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Abstract

The confidentiality and integrity algorithms in cellular networks protect the transmis-
sion of user and signaling data over the air between users and the network, e.g., the

base stations. There are three standardised cryptographic suites for confidentiality and
integrity protection in 4G, which are based on the AES, SNOW 3G, and ZUC primi-
tives, respectively. These primitives are used for providing a 128-bit security level and
are usually implemented in hardware, e.g., using IP (intellectual property) cores, thus
can be quite efficient.

When we come to 5G, the innovative network architecture and high-performance de-
mands pose new challenges to security. For the confidentiality and integrity protection,
there are some new requirements on the underlying cryptographic algorithms. Specifi-
cally, these algorithms should: 1) provide 256 bits of security to protect against attackers
equipped with quantum computing capabilities; and 2) provide at least 20 Gbps (Giga-
bits per second) speed in pure software environments, which is the downlink peak data
rate in 5G. The reason for considering software environments is that the encryption in
5G will likely be moved to the cloud and implemented in software.

Therefore, it is crucial to investigate existing algorithms in 4G, checking if they
can satisfy the 5G requirements in terms of security and speed, and possibly propose
new dedicated algorithms targeting these goals. This is the motivation of this thesis,
which focuses on the confidentiality and integrity algorithms for 5G. The results can be
summarised as follows.

• We investigate the security of SNOW 3G under 256-bit keys and propose two linear
attacks against it with complexities 2172 and 2177, respectively. These cryptanalysis
results indicate that SNOW 3G cannot provide the full 256-bit security level.

• We design some spectral tools for linear cryptanalysis and apply these tools to
investigate the security of ZUC-256, the 256-bit version of ZUC. We propose a
distinguishing attack against ZUC-256 with complexity 2236, which is 220 faster
than exhaustive key search.

• We design a new stream cipher called SNOW-V in response to the new require-
ments for 5G confidentiality and integrity protection, in terms of security and
speed. SNOW-V can provide a 256-bit security level and achieve a speed as high
as 58 Gbps in software based on our extensive evaluation. The cipher is currently
under evaluation in ETSI SAGE (Security Algorithms Group of Experts) as a
promising candidate for 5G confidentiality and integrity algorithms.
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vi Abstract

• We perform deeper cryptanalysis of SNOW-V to ensure that two common crypt-
analysis techniques, guess-and-determine attacks and linear cryptanalysis, do not
apply to SNOW-V faster than exhaustive key search.

• We introduce two minor modifications in SNOW-V and propose an extreme per-
formance variant, called SNOW-Vi, in response to the feedback about SNOW-V
that some use cases are not fully covered. SNOW-Vi covers more use cases, espe-
cially some platforms with less capabilities. The speeds in software are increased
by 50% in average over SNOW-V and can be up to 92 Gbps.

Besides these works on 5G confidentiality and integrity algorithms, the thesis is also
devoted to local pseudorandom generators (PRGs).

• We investigate the security of local PRGs and propose two attacks against some
constructions instantiated on the P5 predicate. The attacks improve existing re-
sults with a large gap and narrow down the secure parameter regime. We also
extend the attacks to other local PRGs instantiated on general XOR-AND and
XOR-MAJ predicates and provide some insight in the choice of safe parameters.



Popular Science Summary

When you make a phone call to someone, what you said will be transmitted from your
mobile phone through the open air to a base station, and the base station forwards the
messages to the one you want to talk to. I believe that you do not want your talk heard
by any third person, no matter he is malicious or just curious. The weakest sub-link
along the message transmission path lies over the air, as it is open to everyone and a
malicious or curious person, let us call him an attacker, may be able to eavesdrop or even
manipulate your talk. As a consequence, the messages should be specially protected over
the air to ensure that the attacker will know nothing even if he captures the messages,
and not be able to manipulate the messages without notice. Such a goal is achieved
by encrypting your messages and adding special tags using some specific cryptographic
algorithms, also called ciphers.

There are three standardised ciphers used in 4G for this purpose, named AES, SNOW
3G, and ZUC. All people (with mobile phones) around the world are using (at least one
of) these three ciphers, though they might not notice it: these ciphers are typically
put into the devices during the manufacturing phase and the encryption is performed
automatically by the devices. AES, SNOW 3G, and ZUC provide sufficient security and
speeds in 4G for protecting our message transmission.

How about the situation in 5G?

When we come to 5G, the innovate network architecture and high performance de-
mands introduce higher requirements on these ciphers. Firstly, they should be more
secure since attackers in the future can potentially have very strong capabilities and can
possibly recover your messages, due to the development of quantum computing. More-
over, these ciphers should run much faster in some specific environments since we will
be able to enjoy much higher speeds in 5G. Therefore, it is crucial to investigate whether
the ciphers we are using today (in 4G) can satisfy these new requirements; and if nec-
essary, design new ones particularly targeting these goals. This is exactly the primary
motivation and content of this thesis.

What we did?

Analysing Existing Ciphers. We investigated the security of two of the three ciphers
that we are using today in 4G, i.e., SNOW 3G and ZUC, to check if they can satisfy the
new security requirements in 5G. We found some theoretical attacks against them, which
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provided some reference information to the standardisation organisation (i.e., 3GPP) for
choosing good candidates for 5G. But we do not have to worry about these attacks at
this moment, because their costs are much beyond an attacker’s practical capability
today, and furthermore, the attacker will not be able to get enough data for launching
such attacks.

Designing New Ciphers. We also designed new ciphers, called SNOW-V and SNOW-
Vi as an extreme performance variant, particularly targeting the 5G requirements regard-
ing security and speeds. They can be viewed as successors of SNOW 3G but with much
stronger security and higher speeds. They have been submitted to the standardisation
organisation for consideration of usage in 5G, and they are currently under evaluation.

Analysing Local Pseudorandom Generators. When using ciphers for encryption
or more advanced applications, some random numbers are usually needed. You might
think from the intuition that it is easy to generate a random number, but it is actually
not so for an electronic device. There are special cryptographic constructions called
pseudorandom generators (PRGs) for achieving this goal. We investigated the security
of one particular type of PRGs that are very efficient in implementation, which are
called local PRGs. We developed some analysis methods that can help choose secure
parameters if these PRGs were to be used in practice.
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Chapter 1

Introduction

When people make a phone call or visit a web page with a mobile phone or any
portable device through the cellular network, the network takes charge of finding

the call recipient or the gateway the visit request should be forwarded to. From 1G
involving to 4G (also commonly called LTE), the cellular network has played an essential
role in the last three decades in people’s communication and life, and will continue to
serve indispensably in 5G and the future IoT (Internet of Things) era where everything
is connected.

When getting whatever service from the cellular network, one will always want the
data securely protected over each sub-link of the transmission. This is achieved by using
cryptographic mechanisms and protocols. The weakest security point over the link lies in
the air interface, as the radio channel is open to everyone, including the malicious adver-
saries. The secure data transmission over the air is guaranteed through the 3GPP (3rd
Generation Partnership Project) standardised confidentiality and integrity protection,
which gets data encrypted and authenticated, thus protecting it from eavesdropping and
manipulation.

The confidentiality and integrity protection in cellular networks starts from 2G and
has been improving in each generation to provide stronger security and better perfor-
mance to accommodate the involvement of the network. Now when we come to the 5G
era, the innovative network architecture and high performance demands pose new re-
quirements on the confidentiality and integrity protection. This thesis is thus motivated
and mainly focuses on the 5G confidentiality and integrity algorithms, and we hope it
can help provide some insight in this topic.

1.1 Introduction to Cryptography

Cryptography is the study of designing schemes, called cryptographic primitives or ci-
phers, and protocols to secure data communication in the presence of adversaries. Se-
curity mechanisms that rely on cryptography are an integral part of almost any smart
electronic device and communication system. It is safe to say that without cryptography,
we would never be able to enjoy the cyber world as we do today.

Cryptography has a long history dating back to thousands of years ago, but only after

3
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the 1980s with the advances in areas like mathematics, computer science, and electrical
engineering, it became widely available to ordinary users. Modern cryptography mainly
consists of symmetric primitives, asymmetric primitives, and unkeyed primitives. These
primitives are used in different applications, and from them more advanced protocols
can be constructed. For a comprehensive introduction to cryptography, we refer to
[MVOV18, SS16, KL20].

1.1.1 Symmetric Cryptography
Symmetric cryptography works in a secret-key setting. In such a setting, the two com-
municating parties, say, Alice and Bob, share some secret information, called the secret
key, in advance through a secure channel. Such a secret key is used to encrypt the mes-
sage, which is usually called plaintext, using an encryption algorithm and the output is
called ciphertext; and the other side uses the same secret key to decrypt the ciphertext
using the corresponding decryption algorithm and recover the plaintext. In practice, the
two communicating parties share a secret key, sometimes called the master key, and em-
ploy some key derivation functions to generate sub-keys to protect each communication
session. The master key is typically 128-bit or 256-bit long and shared through a secure
channel, e.g., physically or cryptographically protected.

The symmetric primitives can be mainly categorised into stream ciphers, block ciphers
and MACs (message authentication codes). Figure 1.1 presents a simple illustration of
how they work.

stream 
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Figure 1.1: Symmetric primitives (K: secret key; IV : initialisation vector; m:
plaintext; c: ciphertext; z: keystream; t and t′: authentication tags).

1.1.1.1 Stream Ciphers

It is tricky to give an exact definition of a stream cipher, as there are some designs that
perform like a stream cipher but can be categorised into other constructions according
to their structures. Typically, in a stream cipher, a pseudorandom sequence, called
keystream, is produced and then bit-wise XOR-ed with the plaintext to generate the
ciphertext. The plaintext is not involved in the generation of the keystream sequence.

A stream cipher can be viewed as a loose instantiation of the one-time pad (OTP).
An OTP is achieved by XOR-ing a completely random key with the plaintext, and
the key should have at least the same length as the plaintext and never be used more
than once. This is a strong requirement for practical implementation and restricts the
usage of OTPs only in critical communications. A stream cipher combines a keystream
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sequence with plaintext in a similar fashion as an OTP, but the keystream sequence
is pseudorandom instead of completely random. As illustrated in Figure 1.1, a stream
cipher takes a much shorter secret key, say 128 bits, and a public initialisation vector (IV)
as inputs, and produces a pseudorandom keystream sequence which can be much longer.
In practice, the length of a keystream sequence generated under one (key, IV) pair is
usually limited to resist potential attacks. If more data needs encryption, new values
are assigned to the IV to generate new keystream sequences. The security foundation
of a stream cipher is that it is computationally infeasible to get the keystream sequence
without knowing the value of the secret key, thus impossible to recover the plaintext.

Stream ciphers have the advantages of efficient implementations in hardware and
software, zero error propagation, and low latency. Therefore, stream ciphers are widely
used in applications that have unpredictable lengths of plaintext and require limited
error propagation. For example, in mobile communications, data transmission can be
initiated at any time and should be processed instantly; besides, an error happening
over a bit position should not affect other bits. Thus the confidentiality and integrity
algorithms used in cellular networks are mostly stream ciphers, e.g., SNOW 3G [3GP06]
and ZUC [ETS11] used in 4G. This thesis mainly focuses on stream ciphers.

1.1.1.2 Block Ciphers

A block cipher iteratively applies a group of operations on the fixed-length groups of
plaintext bits, called blocks, along with a secret key and possibly an IV to generate
the ciphertext. This is the main difference to a stream cipher, i.e., the plaintext is
involved in the state of the block cipher. Each application of the group of operations
is called one round, and the number of rounds is specified. In each round, a round key,
which is derived from the secret key according to specific key schedule, is introduced.
Block ciphers are mainly built on two structures: the Feistel network and the SPN
(substitution-permutation network).

In a Feistel cipher, the block of bits is split into two halves: a round function is
applied to one half and the output of it is XOR-ed with the other half. The two halves
are then swapped and used as the input of the next round. The round function consists
of linear and non-linear operations to provide diffusion and confusion, respectively. The
cipher DES (Data Encryption Standard) [SB88], once used as the federal encryption
standard but later broken, is based on the Feistel structure.

In an SPN-based block cipher, each round is comprised of a substitution layer (S-
layer) and a permutation layer (P-layer). The S-layer consists of several parallel S-boxes,
which have the property that when one input bit is flipped, about half of the output bits
will be flipped, correspondingly. Typically, the number of S-boxes is decided by dividing
the block size by the size of the S-box. There are also some special constructions using a
non-full S-layer with fewer S-boxes to reduce the number of AND gates, which is desired
in applications like multi-party computation (MPC) and fully homomorphic encryption
(FHE). For example, the block cipher LowMC [ARS+15] can adjust the number of S-
boxes to accommodate different use cases. The P-layer permutes the block bits output
from the S-layer and after that sends them to the S-layer in the next round. The P-layer
has the property that the output bits of any S-box are distributed to as many S-boxes in
the next round as possible. The most famous SPN cipher is AES (Advanced Encryption
Standard) [DR99].
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When using a block cipher to encrypt a variable-length message, the message should
be partitioned into separate blocks of the same size, possibly with some paddings. A
mode of operation is then chosen to specify how to process and combine each block. The
commonly used modes are ECB (electronic codebook), CBC (cipher block chaining),
CFB (cipher feedback), OFB (output feedback), and CTR (counter) modes. We refer
to [MVOV18, SS16, KL20] for more details about how these modes work.

1.1.1.3 MAC

A message authentication code (MAC) is a short-length bit sequence used for message
authentication: to confirm that the message comes from the stated sender and has not
been manipulated during the transmission. The sender generates a MAC using a MAC
scheme with a secret key, the plaintext, and possibly an IV as the inputs, and the
receiver verifies it by comparing it with a local MAC generated using the same way.
The receiver will accept the message only when the MACs are identical. The underlying
cryptographic primitive for a MAC scheme can have various options, e.g., a block cipher
or a hash function.

When the encryption and authentication of data are both required, the encryption
is called authenticated encryption (AE), e.g., the confidentiality and integrity protec-
tion in cellular networks. The different combinations of encryption and MAC result in
three main AE constructions: Encrypt-then-MAC, Encrypt-and-MAC, and MAC-then-
Encrypt. If there are some associated data, e.g., a packet header, that is transmitted
along with the ciphertext and must be authenticated as well, an authenticated encryp-
tion with associated data (AEAD) scheme is required. In 2013, the CAESAR competi-
tion [CAE] was announced to encourage new designs of AEAD schemes, and AEAD has
now become a requirement in many applications.

1.1.2 Asymmetric Cryptography
The main advantage of symmetric cryptography is the high efficiency for processing
large amounts of data. However, there are many modern communication scenarios that
the communicating parities do not always share a secret key, or require more advanced
cryptographic properties that symmetric primitives cannot provide, which motivates the
application of asymmetric cryptography, or called public-key cryptography (PKC).

Different from a symmetric primitive using a shared secret key, two mathematically
related keys are used in an asymmetric primitive: the public key, which is publicly
known, and the private key, which can be never known by others except the owner.
A sender can use a public key to encrypt data, and only the intended receiver holding
the corresponding private key can decrypt it. Besides encryption, asymmetric primitives
can be used to achieve more advanced cryptographic applications, e.g., digital signatures
and non-repudiation protocols.

Asymmetric primitives are typically slower and more expensive than symmetric prim-
itives as they are often built on hard problems, e.g., the most known integer factoring
problem (IFP) and discrete logarithm problem (DLP). As a consequence, in many ap-
plications, a hybrid encryption mechanism involving both symmetric and asymmetric
cryptography is adopted to ensure both efficiency and security. For example, an asym-
metric primitive is used to encrypt a single-use symmetric key, and the key is used to
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encrypt/decrypt the bulk of data with a symmetric primitive. TLS (Transport Layer
Security) uses such a hybrid encryption mechanism. Another example is the 5G access:
the UE uses the public key of the network to encrypt its identity information for the
network side to have an initial verification of its legitimacy, and symmetric primitives
are used to achieve subsequent mutual authentication, and confidentiality and integrity
protection of data transmission.

