · · xcn
n , c = (c1, . . . , cn)

� Thus f is specified by the coefficients ac

� There are 2n different terms xc1
1 xc2

2 · · · xcn
n for different c’s. As ac is

binary it gives 22n
different functions in n variables x1, . . . , xn.

� For n = 3 there are 28 = 256 distinct functions specified by ac,

B3 = {a01�a1x1�a2x2�a3x3�a4x1x2�a5x1x3�a6x2x3�a7x1x2x3}
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��

��

Boolean functions- Algebraic normal form

� We usualy skip � notation and use +.

� Let us specify the function f : F3
2 � F2 as,

f(x1, x2, x3) = x3 + x1x2 + x2x3.

� That is, a(001) = 1 � x3,a(110) = 1 � x1x2, a(011) = 1 � x2x3, or
w.r.t. definition of B3

a0 = 0, a1 = 0, a2 = 0, a3 = 1, a4 = 1, a5 = 0, a6 = 1, a7 = 0.

Combiners, filtering generators and Boolean functions 7:46
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Truth table -Example

Definition: The truth table of f is the evaluation of function for all
possible inputs.

x3 x2 x1 f(x)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

The truth table of the Boolean function f(x1, x2, x3) = x1x2 + x2x3 + x3.

Combiners, filtering generators and Boolean functions 8:46
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Truth table and ANF correspondence

� From ANF to truth table is easy. In other direction it can be verified
that,

f(x) =
�

�|f(�)=1

n�

i=1
(1 + xi + �i), � � Fn

2.

� For the previous example we have

f(�) = 1 � (�1, �2, �3) � {(1,1,0), (0,0,1), (1,0,1), (1,1,1)}

� Then

f(x) = x1x2(1 + x3) + (1 + x1)(1 + x2)x3 + x1(1 + x2)x3 +

x1x2x3 = . . . = x1x2 + x2x3 + x3.

Combiners, filtering generators and Boolean functions 9:46
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Affine and nonlinear functions

� ANF is also recovered through

au =
�

��Fn
2|��u

f(�) (mod 2).

Definition: The set of all Boolean functions in n variables denoted Bn.

Definition: Functions of degree at most one are called affine.

An = {a0 + a1x1 + a2x2 + · · · + anxn; ai � F2,0 � i � n}.

An affine function with a0 = 0 is said to be linear. The set of all n

variable linear functions is denoted by Ln.

Combiners, filtering generators and Boolean functions 10:46
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Linear complexity versus period

� In our example f(x) = x3 + x1x2 + x2x3 so function is balanced ;
equal number of 0s and 1s, that is #f(x) = 1 = #f(x) = 0.

� Combining 3 LFSRs of lengths L1, L2, L3 we get

� Period: T = (2L1 � 1)(2L2 � 1)(2L3 � 1).

� Lin. Complexity: LC = L3 + L1L2 + L2L3

� To increase the linear complexity we may choose f(x) = x1x2x3,

� Period: T = (2L1 � 1)(2L2 � 1)(2L3 � 1).

� Lin. Complexity: LC = L1L2L3

� Output sequence is nonbalanced.

Combiners, filtering generators and Boolean functions 11:46
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Highest algebraic degree and balancedness

� Easy to show that function containing degree n term is not balanced:

f(x) =
�

�|f(�)=1

n�

i=1
(1 + xi + �i), � � Fn

2.

� If f contains x1x2 · · · xn in its ANF then it has an odd number of 1s
in its truth table, i.e. f not balanced !

� Now f is not balanced, f is zero unless x = (111); output sequence
is nonbalanced as well. Let f(x1, x2) = x1x2 with L1 = 2, L2 = 3

s1 = x1 = 101101101101101101101101; st+2 = st+1 + st

s2 = x2 = 010011101001110100111010; st+3 = st+2 + st

zt = x1x2 = 000001101001100100100|000
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Introduction to correlation immunity

� Balanced Boolean functions in n variables are of degree � n � 1.

� We might be interested in computing Pb(f(x) = xi) ! Consider the
same f(x) = x3 + x1x2 + x2x3 as before.

x3 x2 x1 f(x) f(x) + x1
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 0
1 1 0 0 0
1 1 1 1 0

� Same situation, unbalancedness, for f(x) + x2 and f(x) + x3.

Combiners, filtering generators and Boolean functions 13:46
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Correlation attacks

LFSR1

LFSR2

LFSRn LFSRi

TEST

length

l1

l2

ln

keystream

Correlated ?

f : Fn
2 � F2

zt

x2

x1

xn

� Attack is performes by checking all states of LFSR1:

� Guess not correct : We get a random sequence

� Guess correct: Then zt � x1 is biased, more zeros than ones .

� In previous example Pb{f(x) = xi} = 3/4, thus possible to run test.
The complexity of attack drops from

�3
i=1(2

Li �1) to
�3

i=1(2
Li �1)

Combiners, filtering generators and Boolean functions 14:46
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Example of correlation attacks

0 1

1 0 1

1 1 0 0

1 0
wrong key

x1

x3

x2

Secret key

1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0

0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1

1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

11

1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1

xw
1

zt = f(xt) = x1 � x2x3

f(x) � x1

f(x) � xw
1

1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1

1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 � 16 zeros

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
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Protecting against correlation attacks

� If Pb(f(x) = xi) �= 0.5 then attack is performed in
�n

i=1(2
Li � 1).

� Protection: Design f such that Pb(f(x) = xi) = 0.5 for all i.

� Then we might consider pairs of LFSRs and find correlation

Pb(f(x) = xi + xj) �= 0.5

� There are techniques to construct correlation immune (nonlinear)
functions of arbitrary order 1 � t � n � 3.

� Only linear functions f(x) = x1 + x2 + · · · + xn has maximum order
of resiliency (n � 1).

Combiners, filtering generators and Boolean functions 16:46
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Trading-off linear complexity to correlation immunity

Definition: f � Bn is correlation immune (CI) of order t if fixing any
subset of input variables xi1, . . . , xir, 1 � r � t we have

Prob(f(x) = 0 | (xi1, . . . , xir)) = Prob(f(x) = 1 | (xi1, . . . , xir))

If f is balanced and CI of order t then we say f is t-resilient

Trade-off Algebraic degree d of t-resilient function on Fn
2 satisfies

d � n � t � 1.

� This means that protection from correlation attacks implies vulner-
ability to BM linear complexity synthesis and algebraic attacks.

Combiners, filtering generators and Boolean functions 17:46
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Hypothesis testing

� For correlation attacks we used Pb(f(x) = xi) = p �= 1
2. The length

of the keystream N depends on p, if p = 1
2 then N � �.

� Define a random varible � = N � #{f(x(t)) �= x(t)
i }t=1,...,N .

� Then � is binomially distributed with mean value m�|Hi
and deviation

�2
�|Hi

:

m�|H1
= Np, �2

�|H1
= Np(1 � p)

m�|H0
= N/2, �2

�|H0
= N/4,

where H1 and H0 are the hypothesis of correct respectively wrong
guess.
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Some examples of resilient functions

� f(x1, . . . , x4) = x1+x2+x3+x4 is 3-resilient function but linear, i.e.
deg(f) = 1.

� How do we find nonlinear resilient functions ?

� For instance, f(x1, . . . , x4) = x4(x1 + x2) + (1 + x4)(x2 + x3) =
x2 + x3 + x1x4 + x3x4 is 1-resilient and of degree 2.

� To verify this one can check that

dH(f, xi) = #{x|f(x) �= xi} = 2n�1 = 8

equivalent to Pb(f(x) = xi) = 1/2 for any i.

Combiners, filtering generators and Boolean functions 19:46
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Concatenating f and 1 + f

Theorem: Let f � Bn be t-resilient of degree d. Then f̂ = f ||(1 + f)
on Bn+1 is a (t + 1)-resilient function of degree d.

Proof: Assume Pb{f +
�t+1

j=1 xij = 0} �= Pb{f +
�t+1

j=1 xij = 1}, equiva-
lently

#{f +
t+1�

j=1
xij = 0} = 2n�1 + c �= #{f +

t+1�

j=1
xij = 1} = 2n�1 � c;

We compute,

#{f̂ +
t+1�

j=1
xij = 0} = #{f +

t+1�

j=1
xij = 0} + #{1 + f +

t+1�

j=1
xij = 0} =

= 2n�1 + c + 2n�1 � c = 2n.
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Nonlinearity of Boolean functions

� Sufficiently small correlation (deviation of p from 1
2) makes require-

ment on keystream length N infeasible.

Definition: Nonlinearity of f � Bn is defined as a minimum
Hamming distance from the set of all affine functions, i.e.

Nf = min
a�An

dH(f, a),

where Hamming distance dH(f, a) = {x|f(x) �= a(x)}.

� Expressing Pb(f(x) = xi) = p = 1
2 ± �, the correlation coefficient � is

given as,

� =
1

2
�

dH(f, xi)

2n

Combiners, filtering generators and Boolean functions 21:46
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Calculating nonlinearity -Example

x3 x2 x1 f(x) x1 + x2 f(x) + x1 + x2

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 0 1 1
1 1 1 1 0 1

� Function f is at distance 6 from x1+x2, then dH(f,1+x1+x2) = 2.
Nonlinearity always less than 2n�1.

� Procede for all linear functions and find minimum distance.

Combiners, filtering generators and Boolean functions 22:46
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Walsh transform - a usefull tool

Definition: Walsh transform of f � Bn in point � � Fn
2 is defined by

� � Fn
2 ��� F(f + ��) =

�

x�Fn
2

(�1)f(x)+��(x) , (1)

where ��(x) = � · x = �1x1 + · · · �nxn.

� Then for g(x) = � · x + b ( b � F2),

dH(f, g) = 2n�1 �
(�1)bF(f + ��)

2
. (2)

� The nonlinearity of f(x) is obtained via Walsh transform as,

Nf = 2n�1 �
1

2
max
��Fn

2

|F(f + ��)|. (3)

Combiners, filtering generators and Boolean functions 23:46
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Representation of Walsh transform

� Computing

{F(f + ��) =
�

x�Fn
2

(�1)f(x)(�1)��(x) : � � Fn
2},

can be seen as a matrix multiplication.

F(f + ��) =

�

��������������

1 1 1 1 1 1 1 1
1 �1 1 �1 1 �1 1 �1
1 1 �1 �1 1 1 �1 �1
1 �1 �1 1 1 �1 �1 1
1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 �1 1 �1 1
1 1 �1 �1 �1 �1 1 1
1 �1 �1 1 �1 1 1 �1

�

��������������

�

����������������

(�1)f(000)

(�1)f(001)

(�1)f(010)

(�1)f(011)

(�1)f(100)

(�1)f(101)

(�1)f(110)

(�1)f(111)

�

����������������
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Fast Walsh transform

� Straightforward implementation to compute the Walsh spectra

{F(f + ��) : � � Fn
2}

requires 22n operations. Problem already for n > 20

� The {�1,1} matrix Hn of size 2n � 2n is called Silvester-Hadamard
matrix - computed recursively. Start with,

H2 =

�
1 1
1 �1

�

, · · · Hn =

�
Hn�1 Hn�1
Hn�1 �Hn�1

�

� Enables a fast Walsh transform , only takes n2n operations.
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FWT - example

• Function f on B3 with truth table f = [00011101]

final

For each pair (a,b) compute (a+b,a-b)

function

first

second

1 1 1 -1 -1 -1 1 -1

2 0 0 2 -2 0 0 2

2 2 2 -2 -2 2 -2 -2

0 4 0 -4 4 0 4 0
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Interpretation of Walsh transform

� What is the meaning of F(f + x1 + x2) = 0 for instance ?
�

x�Fn
2

(�1)f(x)+x1+x2 = 0

• Means that f(x) + x1 + x2 is balanced, i.e. Pb(f + x1 + x2 = 0) =
Pb(f + x1 + x2 = 1).

• In other words no correlation attack by considering the sum of
outputs generated by L1 and L2.

• Can we design functions having this property for any subset of
input variables ?

Combiners, filtering generators and Boolean functions 27:46
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Properties of Walsh transform

� Denote F(f + ��) = F(�). Parseval’s equality, valid for any f � Bn,
states

�

��Fn
2

F(�)2 = 22n

Proof:
�

��Fn
2

F(�)2 =
�

��Fn
2

�

x�Fn
2

(�1)f(x)+�·x �

y�Fn
2

(�1)f(y)+�·y =

=
�

x�Fn
2

(�1)f(x) �

y�Fn
2

(�1)f(y) �

��Fn
2

(�1)�·(x+y)

� �� �
0 for x+y �=0

= 22n

� Sum of squares constant, means that nonlinearity is maximized if
|F(�)| = 2

n
2 for all �; bent functions
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Trade-offs for cryptographic criteria

We would like to use Boolean functions satisfying:

• High algebraic degree (correlation immunity is traded-off)

• High order of resiliency (cannot have high resiliency order and non-
linearity)

• High nonlinearity (cannot achieve high resiliency)

• Low complexity of implementation (hard to achieve high degree)

• High algebraic immunity (unclear how it influences other param-
eters in general)

• Resistance to algebraic attacks !

Combiners, filtering generators and Boolean functions 29:46
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Implementation complexity

� LFSR-based stream ciphers are especially suitable for hardware im-
plementations.

� LFSR is efficiently implemented in hardware but what about Boolean
functions ?

� C�(f)– smallest number of gates of a circuit computing f , whose
gates belong to �.

� Usually, � = B2, set of Boolean functions in 2 variables.

� For Programmable Logic Arrays, � = (�, �, ¬)

Combiners, filtering generators and Boolean functions 30:46



��

��

Implementation complexity - example

Example: Consider f in 5 varibles:

• x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x5 +

+x3x4 + x3x5 + x4x5 19 gates

• [(z + x4)(z + x5) + z] + [y(x1 + x2) + x1]

with z = y + x3 and y = x1 + x2 10 gates

Shannon effect

For all n � 9 “almost all” Boolean functions in n variables have
complexity CB2

(f) greater than, 2n/n.
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Nonlinear filtering generator

Alternative design to destroy the linearity of LFSR.

LFSR

. . .

Nonlinear filtering generator

zt

s0s1sk�2sk�1

f
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Nonlinear filtering generator - properties

� Nonlinear filtering generator produces maximum-length sequence for:

1. Primitive connection polynomial

2. Balanced Boolean function

� Linear complexity is upper bounded by:

Lm =
m�

i=1

�L

i

�
,

where m is nonlinear order (degree) of function f .

� Fractions of Boolean functions of degree m which achieve Lm is,

Pm > e�1/L.
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Stream cipher applications

� A practical application of filtering generator or nonlinear combiner
is as follows:

� Choose a random secret key K, say 128 bits

� Take a random nonused value of IV, say 128 bits.

� Initialize the LFSR(s) with IV and K and run the cipher in NONOUT-
PUT MODE to mix IV and K bits.

� After this has been done the initial state is acheived, |S| � 256
bits.
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FCSR (Feedback Carry Shift Registers

� Introduced by Goresky & Klapper in 1993.

� Similar to LFSR but with propagation of carry bits. Computing the
quotient of 2 integers as a 2-adic integer.

� A 2-adic integer can be viewed as a formal series with 2 as “variable”
��

i=0
si2

i, si � {0,1}.

.

� Addition and multiplication performed by taking carries to higher
order terms, i.e. 2n + 2n = 2n+1.

Combiners, filtering generators and Boolean functions 35:46
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Algebraic structure of 2-adic integers

� Somewhat weird properties like,

�1 = 1 + 21 + 22 + 23 + · · · ,

verified by adding 1 to both sides (with carry).

� Any negative integer belongs to the set of 2-adic numbers

�q = (�1)
k�

i=0
qi2

i =
��

i=0
2i

k�

i=0
qi2

i.

� Also any odd integer � has a unique inverse ���1 = 1.

� We actually get a ring and in addition p/q is well-defined if q is odd.
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Gallois model of FCSR

1. Form the integer sum �n =
�r

i=1 qian�i + mn�1; ai, qi binary.

2. Shift the contents one step to the right, output an�r .

3. Put an = �n mod 2 into the leftmost cell of the shift register.

4. Replace the memory integer mn�1 with mn = (� � an)/2

Combiners, filtering generators and Boolean functions 37:46
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Fibonacci model of FCSR

• Choice: q < 0 � p < |q|, where p =
�k

i=0 pi2i, q = 1 � 2
�k�1

i=0 di2i.

• Use a key p to initialize the main register, one more register for d.
• The circuit computes the 2-adic expansion of p/q.
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Properties of 2-adic expansion

Theorem [Periodicity]: Let a = (ai) be binary sequence and
� =

��
i=0 ai2i associated 2-adic number. a is strictly periodic iff,

� = p/q, q is odd, � � 0 and |�| � 1.

Theorem: If p and q are relatively prime integers with q odd, then the
period of 2-adic expansion of p/q is the order of 2 modulo q , i.e. the
least positive integer T such that,

2T � 1 (mod q).

• Proving properties of 2-adic numbers is tedious, we only show suf-
fciency for periodicity.
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Periodicity theorem

Proof: Let a = (a0, a1, a2, . . .) be a strictly periodic sequence of period
T. Set � =

��
i=0 ai2i. Then,

2T� =
��

i=0
ai2

i+T =
��

i=0
ai+T2i+T =

=
��

i=T

ai2
i = � �

T�1�

i=0
ai2

i

�

� = �

��T�1
i=0 ai2i

�

(2T � 1)

• � is a negative rational number. Writing � = p/q, and taking q

positive, |�| < 1, q is odd.
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Statistical properties of the FCSR sequence

Heuristic assumption: the sequence S has no statistical property which
can be used to discriminate it from a random sequence, except its low
2-adic complexity.

• Experiments support this assumption (e.g. NIST Statistical test
suite)

• A similar assumption is usual for LFSRs.

• If we choose a negative retroaction prime q such that

2k < |q| < 2k+1 and ordq(2) = T = |q| � 1,

then with each nonzero initialization, we get a sequence of period T in
which any word of k bits is a subsequence.
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2-adic complexity

� 2-adic complexity �(similar to linear complexity)- smallest number
of cells of FCSR that generates S.

� If p and q co-prime then complexity � = max (wt(|p|), wt(|q|)).

� Extended Euclidean Algorithm applied to integers 22�+1 and Sn =
�2�

i=0 si2i recovers p, q using only 2� + 1 bits of S = p/q.

� Difference to LFSR: Structure of FCSR need not to be destroyed
by nonlinear filtering (FCSR is itself nonlinear).

� Enough to take linear Boolean function
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Comparison of FCSR to LFSR

Property LFSR FCSR
Implem. Architecture Galois and Fibonacci Galois and Fibonacci
Max. period sequence m-sequence l-sequence
Initial state alg. Berlekamp-Massey Rational Approximate
Correlation Periodic correlation Arithmetic correlation
Complexity Linear span 2-adic span
Algebraic expression Finite field p-adic numbers
Mathematical tool Finite fields p-adic theory
Security Known Unclear

� Increase of the length of output l-sequence, repetition is observed
(DFT test) before full period is formed, which deteriorates pseudo-
random property.

� So the available length of l-sequence is much less than the real
period.
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Statistical weaknesses of FCSR

• Some choices of q gives weak statistical properties, does not pass
DFT test.
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Filtering FCSR - an example

• As 2-adic and linear structures are unrelated we may use simple
XOR filtering.
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F-FCSR - an eSTREAM candidate

� Interesting dual proposal of FCSR to eSTREAM, both SW and HW.

� The original design was flawed due to weak initialization scheme.

� Initial state of the carry register (derived from IV and key) only 68
bits. Two different carry gives the same carry state with Pb = 2�68.
Birthday paradox finds coallision after randomly chosen 234 IV’s.

Need 234 � 68 bits to perform distinguishing attack .

� Internal state was supposed to have 128 + 68 bits but due to few
initial clockings; real entropy only 128 bits.

This allows TMD trade-off attack with complexity 264.
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Chapter 7

LFSR-based Stream
Ciphers

Content of this chapter:

• LFSR-based stream ciphers - alternating step generator, shrinking and
summation generator.

• Bluetooth and GSM encryption algorithms A5/x, E0.

• Use of NFSR in modern stream ciphers.

• Low hardware implementations of stream ciphers - eSTREAM candidates
Trivium, Grain-128.
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Avoiding correlation attacks

LFSR1

LFSR2

LFSRn LFSRi

TEST

length

l1

l2

ln

keystream

Correlated ?

f : Fn
2 � F2

zt

x2

x1

xn

� Attack is avoided through good design of Boolean function (hard)

� Alternatively, destroy linearity of LFSR by other means !

LFSR-based stream ciphers 1:43
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Clock controlled generators - alternating step generator

LFSR R1

LFSR R2

LFSR R3

AND

AND

sys. clock

zt

� Clock register R1:

� If the output of R1 is 1 then R2 clocked, R3 not clocked but its
last output bit is repeated;

� If the output of R1 is 0 then R3 clocked, R2 not clocked but its
last output bit is repeated;

� Output the XOR of R2 and R3.
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Properties of alternating generator

Idea: Introduce the nonlinearity by irregular clocking of LFSRs; irregular
decimation of sequence.

� Assume R1 produces a deBrujin sequence of period 2L1 (add a 0
at the end of maximum length sequence); L2 and L3 produces
maximum-length sequence:

� The period of sequence is 2L1(2L2 � 1)(2L3 � 1)

� The linear complexity satisfies:

(L2 + L3)2
L1�1 < LC � (L2 + L3)2

L1

� Good statistics; distribution of patterns is almost uniform

LFSR-based stream ciphers 3:43
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Security of alternating generator

Assumptions:

• The length of shift registers are pairwise
relatively prime; approximately of same length L1 � L2 � L3.