Most of the asymmetric primitives we are using today can be broken by a large-
scale quantum computer, as Shor’s algorithm can solve the DLP and IFP in polynomial
time [Sho94]. Post-quantum cryptography (PQC), built on mathematical problems re-
sistant against quantum computing, has been widely studied and will be used in the
foreseeable future. These quantum-safe algorithms can be mainly divided into five cate-
gories: lattice-based, code-based, multi-variate, symmetric/hash-based, and isogeny-based.
In 2016, NIST initiated the PQC competition [NISb] to solicit, evaluate, and standardise
quantum-resistant algorithms. After a three-round evaluation, 15 out of the initial 82
submissions entered the finalists or alternates (in 2020), which are regarded as promis-
ing PQC primitives. The 3GPP specification of 5G points to replace existing public
key infrastructure with a quantum-safe one, which, however, will be a long-term evolu-
tion [3GP19].

1.1.3 Unkeyed Cryptography
There are some cryptographic primitives that do not require any secret key but still
play essential roles in cryptographic mechanisms and protocols. The most used unkeyed
primitives are pseudorandom generators (PRGs) and hash functions.

A PRG is a deterministic procedure that maps a shorter seed to a longer pseudoran-
dom sequence that cannot be distinguished from random by any statistical test. This is a
very generalised definition and any symmetric-key primitive can be viewed as an instan-
tiation of it. PRGs have numerous applications in building cryptographic mechanisms or
protocols, e.g., for generating a (pseudo)random number used as the IV in a symmetric-
key primitive, as the challenge in a challenge-response authentication mechanism, or as
a session key in a hybrid encryption scheme. If the seed and generated pseudorandom
sequence are kept secret, a PRG in this setting is a symmetric-key primitive.

A hash function maps a message of arbitrary size to an output with a fixed size,
which is usually called the message digest. If the hash function satisfies some crypto-
graphic properties such as collision resistance, second preimage resistance, and preimage
resistance, the message digest acts as a “fingerprint” of the message. Hash functions are
commonly used in data storage, in which the message digest is used to index the corre-
sponding data in a table. It can also be used to construct a MAC scheme or a signature.

1.2 Introduction to Cryptanalysis

Cryptanalysis is the study of analysing and evaluating cryptographic primitives. The
cryptanalysis results are also called attacks and people who perform such analysis are
called attackers or cryptanalysts. The strength of an attack is measured with complexity
in terms of time, memory, and data. The time complexity is computed as the time
needed to launch an attack, which is potentially the most important measure. It can be
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expressed by the number of basic operations, where one basic operation may involve a
reasonable number of bit operations or clock cycles. The memory complexity and data
complexity denote the required amount of memory/storage and data, respectively. When
a primitive is used in real-life applications, its implementation should be studied as well,
as the side-channel attacks exploiting the information leakage of the implementation,
e.g., the power consumption or running time, can recover some information about the
secret key. We refer to [Jou09] for a comprehensive introduction to cryptanalysis.

The most straightforward attack is the brute-force attack, also known as exhaustive
key search, in which the attacker tries all the possible values of the secret key. If the
key has n bits, exhaustive key search will have complexity 2n. Exhaustive key search is
usually used as a benchmark of cryptanalysis results: if a cipher is claimed to provide an
n-bit security level, there should not exist any attack with complexity below 2n; other-
wise, this cipher is considered as (at least theoretically) broken. Thus, when designing a
new cipher, especially a symmetric one, one needs to visit every promising cryptanalysis
technique and ensure that none of them applies to the cipher faster than exhaustive key
search.

An attacker is usually assumed to have different capabilities and different attack
goals, which are generalised as below.

1.2.1 Attack Goals
According to the different goals, attacks can be categorised into key-recovery attacks,
state-recovery attacks, and distinguishing attacks, with a decreasing order in strength.

Key-recovery attacks aim to recover the secret key, which are the most powerful
but typically difficult attacks. Exhaustive key search is a straightforward way of key
recovery.

State-recovery attacks aim to recover the internal state of a cipher at a certain time
instance. In a stream cipher, once the full state at a certain time instance is recovered,
one can run the cipher forward and backward to get the whole keystream sequence
under the specific key and IV. One may even recover the secret key if there is no special
protection of it. In this case, a state-recovery attack is equivalent to a key-recovery
attack.

Distinguishing attacks target to distinguish a cipher from random by identifying
some non-randomness. Such non-randomness can be explored in various ways. Though
not as powerful as key-recovery attacks, distinguishing attacks play an important role
in cryptanalysis and the resistance against them has become a basic requirement for a
cipher. In some cases, distinguishing properties can be used to recover some information
of the secret key.

1.2.2 Attacking Assumptions
An attacker is usually assumed to have different capabilities when attacking a cipher,
which correspond to the following different attacking scenarios.
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Ciphertext-only attack (COA). An attacker only has access to the ciphertext, while
not the plaintext. The attacker has the least capability in this attacking scenario, but
the scenario is most relevant to the practical situation. For example, the transmitted
(encrypted) messages can be eavesdropped in the open air in mobile communication.

Known-plaintext attack (KPA). An attacker is assumed to get a limited number
of plaintext and ciphertext pairs. There are some practical scenarios connected to this
attacking assumption. For example, some header messages in some protocols are publicly
known and the attacker can get the corresponding plaintext and ciphertext. If the
plaintext and ciphertext are known in the stream cipher setting, the keystream sequence
is trivially known.

Chosen-plaintext attack (CPA). An attacker is able to choose plaintext and get
the corresponding ciphertext by calling the encryption algorithm. A chosen-IV attack
against stream ciphers can be relevant to this attacking scenario, where the attacker can
choose different IV values to explore some possible weakness of the cipher.

Chosen-ciphertext attack (CCA). An attacker can choose arbitrary ciphertext and
call the decryption algorithm to get the corresponding plaintext.

1.3 Security in Cellular Networks

Figure 1.2 presents a simplified illustration of the 4G system, which consists of UE
(User Equipment), the radio access network (RAN), and the core network (CN). Other
generations of cellular networks have the similar structure but possibly with different
physical entities and interfaces.

Use Equipment Radio Access Network Core Network

HSS
SGW

PGW

MME

MSC

Internet

External Networks

PSTN

Base Stations

Figure 1.2: A simple illustration of the mobile network.

UE. The UE, which can be a mobile phone, a laptop, or any smart electronic device,
has a globally unique identifier, commonly known as the IMSI (International Mobile
Subscriber Identity). A secret key, called the master key, is shared between the UE and
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the network. These user keying materials are usually assigned and burned to a physical
card, commonly known as the USIM (Universal Subscriber Identity Module), in the
manufacturing phase.

RAN. The RAN mainly consists of base stations (BSs), which are transceivers capable
of sending/receiving and processing wireless signals. A BS consists of two modules:
the RRU (Remote Radio Unit), which is typically placed close to the antennas and
responsible for dealing with the radio-frequency signals; and the BBU (Base Band Unit),
which is protected inside a special cabinet and responsible for central processing and
control. The RAN connects to the UE through radio connection and to the CN through
wired connection.

CN. The CN is the central part of a cellular network that provides services to the UE.
These services can be cellular applications that are handled within the cellular network or
other requests which are forwarded to external communication networks, e.g., the PSTN
(Public Switched Telephone Network) and the Internet. The CN configures paths for
the data transmission of these services between different RANs or different networks.
There are a number of entities, e.g., HSS (Home Subscriber Server), MSC (Mobile
Switch Center), SGW (Serving Gateway), PGW (Packet Data Network Gateway), and
MME (Mobility Management Entity), residing in the CN and providing different network
functionalities. For example, the HSS is basically a database that stores the keying
materials of users, while the MSC is responsible for switching data packets.

The UE and the network use the master key to generate a hierarchy of sub-keys using
the same key derivation function. At the network side, these sub-keys are generated
in or distributed to different entities, e.g., the MME and BS. These sub-keys are used
to protect data transmission over each sub-link. The secure data transmission over the
wired part, e.g., between a RAN and the CN, or a CN with other networks, is achieved
using IPsec (Internet Protocol Security) and/or TLS (Transport Layer Security). While
over the air interface, the data transmission is secured using the confidential and integrity
protection.

Confidentiality and Integrity Protection

The UE (or BS) encrypts the message and generates an authentication tag using a 3GPP
standardised confidentiality and integrity algorithm, with a derived sub-key and an IV
as inputs. The receiver, either the UE or BS, holding the same sub-key can correctly
verify the integrity and decrypt the message, while any third party cannot achieve this
even if he has eavesdropped the message over the air. The maximum length of plaintext
encrypted under one (Key, IV) pair should not exceed 264. If there is more data to be
encrypted, another IV value should be used.

The confidentiality and integrity protection in 2G was built around the stream cipher
A5/1 and its variants [Qui04], the technical specifications of which were kept in secret
until reverse-engineered in 1999. A number of severe weaknesses of A5/1 were identified
which impeded its further adoption in 3G. The confidentiality and integrity protection in
3G is based on a block cipher KASUMI [ETS09] and a stream cipher SNOW 3G [3GP06].
SNOW 3G is kept in 4G, along with two new members: the block cipher AES (in CTR
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Ciphers Software Implementation (plaintext sizes) Hardware Implementation Attacks

4096 2048 1024 256 Area Throughput

AES (256-bit)* 34.16 [EJMY19] 32.94 30.95 22.67 17232 GEs [UMHA16] 50.85 [UMHA16] 2254.4 [BKR11]

SNOW 3G 8.89 [EJMY19] 8.50 7.81 5.38 18100 GEs [GCK13] 52.8 [GCK13] 2177 [YJM19]

ZUC 3.50 [AB15] 3.39 3.17 2.29 12500 GEs [LZM+16] 80 [LZM+16] 2236 [YJM20]

* The speeds of AES are for the 256-bit version, will be higher for AES-128.
Note: the implementations are under different platforms and resources.

Table 1.1: Some performance results of AES, SNOW 3G, and ZUC [YJ20] (columns
2-5 are the throughputs under different plaintext sizes; all throughputs are measured in
Gbps and plaintext sizes are in bytes; hardware implementation area is measured in

GE (Gate Equivalent)).

mode) [DR99] and another stream cipher called ZUC [ETS11]. All these algorithms
except A5/1 use 128-bit keys.

These confidentiality and integrity algorithms are implemented in the UE and BSs,
typically with special hardware support, e.g., using IP (intellectual property) cores, to
provide high speeds. Table 1.1 presents some performance results of software/hardware
implementations and best attacks achieved till now for these ciphers. One can see that
the throughputs in hardware are typically very high, e.g., higher than 50 Gbps (Gigabits
per second), while much lower in software. For example, the speeds for SNOW 3G and
ZUC are both below 10 Gbps in software.

1.4 Security Challenges in 5G

5G is a highly heterogeneous network, with different access technologies coexisting and
supporting various users requesting diversified services. There are three typical use
cases in 5G with different features, specified as: 1) eMBB (enhanced mobile broadband)
providing stable connections with very high data rates; 2) uRLLC (ultra Reliable Low
Latency Communications) targeting low-latency transmissions of small payloads and
ultra-high reliability; 3) mMTC (massive Machine Type Communications) supporting
ultra-high device density and ultra-low energy consumption [Ser15]. To cope with these
use cases with high requirements in different aspects, 5G has some fundamental changes
in the network architecture and requires enhanced security compared to the legacy net-
works.

1.4.1 5G Architecture
The most significant evolution in 5G architecture lies in that it would be highly cloud-
ified and virtualised. With the use of a bunch of virtualisation techniques and other
enabling techniques such as SDN (software-defined networking) and NFV (network func-
tion virtualisation), different network functionalities can be virtualised as services in
cloud [3GP21a]. Compared to the legacy cellular networks where a large variety of
proprietary network entities and dedicated hardware appliances are deployed to pro-
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vide different functionalities, the hardware in the cloudified system are general-purpose
CPUs and memories, thus reducing the equipment and deployment cost and improving
the flexibility for the management and evolution.

The access network can also be partly cloudified, and the resulting architecture
is called C-RAN (Cloud/Centralized Radio Access Network). A C-RAN consists of
distributed sites and a central cloud center, which is also viewed as the central BBU pool.
The real-time functions, which mainly happen at the physical layer and lower MAC layer,
e.g., access network scheduling, interference coordination, modulation, and coding, are
still processed at the distributed sites with dedicated hardware support. In contrast, non-
real-time functions in the upper layers with looser latency requirements, like intercell
handover, cell selection/reselection, and user-plane encryption, can be moved to the
cloud and implemented in software environments [Bro17]. Such a C-RAN architecture
can reduce the cost of the deployment and management of the largely increased and
densified base stations.

1.4.2 5G Security
A lesson has been learned from previous generations of cellular systems that security
should be taken into account at the time of design, to avoid the “vulnerability-patching
later” situation. The new architecture and performance requirements of 5G indicate
new challenges to security, which require careful investigation and design. 3GPP has
specified the security properties in 5G from different domains [3GP21b]. Generally, the
security should be enhanced in several aspects: some new design and improvements in
the security architecture and protocols are needed; security should be guaranteed at a
higher level (e.g., 256-bit) due to the threat of quantum computers; the use of public-key
cryptography may have to rely on new algorithms based on quantum-resistant problems;
lightweight cryptographic algorithms and protocols will have to be analysed and adopted
for resource-constrained IoT devices, etc [YJ20].

Confidentiality and Integrity Protection in 5G

3GPP has asked ETSI SAGE (Security Algorithms Group of Experts) to evaluate ef-
ficient confidentiality and integrity algorithms for 5G use [3GP19]. For the new algo-
rithms, there are some desired properties driven from the requirements of 5G in terms
of security level and speed.

1. The PDCP (Packet Data Convergence Protocol) layer, where the confidentiality
and integrity protection is performed, is likely to be moved to the cloud and imple-
mented in a software environment without specialised hardware support. There-
fore, one expectation of the confidentiality and integrity algorithms is that they
should provide a speed of at least 20 Gbps in software, which is the downlink
peak data rate in 5G.

2. 3GPP is looking towards increasing the security level in 5G to 256 bits to resist
against quantum computing [3GP19]. As a consequence, the confidentiality and
integrity algorithms for 5G should be able to provide security of 256 bits.
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There are two design routines for the confidentiality and integrity algorithms of
5G. One is to reuse existing algorithms in 4G, i.e., AES, SNOW 3G, and ZUC. The
main advantage is that existing hardware circuits can be reused thus reducing upgrade
cost, while the main drawback is that their performance in software might become a
performance bottleneck for the cloudified system. As shown in Table 1.1, the algorithms
cannot achieve sufficient speeds in software environments, except AES. Besides, their
security under the 256-bit key length should be carefully investigated, as SNOW 3G and
ZUC were only specified for the 128-bit key length. It might be risky if we just adopt
current algorithms directly for the 256-bit security level without careful inspection. AES
is highly likely to be kept in 5G, as it can achieve high performance in software due to
the wide hardware support from mainstream CPUs, e.g., most Intel, AMD, and partly
ARM processors, and support the 256-bit security level, which version has been widely
used for a long time.

The other routine is to develop new algorithms with the performance and security
requirements as the goals of the design. Such new algorithms would introduce update
cost but can potentially have a longer service life in 5G and beyond, as the fact that
the network in the future will be faster and more softwarised will not change. The old
ciphers will be obsolete at some stage of the network evolution, if not in 5G, then highly
likely in 6G. It is better to replace the algorithms earlier than later to make the system
safer and more efficient.

1.5 Thesis Focus and Outline

This thesis mainly focuses on the confidentiality and integrity algorithms for 5G, which
involves design and cryptanalysis of stream ciphers. Specifically, it targets to:

1. evaluate existing or new promising ciphers aiming for 5G confidentiality and in-
tegrity protection;

2. propose new ciphers for 5G confidentiality and integrity protection that satisfy 5G
requirements in terms of security and speed.

Besides, we extend the topic a little bit, and

3. study the security of local pseudorandom generators,

which can be relevant to the confidentiality and integrity protection.
The thesis consists of two parts: the first part presents some background information

and technical details which help readers to better understand the research field; and the
second part contains six papers published during the Ph.D. education related to the
research focus.

The outline of the first part is as follows. In Chapter 2, we review some technical pre-
liminaries which are often used in design and cryptanalysis of a stream cipher. Chapter 3
and Chapter 4 present the popular constructions and cryptanalysis techniques of stream
ciphers, respectively. Chapter 5 presents some basics and cryptanalysis techniques of
local pseudorandom generators. Finally, we summarise the contributions of the thesis,
draw the conclusions and discuss potential future work in Chapter 6.
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Chapter 2

Technical Introduction

This chapter provides an overview of the concepts and tools that are commonly used
in design and cryptanalysis of stream ciphers. Throughout the thesis, we use Fq or

GF (q) to denote a finite field of order q, and ⊕ to denote the bitwise XOR operation.