• Maximum length LFSRs (primitive connection polynomials)

� The best known attack is guess-and-determine attack on R1.

� Thus, taking L1 � 128 the generator is secure against all presently
known attacks.

A slight disadvantage of the LFSR’s lengths is relatively large state
(initialization).
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History of A5/x

� A5/1 is an irregularly clocked stream cipher developed in 1987 as
the GSM standard.

� Design was kept secret, the general design was leaked in 1994, full
specification in 1999

� In 2000, around 130 million of GSM customers relied on A5/1.

� A5/2 is a deliberate weakening for certain export regions (US)

� Though the key is of length 54 bits (in GSM implementation, de-
signed for 64 bits); weak cipher even ciphertext-only attack in few
seconds on PC !

LFSR-based stream ciphers 5:43
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A5/1 stream cipher
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Description of A5/1

� The registers R1, R2, R3 are clocked depending on the majority of
bits in positions (8,10,10) respectively.

� For instance if (8,10,10) = (0,1,1) then R2 and R3 are clocked-
more 1s than zeros.

� Either two or three registers are clocked each time.

� GSM implementation uses only 54 key bits and IV frame number of
22 bits.

LFSR-based stream ciphers 7:43
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Initialization of A5/1

1. The registers are first set to zero.

2 For 64 cycles the ith key bit is added to
the least significant bit of R1, R2, R3 and each
register is clocked

Rj[0] = Rj[0] � K[i]; 0 � i < 64; j � [1,3].

3 Similarly, the 22 bits of the frame number are
added in 22 cycles.

4. Then the cipher is run for 100 cycles in
NOOUTPUT MODE.
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Attacks on A5

• Several known-plaintext attacks such as Golic’s (linear equations
attack) from 1997.

• In 2000, time-memory-data trade-off attack recovers the key:

� In 1 second using 2 min. of conversation

� Several minutes from 2 seconds of known plaintext.

In 2006, Barkan, Biham and Keller present ciphertext-only attack :

“We present a very practical ciphertext-only cryptanalysis of GSM encrypted
communication, and various active attacks on the GSM protocols. These
attacks can even break into GSM networks that use "unbreakable" ciphers.
We first describe a ciphertext-only attack on A5/2 that requires a few dozen
milliseconds of encrypted off-the-air cellular conversation and finds the correct
key in less than a second on a personal computer.We extend this attack to a
(more complex) ciphertext-only attack on A5/1 . . .”

LFSR-based stream ciphers 9:43
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Replacement A5/3

� Due to serious weaknesses of A5/1 (and especially A5/2) in the
3GPP mobile standard A5/1 was replaced by A5/3.

� A5/3 is actually a 128 bit block cipher named KASUMI, which is an
optimized modification of MISTY1 (designed in 1995) for hardware
applications.

� Is 3GPP more secure than GSM ?

� YES and NO; KASUMI was broken in 2005, 255 chosen plaintexts ,
and time complexity 276.

Not a practical attack but the security of 3GPP is compromised.
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Shrinking generator

� Proposed at Crypto 93’ as an alternative method of LFSR-based
ciphers.

� The cipher can be viewed as a variable clock control generator.

� The analysis of statistical properties is relatively easy

� Very fast implementation in hardware

� Output rate is not regular; need for buffering

LFSR-based stream ciphers 11:43
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Shrinking generator - description

1. Registers R1 and R2 are clocked.

2 Output of R1 is 1, the output of R2 forms part of the
keystream.

3 Output of R1 is 0, the output bit of R2 is discarded.

L F S R

L F S R

R 1

R 2

a i

b i a i =  1

a i =  0

o u t p u t   b i

d i s c a r d   b i

c l o c k
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Shrinking generator - example

Suppose:

• Registers of length L1 = 3 and L2 = 5;

• Connection polynomials C1(x) = 1+x+x3 and C2(x) = 1+x3+x5;

• Let initial states be [1,0,0] and [0,0,1,0,1].

Then:

a7 = 0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1

b31 = 1,0,1,0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,1,1,0,1,1,1,0

s = 1,0,0,0,0,1,0,1,1,1,1,1,0,1,1,1,0, . . .

LFSR-based stream ciphers 13:43
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Security of shrinking generator

Security of shrinking generator depends heavily on the knowledge of
connection polynomials.

� If the connection polynomials are known the best known key recov-
ering attack takes O(2L1L3

2) operations.

� Keeping secret connection polynomials gives O(22L1L1L2).

� For practical applications taking L1 � L2 � 64 implies attack com-
plexity 2128.
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Implementing benefits of shrinking generator

� Probably the most efficient hardware structure that exists: only two
LFSRs, simple logic and buffer.

� Ideally suited for low hardware overhead such as RFID (Radio Fre-
quency Identification) application.

Still there are two problems:

� Keeping secret connection polynomials is not a good secrecy policy
(even for hardware applications)

� Irregular rate and need for buffering.

LFSR-based stream ciphers 15:43
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RFID application of stream ciphers

� Very interesting application; inevitable use of low hardware complex-
ity stream ciphers

� Requirement for RFID:

� Essentially the next generation of barcodes - EPC (Electronic
Product Code)

� Tagging 20 million items with 5 cent tag costs $1,000,000.

� 2000-4000 gates available for security (cost limitation)

� AES implementation requires 20,000-40,000 gates (some says),
20 cents extra per tag.
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RFID - system interface

LFSR-based stream ciphers 17:43
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Summation generator

� Idea is to use integer addition rather than addition (mod 2). Bits
from n sequences (LFSR of max. length) are added as integers to-
gether with carry.

L F S R

L F S R

L F S R

1

2

n

k e y s t r e am

}
ca r r yca r r y

x 1

x
2

x n

.

.

.
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Summation generator - operation mode

� Secret key consists of initial states of LFSRs, and an initial carry C0.

1. At time t � 1 the LFSRs are clocked giving outputs x1, . . . , xn, and
the integer sum is computed:

St =
n�

i=1
xi + Ct�1.

2. The keystream bit is zt = St (mod 2) (the least significant bit of
St).

3. The new carry Ct is computed as �St/2� (remaining bits of St).

LFSR-based stream ciphers 19:43
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Summation generator - an important example

� Consider n = 4, then 0 � �4
i=1 xi � 4. Therefore using 2 bits for

carry the integer sum

St =
n�

i=1
xi + Ct�1,

is well-represented as St � 7 so that

Ct = �St/2� � wtH(Ct) = 2.

Example: Assume C0 = (0,1) and (x1
1, x1

2, x1
3, x1

4) = (1,1,0,1) (LSB is
the rightmost bit). Then,

S1 = 3 + 1 = 4 = (1,0,0)
C1 = �4/2� = 2 = (1,0)
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Balancedness of summation generator

� Computing the keystream and carry bits is given below:

St dec. St bin. Ct dec. Ct bin Nmb. possib. for (x, Ct�1)
0 (0,0,0 ) 0 (0,0) 1
1 (0,0,1 ) 0 (0,0) 5
2 (0,1,0 ) 1 (0,1) 11
3 (0,1,1 ) 1 (0,1) 15
4 (1,0,0 ) 2 (1,0) 15
5 (1,0,1 ) 2 (1,0) 11
6 (1,1,0 ) 3 (1,1) 5
7 (1,1,1 ) 3 (1,1) 1

� For instance, St = 1 gives:
�

�4
i=1 xi = 0 and Ct�1 = 1 (only if (x1, x2, x3, x4) = (0,0,0,0))

�
�4

i=1 xi = 1 and Ct�1 = 0 (four cases (1,0,0,0), . . . , (0,0,0,1)).

LFSR-based stream ciphers 21:43
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Introducing nonlinearity through carry bits

� Bitwise XOR is a linear operation over F2. That is, given a =
(a0, . . . , an�1) and b = (b0, . . . , bn�1) we compute a � b = d as,

di = ai � bi; i = 0, . . . , n � 1.

� Using bit representation d = a + b (mod 2n) is computed as,

di = ai � bi � ci; i = 0, . . . , n � 1,

where ci is a carry bit computed as (adopting c0 = 0),

ci+1 = aibi � ci(ai � bi), i = 0, . . . , n � 2.

� In each step of iteration the degree is increased by one so that dn�1 is
a function of degree n in input bits , a0, . . . , an�1 and b = b0, . . . , bn�1.
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Small example of modular addition

� Consider the XOR addition of a = (0,1,1,1) and b = (1,1,0,1).

0 1 1 1 a
� 1 1 0 1 b

1 1 1 0 d

� Addition (mod 16) gives,

0 1 1 1 a
(mod 16) 1 1 0 1 b

0 1 0 0 d

� Note that the carry bits are given by: c0 = 0, c1 = a0b0, c2 = a1b1 �
a0b0(a1 � b1), c3 = a2b2 � c2(a2 � b2).

LFSR-based stream ciphers 23:43

��

��

E0 stream cipher
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E0 stream cipher

� E0 stream cipher is a summation generator with four bits of memory
(c1t�1, c0t�1, c1t , c0t )

� The four registers R1, . . . , R4 are of length 25, 31, 33, and 39 re-
spectively. Thus, 128 key bits are stored in LFSRs .

� The keystream bits are computed as:

zt = x1
t � x2

t � x3
t � x4

t � c0t

� Using temporary bits st+1 = (s1t+1, s0t+1) state is updated via:

st+1 =
��

i xi
t + 2c1t + c0t

2

�

c1t+1 = s1t+1 + c1t + c0t�1
c0t+1 = s0t+1 + c0t + c1t�1 + c0t�1

LFSR-based stream ciphers 25:43
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E0 - state transition

� Denoting current state by �t = (ct�1, ct), the next state �t+1 =
(ct, ct+1) can be computed:
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E0 - basic properties

� All nonlinearity of the keystream collected in the carry bit c0t .

� The carry c0t depends on the initial state �0 and all the previous
inputs xt�1, xt�2, . . . , x0.

� There is no correlation to the subset of inputs (x1
t , x2

t , x3
t , x4

t ). E.g.
considering c0t as independent balanced variable then,

Pb(zt = x1
t � x2

t ) = Pb(x3
t � x4

t � c0t = 0) =
1

2

� Assume
�

i xi
t = 2 holds for t0, t0 + 1, t0 + 2, t0 + 3 then,

c0t0 + c0t0+1 + c0t0+2 + c0t0+3 + c0t0+4 = 1,

which can be used to mount a correlation attack.

LFSR-based stream ciphers 27:43
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E0 - statistical properties

� The cryptographic properties of summation generator are summa-
rized by:

� The period of the keystream T =
�4

i=1(2
Li � 1).

� Linear complexity is close to the period.

� Maximum correlation immunity in the common sense

� Summation generator is vulnerable to certain (conditional) correla-
tion attacks.