2.1 Complexity Theory Basics

Complexity theory is a central field of the theoretical foundations of computer science,
concerned with the study of the complexity of computational tasks. By complexity, we
are referring to the computational resources, which can be time, space, and data, required
to solve a given task. We refer to the book [Gol08] for a comprehensive introduction to
complexity theory. Based on the complexity, computational problems can be categorised
into different complexity classes.

2.1.1 Complexity Classes
Complexity classes categorise problems based on how difficult they are to solve. The
most often used measures are time complexity and circuit complexity.

Time Complexity Classes. The problems are categorised based on the number of
steps taken by the algorithm to compute the problem. The most prominent complexity
classes are P and NP, which include problems that can be solved and verified in polynomial
time, respectively. Polynomial time means that the number of steps is upper bounded by
a polynomial in the input size. Another very important complexity class is NP-complete,
which include the hardest problems in NP.

Circuit Complexity Classes. An algorithm can be described using a Boolean circuit,
which is a directed graph with vertices of three types: input terminals, output terminals,
and gates. The gates denote Boolean operations, typically AND, OR, and unary NOT
gates. When each gate has at most two incoming edges, the circuit is said to have
bounded fan-in; otherwise, called unbounded fan-in. A Boolean circuit with n input

15
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terminals and m output terminals defines a function from {0, 1}n to {0, 1}m. For a
given input value, the values of vertices are determined in a natural manner.

The two main measures of a circuit are the size, i.e., the number of gates, and the
depth, i.e., the length of the longest directed path from an input to an output. These
measures have a natural connection with time complexity, and problems can be corre-
spondingly classified into different classes. The most common class is P/poly, including
problems that can be solved by polynomial-size circuits. Two more interesting classes
are AC and NC. An AC construction has a circuit with polynomial size and polylogarith-
mic depth. NC is defined similarly to AC, but can only have bounded fan-in. The special
case NC0, in which each output depends on a constant number of input bits, is espe-
cially appealing as it can be computed very efficiently and may admit many advanced
applications.

2.1.2 Complexity Evaluation
When we come to a more refined evaluation of the complexity, we can basically rely
on three measures: asymptotic complexity, concrete complexity, and running-time com-
plexity.

Asymptotic Complexity. Asymptotic complexity is usually used to identify the com-
plexity of one class of problems when the input size n goes to infinity. Let f(n) denote
the number of operations required to run one task with an input size n, we use the
following standard asymptotic notation.

• f(n) = O(g(n)) (resp., f(n) = Ω(g(n))) if there exists a constant C > 0 such that
f(n) ≤ C · g(n) (resp., f(n) ≥ C · g(n)) for sufficiently large values of n.

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

• f(n) = Õ(g(n)) if f(n) = O(logk(g(n))g(n)) for a constant k.

• f(n) = o(g(n)) if for every constant C > 0, f(n) < C · g(n) for sufficiently large
values of n.

Asymptotic complexity allows estimating the complexity of one class of problems
when n goes large, which can help choose secure parameters when building new con-
structions. It is also the key to comparing different algorithms. However, asymptotic
complexity typically cannot reflect the actual efforts required to compute a practical
problem, and instead, the concrete complexity is considered.

Concrete Complexity. The concrete complexity measures the number of basic oper-
ations to finish the computation of a problem. However, it is tricky to define the basic
operation, and one basic operation can consist of several or even a number of bit oper-
ations (or clock cycles). When comparing the complexities of two computing tasks, the
efforts involved in each basic operation should be carefully considered.

Running-time Complexity. The running-time complexity measures the consumed
time or clock cycles to compute a task. This measure is more relevant to the practice but
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not particularly meaningful, since it heavily relies on the implementation techniques and
hardware capabilities. However, the running time is still helpful to claim the complexity
in some cases. For example, by specifying the running time for each basic operation in
the concrete complexity, one can claim that the concrete complexity is reasonable.

2.2 Information Theory Basics

Let X be a discrete random variable that takes values from an alphabet X , with a
distribution determined by its probability mass function PX(x) = Pr[X = x], where
Pr[E] denotes the probability of occurrence of an event E. We can use entropy to
measure the “uncertainty” of X given its distribution, which is defined as below:

H(X) = −
∑
x∈X

PX(x) log2 PX(x),

where log2 denotes the logarithm to the base 2 with the convention that 0 · log2
0
p = 0

and p · log2
p
0 =∞ for p > 0.

If PX(x) = 1
|X | for all x values in X , we say that X follows the uniform random

distribution and achieves the maximum entropy in this case. Otherwise, we call the
distribution of X biased and use the bias to evaluate how much it deviates from the
uniform random distribution. There are many ways to define the bias, and below we
give two examples for the binary and general cases.

Definition 1 (Bias). If X is a binary variable, the bias ε of it can be expressed as

ε = Pr[X = 0]− 1

2
.

Thus, ε ∈ [− 1
2 ,

1
2 ], and Pr[X = 0] = 1

2 + ε, Pr[X = 1] = 1
2 − ε. To distinguish

a binary distribution with bias ε from a uniform random distribution, that is to say,
to distinguish a sequence in which elements are sampled from this given distribution
from a uniform random sequence, the required number of samples, i.e., the length of the
sequence, is in the order of 1

ε2 , up to some small constant factor [Mat93].

Lemma 1 (Piling-up Lemma [Mat93]). Let Xi be independent binary variables such
that Pr[Xi = 0] = 1

2 + εi for i ∈ {1, 2, . . . , n}, then

Pr[X1 ⊕X2 ⊕ · · · ⊕Xn = 0] =
1

2
+ 2n−1

n∏
i=1

εi.

The piling-up lemma is widely used in cryptanalysis when computing the bias of the
XOR sum of several independent variables.

Another parameter, called the log-likelihood ratio (LLR), of a binary variable X is
also commonly used, which is defined as:

LX = log
Pr[X = 0]

Pr[X = 1]
,
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where log denotes the natural logarithmic function.

When X is non-binary, the squared Euclidean imbalance (SEI), is more commonly used
to evaluate how far the distribution deviates from the uniform random distribution.

Definition 2 (Squared Euclidean Imbalance). If X is a non-binary variable taking
values from an alphabet X , the squared Euclidean imbalance ∆ of X is computed as

∆ = |X | ·
∑
x∈X

(PX(x)− 1

|X |
)2.

To distinguish a distribution of SEI ∆ from a uniform random distribution, the
required number of samples is in the order of 1

∆ , up to some small constant factor [Vau96,
BJV04].

For two probability distributions, we can use Kullback-Leibler (KL) divergence, also
called relative entropy, to express the distance between them [Cov99].

Definition 3 (Kullback-Leibler Divergence). The Kullback-Leibler divergence between
two probability distributions PX and PY over the same alphabet is defined as

D(PX ||PY ) =
∑
x∈X

PX(x) · log
PX(x)

PY (x)
.

The KL divergence is an important concept in cryptanalysis, as it measures the dis-
tance between two distributions and provides information about the number of samples
that are needed to distinguish between them. The closer two distributions are, the
smaller the KL divergence will be, and the more samples will be required. The distance
is not in the strict sense, as it is not symmetric and does not satisfy the triangle inequal-
ity. A special case is when PY is the uniform random distribution, and one can evaluate
how much the distribution PX deviates from uniform random.

2.3 Hypothesis Testing

Hypothesis testing plays an important role in statistical analysis. One application of
it is to distinguish between different distributions, which is widely used in cryptanal-
ysis, especially in applications related to distinguishing attacks. We now describe the
framework of the simplest form of hypothesis testing for distinguishing between two
distributions, i.e., binary hypothesis testing.

Let P0 and P1 denote two different probability distributions defined over a same
alphabet. Suppose x is a sequence of n sample symbols x = x0, x1, . . . , xn−1, which are
independently and identically distributed (i.i.d.) over a same distribution, either P0 or
P1. From this sequence, we can define an empirical distribution or sample distribution
PX , whose entries are assigned with Pr[X = a] = N(a|x)/n, where N(a|x) denotes the
number of occurrences of element a in the sequence x. Now the task is to decide whether
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PX is following P0 or P1 using binary hypothesis testing. The problem can be modeled
as below to decide between the null hypothesis H0 and the alternative hypothesis H1:

H0 : PX = P0,

H1 : PX = P1.

The decision can introduce two types of errors: TYPE I errors, where H0 is rejected
while it is true; and TYPE II errors, where H0 is accepted while H1 is true. Denote the
probabilities of these two errors as α and β, respectively, then they can be expressed as:

α = Pr[reject H0|H0 is true],
β = Pr[accept H0|H1 is true].

The Neyman-Pearson lemma provides the optimum decision in terms of minimising
the error probabilities [Cov99].

Lemma 2 (Neyman-Person Lemma). LetX0, X1, . . . , Xn−1 be drawn i.i.d. according to
a probability mass function PX . Let P0 and P1 be two different distributions. Consider
the decision problem corresponding to the two hypotheses PX = P0 vs. PX = P1. For
T ≥ 0, define a region

An(T ) =

{
x0, x1, . . . , xn−1 :

P0(x0, x1, . . . , xn−1)

P1(x0, x1, . . . , xn−1)
> T

}
.

Let

α∗ = Pn0 (Acn(T )), β∗ = Pn1 (An(T )),

be the error probabilities corresponding to the decision region An(T ), where Acn(T ) is
the complement region. Let Bn(T ′) be any other decision region given a different T ′
with associated error probabilities α and β. If α ≤ α∗, then β ≥ β∗.

The Neyman-Person lemma indicates that the optimum test for two hypotheses is
of the form P0(x0,x1,...,xn−1)

P1(x0,x1,...,xn−1) > T , which is called the likelihood ratio test and can be
rewritten in a log-likelihood ratio form as below:

L(x0, x1, . . . , xn−1) = log
P0(x0, x1, . . . , xn−1)

P1(x0, x1, . . . , xn−1)
.

After some derivations [Cov99], the log-likelihood ratio can be expressed as:

L(x0, x1, . . . , xn−1) = nD(PX ||P1)− nD(PX ||P0). (2.1)

Then the log-likelihood ratio test is derived as:

D(PX ||P1)−D(PX ||P0) >
1

n
log T. (2.2)

When T is set as 1, the test is simplified to check the difference between the KL diver-
gences of the sample distribution to each of the two distributions, and decide that it
follows the distribution with which the KL divergence is smaller.
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Number of Required Samples

There are no universal expressions for α and β, however, the asymptotic expression of β
can be linked to the KL divergence through the Chernoff-Stein lemma as shown below:

lim
n→∞

log β

n
= −D(P0||P1),

when α is fixed. Thus one can get:

β ≈ 2−nD(P0||P1). (2.3)

To restrict β at a desired level, the number of samples n should satisfy:

n = O(
1

D(P0||P1)
). (2.4)

Equation (2.4) is usually used as the measure of the required number of samples to
distinguish between two distributions. For more details of hypothesis testing, we refer
to [BJV04, Cov99].

2.4 Coding Theory Basics

Coding theory is the study of codes, including the designs, properties, decoding tech-
niques, and applications. Over the past decades, there has been substantial progress in
coding theory, and codes are now widely used in many applications like data compres-
sion, channel coding (error control), cryptographic coding, and data storage. There are
several different classes of codes, and linear codes are most widely used. In this section,
we give a brief introduction to linear codes and popular decoding techniques, and refer
to [RL09, LC01] for more details.

2.4.1 Linear Codes
Definition 4 (Linear Code). An [n, k]q linear code C is a linear subspace of the vector
space Fnq with dimension k. The rate of the code is k

n .

When q = 2, the linear code is called a binary code. Linear codes are traditionally
partitioned into block codes and convolutional codes [RL09].

A linear code is also characterised by the generation matrix and the parity-check
matrix, defined as below.

Definition 5 (Generation Matrix). The generation matrix G of an [n, k]q linear code
C is a k × n matrix in Fq whose rows form a basis of C, i.e.,

C = {c : c = uG;u ∈ Fkq}.

Thus, the code C defines a linear mapping f : Fkq → Fnq . The u vectors are usually
referred to as information symbol vectors and the c vectors are called codewords. Code
C has qk codewords and any linear combination of codewords is again a codeword.
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Definition 6 (Parity-check Matrix.). The parity-check matrix H of an [n, k]q linear
code C is an (n− k)× n matrix in Fq whose null space is C, i.e.,

C = {c ∈ Fnq : cHT = 0}.

Each column of H denotes one information symbol while each row denotes one parity
check. The number of non-zero elements in a column indicates the number of parity
checks that this information symbol is involved in, while the number of non-zero elements
in a row indicates the number of information symbols involved in this check. These checks
are all linear. If follows that GHT = 0.

There are many different types of linear codes, and in recent years, the low-density
parity check (LDPC) code, along with the iterative decoding algorithms for it, has
received much study and abroad applications.

LDPC Codes. LDPC codes are one class of linear block codes which can provide rates
extremely close to the Shannon capacity. It has been increasingly used in applications
requiring reliable and highly efficient communication, e.g., for channel coding in 5G.

A binary (n, k) LDPC code is usually defined by the null space of the (n − k) × n
binary parity-check matrix H. The density of one’s in H is sufficiently low to permit
effective iterative decoding (will be elaborated in next subsection), thus getting the
name.

An LDPC code can also be represented by a Tanner graph, which is a bipartite graph
with nodes separated into two types and connected by edges. The two types of nodes
are called variable nodes (VN) and check nodes (CN), which represent the information
symbols and the parity checks, respectively. The VN j is connected to the CN i if
hij = 1, where hij denotes the entry of H in the i-th row and j-th column. The Tanner
graph can help to describe iterative decoding, see next subsection.

2.4.2 Decoding Techniques
In a communication system, the information symbols are encoded into codewords and
transmitted over a noisy channel; the receiver receives a noisy version of codewords and
based on them recovers the transmitted information symbols, which is called the decod-
ing process. The process may involve correcting some errors and the error-correcting
capability is highly connected to how the code is constructed. There exist many different
decoding techniques with respect to different criteria and are suitable for different codes.

2.4.2.1 Optimal Decoding

Some decoding approaches are regarded as optimal, by which we mean that the decoding
error probabilities are minimised by using these decoding techniques. These optimal
decoding approaches include minimum distance (MD) decoding, maximum likelihood
(ML) decoding, and a posteriori probability (APP) decoding.

• MD Decoding. An MD decoder outputs the information symbol vector û cor-
responding to the codeword ĉ that is closest to the received noisy codeword r in
terms of the Hamming distance, i.e.,

ĉ = arg max
c∈C

dH(c, r).
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• ML Decoding. An ML decoder outputs the information symbol vector û corre-
sponding to the codeword ĉ that maximises the likelihood function p(r|c), i.e.,

ĉ = arg max
c∈C

p(r|c).

The most well-known application of ML decoding is the Viterbi algorithm [HH89].

• APP Decoding. An APP decoder outputs the posterior probabilities p(ui|r) for
all symbols ui ∈ u, i.e.,

p(ui = x|r) =
∑

u:ui=x

p(u|r), x ∈ {0, 1}.

One can see that an APP decoder provides soft outputs (the posterior probabilities)
of the output symbols instead of the hard decisions (i.e., 0 or 1). These soft
outputs can be passed to other components for further processing. One well-
known application of APP decoding is the BCJR (Bahl, Cocke, Jelinek, and Raviv)
algorithm [McE96].

2.4.2.2 Sub-optimal Decoding

In practice, there are a large variety of sub-optimal decoding approaches that relax
optimality and trade the performance against complexity. The most well-known example
is the iterative decoding, which is widely used in many applications from different areas,
e.g., for decoding LDPC codes.

In iterative decoding, the variable nodes and check nodes iteratively exchange infor-
mation until reaching some stopping conditions. Each edge acts like a bus that conveys
the information, which is typically probabilistic information, e.g., probabilities or LLRs.
Each node, either a variable node or check node, acts like a local computing processor,
which receives information from the connected nodes, updates new information, and
sends the updated information back. The process is expected to converge after a cer-
tain number of iterations, and the information symbols are recovered according to their
probabilities.

There are many variants of iterative decoding, and the sum-product algorithm (SPA),
also called belief propagation, is a general one that provides near-optimal performance.
Below we present the main steps of the SPA based on LLRs, and refer to [RL09, HOP96]
for more details.

1. Initialisation. For every variable v, initialise its LLR value according to its a-
priori LLR value La(v), e.g., received channel LLR value, i.e., L(0)

v = La(v). For
every edge connected to v, initialise the conveyed LLR value as L(0)

v . After the
initialisation, the decoder enters the iterations of exchanging information repeating
steps 2 - 4.

2. CN update. In each iteration i, every check node c computes an outgoing LLR
value over each of its edges ek, based on the incoming LLR values updated in the
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(i− 1)-th iteration from every other edge e′k connected to c, as below:

L(i)
c (ek) = 2 tanh−1

∏
k′ 6=k

tanh
(

1/2L(i−1)
v (e′k)

) , (2.5)

where tanh() corresponds to the hyperbolic tangent function.

3. VN update. In each iteration i, every variable node v computes an outgoing
LLR value over each of its edges ej , based on the a-priori information and LLR
values updated in the i-th iteration from every other edge e′j connected to v, as
below:

L(i)
v (ej) = La(v) +

∑
j′ 6=j

L(i)
c (ej′). (2.6)

4. Distribution update. After each iteration, update the LLR value of every vari-
able v using (2.6), but with every edge included, i.e.,

L(i)
v = La(v) +

∑
j

L(i)
c (ej). (2.7)

An intermediate value for every variable v can be derived based on L(i)
v : v = 1 if

L
(i)
v < 0; otherwise, v = 0. The correctness of intermediate result can be easily

verified by checking if vHT = 0. If correct, the algorithm immediately terminates;
otherwise, it continues with a new iteration until reaching the maximum allowed
iterations.

2.5 Fourier Transform

Fourier transform is a mathematical operation that transforms a function in a gener-
alised time domain to the frequency domain. It is commonly used in signal processing,
especially in applications that involve cumbersome computations in the original domain
while the computation can be performed much faster in the frequency domain. For ex-
ample, the convolution operation in the time domain only involves simple multiplication
when processed in the frequency domain. Therefore, one can transform the data to
the frequency domain, perform the operations there and finally transform it back us-
ing the inverse Fourier transform. There are many different forms of Fourier transform
suitable for various applications, and below we give a brief introduction to the most
commonly used ones in cryptanalysis: the discrete Fourier transform (DFT) and the
Walsh Hadamard transform (WHT), which can be used for, e.g., analysing a Boolean
function [PB06] and computing the bias of a composite noise [MJ05, LD16]. For more
details about Fourier transform, we refer to the book [BB86].

2.5.1 Discrete Fourier Transform
DFT converts a finite-length sequence into a same-length sequence in the frequency
domain, which is defined as below.
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Definition 7 (Discrete Fourier Transform). Suppose x is a length-N sequence x =
x0, x1, . . . , xN−1, its DFT is another length-N sequence of complex numbers X =
X0, X1, . . . , XN−1 each computed as follows:

Xk =

N−1∑
n=0

xn · e−
i2π
N kn, k ∈ {0, 1, . . . , N − 1},

where e−
i2π
N is an N -th primitive root of unity.

DFT is the most important discrete transform used in many practical applications,
e.g., for processing the sampled sequences of signals. Directly computing DFT according
to the definition requires complexity O(N2). However, there exist efficient implemen-
tations of DFT, called fast Fourier transform (FFT), that reduce the complexity from
O(N2) to O(N logN) [BB86].

2.5.2 Walsh Hadmard Transform
Walsh Hadamard transform (WHT) is a special variant of DFT, which operates on a
sequence of real numbers.

Definition 8 (Walsh Hadmard Transform). Suppose x is a length-N sequence x =
x0, x1, . . . , xN−1, its WHT is another length-N sequence X = X0, X1, . . . , XN−1, each
element of which is computed as follows:

Xk =

N−1∑
n=0

xn · (−1)k·n, k ∈ {0, 1, . . . , N − 1},

where k · n denotes the bitwise dot product of the binary representations of k and n.

Each Xk has a real value. WHT can also be represented in a matrix way using
Hadamard matrices. Similarly, there exist fast implementations of WHT, called fast
WHT (FWHT), that speed up the computation and reduce the complexity from O(N2)
to O(N logN) [LD16].

There are many properties of DFT and WHT like linearity, shifting in both domains, and
scaling, that can be explored to help process data. One important property is Parseval’s
theorem, which applies to both DFT and WHT.

Definition 9 (Parseval’s Theorem). Suppose the length-N sequence X is the DFT or
WHT of the length-N sequence x, then the relation below holds:

N−1∑
n=0

|xn|2 =
1

N

N−1∑
k=0

|Xk|2.

X0 in the frequency domain in DFT or WHT is a special point, since its value equals
to the sum of all elements in the original domain, i.e., X0 =

∑N−1
n=0 xn.
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2.6 Boolean Functions and S-boxes

A Boolean function f in n variables is a map from F2n to F2, where n is called the arity
of the function. When the output has more than one bit, say m, i.e., f : F2n → F2m ,
the function is called a vectorial Boolean function, or an S-box. Boolean functions and
S-boxes serve as fundamental concepts in cryptography, and their cryptographic prop-
erties are closely connected to the resistance of a cipher against different cryptographic
attacks [CS17, CCH10, PB06]. Therefore, a deep understanding of Boolean functions
and S-boxes helps to better design and evaluate a cipher.

2.6.1 Boolean Functions

2.6.1.1 Representations

A Boolean function can be represented in many ways, and the most commonly used are
algebraic normal form (ANF), truth table, and digital circuit [O’D14].

ANF. A Boolean function f in n variables can be expressed as a polynomial as below:

f(x1, x2, . . . , xn) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ a1,2,...,nx1x2 · · ·xn. (2.8)

Each term is called a monomial and the a values are the corresponding monomial coef-
ficients, which can be either 1 or 0. The maximum degree monomial (MDM) coefficient
a1,2,...,n serves as an important tool for analysing the initialisation process of a stream
cipher, and we will provide more details in Section 4.3.

Truth Table. Another form to represent a Boolean function is using the truth table,
which stores all the possible values of the inputs and the corresponding outputs. Based
on the truth table, one can trivially recover the ANF.

Digital Circuit. A Boolean function can also be represented as a digital circuit, with
the input terminals 0, 1 and the n variables x1, x2, . . . , xn.

2.6.1.2 Cryptographic Properties

The most crucial properties of Boolean functions that should be carefully considered
when used in cryptographic primitives are balancedness, algebraic degree, correlation
immunity, algebraic immunity, and avalanche criterion.

Balancedness. A Boolean function in n variables is said to be balanced if its output
is uniformly distributed over {0, 1}, i.e., exactly 2n−1 input values produce an output of
value one. Boolean functions used in cryptographic applications almost always need to
be balanced.

Algebraic degree. The algebraic degree of f , denoted by deg(f) or just d, is the
number of variables in the maximum monomial term whose coefficient is non-zero. When
deg(f) ≤ 1, the function is called affine and a non-constant affine function is called linear.
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When a Boolean function serves as a source of non-linearity in a cipher, it should have
a sufficient high degree.

Correlation immunity [Sie84]. A Boolean function f in n variables is said to be
correlation immune of order k, 1 ≤ k ≤ n, if the output is statistically independent of
any subset of k input variables. A balanced Boolean function with k-order correlation
immunity is called a k-resilient function. High correlation immunity orders should be
guaranteed; otherwise, a construction could be susceptible to correlation attacks. How-
ever, there is always a tradeoff between the correlation immunity order and algebraic
degree of a Boolean function. Specifically, the degree d and correlation immunity order
k satisfy the constraint below [Sie84]:

k + d ≤ n. (2.9)

Such a tradeoff is disappointing since a high algebraic degree and high correlation immu-
nity order are both desired in most cases. Fortunately, the constraint can be eliminated
by adding memory elements in a Boolean function [Rue85, MS92, Gol96b], such that the
output depends not only on the current input but also on some previous inputs, which
actually forms a finite state machine. Such an idea has almost become a design criterion
of stream ciphers, and most modern stream ciphers are adopting it.

Algebraic Immunity [MPC04]. The algebraic immunity of a Boolean function f in
n variables is defined as the lowest degree of the Boolean function g : Fn2 → F2 for which
fg = 0 or (f ⊕ 1)g = 0. The function g satisfying fg = 0 is called an annihilator of f .
The algebraic immunity is closely connected to the resistance against algebraic attacks.

Avalanche Criterion [For88]. The avalanche criterion of a Boolean function says
that complementing any one of the n input bits results in the output being changed
for exactly half of the 2n−1 possible values of the remaining input bits. This is a very
useful and important property, and almost all the Boolean functions in cryptographic
applications satisfy this criterion.

WHT and Walsh transforms are frequently used to investigate a Boolean function,
which are defined as below.

Definition 10 (WHT of a Boolean function.). Suppose f : Fn2 → F2 is a Boolean
function, the WHT of f is defined as

f̂(w) =
∑
x∈Fn2

f(x)(−1)x·w,

where x · w denotes the inner product of x and w.

If WHT is applied to the sign function of f , i.e., (−1)f , the result is the Walsh
transform of f .

Definition 11 (Walsh transform of a Boolean function.). Suppose f : Fn2 → F2 is a
Boolean function, the Walsh transform of f is defined as

Wf (w) =
∑
x∈Fn2

(−1)f(x)⊕x·w,



Chapter 2. Technical Introduction 27

where x · w denotes the inner product of x and w.

Many properties of Boolean functions can be investigated through WHT or Walsh
transform, and we refer to [CS17, CCH10, PB06] for more details.

2.6.2 S-boxes
A vectorial Boolean function, or S-box, F : F2n → F2m , can be represented by a vector
(f0, f1, . . . , fm−1), where each fi (0 ≤ i ≤ m− 1) is a Boolean function and is called the
component of the S-box. Typically, m = n for S-boxes used in cryptographic primitives.
The cryptographic properties of an S-box are closely related to its components. For
example, an S-box is balanced if and only if its component functions are balanced; its
algebraic degree is the maximal algebraic degree of its component functions.

The S-box is commonly used in symmetric ciphers, which provides one primary source
of non-linearity. The design of an S-box is crucial for a cipher, which requires taking
many aspects into consideration, e.g., most critically, the cryptographic properties. The
implementation aspects should be taken into consideration as well. For example, the size
of the S-box will affect the implementation cost. In AES and many large ciphers, the
S-boxes are typically byte-based, while for lightweight ciphers, the sizes of S-boxes are
usually smaller, e.g., 5-bit, 4-bit or even 3-bit. One efficient way to implement an S-box
is to use the look-up table (LUT), which stores all the possible inputs and corresponding
outputs. However, LUT usually requires more storage and is the operation leaking the
most information; thus, a side-channel-resistant implementation prefers to use bit-sliced
techniques, which use bit variables and express the function using single-bit logical
operations [MM12].

2.7 Mixed-integer Linear Programming

A mixed-integer linear programming (MILP) problem is a mathematical optimisation
problem that consists of one objective function and a group of constraints in a number
of variables. The task is to find a solution satisfying these constraints that maximises
the objective function (a minimisation objective can be rewritten as a maximisation
objective). If no objective function is given, the problem turns into a feasibility prob-
lem. The variables can be discrete or non-discrete, while the objective function and the
constraints, which can be equations or inequations, should all be linear, thus getting the
name. A MILP problem can be expressed in the following standard formulation:

maximise cTx

subject to Ax


≥
=

≤

b,

xmin ≤ x ≤ xmax.

The problem can be either infeasible when there is no solution; unbounded when no finite
solution exists; or feasible in which case an optimal solution x∗ maximising the objective
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function can be derived and returned. There can be more than one optimal solution.
In practice, many optimisation solvers like Gurobi [Gur] can be used to solve a MILP
problem efficiently.

MILP has diversified applications in different areas, and in recent years, it has been
widely used in cryptanalysis, e.g., to explore linear/differential/integral trails used for
distinguishing attacks or cube attacks [SHW+14, XZBL16, FWG+16]. In such crypt-
analysis, each operation in the cipher can be modeled as some constraints based on
specific rules; with the help of an optimisation solver, one can solve the problem very
efficiently thus be able to launch an attack. One basic but useful application is to find
the minimum number of involved S-boxes [MWGP11] in an attack, and one can have a
rough estimation of the nonlinearity and algebraic degree of a cipher.

2.8 Solving Equation Systems over Finite Fields

Soling a system of m equations in n variables over a finite field is a basic algorithmic
problem with direct applications in cryptanalysis. In the symmetric regime, a stream
cipher, block cipher, or hash function, can be expressed through a system of equations
over a finite field with a solution that yields information about the secret key. For
example, in algebraic attacks and guess-and-determine attacks, some equations corre-
sponding to specific operations involving the key or state variables can be derived, and
by solving the equation system, one can possibly recover the key or state variables. In
the asymmetric regime, the security of some cryptographic primitives depends on the
system solving problem, e.g., the multivariate public-key cryptosystems [DY09].

Whenm > n, the system is called overdetermined, and underdetermined whenm < n.
The equation system can be linear or non-linear, and there are different solving methods
for them.

2.8.1 Solving Linear Systems
Given a matrix A, its rank is the maximal number of linearly independent columns.
The null space, also called kernel, is the set of all solutions of the equations Ax = 0, the
dimension of which is called nullity. For any matrix, the rank-nullity theorem always
holds [Ala07].

Theorem 1 (rank-nullity theorem). For an m× n matrix A,

rank(A) + nullity(A) = n,

where rank() and nullity() return the rank and nullity of a matrix, respectively.

A linear system of m equations in n variables can be expressed as:

Ax = b, (2.10)

where A is the m × n coefficient matrix, x is the variable vector and b is a constant
vector of length n. The rank-nullity theorem can be used to determine the number of
solutions (suppose the system is solvable): if rank(A) = n, there is a unique solution;
while if rank(A) = r < n, there are n− r independent solutions.
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The most commonly used method to solve a linear system is Gaussian elimination
requiring complexity O(nω), where ω ≤ 2.376 in theory. However, the (neglected)
constant factor in this complexity is expected to be very large, and in practice, one should
rather consider that ω is closer to 3 [Cou04b]. The Gaussian elimination can be similarly
used for computing the determinant, the inverse, and the rank of a matrix. When the
system is sparse, there are more efficient ways like Wiedemann algorithm [Wie86] with
complexity O(n2). Iterative decoding is also widely used to solve large, sparse, linear
systems due to its little space overhead.

2.8.2 Solving Non-linear Systems
The system becomes non-linear when the degrees of the (polynomial) equations are
larger than one. The most well-known methods used to solve a non-linear system are
linearisation based algorithms and Gröbner basis algorithms. Below we present a brief
introduction to these algorithms and refer to [Alb10] for more details.

Linearisation based Algorithms. The basic idea of linearisation is to assign a new
unknown variable for each of the monomials appearing in the system and solve the
derived linear system using, e.g., Gaussian elimination [KS99]. If the degrees of the
original equations are upper bounded by d, at most

∑d
i=1

(
n
i

)
(� n) new variables will

be introduced. The complexity is then around
(
n
d

)ω, where ω is the exponent of Gaussian
elimination. When employing linearisation methods to solve a non-linear system, the
system should be overdetermined, specifically, the number of equations is approximately
the same as the number of monomials in the system.

There are a number of improving algorithms targeting to generate more linearly
independent equations to improve the performance. The most publicised one is the XL
(eXtended Linearisation) algorithm [CKPS00]. In the XL algorithm, one can generate
many higher-degree polynomial equations by multiplying each equation with all possible
monomials of some bounded degree, then linearise the expanded system and solve it.
Other improved algorithms, e.g., XSL and MutantXL, exploiting special properties, e.g.,
sparsity, can perform better in certain cases.

Gröbner basis algorithms. Gröbner basis algorithms solve systems of equations
through constructing Gröbner bases. During the construction of the Gröbner bases,
variables are eliminated successively in some predefined order, and in the end, one uni-
variate equation can be obtained and solved. Then one iteratively substitutes the values
of the known variables backward to solve more variables, until all variables are known.
The most well known Gröbner basis algorithms are like F4 [Fau99] and F5 [Fau02].