� There are attacks that “breaks” E0 in academic sense, but none of
these is applicable in practice.
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NFSR (Nonlinear Feedback Shift Registers)

� The current tendency for low hardware complexity is to use NFSR
with (or without) additional LFSRs.

� NFSR introduces the nonlinearity directly into keystream. As Jim
Massey expressed it:

“The linearity is curse of the cryptographer.”

.  .  .

f ( x

xxxx
0L - 1 L - 2 L - 3

0 , . . . , x
L - 1
)
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NFSR example

� Only certain combining functions results in sequences with maximum
period.

0 0 01 1

.

0 1 00 0

1 0 10 0

0 0 01 1

S a m e  s t a t e
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Conditions on feedback function

� Feedback function is a Boolean function in L variables,

f(x0, . . . , xL�1) = c11�cx0x0�. . .�cxL�1xL�1�. . .�cx0···xL�1x0 · · · xL�1

� Only certain combining functions results in sequences with maxi-
mum period (necessary conditions):

1. c1 must be equal to one

2. The number of terms is even

3. f(x0, x1, . . . , xL�1) = x0 � g(x1, . . . , xL�1)

4. There is a symmetry between the xi and the xL�i variables

5. At least there is one cxi = 0.
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Conditions on feedback function II

• Most of the necessary conditions for maximum period are easily
proved:

Proof: 1) The state (1,0,0, . . . ,0) must follow (0,0,0, . . . ,0) state,

f(0,0, . . . ,0) = c1 · 1 = 1 =� c1 = 1.

2) Similarly (0,1,1, . . . ,1) must follow (1,1,1, . . . ,1) state,

f(1,1, . . . ,1) =
2L�1�

i=0
ci = 0 =� Even number of ci = 1.

� Several eStream candidates utilize NFSR in the design, two efficient
design approaches are GRAIN-128 and TRIVIUM.

� For better statistical properties LFSRs can be combined.

LFSR-based stream ciphers 32:43



��

��

Grain-128 - description

� Modern stream cipher designed for low hardware complexity.

� Grain Version 0 was first submitted to the eSTREAM project, but
successfully cryptanalyzed !

� A tweaked version reffered to as Grain-128 have reached final third
phase of eSTREAM project.

� Grain-128 is a nonlinear filtering generator - the filter (Boolean func-
tion) takes the input from one NFSR and one LFSR.
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Grain-128

The numbers along lines depict the number of input bits.
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Grain-128 - design rationales

� The nonlinear feedback polynomial is a sum of one linear and one
bent function (maximal nonlinearity):

g(x) = 1 + x32 + x37 + x72 + x102 + x128 +

+ x44x60 + x61x125 + x63x67 + x69x101 +

+ x80x88 + x110x111 + x115x117.

� The choice of taps is probably quite arbitrary. The filtering function
is simple and of low degree:

h(y) = y0y1 + y2y3 + y4y5 + y6y7 + y0y4y8.

� Bits y0 and y4 come from NFSR; the remaining 7 bits come from
LFSR.
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Grain-128 - key initialization

� The output is fed back during initialization, clocked 256 times.
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Grain-128 - design rationales II

� Internal state 256 bits; protects from time-memory-data attack

� Speed acceleration :Functions f, g and h can be implemented several
times - producing several bits at the time (up to 32 bits) !

� LFSR for long period; NFSR for high confusion (alg. degree)

• Motivations for choices of f, g, h:

� Function f is primitive connection polynomial (not sparse !).

� Function g is easy to implement - linear part adds resiliency and
quadratic terms nonlinearity.

� h similarly designed as g - mixed inputs from LFSR and NFSR.
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Grain-128 - hardware complexity

� 2 input NAND gate “defined” to have gate count 1.
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Trivium - another eStream candidate

� A hardware oriented stream cipher

• Extreme simplicity, elegance, speed - still no efficient attacks.

� Design based on the mutual update of 3 NFSRs

� Possibility for increased speed as for Grain-128

� Period is hard to determine, hopefully the probability of short cycles
is infitensimaly small !

LFSR-based stream ciphers 39:43
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Trivium - run mode

� The state consists of 288 bits (s1, s2, . . . , s288).

for i = 1 to N do
t1 � s66 + s93

t2 � s162 + s177

t3 � s243 + s288

zi � t1 + t2 + t3
t1 � t1 + s91 · s92 + s171

t2 � t2 + s175 · s176 + s264

t3 � t3 + s286 · s287 + s69

(s1, s2, . . . , s93) � (t3, s1, . . . , s92)

(s94, s95, . . . , s177) � (t1, s94, . . . , s176)

(s178, s179, . . . , s288) � (t2, s178, . . . , s287)
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Trivium - key and IV setup

� The cipher is initialized by :

� Load 80-bit key and 80-bit IV into the 288-bit initial state,

� Set all remaining bits to 0, except for s286, s287, and s288.

� Run the cipher 4 full cycles (as above) in NOOUTPUT mode

(s1, s2, . . . , s93) � (K1, . . . , K80,0, . . . ,0)

(s94, s95, . . . , s177) � (IV1, . . . , IV80,0, . . . ,0)

(s178, s179, . . . , s288) � (0, . . . ,0,1,1,1)

for i = 1 to 4 · 288 do
Compute t1, t2, t3 as above

(s1, s2, . . . , s93) � (t3, s1, . . . , s92)

(s94, s95, . . . , s177) � (t1, s94, . . . , s176)

(s178, s179, . . . , s288) � (t2, s178, . . . , s287)
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Trivium scheme (update of second NFSR only)

s s s s s1 2 9 1 9 2 9 3
s s s s

17 5 1 7 6 1 7 79 4
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Trivium - hardware complexity

� Authors count 12 NAND gates per stage of NFSR (for Grain-128
authors used 8 NAND gates)
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Chapter 8

Other Primitives

Content of this chapter:

• Software oriented stream ciphers using LFSR, SNOW 2.0.

• Basic mathematical background.

• S-boxes and functions over finite fields.

• Vectorial Boolean functions.

• T-functions and stream ciphers based on T-functions.
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Design rationales for software applications

• Basic recommendations for software-oriented design are

� Use “software-friendly” operations,

� Design fast stream cipher - at least 3x faster than AES

� Do not compromize security by making the cipher too fast

� Be careful about proper initialization procedure, should be fast
but secure as well

� Suitable operations for this purpose are logical operations, modular
addition and multiplication . . . but even LFSR over extension fields

Basic building blocks for software orinted stream ciphers 1:48
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Software oriented ciphers based on LFSR - SNOW 2.0

S

running key

S

.

FSM

= S−box

= bitwise XOR= addition  mod 2      

= 32 bits registers 

  

st+15

��1

st+11 st+5 st+2 st

�

R2R1

LFSR
32 bits

32

R1, R2
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Snow 2.0 - design approach

� SNOW 2.0 is designed for dedicated software applications on 32-bit
processors.

� Almost all fundamental design strategies included:

� LFSR for long period (however the period might be shorter due
to FSM)

� Mixing different operations XOR, addition modulo 232 and S-box.

� S-box for additional confusion, high algebraic degree.

� Simplicity and effectiveness

Basic building blocks for software orinted stream ciphers 3:48
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Mixing operations - loosing algebraic structure

� SNOW 2.0 mixes XOR and modulo 232 addition - no associativity
(a � b) � c �= a � (b � c).

a 1001 c 0001
� b 0111 � b 0111

1110 1000
� c 0001 � a 1001

1111 0001

� Hard to express dependency between input and output.

� For efficient implementation 4 S-boxes (8 � 8) are used. 4 lookup
tables of size 256 bytes.
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S-boxes

� Substitution box (S-box) is a basic nonlinearity component in block
ciphers.

� Used in software oriented stream ciphers to induce nonlinearity.

x x x
1 2 n

y y y
1 2 m

S - b o xx i , y j b i n a r y

• Correspond to a mapping S : GF (2)n � GF (2)m . If n = m

symmetric S-box , a mapping over a field GF (2n) !

Basic building blocks for software orinted stream ciphers 5:48
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Do we need both S-box and + (mod 232) in SNOW 2.0

• YES WE DO !!

� Assume we exclude S-box in SNOW 2.0. Recall that using bit rep-
resentation d = a + b (mod 2n),

di = ai � bi � ci; i = 0, . . . , n � 1,

ci is a carry bit computed as (adopting c0 = 0),

ci+1 = aibi � ci(ai � bi), i = 0, . . . , n � 2.

� The LSB d0 = a0 + b0 is linear function of inputs. One input comes
directly from LFSR.

The LSB of the keystream word linear function of secret state bits !!
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Basic mathematical background - Groups

� Group is a set G together with an operation “�” satisfying:

1. �a, b � G : a � b � G Algebraic closure

2. �a, b, c � G : a � (b � c) = (a � b) � c Associativity

3. �!e � G : �a � G : a � e = e � a = a e is identity element

4. �a � G, �a�1 � G : a � a�1 = a�1 � a = e Inverse element

Theorem: The order of an element (least integer t such that
at = e) of a finite group divides the order of the group.

Basic building blocks for software orinted stream ciphers 7:48
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Examples of Groups

� (Z, ·) is not a group as,

3�1 =? i.e. 3 · x = 1 has no solution in Z

� Define Zp = {0,1, . . . , p�1}. Then (Z5,+ (mod 5)) is a group under
usual integer addition. We check,

�a � Z5, a + 0 = a; a + (�a) = 0, �a = 5 � a

� Also, (Z�
5, · (mod 5)) is a group since,

1�1 = 1; 2�1 = 3; 3�1 = 2; 4�1 = 4;

� Thus (Z5,+, ·) is a field (division is well defined). But we would like
to work in finite structures of size 2n !
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More complex structures - Rings

� We need two algebraic operations “+” and “ ·” on a set.

Definition: A set R together with “+” and “ ·” is a ring if,

1. (R,+) is abelian group with 0 as “additive” identity.

2. R is closed under “ ·” and 1 �= 0 � R, 1 is multiplicative identity

3. For all a, b, c � R we have a · (b + c) = a · b + a · c. (Distributivity)

Definition: Let (R,+) be abelian group. If (R \ 0, ·) is a group then
(R,+, ·) is called a field.

Basic building blocks for software orinted stream ciphers 9:48
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Examples of Rings

� An important example of a ring is a polynomial ring over Z2 = {0,1}

� Its elements are formal polynomials of the form,

f(x) =
n�

i=0
aix

i = a0 + a1x + · · · + anxn; ai � Z2

� This concept can be generalized to several indeterminates x1, . . . , xn

� Then we get a ring Z2[x1, . . . , xn]-important for the study of Boolean
functions. In a ring there are zero divisors, i.e. fg = 0 for nonzero
f, g � Z2[x1, . . . , xn] (algebraic attacks).
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Construction of finite fields of nonprime order

� The goal is to construct a structure (set) having 2n elements, say
F2n, where two operations “+” and “ ·” are well defined. In addition,
(F2n,+) should be abelian group and (F2n \ 0, ·) a group.

Definition: A polynomial f(x) � F2[x] is said to be irreducible if
f(x) = g(x)h(x) implies that either g or h is a constant polynomial.

� E.g. f(x) = x3 + x + 1 is irreducible polynomial over F2 whereas,

r(x) = x3 + x2 + x + 1 = (x2 + 1)(x + 1)

is reducible.

Basic building blocks for software orinted stream ciphers 11:48
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Construction of finite fields of nonprime order cont.

� The degree of f(x) =
�n

i=0 aix
i is the largest i for which ai �= 0.

� Then one can prove that using an irreducible f of degree n we
construct a field of 2n elements,

F2[x]/ (mod f(x)) = { all polynomials of degree less than n},

� Operations on polynomials p(x), q(x) � F2[x]/ (mod f(x)) are:

p(x) + q(x) = p(x) + q(x) (mod f(x))

p(x) · q(x) = p(x) · q(x) (mod f(x))
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Examples of construction

� Construction of F23 using f(x) = x3 + x + 1, f primitive that is x is
generator of multiplicative group.

x0 = 1

x1 = x

x2 = x2

x3 = x + 1 (mod x3 + x + 1)

x4 = x2 + x (mod x3 + x + 1)

x5 = x2 + x + 1 (mod x3 + x + 1)

x6 = x2 + 1 (mod x3 + x + 1)

x7 = 1 (mod x3 + x + 1)

� Can verify that for instance x5 = (x2 + 1)(x3 + x + 1) + x2 + x + 1.

Basic building blocks for software orinted stream ciphers 13:48
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Polynomials over finite fields

� A polynomial over finite field is a formal expression ,

F (x) = a0 + a1x + a2x2 + . . . + anxn,

where ai � Fq and x is indeterminate.

� A function over finite field F2n is the evaluation of polynomial,

F (x) = a0 + a1x + a2x2 + . . . + a2n�1x2n�1, ai � F2n.

Example: Most commonly used primitive is symmetric S-box,
mapping n to n binary bits. Inverse S-box in AES,

F (x) = x�1 = x2n�2, x � F2n
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Functions over finite fields

� Fixing the basis of the field,say polynomial (1, �, . . . , �n�1), we get
isomorphic representation of vector space and finite field. That is,
any element x � F2n can be written as x =

�n�1
i=0 xi�

i, xi � F2.

x � F2n
F�� F (x) � F2n,

(x0, . . . , xn�1) � Fn
2

F�� (f1(x0, . . . , xn�1), . . . , fn(x0, . . . , xn�1)) � Fn
2.

F = (f1, f2, . . . , fn)

� We can consider a collection of n Boolean functions instead of F .

Basic building blocks for software orinted stream ciphers 15:48
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The main cryptographic criteria for functions over finite fields

� Nonlinearity, resistance to linear cryptanalysis

� Differential properties, resistence to differential cryptanalysis.

� High algebraic degree and permutation property

• Fundamental result: Algebraic degree of F (x) =
�2n�1

i=0 aix
i is

given by the highest Hamming weight of i for which ai �= 0.

• Thus, F (x) = x�1 = x2n�2 over F2n is of algebraic degree n � 1 as
2n � 2 = (1,1,1, . . . ,1,0)� �� �

n

.

Linear combinations of component functions f1, . . . , fn of degree n � 1.
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Example of representation

� Let F (x) = x3 over F23 defined by primitive polynomial p(x) = x3 +
x + 1 over F2. Let � be primitive element of F23, i.e. �3 = � + 1.

� Then the component functions are derived as,

F (x) = x3 = (x0 + �x1 + �2x2)
3 =

= (x0 + �x1 + �2x2)(x0 + �x1 + �2x2)
2 =

= (x0 + �x1 + �2x2)(x0 + �2x1 + �4x2)
�3=�+1

= . . .

= (x0 + x1 + x2 + x1x2) + �(x1 + x0x1 + x0x2) + �2(x2 + x0x1)

= 1 · f1(x0, x1, x2) + �f2(x0, x1, x2) + �2f3(x0, x1, x2).

Basic building blocks for software orinted stream ciphers 17:48
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Trace function

Definition: For � � F = Fqm and K = Fq, the trace TrF/K(�) of � over
K is defined by,

TrF/K(�) = � + �q + · · · + �qm�1
.

� It can be proved that TrF/K(�) is always an element of K = Fq.

Proof: TrF/K(�) � K � TrF/K(�)q = TrF/K(�). But,

TrF/K(�)q = (�+�q+ · · ·+�qm�1
)q = �q+ · · ·+�qm�1

+� = TrF/K(�),

since �qm
= �.

� Trace is a linear operator TrF/K(� + �) = TrF/K(�) + TrF/K(�)

• Need Trace to derive good Boolean functions.
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Trace of the function x3 - example

� Any element a � F23 can be written as,

a = a01 + a1x + a2x2; ai � F2.

� By properties of trace function

Tr(a01 + a1x + a2x2) = a0Tr(1) + a1Tr(x) + a2Tr(x2).

Then,

Tr(1) = 1 + 1 + 1 = 1

Tr(x) = x + x2 + x4 = x + x2 + x(x + 1) = 0

Tr(x2) = Tr(x) = 0

Basic building blocks for software orinted stream ciphers 19:48
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Representation of the mapping Tr(x3)

x (x0, x1, x2) x3 x3 (mod x3 + x + 1) (y0, y1, y2) Tr(x3)
0 (0,0,0) 0 0 (0,0,0) 0
1 (1,0,0) 1 1 (1,0,0) 1
x (0,1,0) x3 x + 1 (1,1,0) 1
x2 (0,0,1) x6 x2 + 1 (1,0,1) 1
x3 (1,1,0) x9 x2 (0,0,1) 0
x4 (0,1,1) x12 x2 + x + 1 (1,1,1) 1
x5 (1,1,1) x15 x (0,1,0) 0
x6 (1,0,1) x18 x2 + x (0,1,1) 0
x7 (1,0,0) x21 1 (1,0,0) 1
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Walsh spectra of some trace mappings

� Good functions but problem is the hardware complexity.

Walsh spectra of x �� Tr(xd) over F28.

c
d/#{� : F� = c} 96 64 48 32 28 24 20 16 12 8 4 0

7 1 30 120 105
11 1 4 18 132 101
19 8 8 152 88
23 2 20 144 90
31 40 96 120
43 2 1 8 136 109

254 (-1) 5 16 36 24 34 40 36 48 17

� Note that Nf(x
�1) = Nf(x

31). But degrees are 7 respectively 5.
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Suitable power mappings in cryptography

� If you consider previous table the best confusion (nonlinearity) is
achieved by F (x) = x�1 and F (x) = x31.

� Though algebraic degree is 7 respectively 5 if n = 8,

y = F (x) = x�1/ · x2 � yx2 = x

y = F (x) = x31/ · x � yx = x32

Result is quadratic equations that relate input and output bits

• The internal structure of SNOW 2.0 allows description of the cipher
as a system of 3706 quadratic equations with 1598 variables.
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SNOW 3G a 3GPP confidentiality algorithm

� Since A5/x algorithm does not give confidence, in 3GPP designers
decided to have two algorithms based on different design principles.
The choice was to use :

� KASUMI f8 block cipher encryption scheme

� Strenghten version of SNOW 2.0, named SNOW 3G

Once when XL, XLS or Grobner basis break AES, SNOW 2.0 . . . ?!

• Prof. Kaisa Nyberg asked me for a suitable polynomial function
with no quadratic I/O equations.

• I/O size fixed n = 8 - always cubic I/O relations !

• The result was a Dickson permutation polynomial

P (x) = x + x9 + x13 + x15 + x33 + x41 + x45 + x47 + x49

Basic building blocks for software orinted stream ciphers 23:48
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Modifying SNOW 2.0 - SNOW 3G
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Vectorial functions F : Fn
2 � Fm

2 in stream ciphers

.
     .

 .

1  LFSR1

 LFSR2

LFSRn

F

z1

zm

1x

x

xn

2

LFSR

sk−1 sk−2 s1 s0

f

. . .

zt

Nonlinear filtering generator

• Increase the throughput by generating several keystream bits at the
time F : Fn

2 � Fm
2 (similar to e.g. Blum-Blum-Shub)

Basic building blocks for software orinted stream ciphers 25:48

��

��

Estimating the size of the output

• For these schemes clearly m � n.

• For instance taking permutation n = m each output directly re-
veals secret state bits.

How far we can go in decompression ?

� For standard choice IV=K=128 bits, m slightly larger than n/2 leads
to attacks of complexity less than 2128.

� Idea: Consider the reduced preimage space,

|Sy| = |{x : F (x) = y}| = 2n�m.

� Observe output blocks yt1, . . . , ytc so that c � n > L, using L = 2K.

� Solve 2(n�m)c linear systems in time 2(n�m)cL3 = 2KL3.
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Deriving linear systems for filtering generator

• Given yti we know x � Syti. Guessing x = (x�
1, . . . , x�

n) � Syti one
gets n linear equations,

xi =
L�1�

j=0
ajsj; i = 1, . . . , n

.  .  .s L - 1
s 0x x x1 2 n

F

y y y
1 2 m
t t t
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Cryptographic criteria for F2n � F2m

• For Boolean functions degree defined as the largest length of mono-
mials,

f(x1, . . . , x4) = x1x2x3 + x2x4 + x1 deg(f) = 3

• Assume

y1 = f1(x1, . . . , x4) = x1x2x3 + x2x4 + x1

y2 = f2(x1, . . . , x4) = x1x2x3 + x2x4 + x2

• Then consider y1 + y2 = x1 + x2 and easily break the scheme.

Nonlinearity, resiliency and degree defined w.r.t.
�m

i=1 aifi, a �= 0.

Basic building blocks for software orinted stream ciphers 28:48



��

��

An example of construction

� Assume that we want to construct 1-resilient function F : F6
2 � F3

2
by concatenating linear functions on F4

2.

f1 f2 f3
�

fi

x1 + x2 x2 + x3 x1 + x3 0
x1 + x3 x1 + x4 x2 + x3 x2 + x4
x2 + x3 x2 + x3 + x4 x3 + x4 x3

x1 + x3 + x4 x1 + x4 x2 + x4 x2 + x3 + x4

� E.g. the ANF of function f1 is,

f1(y, x) = (y1 + 1)(y2 + 1)[x1 + x2] + y1(y2 + 1)[x1 + x3] +
+ (y1 + 1)y2[x2 + x3] + y1y2[x1 + x3 + x4].

Basic building blocks for software orinted stream ciphers 29:48

��

��

Binary linear codes

� f1, f2, f3 are all 1-resilient functions of degree d = 3. On the other
hand, f1 + f2 + f3 is of degree 2 and it is not even balanced.

� Solution is to use codewords of a binary linear code.

Definition: A binary linear [k, m, t] code, C, is an m-dimensional
subspace of Fk

2 s.t. for all c � C \ {0}

wt(c) � t + 1.