Since optimised methods are used to generate polynomials, the performance of Gröb-
ner basis algorithms is at least as good as the linearisation methods. When the number
of equations is close to the number of unknowns, Gröbner basis algorithms typically
have more advantages.
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2.9 Hardware and Software Implementations

In this section, we give a brief introduction to hardware and software implementations,
and refer to [HP11, KHF10] for more details.

A program, say a cryptographic algorithm, can be implemented in a hardware envi-
ronment or software environment. The running time of it can be expressed as:

running time = CPU clock cycles for a program× clock cycle time,

where the clock cycle time is the time duration of one clock cycle in the given CPU. For
example, for a CPU working at 1 GHz (Gigahertz), one clock cycle time is 1

1 GHz = 1 ns
(nanosecond). The performance of an implementation is largely influenced by the hard-
ware capability and software organisation of the computing environment. The different
application requirements have led to five different computing environments equipped
with different capabilities, both in software architecture and hardware resources. These
five computing environments are embedded computers, personal mobile devices, desktop
computers, servers, and clusters/warehouse-scale computers.

A cryptographic algorithm can be implemented in different ways in these different
computing environments. For example, in an embedded system or a PMD, the crypto-
graphic algorithm is usually implemented in hardware, while in a server, it is likely to
be implemented in software, especially in the future highly cloudified system. An im-
plementation always needs to balance between performance and cost. When comparing
two implementations, e.g., the performance gain of implementation Y by using some
particular features over implementation X, the speedup is usually used, which is defined
as below:

speedup =
running time of X
running time of Y

.

2.9.1 Hardware Implementations
A cryptographic algorithm can be implemented in hardware using special digital circuits,
e.g., an IP core, to execute precisely this cryptographic algorithm. Such a core can be
regarded as a single-purpose processor. High performance can be achieved because of the
dedicated hardware support, but the design efficiency and flexibility are low. Therefore,
some functionalities which are frequently used or have strict requirements in latency or
performance can be implemented with special hardware. For example, the confidentiality
and integrity algorithms are usually implemented in hardware in cellular networks, e.g.,
in the mobile devices and the CU part of a base station. The hardware implementations
allow for timely encrypting large messages, which is very important for time-sensitive
services, such as voice calls. There are several metrics that should be considered in a
hardware implementation, e.g., circuit size, throughput, latency (corresponds to the time
taken to obtain the output), and power consumption (the amount of power needed to
use the circuit). An implementation needs to balance between these metrics according
to different contexts and requirements.

The hardware efficiency is also relevant to hardware acceleration, where some dedi-
cated intrinsic instructions for some operations are included on a processor. For example,
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many CPUs have included the instructions for performing an AES round in very few
clock cycles.

2.9.2 Software Implementations
In 5G and beyond, the computer network and mobile network are expected to be highly
cloudified, in which the programs, or applications, are running over general-purpose
processors. These general-purpose processors typically hold a large register file and
general-purpose computing units without digital circuits for a dedicated program. Such
a system allows for efficient and flexible design and update, which only require dealing
with the programs.

For a software implementation, the RAM consumption, corresponding to the amount
of data written to the memory, code size, and throughput should be considered. These
metrics highly depend on the device’s system architecture, e.g., the supported registers
and intrinsic instruction sets.

SIMD (single instruction, multiple data) Instructions. SIMD is a type of parallel
processing that performs the same operation on multiple (typically two to eight) items
of data simultaneously. It enables a desktop and server processor to achieve significant
performance speedup.

The SIMD instruction extensions started with the MMX (Multimedia Extensions)
in 1996, followed by several SSE (Streaming SIMD Extensions) versions in the next
decade, e.g., SSE (1999), SSE2 (2001), SSE3 (2004), and SSE4 (2007), and continue
with AVX series, e.g., AVX (2010), AVX2 (2013), and AVX-512 (2013), and will go
to more advanced instruction set supporting larger registers. MMX, SSE, AVX, and
AVX-512 instructions can operate on 64-, 128-, 256-, and 512-bit registers, respectively.
AVX includes preparations to extend to 1024 bits for future generations of architectures.
Specific instructions can be applied in parallel on bytes, half words, words, double words,
and even 128-bit registers, but should be in an aligned form [Int].

Cryptographic Instructions. Special cryptographic instruction sets are also com-
monly included in a CPU to support the implementation of commonly used crypto-
graphic operations, e.g., the AES encryption round [Int]. These instructions can largely
increase the performance of algorithms involving these operations, which motivates many
new cryptographic designs built on these operations.

Parallelism. When implementing an algorithm in software, parallelism can be used to
largely improve performance. Besides SIMD, another important type of parallelism is
instruction-level parallelism (ILP), which allows instructions to be (partly) overlapped
and executed simultaneously. The simplest and most common way to achieve ILP is to
exploit parallelism among iterations of a loop, which is called unrolling. Such techniques
work either by the compiler or through the hardware. Programmers should also consider
optimising the code to allow for ILP.
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Chapter 3

Design of Stream Ciphers

3.1 Introduction

In 2004, the European eSTREAM project was initiated to call for new stream ciphers
as counterparts of the widely deployed block cipher AES. Two profiles of design were

specified for the project [RB08]:

- Profile 1: stream ciphers for software applications with high throughput;

- Profile 2: stream ciphers for hardware applications with highly restricted resources.

The project has sparked many new designs of stream ciphers. After three rounds
of evaluation and some public cryptanalysis results, the final output of the project is
a portfolio of seven promising stream ciphers [RB08]. Actually, the two profiles of
the design exactly correspond to the two use cases where a dedicated stream cipher
might conceivably offer some advantages over block ciphers. Modern stream ciphers are
typically designed intended for these two use cases.

A stream cipher consists of an internal state, which can be built on bits or larger
alphabets (e.g., on bytes or 32-bit words). Software-efficient stream ciphers are usually
built on larger alphabets to achieve high throughput, while hardware-restricted ones are
typically bit-based, as many microprocessors in embedded devices are 8-bit. A stream
cipher can be usually defined by the following three building-blocks:

• an initialisation procedure init(K, IV ) which loads the secret key K and initiali-
sation vector IV to the internal state, after which the state is usually referred to
as the initial state, and runs the cipher a number of rounds without producing any
output;

• an update function update(S) which updates the state S in each iteration;

• an output function output(S) that produces one keystream word in each iteration
after the initialisation.

The initialisation phase is used to thoroughly mix the key and IV, after which the
output should behave random-like. During the initialisation, no output is produced: the

33
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output is suppressed and usually fed back to some part of the state. The initialisation
introduces extra time overhead, thus making a stream cipher less competitive for short-
length plaintext. The number of initialisation rounds should be carefully designed to
balance between security and efficiency.

During the key generation phase, one keystream word (or symbol) is generated in
each iteration, which can be one bit, byte, 32-bit word, or word with an even larger
size, depending on how the cipher is designed. The state is updated in each iteration
as well. Based on how the state is updated, stream ciphers can be classified into:
synchronous, if the state changes independently of the plaintext and ciphertext; and
self-synchronising, if the state updates based on some previous ciphertext. Most stream
ciphers are synchronous, and we mainly focus on this type.

3.2 Constructions of Stream Ciphers

There are several popular constructions of stream ciphers, which can be categorised into
several types: LFSR (Linear Feedback Shift Register)-based, NFSR (Nonlinear Feedback
Shift Register)-based, block cipher based, sponge-based, and other ad-hoc designs some
of which are intended for special applications. We below present an overview of these
constructions, and refer to [RB08, JHF20, MVOV18, SS16] for more details. Our thesis
mainly focuses on the LFSR-based stream ciphers.

3.2.1 LFSR-based
An LFSR is a shift register whose input is a linear combination of its previous states. It
has attractive properties required for a stream cipher, e.g., a long cycle length, good pseu-
dorandomness, and high efficiency in hardware and software implementations. These
properties make LFSRs the most popular components for building stream ciphers. Typ-
ically, an LFSR-based stream cipher consists of two parts: a linear part made of LFSRs
serving as the source of pseudorandomness, and a non-linear part for disrupting the
linearity.

3.2.1.1 Linear Part

The linear part can have one or several LFSRs defined over a finite field Fp. Typically,
p = 2 or p = 2m, where m is usually 8, 16, and 32, to allow for efficient implementation.
For example, SNOW 3G [3GP06] has one LFSR defined over F232 while E0 [LV04] used
for Bluetooth communication has three LFSRs defined over F2. However, there can be
some exceptions: for example, the LFSR in ZUC [ETS11] is defined over a prime field
Fp where p = 231 − 1. This enables ZUC to resist many classical cryptanalysis methods
of stream ciphers, while on the other hand, thwarts its performance.

Figure 3.1 illustrates the structure of an LFSR defined over a finite field Fp with L
cells. Each cell, called an stage, holds an value from Fp. The contents of the L cells
form the state of the LFSR. The c values, i.e., c1, c2, . . . , cL ∈ Fp, are called feedback
coefficients. The output sequence of the LFSR is uniquely determined by the feedback
polynomial (or connection polynomial) P (x), which is characterised by the feedback
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. . . sj-Lsj-L+1sj-2sj-1

cLc2c1 cL-1

sj
s0 , s1 , ...

. . .

Figure 3.1: Structure of a linear feedback shift register.

coefficients as below:

P (x) = −cLxL − cL−1x
L−1 − · · · − c1x+ 1.

In each clocking, the lowest stage sj−L exits the LFSR, the value in each other stage is
right-shifted to the next one, and sj is newly generated from previous stages as below:

sj = c1sj−1 + c2sj−2 + · · ·+ cLsj−L,

for j = L,L + 1, . . .. Therefore, the LFSR implements the linear recurrence relation as
below:

sj =

L∑
i=1

cisj−i, for j = L,L+ 1, . . . ,

with the first L symbols s0, s1, . . . , sL−1 forming the initial state.
If we view the state as a column vector of size L and use St to denote the state

at clock t, i.e., St = (st, st+1, . . . , st+L−1)T , the state at the next clock t + 1 can be
expressed as

St+1 = M · St,

where M denotes the L× L transition matrix over Fp, with the form as below:

M =


0 1 0 ... 0 0
0 0 1 ... 0 0
0 0 0 ... 0 0

...
0 0 0 ... 0 1
cL cL−1 cL−2 ... c2 c1

 .

If the initial state is denoted as S0, which is typically the loading result of the key and
IV, the state after t clocks can be expressed as St = M t · S0. Therefore, if a state
at a specific time clock is known, the initial state and possibly the secret key can be
recovered.

The choice of an LFSR for building a stream cipher should consider several aspects.
The most basic but essential criterion is that it should provide the maximum cycle
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length to provide an excellent source of pseudorandomness. This requires the feedback
polynomial to be primitive.

Definition 12. A polynomial P (x) of degree L with coefficients in the finite field Fp is
called irreducible if it cannot be written as the product of two polynomials of degrees
smaller than L with coefficients in Fp.

Definition 13. An irreducible polynomial P (x) of degree L with coefficients in the
finite field Fp is called primitive if the smallest positive integer n for which P (x) divides
xn − 1 is n = pL − 1.

The output sequence produced by an LFSR with a binary (p = 2) primitive feedback
polynomial with degree L can achieve the maximum period 2L − 1. The Sagemath
tool [sagc] can be used to help verify whether a polynomial is primitive using the built-
in is_primitive() function.

The security and implementation aspects should be considered as well. For example,
the number of feedback taps should be larger than three to resist against linear attacks,
which has almost become a rule of thumb for stream cipher design. Besides, these
feedback taps should be well chosen to allow for efficient implementation.

3.2.1.2 Non-Linear Combinations

LFSR itself is insufficient to build a stream cipher as it is a linear construction leading to
easy cryptanalysis, e.g., using the Berlekamp-Massey algorithm [Ber15, Mas69]. Thus,
non-linear components are required to disrupt such linearity. The main non-linear con-
structions include clock-controlled generators, non-linear combination generators, and
filter generators.

• Clock-controlled generators. A clock-controlled generator introduces non-
linearity by irregularly clocking the LFSRs. The clock can be controlled either by
some external components, e.g., another LFSR, or by the combinations of several
internal bits from multiple LFSRs. A typical example of this type is A5/1 [BSW00],
which has three LFSRs each with one clocking bit; an LFSR is clocked if its clock-
ing bit agrees with at least one clocking bit of the other two LFSRs.

• Combination generators. A non-linear combination generator, e.g., a non-
linear Boolean function, is usually used when the linear part uses several LFSRs.
These constituent LFSRs should be chosen to have primitive feedback polynomials
for ensuring good statistical properties of their output sequences. The non-linear
function should balance between multiple properties, e.g., the correlation immu-
nity order, algebraic degree, and implementation efficiency. Memory elements are
usually introduced into the function to guarantee the correlation immunity order
and non-linearity. Vectorial Boolean functions can also be used as the combination
generator to produce several output bits and increase throughput. The typical ex-
ample of this type is the Bluetooth encryption algorithm E0 [LV04], which uses one
non-linear combination generator with four bit memories to nonlinearly combine
the outputs from four LFSRs.
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• Filter generators. A filter generator applies a non-linear Boolean function or
vectorial Boolean functions to several extracted stages from an LFSR and produces
output. Similarly, the different properties of the function should be considered,
and memory elements are usually included. This construction is the most popular
design for LFSR-based stream ciphers, and many well-known stream ciphers are
built on it, e.g., SNOW 3G [3GP06] and ZUC [ETS11].

3.2.2 NFSR-based
NFSR is becoming a new important component for building stream ciphers. It is the
same as an LFSR except that the update function is non-linear. Introducing NFSRs
in stream ciphers starts from the Grain cipher [HJM07] submitted to the eSTREAM
project. Grain comprises one LFSR, one NFSR with output feeding to the LFSR, and
one filter function extracting state bits from these two FSRs (feedback shift registers)
to produce the output. Such a construction benefits from the high implementation
efficiency of FSRs, and at the same time, introduces more security properties through
the NFSR. On the other hand, the non-linear update is typically more complex and could
be more expensive. Another famous NFSR-based stream cipher is Trivium [DC06], which
uses three NFSRs feeding to each other and forms a circular construction.

NFSR-based stream ciphers introduce new cryptographic properties, and novel crypt-
analysis techniques are required. Such construction is becoming popular in the design
of lightweight stream ciphers. For example, NFSRs are used in several recent stream
ciphers intended for lightweight applications, e.g., Sprout [AM15], Fruit [GHC16], and
Plantlet [MAM16]. Though there are a number of cryptanalysis results of these ciphers,
we can still expect the popular use of NFSRs in future lightweight stream ciphers.

3.2.3 Block Cipher based
A block cipher can act like a stream cipher when using some particular mode of operation.
The most prominent mode for achieving this is the counter mode (CTR), in which the
underlying block cipher takes the secret key and distinct counters as inputs and outputs
a sequence of keystream blocks of the same length. The encryption (resp., decryption) is
then the simple XOR operation between the keystream blocks and the plaintext (resp.,
ciphertext) blocks. The decryption uses the same algorithm to generate the keystream
blocks; thus, no special decryption implementation is required. CTR mode allows for
parallel processing of arbitrary lengths of plaintext, and is therefore widely used in
applications where the length of the plaintext varies. AES is working in CTR mode for
the confidentiality and integrity protection over the air in 4G.

There are some other designs of stream ciphers related to a block cipher, e.g., using
the round function of a block cipher as one component of a stream cipher. For example,
the stream ciphers AEGIS [WP13] and Rocca [SLN+21] build the round transforms with
several parallel AES encryption rounds. Such ciphers can take full advantage of the AES
instructions supported by mainstream CPUs, thus can be highly efficient in a software
environment. On the other hand, the security of these ciphers heavily depends on AES,
and once AES was broken, these ciphers can immediately become vulnerable.

Another popular construction of the round function is using a combination of addi-
tion, rotation, and XOR, and these ciphers are usually called ARX ciphers. The three
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operations are relatively cheap and fast in a software implementation, and as a conse-
quence, ARX-based ciphers are becoming popular [BP17]. Well-known examples are like
Salsa20 [Ber08] and ChaCha [B+08].