� In other words, there is a basis of C, say C =< c1, . . . , cm >, ci � Fk
2,

s.t. any c � C can be written as,

c =
m�

i=1
aici, ai � F2.
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Example of a binary linear code

� Let us consider 3 binary vectors in F4
2, c1 = (1,1,0,0), c2 = (1,0,1,0),

c3 = (0,1,0,1). Then C =< c1, c2, c3 > is a set of 8 vectors,

0 = (0,0,0,0)

c1 = (1,1,0,0)

c2 = (1,0,1,0)

c3 = (0,1,0,1)

c1 + c2 = (0,1,1,0)

c1 + c3 = (1,0,0,1)

c2 + c3 = (1,1,1,1)

c1 + c2 + c3 = (0,0,1,1)
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Using binary linear codes to construct F

� Let < c1, . . . , cm > be a basis of a binary linear [k, m, t + 1] code C.
Then the component functions f1, . . . , fm � k may be defined on the
same k-dimensional subspace � as,

f�
i (x1, . . . , xk) = ci · x = ci,1x1 + · · · + ci,kxk, i = 1, . . . , m; ci � Fk

2

If F : Fn
2 � Fm

2 - need to define 2n�k linear functions for each fi !

� Then
�m

i=1 aif
�
i (x) is a linear function of weight � t + 1 for any

nonzero choice of ai’s,

m�

i=1
aif

�
i (x) =

m�

i=1
aici · x =

�

�
m�

i=1
aici

�

�

� �� �
c�C\{0}

·x.
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Using binary linear codes to construct F cont.

� Assume that component functions of F are concatenations of dis-
tinct linear functions on Fk

2. Thus we need 2n�k such functions.

� Due to definition of resiliency if F is to be t-resilient then all linear
combinations of linear subfunctions are t resilient on these 2n�k

subspaces.

� Do we need a set of 2n�k disjoint linear codes to construct F?

� Disjoint means that for C = {C1, . . . , C2n�k},

Ci � Cj = {0}, 1 � i < j � 2n�k
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How to use all the codewords of C

Lemma [Johansson-Pasalic ’00]: Let c0, . . . , cm�1 be a basis of a
binary [k, m, t + 1] linear code C. Let � be a primitive element in F2m

and (1, �, . . . , �m�1) be a polynomial basis of F2m. Define a bijection
� : F2m �� C by

�(a0 + a1� + · · · am�1�m�1) = a0c0 + a1c1 + · · · am�1cm�1.

Consider the matrix

A� =

�

�����

�(1) �(�) . . . �(�m�1)
�(�) �(�2) . . . �(�m)

... ... . . . ...
�(�2m�2) �(1) . . . �(�m�2)

�

�����
.

For any linear combination of columns (not all zero) of the matrix A�,
each nonzero codeword of C will appear exactly once.
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Proof of the Lemma

Proof: Since � is a bijection, it is enough to show that the matrix
�

�����

1 � . . . �m�1

� �2 . . . �m

... ... . . . ...
�2m�2 1 . . . �m�2

�

�����

has the property that each element in F�
2m will appear once in any

nonzero linear combination of columns of the above matrix.

Any nonzero linear combination of columns can be written as

(c0 + c1� + · · · + cm�1�m�1)

�

����

1
�
...

�2m�2

�

���� , c0, . . . , cm�1 � F2
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Application of the Lemma

� Let � be be a primitive element in F23 and (1, �, �2) be a polynomial
basis of F2m. For c0 = (1,1,0,0), c1 = (1,0,1,0), c2 = (0,1,0,1),
and �3 + � + 1 = 0 we compute A�,

A� =

�

�����������

c0 c1 c2
c1 c2 c0 + c1
c2 c0 + c1 c1 + c2

c0 + c1 c1 + c2 c0 + c1 + c2
c1 + c2 c0 + c1 + c2 c0 + c2

c0 + c1 + c2 c0 + c2 c0
c0 + c2 c0 c1

�

�����������

;

A�
1+A�

2� �� ��

�����������

c0 + c1
c1 + c2

c2 + c0 + c1
c0 + c2

c0
c1
c2

�

�����������

.
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Application of the Lemma

� Let us construct 1-resilient F : F6
2 � F3

2 concatenating linear func-
tions in 4 variables. We may take any 4 rows of A� (here we take
first 4 rows) and define F (using c0 = (1,1,0,0), c1 = (1,0,1,0),
c2 = (0,1,0,1)) as,

F =

�

����

c0 · x c1 · x c2 · x
c1 · x c2 · x (c0 + c1) · x
c2 · x (c0 + c1) · x (c1 + c2) · x

(c0 + c1) · x (c1 + c2) · x (c0 + c1 + c2) · x

�

���� .

F =

�

����

x1 + x2 x1 + x3 x2 + x4
x1 + x3 x2 + x4 x2 + x3
x2 + x4 x2 + x3 x1 + x2 + x3 + x4
x2 + x3 x1 + x2 + x3 + x4 x3 + x4

�

���� .
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Differential cryptanalysis

� Particularly important for block ciphers

• Idea: Compute the distribution tables for S-boxes, i.e. certain input
differences can result in highly nonuniform distribution of the output
XOR of an S-box.

x x

y ( x ) y ( x + a )

S - b o x

+  a

+
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Differential properties of S-boxes

� We use a polynomial representation, i.e. F (x) =
�2n�1

i=0 aix, ai � F2n.

� Differential properties of F counts the number of solutions to

F (x + a) + F (x) = b a � F�
2n, b � F2n. (1)

F is called almost perfect nonlinear(APN) if each equation (1) has
at most two solutions in F2n. Highest resistance to differential crypt-
analysis.

Example: Find the differential properties of F (x) = x3 in GF (2n).

F (x + a) + F (x) = (x + a)3 + x3 = ( � x3 + ax2 + a2x + a3)+ � x3 = b.

Quadratic equation, either two or no solutions in GF (2n). x3 is
APN !
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Kloosterman sums and inverse function

� If Fq is a finite extension over F2 then Kloosterman sum is defined,

K(a, b) =
�

x�Fq

(�1)Tr(ax+bx�1); a, b � Fq,

where we take 0�1 = 0.

� This is exactly the Walsh spectra of x�1. The elements a chooses
linear functions and b different linear combinations of the output
functions of x�1.

� Hard to prove anything for similar sums, except some bounds:

|K(a, b)| � 2q
1
2,

for any a, b � Fq and b �= 0. So, Nl(x�1) � 2n�1 � 2
n
2.
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T-functions

� Introduced in 2003 by A. Klimov and A. Shamir

� The pupose is combine primitive machine instructions (operations)
to obtain cryptographic primitive.

a + b  m o d  2  ;
n

a - b  m o d  2
n

a  x  b  m o d  2  ;  - a  m o d  2n n

       a ;         a          b

   a   b   ;    a   V b

x

f (x )
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Basic properties of T-functions

� All processors support the 8 operations - efficient software imple-
mentation.

� Common feature for all operations - no propagation (triangular func-
tion) from left to right (LSB is zero bit, MSB is (n�1)-th bit). That
is, i-th bit of output [f(x)]i depends only on input bits x0, . . . , xi

Example: Recall again that d = a + b (mod 2n) using c0 = 0,

di = ai � bi � ci; i = 0, . . . , n � 1,

Thus

d0 = a0 � b0, d1 = a1 + b1 + c1(a0, b0), d2 = a2 + b2 + c2(a0, b0, a1, b1) . . .
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Invertibility of T-functions

� Often it is desirable to use invertible building blocks; T-functions
are used in block ciphers as well (RC6);

� Polynomials over the ring of integers modulo 2n are easier to char-
acterize than polynomials over fields!

Theorem [Rivest, 1999]: Let P (x) = a0 + a1x + . . . + adx
d be a

polynomial with integral coefficients. Then P (x) is a permutation
polynomial modulo 2n, n > 2 IF AND ONLY IF

a1 is odd ; (a2 + a4 + . . .) is even ; (a3 + a5 + . . .) is even .

For instance x �� x + 2x2 (mod 2n) is permutation, but the theorem
does not cover,

x �� x � (x2 � 1)
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Cycle length of T-functions

• Not all invertible T-functions has good cycle structure.

Example: Consider x �� x + 2x2 (mod 16),

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 3 10 5 4 7 14 9 8 11 2 13 12 15 6 1

A permutation but several cycles, including fixed points in red, e.g.
4 �� 4 �� 4 · · ·
Cannot construct PRNG similar to LCG xi+1 = f(xi) !

� Important but (nonconstructive) result states

� T-function is invertible IFF it can be represented as c+x+2v(x)

� A single cycle IFF T-function written as 1+x+2(v(x+1)�v(x))
where v(x) is some T-function.
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Single cycle T-functions

� Idea similar as for LFSR-based stream ciphers:

� LFSR has two cycles, a long period 2L � 1, and all-zero

� T-function can be constructed to have a single 2n cycle.

• Protect from accidental derivation of all-zero initial state for LFSR.

How do we construct efficient single cycle T-functions ?

� Selecting v(x) = x2 still gives 7 operations (inefficient) using

T (x) = 1 + x + 2(v(x + 1) � v(x))

� For instance x �� x + (x2 � 5) (mod 2n) is invertible single cycle
mapping - only 3 operations.
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Application of x �� x + (x2 � 5) (mod 2n) as PRNG

� PRIMITIVE: Use x �� x + (x2 � 5) (mod 2n) as a substitute for
LFSR or LCG rather than stand-alone cipher.

� MSB are much stronger in this application (depends on more bits),
take m � n MSB bits as output.

Any PRNG can be attacked with TMD attack in complexity 2n/2 !

1. Precompute outputs for 2t random states of PRNG (of
sufficient length to uniquely determine the state), sort the list
2. Observe 2d actual outputs

3. If t + d = n the probability of collision is 0.5. Optimal

t = d = n/2.
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Security of x �� x + (x2 � 5) (mod 2n) T-function

� We can represent x � [0,2n] as,

x = 22n/3xu + 2n/3xv + xw, xu, xv, xw � [0,2n/3]

Suppose that xw = 0. Then

22n/3xu + 2n/3xv �� 22n/3xu + 2n/3xv + ((22n/3xu + 2n/3xv)2 � 5) =

= 22n/3(xu + x2
v) + 2n/3xv + 5 (mod 2n).

Difference between MSB x2
v - leads to a TMD attack in 2n/3 .

• Most of the stream cipher designs have failed to resist cryptanalysis.
• Software implementation is not efficient as claimed (especially mul-

tiplication).
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eSTREAM proposal ABC

• Broken several times, 7 different cryptanalysis - T-function design
reminds a dedicated hash function design !!

• A is an LFSR of length 64; B is a single cycle T function; C is a
filtering function (table look-ups, �, and �).
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Chapter 9

Algebraic Attacks

Content of this chapter:

• Algebraic attacks preliminary.

• Algebraic immunity of Boolean functions.

• Vectorial Boolean functions - multivariate input/output equations.

• Fast and probabilistic algebraic attacks.

• S-boxes and multivariate equations, attacks using Grobner basis.
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Summary on stream cipher primitives

� Goal is to design keystream generator with:

� Two inputs: KEY and IV

� OUTPUT: Keystream sequence of long period and good statis-
tical properties.

� Using standard building blocks as given below.

L F S R F C S R N F S R

S - b o x T - f unc t i on

.

.

.
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Algebraic attacks

Known from Shannon theory but revisited in 2001.

– Find equations (on any cipher) with the key (state) bits
as unknowns.
– Fill in the known variables and constants
– Solve the equations

Problems :

– Non-linear equations (of high degree)
– Finding the equations highly dependent on the cipher
– Finite field algebras
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Setting up equations - Shannon’s attack

� For any cipher encyphering can be seen as E = f(K, M).

� Given M = m1, m2, . . . , ms and E = c1, c2, . . . , cs cryptanalyst can set
up equations for different key elements k1, k2, . . . , kr

c1 = f1(m1, m2, . . . , ms; k1, k2, . . . , kr)
c2 = f2(m1, m2, . . . , ms; k1, k2, . . . , kr)

...
cs = fs(m1, m2, . . . , ms; k1, k2, . . . , kr).

� Each equation must be complex in ki and involve many of them.

Cryptanalysis - Algebraic attacks 3:47
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Algebraic attacks on LFSR based stream siphers

� For these ciphers ci = mi � zi (additive ciphers), zi keystream.

LFSR

. . .

Nonlinear filtering generator

zt

s0s1sk�2sk�1

f

� Known plaintext attack means that keystream zt is known, in addi-
tion zt = f(s0, . . . , sk�1).
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LFSR filters - example

secret key
 k  bits

public
initial value

initialization

x0 T
transition

x1 T

f f

0 1keystream

filter

int. state
2k

, S bits
S>=

z z

� Initial state x0 = s0, . . . , sS�1. Then xt = Lt(s0, . . . , sS�1).

� Problem. Recover s0, . . . , sS�1 from z0, . . . , zN�1,

zt = f(xt) = f � Lt(s0, . . . , sS�1), 0 � t � N � 1.
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Shannon’s attack for linear transition ciphers

� Set up the enciphering equations:

z0 = f(s0, s1, . . . , sK�1)
z1 = f � L(s0, s1, . . . , sK�1)

...
zt = f � Lt(s0, s1, . . . , sK�1).

� System of equations in K variables of degree d = deg(f).
The number of terms is

�
d�

i=0

�K

i

�
�

Kd

d!

� Observe more than Kd

d! bits and solve system using linearization

(turn nonlinear system to linear) in complexity
�

Kd

d!

�3
.
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Algebraic attacks: Linearization

� Basic linearization algorithm:

� System is overdefined - more equations than monomials

� Replace each monomial with new variable

� Solve linear system
s0 � s1 � s1s2 = 0
s0s1 � s0s2 � s1s2 = 1
s1 � s0s1 = 0
s0s1 � s1s2 � s1 = 0
s0s1 � s0 = 0
s0s1 � s1s2 = 1

�
t = s0s1
u = s0s2
v = s1s2

�

s0 � s1 � v = 0
t � u � v = 1
s1 � t = 0
s1 � t � v = 0
t � s0 = 0
t � v = 1

�

�

���������

s0
s1
s2
t
u
v

�

���������

=

�

���������

1
1
0
1
0
0

�

���������

Cryptanalysis - Algebraic attacks 7:47

��

��

Algebraic attacks preliminaries

� Can we decrease the degree of the system ?

� If we can set up a true system of lower degree r < d complexity
becomes smaller,

�
Sr

r!

�3

�
�

Sd

d!

�3

� How do we decrease the degree of the system ?

� What ciphers are vulnerable to this attack ?
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Block versus Stream ciphers

F S M

K

z = f  (s   ,s   ,  . . .  ,  s    )0 1 k - 1
t t

s   ,s   ,  . . .  ,  s    
0 1 S - 1

S t r e a m   C i p h e r

Degree  o f   f   f i xed   o r  
 i n c r e a s e s  i n  t i m e  

M a n y  e q u a t i o n s

B l o c k   C i p h e r

P
K 1

Con f .   +  D i f f .

O U T  =  g  (  P ,  K  )
o r h  ( O U T  ,  P ,  K  ) = 0

1

 
.
.
.

Con f .   +  D i f f .
K r

1

1

1

1

I V

1

• gi explicit functions, e.g. x�1 as an S-box gives degree 70 = 10 � 7
after 10 rounds. hi implicit equations, output values new variables
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Annihilators of Boolean function

� Let f(x3, x2, x1) = x1x2 + x2x3.

x3 x2 x1 f(x) g(x)
0 0 0 0 �
0 0 1 0 �
0 1 0 0 �
0 1 1 1 0
1 0 0 0 �
1 0 1 0 �
1 1 0 1 0
1 1 1 0 �

� Assign “�” to get annihilator g, f(x)g(x) = 0, of low degree !

� For instance g(x) = 1 + x2 gives

f(x)g(x) = [x2(x1 + x3)][1 + x2] = x2(x1 + x3) + x2(x1 + x3) = 0

Cryptanalysis - Algebraic attacks 10:47
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An example of a bad design- Toyocrypt

� Toyocrypt uses LFSR of length 128 to generate zt = f(st),

f(s0, . . . , s127) = s127 +
62�

i=0
sis�i + s10s23s32s42

+ s1s2s9s12s18s20s23s25s26s28s33s41s42s51s53s59 +
62�

i=0
si.

� Now T �
�
128
63

�
� 2124 which gives attack Compl = 21243

= 2372.

� But f(s)(1+s23) is of degree 3 ! System f(st)(1+s23) = zt(1+s23).

Then T �
�
128
3

�
= 218, and attack complexity 254.

Cryptanalysis - Algebraic attacks 11:47
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Algebraic attacks- decreasing the degree of f

� Set of annihilators is exactly Ann(f) =< 1 + f >, ideal spanned by
1 + f .

� Idea of attack: Find annihilators of degree less than deg(f). Ob-
serving zt = 1,

f(xt) = 1 � f(xt)g(xt)� �� �
=0

= g(xt) � g � Lt(s0, s1, . . . , sS�1) = 0.

� Similarly for h � Ann(1 + f)and zt = 0,

h(xt)(1 + f(xt)) = 0 � h � Lt(s0, s1, . . . , sS�1) = 0.

� Solve a system of equations of degree deg(g) = deg(h) < deg(f).

Cryptanalysis - Algebraic attacks 12:47
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Amount of keystream needed

� Denote by g1, . . . , gu linearly independent annihilators of f

� Similarly h1, . . . , hu linearly independent annihilators of 1 + f

� Each keystream bit st gives rise to u linearly independent equations
of degree d = deg(gi) = deg(hi)

� One annihilator enough, but keystream sequence needed reduced by
factor u,

Nmb. of keystream bits �
�S

d

�
/u.

Cryptanalysis - Algebraic attacks 13:47
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Protection to algebraic attacks for linear transition ciphers

� Find a minimum degree for which complexity of attacks is larger
than brute force attack.

Example: For S = 2k = 256 to protect against Shannon’s attack
is deg(g) � 7 as

�

�
7�

i=0

�S

i

�
�

�
3

� 2129.

Meaning no annihilators of degree < 7 for filtering function !

Annihilator g of deg(g) = 3 decreases complexity to 263.
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Bounds on degree of annihilators

x : f(x) = 1
wt(f) = 2n�1 RMf(d, n)

all monomials of degree � d

1 x1 · · · xn x1x2 · · · xn�d+1 · · · xn

� (Courtois & Meier EC 03)There exists g �= 0, with deg(g) � d if,

wt(f) <
d�

i=0

�n

i

�
.

� More columns than rows =� linear dependency of columns.

� Consequently, always annihilators of degree �n
2� for wt(f) = 2n�1.

Cryptanalysis - Algebraic attacks 15:47
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Computing annihilators

� How to find these annihilators: Find the kernel of matrix, use Gauss
in complexity

2n�1

�

�
d�

i=0

�n

i

�
�

�
2

.

� Complexity of size 243 already for d = 7 and n = 15.

� Eurocrypt 2003 (Meier-Pasalic-Carlet) provides better algorithm

Memory 1
4

�
n
d

�
·
�

n
d�1

�

Complexity 1
8

�
n
d

�3

� Currently there are even faster algorithms, e.g. Armknecht et al.
Eurocrypt 2006.
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Algebraic immunity

Definition: Algebraic immunity (AI) of f defined as minimum degree
of g � Bn such that either fg = 0 or (1 + f)g = 0.

� Previous result gives upper bound AI(f) � �n
2� for balanced func-

tions.

� The degree of system � 7 for S = 2k = 256 as,
�256

7

�
� 243 � Compl. = (243)3 = 2129.

� Thus function f on at least n = 14 variables.

� Optimized algebraic immunity when AI(f) = �n
2�.

Cryptanalysis - Algebraic attacks 17:47
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Relationship between annihilators of f and 1 + f

� Turns out not to be easy- want to find mindeg{Ann(f), Ann(1+ f)}

Theorem: When n is odd, a balanced function f has optimized
AI = (n + 1)/2 if and only if

deg(Ann(f)) = deg(An(1 + f)) = (n + 1)/2

� Open problem is to determine whether there is such connection for
even n.
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Annihilators of f and 1 + f - example

� For unbalanced function f(x1, x2, x3) = x1x2x3 easy to check that
g = 1 + x1 annihilates f , that is fg = 0.

� On the other hand 1 + f is only annihilated by f !

� The truth table of 1 + f is

1 + f = [11111110]

�
g = [00000001].

� Thus deg(Ann(f)) = 1 whereas deg(Ann(1 + f)) = 3.

Cryptanalysis - Algebraic attacks 19:47
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Simulation results on AI, n odd

AI of balanced functions, n odd.

algebraic immunity
n nb. trials n�3

2
n�1
2

n+1
2

7 10,000 0 0.838 0.162
9 10,000 0 0.709 0.291
11 10,000 0 0.785 0.215
13 10,000 0.010 0.913 0.077
15 500 0.002 0.988 0.0

Main concentration for AI � {n�1
2 , n+1

2 }.

Cryptanalysis - Algebraic attacks 20:47



��

��

Simulation results on AI, n even

AI of balanced functions, n even.

algebraic immunity
n nb. trials n

2 � 2 n
2 � 1 n

2
8 10,000 0 0 1
10 10,000 0 0 1
12 10,000 0 0.084 0.916

� Most likely that AI = n
2.

� For random balanced functions AI good on average. Need results
for deterministic constructions.

Cryptanalysis - Algebraic attacks 21:47
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Good algebraic immunity from known classes

� Dropping resiliency one may consider Tr(x�1) over F2n.

n degree nonlin. alg. immunity
6 5 24 3
7 6 54 4
8 7 112 4
9 8 234 4
10 9 480 5
14 13 8064 6

� Slightly unoptimized but good candidate.
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Attacks on real ciphers

� Mostly applicable to ciphers designed before invention of algebraic
attacks (few exceptions)

� The greatest success to,

� Toyocrypt stream cipher.