3.2.4 Sponge-based
Since Keccak [BDPVA09] won the SHA-3 (Secure Hash Algorithm 3) competition, the
sponge construction has become very popular for building many cryptographic primi-
tives, e.g., hash functions, MACs, stream ciphers, and PRGs. A sponge construction
typically has three components: the state of a certain size, a permutation function iter-
atively operating on the state, and a padding function. It takes in an arbitrary-length
input, which is usually referred to as the “absorbing” phase, and produces an output of
any desired length, which is called the “squeezing” phase.

In sponge-based stream ciphers, the key/IV and possibly additional associated data
(AAD) are initially loaded to the state; then the permutation function is iteratively
applied on the state for a certain number of rounds as initialisation. After that, the
plaintext is divided into fixed-length blocks and padded based on specific rules, and
the cipher takes one block in each iteration and XORs it with a part of the state to
produce one ciphertext block. In some designs, the generated ciphertext block is in turn
fed into the next iteration. After processing all the plaintext blocks, some part of the
state is output as the MAC. Thus, sponge-based constructions can achieve AEAD very
easily and become very popular choices for stream ciphers. Among the ten finalists of
the NIST LWC (Lightweight Cryptography) competition, six are built on the sponge
construction, i.e., ASCON, Elephant, ISAP, PHOTON-Beetle, Schwaemm and Esch,
and Xoodyak [NISa]. Currently, 3GPP protocols do not support AEAD, but if 6G or
the system beyond opens up for it, sponge-based ciphers can be good choices for the
confidentiality and integrity protection over the air.

3.2.5 Other Constructions
Besides the above main constructions for stream ciphers, there are some ad-hoc designs
intended for special applications. For example, the FLIP cipher [MJSC16], proposed in
Eurocrypt 2016, is designed for use in FHE. It contains three main components: a register
storing the key; a bit permutation generator parameterised by a public pseudorandom
number generator used to permutate the secret key; and a filtering function extracting
bits from the permutated key and producing the output. Such a construction is called
filter permutator, and FLIP achieves a low constant noise for FHE thanks to it. However,
FLIP was broken by a guess-and-determine attack in [DLR16].

In 2019, the authors proposed a new version of FLIP, called FiLIP [MCJS19b,
MCJS19a], to improve the resistance against linear attacks. The filter function in FiLIP
is carefully designed, taking different aspects into account. The authors proposed a
number of FiLIP instances that use different Boolean functions as the filter functions,
e.g., DSM (Direct Sums of Monomials) and XOR-MAJ (majority) predicates. These
predicates are also relevant to the local pseudorandom generators, and we will present
more details in Chapter 5. Our included Paper VI also focuses on investigating the
security of local PRGs.



Chapter 4

Cryptanalysis of Stream Ciphers

When performing cryptanalysis of stream ciphers, the known-plaintext attack model
is typically used, i.e., the plaintext, ciphertext, and correspondingly the keystream

sequence, are assumed to be known. The goal of an attack can be to recover the se-
cret key, retrieve the state, or distinguish the cipher from random based on the known
keystream sequence. In this chapter, we present an overview of the most widely used
cryptanalysis techniques of stream ciphers. All of these cryptanalysis techniques should
be visited when designing a new stream cipher.

4.1 Exhaustive Key Search

Exhaustive key search is the most general and basic attack, as it requires no specific
information of the cipher. In exhaustive key search, an attacker tries every possible
value of the secret key and gets the correct one by checking if the tested key value can
generate a keystream sequence identical to the observed one. The complexity of the
attack is 2n, where n is the size of the secret key. Exhaustive key search is usually
regarded as the benchmark for other attacks: if one attack has complexity below 2n, we
claim that the attack is faster than exhaustive key search, and the cipher is regarded
as (at least theoretically) broken. We mention that some cryptanalysis results with
complexity above 2n can still be helpful for understanding the security of a cipher.

For a stream cipher, the attacker can also guess its internal state instead of the secret
key. However, as the state is typically at least twice larger than the secret key [HS05b,
HS05a], simply guessing the state will result in much higher complexity. Instead, one can
guess a part of the state and determine the rest through the publicly defined relations
or employing more advanced techniques, e.g., using a decoding method. Actually, such
ideas are used in guess-and-determine attacks (in Section 4.4) and correlation attacks
(in Section 4.2.3), respectively.

39
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4.2 Linear Cryptanalysis

4.2.1 Basics
Linear cryptanalysis was first introduced by Matsui in 1993 to attack DES in [Mat93].
Since then, it has become one of the most powerful cryptanalysis techniques against
symmetric ciphers and should always be considered when designing a new cipher. The
basic idea of linear cryptanalysis is to linearly approximate the non-linear operations in
the cipher and further explore some linear relations. In a stream cipher, if these linear
relations only involve keystream symbols, it can lead to a distinguishing attack indicating
that the cipher is not purely random [HJB09]; while if the linear relations involve both
the keystream symbols and initial states, it can result in a correlation attack which can
recover the secret key [TIA18, ZXM15, Mei11, CJM02].

For a non-linear function f : F2n → F2m in a cipher, e.g., an S-box or a modulo
addition, the linear approximation of f can be expressed as:

β · f(x) = α · x, (4.1)

where x ∈ F2n is the input and nonzero α, β are called linear masks [CHJ02]. We
will give more details about linear masks soon. Such an expression is called a linear
masking. The approximation in (4.1) does not always hold, and some biased noise will
be introduced, which is expressed as:

e = β · f(x)⊕ α · x. (4.2)

The noise can be measured using bias, which determines the quality of the linear ap-
proximation and further influences the attack complexity. Thus, a cryptanalyst tries to
explore “good” linear masks α and β such that the equation β · f(x) = α · x holds with
a higher probability.

There are two ways of choosing the linear masks α, β and computing the bias, which
result in bitwise (binary) [Mat93, JV03] and multidimensional [HCN19, BJV04] linear
approximations, respectively.

Bitwise Linear Approximation. α and β are n-bit andm-bit non-zero binary vectors,
respectively, and the (·) operation denotes the standard inner product. In this case, the
linear approximation and the noise e is binary. The bias is evaluated as:

ε = Pr[e = 0]− 0.5

=
1

2n
#{x|x ∈ F2n , β · f(x) = α · x} − 0.5. (4.3)

When n and m are not too large, the biases under different linear masks α, β can be
exhaustively computed and stored in a 2n × 2m table, e.g., the linear approximation
table (LAT) [O’C94], denoted LATf (α, β). Each entry in the LAT is the number of
equal parity checks corresponding to the specific (α, β) pair, i.e.,

LATf (α, β)
def
= #

x|x ∈ F2n ,

n⊕
i=1

x[i] · α[i] =

m⊕
j=1

f(x)[j] · β[j]

 . (4.4)
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In linear cryptanalysis, we are interested in those entries in the LAT that deviates far
from 2n−1. The bias corresponding to each (α, β) pair can be trivially computed from
the LAT according to (4.3).

For a bitwise linear approximation with bias ε, the number of data samples required
to distinguish e from random is in the order of 1

ε2 .

Multidimensional Linear Approximation. α and β are binary matrices of size
t× n and t×m, respectively, where t ≤ n, t ≤ m, which results in a t-dimension linear
approximation. Each bit of the t-bit vector is computed as βi · f(x) ⊕ αi · x, where αi
and βi are the i-th rows of α and β, respectively. The bias is measured in SEI according
to the distribution D of the noise e, where each entry i is computed as below:

for all i in F2t : D[i] =
1

2n
#{x|x ∈ F2n , β · f(x)⊕ α · x = i}.

By trying out all the values of x, we can compute e = β · f(x) ⊕ α · x and construct
the distribution table. For a multidimensional linear approximation with SEI ∆, the
number of data samples required to distinguish e from random is in the order of 1

∆ .
A multidimensional linear approximation typically provides more biased information

if the matrix masks are well-chosen [HCN19]. However, it becomes difficult to exhaust
all the possibilities of matrix masks when t is large, e.g., most likely t = n = m, and in
many cases one should be satisfied with a linear masking with a decent bias.

The most commonly used linear approximations for modern stream ciphers are for
S-boxes and modulo additions.

As we mentioned, the S-box is one of the most important components for providing
non-linearity, and the linear approximation of it is very important. An m-to-m bit S-box
is usually approximated as βS(x) = αx (we omit the notation · without ambiguity). As
most S-boxes are byte-based or even smaller, an LAT is usually computed to store the
biases under different linear masks. More complex forms of the linear approximation
of S-boxes can be involved in many cases, for example, βS(P · x) = αx, where P is
some permutation matrix. If α and β are nonzero, we call the S-box active. When more
active S-boxes are involved in linear cryptanalysis, the bias will typically become smaller.
Therefore, one basic rule in linear cryptanalysis is to find a linear approximation that
involves as few S-boxes as possible. When designing a new cipher, designers usually
have a rough estimation of how many S-boxes will be involved when performing linear
cryptanalysis, thus having an initial insight into the achievable non-linear properties.

Another important non-linear operation in stream ciphers is the arithmetic modulo
addition. The m-bit modulo addition is usually linearly approximated as γ(x � y) =
αx ⊕ βy, where γ ∈ F2m is the output linear mask and α, β ∈ F2m are the input linear
masks. Such an approximation can hold with a large probability in many cases. For
example, when γ, α, and β are the unit vectors with only the least significant bits being
1, γ(x� y) = αx⊕ βy always holds.

In practice, a linear approximation can be much more complex: with more variables,
operations involved, and more complicated connections between them. In this case, one
should consider the overall approximation instead of a locally optimal one. If we de-
note the overall non-linear function as F , F can be expressed as a composite of several
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non-linear sub-functions representing different operations. If these sub-functions are in-
dependent, i.e., involving different independent input variables, the bias of F can be
computed based on the distributions of sub-noises, e.g., using the piling-up lemma for
bitwise approximations [Mat93]. However, in many cases, these sub-functions are corre-
lated, e.g., they involve some same input variables or the output of one sub-function is
the input of another sub-function. In these cases, the dependence between sub-functions
should be carefully dealt with [NW06], e.g., using the correlation theorem in [Nyb01].

For an LFSR-based stream cipher, we can express the generated keystream sequence
as z = NF(S), where S denotes the LFSR state and NF is the equivalent non-linear
keystream generation function [CHJ02]. We can write NF as some linear function LF
plus a biased noise e, i.e.,

z = NF(S) = LF(S) + e. (4.5)

One can find many different linear functions (LF) and correspondingly gets different
noises (e). It is infeasible to try out all possibilities, and we usually have to be satisfied
with a “good” one. We next show how the linear approximation is used in a distinguishing
attack or correlation attack against a stream cipher.

4.2.2 Distinguishing Attacks
A distinguishing attack targets to distinguish a keystream sample sequence from ran-
dom, i.e., determining if a given sequence is generated from this specific cipher or just
random. A distinguishing attack is usually not as powerful as a key-recover attack, but
the resistance against it is still used as one design criterion of stream ciphers.

The distribution of the original keystream sequence is often very close to the uniform
distribution (otherwise, it is not a good cipher), and it is difficult to distinguish it from
random directly. Instead, some well-chosen linear combinations of keystream symbols
are considered, e.g., xt =

∑
j∈I cjzt+j for a time set I where cj ’s are some constants.

These symbols form a new sequence called sample sequence.
In (4.5), e is biased, while LF(S) is regarded as balanced. If the LF(S) part can be

canceled, only the noise e remains and the left side involving only keystream symbols
will become biased as well. Therefore, one key point of a distinguishing attack is to
cancel the contribution from the linear part LF(S), which is achieved either using the
feedback polynomial or a low-weight multiple of the feedback polynomial.

Definition 14 (The Low-Weight Polynomial Multiple (LWPM) Problem). Given a
binary polynomial P (x) ∈ F2[x] of degree dp, and two integers d and ω, find a multiple
K(x) = P (x)Q(x) of degree at most d and weight at most ω.

The expected number of such multiples is approximated by
(
d

ω−1

)
2−dP . There are

many ways to find a multiple [Gol96a, LJ14, DLC07], which typically need to balance
between time and memory.

Assume that the feedback polynomial or a multiple of it with k taps is denoted as
xt1 + xt2 + · · ·+ xtk = 0, then the LFSR states would always satisfy:⊕

ti∈T
St+ti = 0, t ≥ 0,
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where T = {t1, t2, . . . , tk}. Thus, if we combine (4.5) at time instances in T , the LFSR
contribution will be canceled (become zero), while only the keystream symbols and noise
remain as below: ⊕

ti∈T
zt+ti =

⊕
ti∈T

et+ti .

Any time shift of the above expression still holds. Therefore, we can build new keystream
samples of the form xt =

⊕
ti∈T zt+ti . Note that zt+ti ’s do not necessarily denote the

original keystream symbols, but could be some transform of them, e.g., linear combi-
nation, truncation, or concatenation. By collecting a large number of such samples, it
is possible to distinguish the keystream sample sequence from random using tools like
hypothesis testing.

Usually, the noise e in the single approximation is explored and computed, and the
bias of a k-tuple noise

⊕
ti∈T et+ti can be easily computed from e. For example, piling-

up lemma can be applied if e is binary [Mat93], and Fourier transform can be used if e is
multidimensional [MJ05]. Typically, a larger size of T will result in a smaller bias; thus,
if the feedback polynomial has a high weight, one can turn to search for a low-weight
multiple of it.

4.2.3 Correlation Attacks
A correlation attack explores the correlation between the LFSR states and the keystream
symbols, which always exists. If the non-linear part involves M memory elements, the
correlation can be explored between at mostM+1 consecutive keystream bits and LFSR
states [MS92, Gol96b]. A correlation attack is usually modeled as a decoding problem
over F2n for n ≥ 1 as shown in Figure 4.1.

The initial LFSR state denoted u of length l, u = (u0, u1, . . . , ul−1), is modeled as
the information symbol vector and the output sequence of the LFSR of length N is
regarded as the codeword. We denote the codeword as c, which is generated from u
through c = uG, where G is some generation matrix. The keystream sample sequence
y = (y0, y1, . . . , yN−1) is a noisy version of the codeword received through a discrete
memoryless channel. Note that c and y do not necessarily denote the original LFSR
output and keystream sequence, respectively, but could be some transforms of them.

The noisy channel corresponds to the linear approximation noise e and the channel
capacity can be computed as C = n+

∑
ei∈Fn2

p(ei) · log2 p(ei) ≈
∆(e)
2 ln 2 , where p(ei) is the

probability of e = ei and ∆(e) is the SEI of e [ZXM15]. The attacker aims to recover
the initial state according to the received keystream sample sequence, and this process
is equivalent to decoding an [N, l] linear code over F2n . When the code rate is below
the equivalent channel capacity, there exists some decoding method that can uniquely
recover the information symbols according to coding theory.

A correlation attack consists of two phases: the preprocessing phase, during which
many low-weight parity checks are explored offline; and decoding phase, during which
some decoding techniques are used online to recover the information symbols based on
the explored parity checks. The research of correlation attacks mainly focuses on these
two phases, i.e., exploring more efficient ways for building low-weight parity checks and
decoding.
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Figure 4.1: Model for a correlation attack.

1. Preprocessing Phase. If the feedback polynomial is low-weight, the parity
checks can be derived directly according to it [MS89]. Thus it has been a rule
of thumb that the weight of the feedback polynomial should not be too low. LF-
SRs used in modern ciphers typically have many feedback taps or are defined over
higher-dimension fields. In this case, multiples of the feedback polynomials with
low weights, usually 3, 4, or 5, are explored, and parity checks are constructed
based on the multiples [CT00]. The number of required parity checks depends
on the quality of the channel (i.e., the linear approximation) and the decoding
method.

2. Online Decoding Phase. After collecting a large number of parity checks, some
decoding algorithms are applied to recover the information symbols, i.e., the ini-
tial internal state, based on these parity checks. The decoding algorithms can
be categorised into the one-pass and iterative methods. In the first type, some
advanced decoding techniques, e.g., based on convolutional codes [JJ99b], turbo
codes [JJ99a], and list decoding [MFI01], are used to recover the information
symbols. In the iterative methods, the algorithm iteratively updates informa-
tion of the information symbols and finally recovers them when the algorithm
converges [MS89, CT00].