� E0 encryption algorithm in Bluetooth.

� LILY-128 stream cipher
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Summary for annihilators of Boolean functions

� There exist constructions of “strong” Boolean functions, unifying
high degree, high nonlinearity and resiliency.

Open problem: Propose construction which ensures optimum
algebraic immunity (only annihilators of degree �n

2�) as well !

� To make cipher secure increase the variable space n, but trading-off
against higher implementation cost (more gates-slower).
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Combiners with memory
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Algebraic attacks on combiners with memory

In this case �t zt = f(x1
t , . . . , xn

t , c1t , . . . , cm
t ). The LFSR inputs are still

linear functions of key (state) bits,

zt = f(Lt(k1, . . . , ks), c1t , . . . , cm
t ) = f(Lt(K), ct).

� Now we have f(Lt(K), ct)�zt = 0, but collecting keystream bits does
not help- new variables ct all the time.

� We could substitute all the ct with a function of c0, after all ct+1 =
g(ct) for all t. (c0 can be assumed to be known to the attacker)

But: degree of equations would increase exponentially with t.
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Algebraic attacks on combiners with memory II

Task: cancelling out the memory-bits from (n, m)- combiners

� Result by Armknecht and Krause in Crypto 2003:

� There is a Boolean function H of a degree at most �n(m+1)
2 �and

an integer r strictly larger than the number of memory bits, such
that:

�t : H(Lt(K), zt, . . . , zt+r�1) = 0

� There is also an algorithm for finding H.

• The problem is that even small m implies deg(H) is rather high, com-
plexity of attack is high.
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Fast algebraic attacks -reducing the degree

� IDEA: Assume an system of equations H(Lt(K), zt, . . . , zt+r�1) = 0
can be split into two halves,

H1(L
t(K)) + H2(L

t(K), zt, . . . , zt+r�1) = 0

where deg(H) = deg(H1) = d1 and deg(H2) = d2 with d1 > d2.

• H1 only dependent on linear function of the secret key bits =� after
“several” clocks the system of H1:s will be linearly dependent

��0, . . . , �h :
h�

i=0
�iH1(L

t+i(K)) = 0

• The parameter h is about
�

K
d1

�
(theory of linear recurring sequences).

� This is precomutation step - usually complexity comparable to alge-
braic attack.
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Fast algebraic attacks - reducing the degree

We have achieved degree reduction as:

�t
h�

i=0
�iH1(L

t+i(K)) = 0

�
h�

i=0
�iH2(L

t+i(K), zt, . . . , zt+r�1) = 0

� Degree reduced, but number of needed consecutive keystream bits
increased (dramatically).

� Assumption and efficient retrieval of coefficients �i was proven cor-
rect for most stream ciphers by Armknecht in Oct 2004.
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Fast algebraic attacks - complexity

1. Relation Search Computing the equation[s] of type H1 + H2 = 0.
At most

�
n
d1

�
steps, n number of LFSR variables.

2. Precomputation step Find unique coefficients �0, . . . , �h so that
�h

i=0 �iH1(Lt+i(K), zt) = 0. The complexity is h log2 h, where h =�|K|
d1

�
.

3. Substitution step Write
�h

i=0 �iH2(Lt+i(K), zt, . . . , zt+r�1) = 0 for
E =

�|K|
d2

�
consecutive values of t, for example t = 1, . . . , E. Com-

plexity (dominating) 2Eh logh.

4. Solving step Solve these equations by linearization. It requires E3

operations.

5. Keystream requirement Need h + E � h keystream bits.
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Breaking SFINKS with fast algebraic attacks

� SFINKS was a eSTREAM submission, now withdrawn. Idea: Take
a 256 stage LFSR and nonlinear combining function deg(f) = 15.

� Authors were awared of existence of annihilators (algebraic immu-
nity) of degree � 6, which would give

��
256
6

��3
= 2115, above 80 bits

security level.

� But fast algebraic degree could be mounted due to existence of g, h
such that fg + h = 0, deg(h) = 8 = d1; deg(g) = 2 = d2.

Precomputation step 260

Substitution step 270

Solving step 242

Keystream required 248
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E0 summation generator

E0 is an (n, m) = (4,4) combiner; 4 memory bits.
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Fast algebraic attack on E0

� Prediction: degree at most 10 = n(m + 1)/2, dependency of at
most 5 consecutive keystream bits.

� Practice: degree 4, dependency of 4 consecutive bits

G(Lt(K), zt, zt+1, zt+2, zt+3) = zt + zt+1 + zt+2 + zt+3

+ �2
t+1(zt+1 + zt+2 + zt+3)

+ �4
t+1 + . . . + �1

t+2 · �1
t+1 · zt+2(zt+1 + 1)

+ . . . + �1
t+3 · �2

t+1
= 0.

�i
t is i-th elementary symmetric polynomial in the unknown outputs

of the four LFSRs

�i(s1, . . . , sK) =
�

1�j1�j2�···�ji�K

sj1sj2 · · · sji
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Fast algebraic attack on E0

� Fast algebraic attack: Decomposition into G1 and G2, where,

G = G1�G2; G1(L
t+i(K)) = �4

t+1+i+�2
t+1+2·�2

t+1+i; deg(G2) = 3

� Armknecht’s results on Boolean annihilators: the size of E0’s char-
acteristic function’s “one-set” is too big to allow degree < 3.

� Described attack is of optimal order of complexity.

� Attack’s complexity is therefore,

Compl. =
��128

3

��3
= 254

• E0 is academicaly broken, but 223 keystream bits are needed.
Impossible as at most 2744 bits generated with same IV.
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Probabilistic algebraic attacks

� Not well understood, especially solving the system of probabilistic
equations.

� Idea is to decrease the degree of system by considering equations
satisfied with high probability. Toyocrypt (a rare example) is well
approximated by s127 +

�62
i=0 sis�i.

� Instead of f(x)g(x) = 0 for all x we may find g�(x) such that deg(g�) <

deg(g) and f(x)g(x) = 0 for almost all x

� In other words, find the minimum distance of the RMf(d�, n).
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Probabilistic algebraic attacks II

� First problem is how to find minimum distance - NP hard problem !

� How do we solve the system ?

� Basic idea: form sufficiently many systems - one of them correct.

� Treating RMf(d�, n) as a random code determinstic algebraic attacks
are better (nonlinear filters)!

� Seems that solving MANY small systems, MANY becomes too much.
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Expanding output space

� More output bits, consider F : Fn
2 � Fm

2 .

� Already indicated that security decreases with increasing m.

� Instead of annihilators multivariate equations (outputs yi are known),
F = (y1(x), . . . , ym(x)),

�

a,b

ca,by
axb; x � Fn

2, y � Fm
2 , c � F2.

� Important to find low degree equation in xi since outputs yj are
known. Find equations so that ca,b = 0 for wt(b) > d.
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Finding multivariate equations

� Similar to Boolean case, apply Gauss on matrix.

y1RM(d, n)

x � Fn
2

RM(d, n)

...

y1 · · · ymRM(d, n)

Nmb of rows 2m �d
i=0

�
n
i

�

� The existence condition becomes,

2n < 2m
d�

i=0

�n

i

�
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Susceptibility to algebraic attacks

� Would be convenient to output byte, m = 8. For n = 24 always
equations of degree d � 6.

� The use of certain resilient F : Fn
2 � Fm

2 completely compromised.

� Resiliency important for nonlinear combiners - prevent correlation
attacks.

� Do not increase throughput for nonlinear combiners, based on ex-
tended Maiorana-McFarland function F : Fn

2 � Fm
2 .
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I/O (Input/Output) equations for standard S-boxes

� Function y = x�1 allows sparse quadratic equations both over ex-
tension and prime field.

� Rewriting yx+1 = 0 for x �= 0 is very sparse over GF (2n). Translated
to GF (2) one finds 5n � 1 linearly independent sparse multivariate
quadratic equations.

� In general, there exist multivariate equations of degree at most d

whenever,

2n <
n�

i=0

�2n

i

�
,

considering terms of degree at most d in x1, . . . , xn, y1, . . . , yn.
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Algebraic attacks - stream cipher vs block ciphers

� Certain stream ciphers vulnerable to algebraic attacks.

� However no real threats for SNOW 2.0. In SOBER-128 equation of
degree 14 relating input and keystream.

� What about block ciphers, especially AES ?

� Need a single (or two) plaintext-ciphertext pair(s).

� Cannot generate enough equations as in case of LFSR stream ci-
phers.
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Algebraic system - simplified example

x1 x2 x3 x4

a1

b1 b2 b3 b4

c1 c2

k1 k2 k3 k4

ai = xi + ki

ci =
�

j �=i bj

For i = 1 to 4

aibi = 1

a2 a3 a4

S S

Mixing layer

c3 c4

S S
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Derived algebraic systems

Cipher AES-128 BES (over GF (28)) HFE
Total variables 1600 3968 n
Total equations 8000 5248 n

Total terms 16096 7808 -

Induced equations for some ciphers

� Sparse systems as number of terms much less than NmbVar2.

� For HFE system is not random but rather pseudorandom. This is
the reason why F4 can successfully break 80 bits challenge.
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MQ algebraic systems

� System of Multivariate Quadratic equations (MQ) known to be NP-
hard for a system of random equations.

� Used in some cryptosystem, best known HFE (Hidden Field Equa-
tions), [Pattarin ’96], not random.

� Not always exponential time. The algorithm F5 breaks HFE 80 bits
challenge.

� The idea is to modify Buchberger algorithm for particular instances
of the problem.
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Representing algebraic systems

� Each equation describing the scheme corresponds to polynomial.

� Then algebraic system is represented by a set of polynomials F in
F[x1, . . . , xn].

ai = xi + ki
aibi = 1
ci =

�
j �=i bi

�� F =

�
��

��

ai � xi � ki = 0
aibi � 1 = 0

ci � �
j �=i bi = 0

�
��

��
,

� Solutions to system are common zeros of the ideal spanned by F .
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Gröbner basis algorithm

� Grobner basis algorithms: bring the system to desired triangular
form,

{a1 � h1(xn), a2 � h2(xn�1, xn), . . . , an � h(x1, x2, . . . , xn)}.

� Basic Buchberger algorithm for finding Gröbner runs in exponential
time (worst case).

� Some modifications of Buchberger such as F4 and F5 might be
faster but still there is no success when applied to AES or BES.

Cryptanalysis - Algebraic attacks 46:47



��

��

Summary of algebraic attacks

� Efficient atacks for certain schemes, especially stream ciphers based
on linear transition (combiners, filters).

� Possibility of breaking block ciphers with Gröbner based algebraic
attacks is small.

� The sparseness of the system not sufficient in case of many variables.
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