Modern software-efficient ciphers are usually constructed over a larger field, and the
correlation attacks over extension fields appeared in recent years [ZXM15], which are
much more complicated. One idea to simplify it is to transform the original [N, l] code
C1 into a simpler code C2 [N ′, l′] with l′ < l, which will require less decoding complex-
ity [CJS00]. This is achieved by finding k-tuples of column vectors in the generation
matrix G such that the last l − l′ elements are all zero for some small k. If we find N ′
such combinations, the problem is converted into decoding an [N ′, l′] code. Finding such
combinations can be achieved using algorithms solving the k-sum problem [Wag02].

4.3 Attacks on Initialisation

The initialisation of a stream cipher targets to thoroughly mix the secret key and IV.
After the initialisation, the keystream output should behave random-like. Attacks on
initialisation aim to find some non-randomness that usually indicates some weakness or
an insufficient mixing effect, which in turn helps to check if the number of initialisation
rounds has provided enough security margin. The non-randomness can appear in many
different forms, e.g., some keystream bits are more likely to be one (or zero), the XOR
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sum of some keystream bits is always zero given a subset of inputs. Since the IV is
public, an attacker can arbitrarily choose the IV and hope to find some specific values
that will introduce such non-randomness. Attacks under such a setting are usually called
chosen-IV attacks [Saa06, EJT07].

Each keystream bit after initialisation (or a suppressed output bit in the initialisa-
tion) z can be expressed as a Boolean function of the secret key (say, n-bit), denoted
x = (x1, x2, . . . , xn), and IV (say, m-bit), denoted v = (v1, v2, . . . , vm), as below:

z = f(x, v)

= a0 + a1x1 + · · ·+ an+1v1 + · · ·+ aMx1x2 · · ·xnv1v2 · · · vm. (4.6)

For a stream cipher with a good mixing effect, the Boolean function will behave like
a random function, and each monomial coefficient aj is zero or one with a probability of
0.5. If one can get some information about the Boolean function, e.g., some coefficients
are (more likely to be) zero (or one), it usually indicates that the mixing effect is not
sufficient yet. However, such information is difficult to obtain since the Boolean function
is highly complicated. Specifically, even when we view the IV as publicly known, the
Boolean function has 2n−1 monomials in average and the degree can be as high as
n [EJT07]. For such a Boolean function with a typical key size (e.g., 128 bits), we even
do not have an efficient way to store it. Thus, the cryptanalysts (or attackers) usually
consider a round-reduced initialisation and try to attack as many rounds as possible.

The most common attacks against the initialisation are usually defined over a cube.
A cube is a subset of IV values in which some specific IV bits, let us call them cube bits,
exhaust all possible values, while other bits are fixed with certain constant values. As
a simple example, a cube of a 4-bit IV (v1, v2, v3, v4) can be {0001, 0011, 0101, 0111},
in which v2 and v3 are the cube bits exhausting all values, while v1 and v4 keep the
constant values 0 and 1, respectively. One can see that there are many different cubes:
the cube bits can vary, and the constant part can be fixed as different values as well. For
example, an m-bit IV can have

(
m
i

)
different cubes of size i if the constant part is set as

zero, which is a typical setting. For certain cubes, some weakness in the output can be
possibly explored, though such cubes are typically difficult to be identified. Below we
show how the cubes are used in three most powerful attacks on the initialisation process.

4.3.1 Maximum Degree Monomial Tests
The maximum degree monomial (MDM) test is one cryptanalysis tool used to check the
mixing effect of the initialisation. It can experimentally provide a lower bound on the
required number of initialisation rounds by checking the MDM values (i.e., aM in Equa-
tion (4.6)) of the Boolean functions of the suppressed outputs during the initialisation
and keystream bits after initialisation [Sta10, Sta13].

Consider a modified initialisation that produces output in each initialisation round,
and we can define a vectorial Boolean function to describe the entire initialisation pro-
cedure: f : {0, 1}n+m → {0, 1}l, where l is the total number of the output bits. For
example, if the cipher has r initialisation rounds and outputs w bits in each round,
l = r · w. If we use σi (1 ≤ i ≤ l) to denote the MDM of each Boolean function
fi (1 ≤ i ≤ l), the so-called MDM signature is defined as below [Sta10, Sta13]:

σ = σ1||σ2|| · · · ||σl.
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The MDM test is based on the observation that in the first few initialisation rounds, the
mixing effect is not sufficient and a Boolean function of the output tends to have a low
algebraic degree. The algebraic degree increases along with the initialisation rounds, and
the high-degree monomials should appear with probabilities of 0.5 after sufficient rounds.
The MDM test focuses on the MDM coefficient, as it is the last coefficient becoming
random-like. Before that, the MDM coefficient keeps zero, e.g., σ1 = σ2 = · · · = σk = 0
until some k, and the MDM test checks how long such a zero sequence is (i.e., how large
k is) and if it is far below the number of initialisation rounds.

For an unknown Boolean function, if one had unlimited computational capabilities,
he can try all the input values (of key and IV), get the outputs and correspondingly the
truth table; from the truth table, he can recover the monomial coefficients. However,
this is infeasible in practice, and instead, one considers cubes with much fewer cube bits
that need to be exhausted and checks the MDM values over these cubes. Given a cube
C of t cube bits, a new vectorial Boolean function fC : {0, 1}t → {0, 1}l can be defined
and the MDM signature of it can be recovered through:

σC =
⊕

(x,v)∈C

fC(x, v).

That is, the variant MDM signature can be obtained by running the initialisation with
the values in the cube as inputs and XOR-ing all the outputs. Based on the derived MDM
signature, one can easily check after how many rounds the output behaves random-like
and if it is reasonably below the number of initialisation rounds. As the test needs to
exhaust every possible value of the cube bits, the attack is restricted to smaller cube
sizes, e.g., smaller than 40.

For some certain cubes, the MDM test could result in longer zero sequences. However,
there is no good way to explore such cubes, and in practice, one either chooses a cube
randomly or uses a greedy algorithm to gradually increase the cube size [Sta10]. In the
greedy method, one first finds the optimal cube of a small size that results in the longest
zero-sequence, then in each greedy step adds one (or two, three) more bit that results in
a longer zero-sequence compared to other bits to the cube. Obviously, it cannot achieve
a globally optimal result.

Sometimes, secret key bits are used as cube bits as well, which results in a nonran-
domness detector [Sta10]. This is adopted when designing a cipher to check how the key
and IV are mixed. For more details of the MDM test, we refer to [Sta13].

4.3.2 Traditional Cube Attacks
Besides considering a round-reduced initialisation, one can also turn to recover a much
simplified polynomial, called superpoly, instead of an original Boolean function. Based
on the recovered superpoly, one can possibly get some information about the secret key.
Such attacks are called cube attacks [DS09, Lat09].

A Boolean function can be rewritten as the following representation:

f(x, v) = tI · p(x, v) + q(x, v),

where tI is called the cube term, which is the product of the (symbolic) cube bits; p(x, v)
is called the superpoly, and q(x, v) is the reminder polynomial, which misses at least one
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variable in tI . If we exhaust all possible values of tI and add up the derived polynomials
of f(x, v), the result will be exactly p(x, v). This is because tI = 1 only when all the
cube bits are one while q(x, v) is canceled as it appears an even number of times. For
a well-chosen cube, the superpoly can be much simplified and possibly recovered.

Example. For a Boolean function f(x, v) = v1v2x1 + v1v2x2 + v2v9x2x3x5x6x9 +
v1v3v6v9x8x9x10, if we set the cube term tI = v1v2, the superpoly p(x, v) = x1 + x2,
and q(x, v) = v2v9x2x3x5x6x9 + v1v3v6v9x8x9x10.

A cube attack targets to find “good” cubes such that the resulting superpolys are
much simplified, specifically, linear and quadratic ones are preferred. By recovering
these superpolys, some key information could be possibly retrieved. A cube attack
mainly involves the following three steps.

1. Superpoly recovery: recover some low-degree superpolys p(x, v). In this step,
some tools, e.g., linearity tests, can be used to ensure that these superpolys have
low degrees [DS09].

2. Superpoly value recovery: recover the values of these superpolys. This is
achieved by loading the values in the given cube to the cipher and XOR-ing all
the outputs, i.e., ⊕

CI

f(x, v) = p(x, v),

where CI denotes the cube with variables in tI as cube bits.

3. Key recovery: knowing the superpolys p(x, v) and their values, some key infor-
mation can be recovered. For example, for one superpoly p(x, v) = x1 + x2 = 1,
we will know (x1, x2) = (0, 1) or (1, 0).

The cube attack can have many variants, e.g., dynamic cube attacks [DS11], cube
testers [ADMS09], and conditional cube attacks [HWX+17]. The critical point of a cube
attack is to find “good” cubes such that the derived superpolys are much simplified.
However, this is not easy in practice and is often achieved by many trial attempts.
Besides, The size of a cube is restricted to a feasible range, e.g., smaller than 40 bits.
Another disadvantage of the cube attack is that it uses the black-box setting, i.e., the
cipher is dealt like a black box and its specific structure is not exploited at all. The cube
attacks based on division property described [Tod15] in the next subsection provide a
new and more efficient way [TIHM18], which has been a very hot topic in recent years.

4.3.3 Cube Attacks based on Division Property
Division property (DP) is a generalised integral property proposed by Todo at Eurocrypt
2015 [Tod15] and receives a wide range of research in the last few years. Before explaining
the cube attacks based on division property, we first introduce some preliminaries.

Definition 15 (Bit Product Function). Given u,x ∈ Fn2 , the bit product function xu

is defined as

xu =

n−1∏
i=0

x[i]u[i],
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where x[i] and u[i] are the i-th bits of x and u, respectively.

For example, x = 101,u = 100, xu = 11 · 00 · 10 = 1. When u[i] = 0, the value
of x[i]0 will always be one and the true value of x[i] is hidden; while when u[i] = 1,
x[i]1 = x[i] and the true value of x[i] is revealed. Therefore, the bit product function
can be used to choose some bit positions for further investigation, e.g., to check if some
non-randomness can be explored.

For two binary vectors x, y of the same size, we denote x � y if xi ≥ yi at every
position i. For example, 1101 � 1001.

Definition 16 (Bit-based Division Property [Tod15, TM16]). Given a multiset X whose
elements take values in Fn2 , its division property DK, where K = {k0,k1, ...,kt} and each
ki is a length-n binary vector, gives the information about whether the XOR sum of the
bit product function xu over X is 0 or unknown, for a vector u:

⊕
x∈X

xu =

{
unknown, u � k for some k ∈ K,
0, otherwise.

It is not easy to characterise division property, as it is defined over a multiset X.
Basically, the division property divides the space of u into two subsets based on the
XOR sum of the bit product function over X: the unknown-sum subset, for which the
XOR sum is unknown (i.e., could be either one or zero) which implies “randomness”; and
the zero-sum subset, for which the XOR sum is known to be zero, which indeed indicates
some kind of “non-randomness”. When given the division property, one can immediately
get the u vectors in the zero-sum subset and thus find some non-randomness.

We can understand as that in the initialisation phase of a stream cipher (or similarly,
rounds of a block cipher), the size of the unknown-sum subset increases along with the
initialisation rounds, until to some rounds that the whole space except the zero vector
belongs to the unknown-subset. In this case, one cannot find any non-zero u vector that
results in some trivial non-randomness. The number of initialisation rounds should be
even larger to provide enough security margin.

One advantage of division property is that we can know how it propagates along
with each round. Specifically, the propagation of division property for the three basic
operations XOR, AND, and COPY can be modeled according to different rules, while all
other complex operations, e.g., S-boxes and modulo additions, can be regarded as com-
binations of these basic operations [SWW17, ZR19, SWW19]. Thus, given a specific
initial division property, we can learn how it involves and when the XOR sum becomes
unknown for all non-zero u vectors, i.e., no non-randomness can be trivially found. A
valid propagation trail from an initial division property to the output division property
is called a division trail.

Furthermore, the propagation can be modeled as a MILP problem [XZBL16], where
each basic operation is represented as one or a group of (in)equations. By setting
different initial division properties, stopping conditions, and objective functions, the
MILP problems are linked to different attacking scenarios. Some optimisation tools, e.g.,
Gurobi, can be used to efficiently solve a MILP problem, and one can correspondingly
check if an attack exists based on the solutions.



Chapter 4. Cryptanalysis of Stream Ciphers 49

Cube attacks based on division property. If x is a vector of n bit variables, say,
x = (x1, x2 . . . , xn), the bit product function xu can denote a unique monomial term
for each u. For example, when n = 4,u = 1011, the monomial term is x1x3x4. By
considering all u vectors, we can rewrite the ANF of a Boolean function in x as below:

f(x) =
⊕
u∈Fn2

au · xu,

where au is the coefficient of the corresponding monomial term xu.
The main steps of a cube attack based on division property follow a traditional

cube attack, while with the main improvement in how the superpoly is recovered: the
superpoly is recovered through recovering the values of all the monomial coefficients,
thanks to the proposition below.

Proposition 1 ([TIHM18]). Let f(x, v) denote the polynomial of an output bit where x
and v denote the n-bit secret key andm-bit IV variables, respectively. For a set of indices
I = {i1, i2, . . . , i|I|} ∈ {1, 2, . . . ,m}, let CI denote the cube in which {vi1 , vi2 , . . . , vi|I|}
are taking all possible combinations of values. Let kI be an m-dimensional bit vector
such that vkI = tI = vi1vi2 · · · vi|I| , i.e., ki = 1 if i ∈ I and ki = 0 otherwise, and ej be
a unit vector of length n with one at the j-th position. If there is no division trail such
that (ej ,kI)

f−→ 1, where f−→ denotes the propagation of division property along f , the
secret key bit xj is not involved in the superpoly of the cube CI .

Thus, an attacker can define a cube and build a MILP problem for each secret key
bit and get the information about whether this key bit is involved in the corresponding
superpoly, based on the solutions of the MILP problem. After that, the superpoly can
be recovered by trying out all possible combinations of the involved secret variables.
Other steps are just the same as a traditional cube attack.

There are many new advances in cube attacks based on division property, e.g., esti-
mating the degree of a superpoly [WHT+18], using three-subsets (i.e., one more subset
containing the u vectors that result in an XOR sum of one) and its variants [TM16,
HW19, WHG+18, HLM+21], and linking to other attacks [YT19, HJL+20]. In a recent
paper [HSWW20], the authors give a new definition of division property which clarifies
many open problems in this area. Compared to the traditional definition over a subset
of inputs, the new one investigates the involvement of the polynomial itself, which is
more accessible and understandable. Besides, they design accurate propagation rules
for the division property, under which the resulting attack is a perfect detector, while
some previous results may introduce false alarm errors.

4.4 Guess-and-determine Attacks

In a guess-and-determine (GnD) attack against a stream cipher, one guesses a part of
the state variables and determines the remaining variables according to publicly known
relations, e.g., the state update function, a recurrence relation derived from a multiple
of the feedback polynomial, and the keystream generation function. Usually, several
consecutive keystream words are required to be known, and the goal is to recover the
full state that produce these given keystream words. If the required number of guesses
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(in bits) is below the claimed security level, the attack is faster than exhaustive key
search. A GnD attack can be generalised into three phases: guessing, determining, and
verification.

1. Guessing. During the guessing phase, one decides a subset of the state variables
for guessing. Such a subset should be able to determine the remaining variables
and has a direct connection to the complexity; thus, one aims to find a subset
of the minimum size. There are no systematic ways for achieving this, and ad-
hoc approaches are explored for specific ciphers [HR02, FLZ+10, BP99]. Some
heuristic path-searching approaches can be used to find a proper (but not always
optimal) guessing subset [AE09, JLH20].

2. Determining. One assigns a value to the guessing subset and determines other
variables according to the assigned value and the given keystream words, pos-
sibly in some well-organised order. If some conflicts appear in the middle, i.e.,
the assigned value invalidate some publicly known relations, one terminates the
determining process and traces back to guess another value. The determining
process may involve some tricky relations in which the solutions are unclear, e.g.,
an expression involving an unknown variable twice with non-linear operations in
between. In this case, some efficient ways can be used to help find the solutions,
e.g., using look-up tables and SAT solvers [ZK17].

3. Verification. After all the state variables corresponding to a specific time instance
are fixed, i.e., either guessed or determined, one uses several additional keystream
words to verify the correctness. This can be achieved by checking if the derived
internal state can generate the keystream symbols identical to the observed ones.
If the internal state is n-bit long, typically, at least n keystream bits are required
to correctly recover the state.

If one loops over the guessing subset in a straightforward way, the complexity can be
derived as 2t, where t is the number of guesses in bits. In our included Paper IV [YJM21],
we show that by carefully designing the order of the determining process, it is possible
to terminate some guess-and-determine branches at an early stage through exploring
potential conflicts. Thus, some efforts can be saved from going deeper and the complexity
is reduced.

If the full state at a specific time instance is recovered, the attacker can run the cipher
forward and backward to get the whole keystream sequence under this specific key and
IV. If there is no special protection of the initialisation, e.g., using FP -(1) mode [HK18],
the attacker can further recover the secret key.

The GnD attacks can be applied to other constructions as well. For example, we
present two guess-and-determine-style attacks to the local pseudorandom generators
in the included Paper VI [YGJL21], where we use Gaussian elimination and iterative
decoding in the determining phase to recover the remaining variables.

4.5 Algebraic Attacks

An algebraic attack is a very powerful cryptanalysis method that applies potentially to
a wide range of cryptosystems: stream ciphers, e.g., Toyocrypt [Cou02, Cou03], LILI-
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128 [CM03], and E0 [AK03, Cou04a]; block ciphers, e.g., analysing AES [CP02]; and
also some public cryptosystems, e.g., HFE [KS99]. The main idea behind an algebraic
attack is to model a cryptosystem as a system of multivariate polynomial equations,
and by solving this system using some methods reviewed in Section 2.8, one may recover
the secret key or the whole state. An algebraic attack against a stream cipher can be
generalised into three steps as below.

1. Building an Initial System. The first step is to construct an initial system of
multivariate polynomial equations describing the relation between the secret key
(or initial state) and the output. For example, for a stream cipher built over an
LFSR with update function L filtered by a memoryless Boolean function f , which
are both publicly known, we can get an equation at time instance t of the form
below:

zt = f(Lt(s0, s1, . . . , sn−1)),

where (s0, s1, . . . , sn−1) is the initial LFSR state. When the filter function f has
memory elements, several output bits should be considered in the above relation to
build one equation [AK03, Cou04a]. If one collectsm such equations, a multivariate
polynomial system of m equations in n variables is constructed, and the task is to
solve this system.

2. Optimising the System. If f has a low algebraic degree or can be approximated
by a low-degree polynomial [Cou02], the initial system may be possibly solved
efficiently if a reasonably large number of keystream bits are obtained. However,
when f has a high algebraic degree, directly solving the initial system would involve
high complexity. Thus, one should optimise the system to make it efficiently
solvable. For example, one can find some well-chosen low-degree functions such
that multiplying them with f results into low-degree multiples [CM03], i.e., finding
low-degree functions g and h such that fg = h. Thus a new system of a lower
degree is derived.

3. Solving the Optimised System. Once the system has been defined, the attacker
will seek the most suitable methods, e.g., the methods mentioned in Section 2.8.2,
to solve the system and get the solution.

The algebraic attack results in some new criteria for stream cipher design. For
example, the filter function should involve many state bits, e.g., at least 32, and should
not have a low degree or a low-degree multiple, and should not be too sparse [CM03].

4.6 Differential Attacks

Differential cryptanalysis is one of the most powerful cryptanalysis techniques for sym-
metric primitives, especially for block ciphers. It was proposed by Biham and Shamir
and applied to DES in [BS91]. It investigates the propagation of differences inside the
cipher and targets to find some specific output differences which occur with relatively
higher probabilities.

Denote a primitive as F , suppose that two inputs X1 and X2 of the same length
generate outputs Y1 and Y2, respectively, i.e., Y1 = F (X1) and Y2 = F (X2). The
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input and output differences are then computed as ∆I = X1 ⊕X2 and ∆O = Y1 ⊕ Y2,
respectively. Such a (∆I ,∆O) pair is called a differential, and we use ∆I → ∆O to
denote it. The probability of the differential is denoted P (∆O|∆I).

If F is an ideally randomizing cipher, the probability P (∆O|∆I) will be 2−n given any
∆I , where n is the length of the output. In differential cryptanalysis, the attacker targets
to find a specific ∆I that will result in ∆O with a probability distinguishably higher (or
lower) than 2−n. Thus, a differential attack is a CPA attack, in which the attacker can
randomly select the input difference and examine the output difference. With a highly
likely differential, the attacker can find some non-randomness of the output and can
even recover some secret key bits.

Usually, one has to investigate how the difference propagates for each operation of the
cipher, and such a propagation trail is called a differential trail. For a linear operation,
the difference propagation can be predicted with probability one, while for a non-linear
operation, probabilistic analysis is needed. The S-box is again the most interesting
component. An S-box is called active if the input difference of it is nonzero; otherwise, it
is inactive. A zero input difference of an S-box always gives a zero output difference. The
attacker targets to carefully select the active S-boxes such that the overall differential
holds with a higher probability. The MILP problem and corresponding optimisation
tools can be used to help search for good differential trails [SHW+14].

There is no general framework for differential cryptanalysis of stream ciphers, and the
approaches are mostly ad-hoc for specific stream ciphers. The differential characteristics
can be defined either from the (key, IV) pair into the internal state, between the internal
states, or from the internal state into the keystream [BD07]. The attacker can control
the difference (∆K ,∆IV ) and observe the differences of the keystream sequences. The
attacks can be related to weak-key or weak-IV attacks, where for some keys or IVs,
the output differences deviate much from uniform random. For example, in the first
version of ZUC, it is found that some special IV pairs can generate the same keystream
sequence [WHN+12], which directly results in a new version of ZUC. The differential
attacks are also applied to Toyocrypt, A5/1, and RC4 [BD07].

4.7 Time-memory-data Tradeoff Attacks

A time-memory-data tradeoff (TMD-TO) attack is a generic method of inverting a cipher
by balancing time, memory, and data resources to make the overall complexity as low
as possible. An underlying assumption is that these resources are sufficient for tradeoff.
TMD-TO attacks can date back to the time-memory tradeoff attack applied to block
ciphers given by Hellman in [Hel80]. This kind of attack can work without considering
the specific structure of a cipher thus can be applied to any symmetric primitive, while
on the other hand, may not be so powerful. One well-known application of the TMD-TO
attack is to the A5/1 cipher [BSW00, Gol97].

A TMD-TO attack usually has the preprocessing and real-time two phases. During
the preprocessing phase, one or several mapping tables from different secret keys (or
internal states) to the outputs (e.g., keystream prefixes) are computed offline and stored
with precomputation complexity P and memory M . Such a mapping defines a random
function f which is easy to evaluate but hard to invert. During the real-time phase, an
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attacker, who has captured D data, searches the data in the tables and expects to find
a collision with time complexity T . When such a collision is found, the attacker can
recover the internal state or even the secret key with a high probability. The key issue
of TMD-TO attacks is to find a suitable trade-off between the sizes of the tables, the
amount of required data, and the consumed time in the on-line phase.

In a TMD-TO attack against a stream cipher, the mapping function f can be defined
from the internal state or secret key to the keystream prefix. The most well-known
tradeoffs against a stream cipher are Babbage-Golic (BG) tradeoff [Bab95, Gol97] and
Biryukov-Shamir (BS) tradeoff [BS00].

BG tradeoff. In the BG tradeoff, one first computes a table mappingM random initial
states of size n bits to n-bit keystream prefixes. Denote the mapping function as f . The
preprocessing time complexity P will be equal to M , i.e., P = M . During the online
phase, one gets D keystream segments each of size n and searches these D segments in
the table with complexity T , thus T = D. The D keystream segments can be generated
from multiple key and IV pairs. Besides, an m-bit (m > n) keystream sequence under
one specific key and IV pair can generate around m−n+1 n-bit keystream segments by
considering each n consecutive keystream bits. When TM = N where N is the number
of possible values of the internal state, i.e., N = 2n, it is expected to find one collision
according to the birthday paradox, and the corresponding initial state is recovered. A
typical point over the curve is T = M = N

1
2 , which reduces the effective key length to

the birthday bound n/2.

BS tradeoff. The BS tradeoff further involves the data into the tradeoff by combining
the idea of BS tradeoff and Hellman’s time-memory tradeoff for block ciphers [Hel80]. In
the BS tradeoff, one constructs several tables, each using a distinct variant function fi
of the original function f . Each table contains m entries storing a (startpoint, endpoint)
pairs: the startpoint is an n-bit random keystream prefix (assuming an n-bit internal
state), and the endpoint is the result of iteratively applying fi on the derived result t
times. Assume the attacker captured D n-bit keystream segments, he can apply each
fi iteratively to each segment and compare the result with the m endpoints in the i-
th table. The attack is successful if a match appears, which is likely to happen when
mt2D = N . Assume t/D tables are constructed, then M = mt/D,P = N/D. The
attack time T = t2, since for each of the D keystream segments, one has to iterate t/D
functions t times. Thus the tradeoff curve is TM2D2 = N2, P = N/D, T ≥ D2. This
offers more trade-offs than the BG tradeoff, and covers the scenarios when less data may
be obtained in practice. A typical point on this tradeoff curve is T = M = N1/2, D =
N1/4, P = N3/4.

The BG tradeoff and BS tradeoff consider the mapping function from an internal
state to the keystream prefix, and the results yield the well-known design criterion of
stream ciphers that the internal state length should be at least twice the length of the
secret key. Modern stream ciphers typically adhere to this rule and have comparatively
large internal state lengths. In 2018, the FP (1)-mode [HK18] for the initialisation was
proposed which provides provable beyond-the-birthday-bound security of 2

3n against
generic TMD-TO key recovery attacks. The basic idea is to include the secret key twice
in the initialisation phase. Through this mode, even if the internal state at some time
instance is recovered, it would still be difficult to recover the secret key. The cipher
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LIZARD [HKM17] is the first instantiation of FP (1)-mode, and SNOW-V also adopts
such a design.

A TMD-TO attack can also consider other mappings as well, e.g., from a (Key, IV)
pair to the keystream prefix [HS05a, DK08]. Such tradeoff shows that if the IV is shorter
than the key, the cipher is vulnerable to TMD-TO attacks, and it makes no sense to
increase the size of the internal state of a stream cipher without increasing the size of
the IV [DCLP05]. Besides, some improving techniques are frequently used in TMD-TO
attacks, e.g., using distinguished points [BSW00] or rainbow tables [Oec03].



Chapter 5

Local Pseudorandom Generators

Apseudorandom generator (PRG) is a deterministic function that maps a short seed to
a longer pseudorandom string, such that no statistical test can distinguish the string

from an uniform random sequence. PRGs are widely used in cryptographic primitives
and protocols, e.g., for generating (pseudo)random strings used as session keys in hybrid
encryption systems or as challenges in challenge-response authentication mechanisms.
The existence of PRGs in NC0 is much attractive, as it admits high efficiency and allows
for advanced cryptographic applications. Such PRGs are called local pseudorandom
generators.

5.1 Local Pseudorandom Generators

A local PRG is a pseudorandom generator in which each output bit only depends on
a limited number of input bits. Such constructions are put into complexity class NC0,
and can be implemented in parallel with a digital circuit with low depth, thus being
highly efficient. The existence of local PRGs was established in [AIK06], which proved
that many cryptographic tasks admit a local implementation. The most well-known
construction is the Goldreich’s pseudorandom generator, which is derived from a local
one-way function [Gol00]. It is constructed as below.

Given a secret seed x of length n, x = (x0, x1, . . . , xn−1), and a publicly known
d-ary predicate P : {0, 1}d → {0, 1}, a Goldreich’s PRG is defined as a function f :
{0, 1}n → {0, 1}m, where each of the m output bits is computed by applying P to an
ordered subset of size d of the secret bits. Suppose the m d-tuple subsets are denoted
as xS0 , xS1 , . . . , xSm−1 , the output sequence y is then computed as:

y0 = P (xS0
)

y1 = P (xS1
)

y2 = P (xS2
)

...

ym−1 = P (xSm−1)

,

55
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where yi (0 ≤ i ≤ m − 1) is the i-th bit of y. The integer d is called the locality of the
PRG, which will decide the implementation complexity. A local PRG can be viewed as
a hypergraph over n vertices and m ordered hyperedges each of cardinality d.

The length of the output m is an important parameter as it directly determines the
efficiency and security of a local PRG. The safe stretches under different cryptanalysis
techniques are widely investigated [CM01, MST03, AIK08, BQ09, OW14, App13]. The
most aggressive and interesting setting is the polynomial stretch, i.e., m = ns for some
constant s > 1, as it allows for many efficient or more advanced cryptographic applica-
tions [CDM+18], e.g., MPC-friendly primitives [MJSC16, ARS+15, GRR+16] and secure
computation with constant computational overhead [ADI+17]. We say that a predicate
P is s-pseudorandom if a local PRG instantiated over P with m = ns is likely to fool
all efficiently computable tests [AL18]. However, such poly-stretch constructions result
in overdetermined systems which may be susceptible to the solving methods described
in Section 2.8. Thus, the choice of the predicate P is critical as well [ABR16].

The predicate P determines both the implementation efficiency and security. There
are some properties that are important to be considered when choosing a predicate,
which can be relevant to the properties of Boolean functions.

• Resiliency. A predicate is called k-resilient if it is balanced and has a k-order
correlation immunity. High resiliency is one key requirement of P for achieving
pseudorandomness. For example, it is shown in [FPV18, OW14] that resiliency
larger than 2s−1 yields s-pseudorandomness against attacks based on a large class
of semidefinite programmings and statistical algorithms. In comparison, these
attacks can break pseudorandomness when the resiliency is smaller than 2s −
1 [AL18].

• Algebraic Degree. The degree of P should not be one, otherwise Gaussian
elimination can easily break the system even for m = n. Observed by [MST03],
if the predicate P has an algebraic degree d, the resulting local PRG cannot be
d-pseudorandom.

• Rational Degree. The rational degree of P is the smallest integer e for which
there exist non-zero degree-e polynomials Q and R such that PQ = R. This is
relevant to the algebraic attack where the attacker explores low-degree multiples of
a polynomial. Thus, the rational degree characterises s-pseudorandomness against
algebraic attacks [AL18].

• Bit-fixing Degree. A predicate P has r-bit fixing degree e if by fixing r input bits
of P , the minimal F2 degree of a restriction is e. The bit-fixing degree was proposed
in [AL18], and the authors show that the property of being s-pseudorandom against
linear tests can be characterised by the resiliency and the bit fixing degree of the
predicate.

With these properties taken into account, there are generally two types of predicates
suggested and regarded as promising predicates for constructing local PRGs: the XOR-
AND predicates [MST03, App16] and XOR-MAJ predicates [CM19, MCJS19a]. XOR-
MAJ predicates are special instances of more generalised XOR-THR predicates.
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Definition 17 (XOR-AND Predicate). For positive integers k and q, an XORk-ANDq
predicate is defined as below:

XORk-ANDq : x1 + · · ·+ xk + xk+1xk+2 · · ·xk+q.

A concrete challenging parameter setting suggested in [App16] for XORk-ANDq pred-
icates is k = 2q.

Definition 18 (XOR-THR Predicate). For any positive integers k, d, and q such that
d ≤ q + 1, an XORk-THRd,q function is defined as below:

XORk-THRd,q : x1 + · · ·+ xk + THRd,q(xk+1, . . . , xk+q),

where THRd,q(xk+1, . . . , xk+q) is a threshold function whose value is one only when not
less than d variables in the function are one; otherwise, the value is zero.

An XOR-MAJ predicate is a special form of the XOR-THR predicate, where the
THR function is the majority function, i.e., the value will be one only when not less
than half of the involved variables are one. Some well-chosen instances of XOR-MAJ
predicates are used to build the new version of the FLIP cipher, called FiLIP [MCJS19a],
which are intended for homomorphic encryption. It is mentioned in the paper that “no
attack is known relatively to the functions XORk-THRd,2d or XORk-THRd,2d−1 since
k ≥ 2s and d ≥ s”.

A special predicate called P5 has received much attention because of its simplicity
and high efficiency. It is defined as below:

P5(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4x5.

P5 can be regarded as a special case of the XOR-AND predicate of degree 2 or the XOR-
THR predicate which has a threshold function THR2,2. The local PRGs instantiated
on P5 achieve the best possible locality and have received much study. Our included
Paper VI will investigate the concrete security of these local PRGs and more general
ones instantiated on general XOR-AND and XOR-THR predicates with some suggested
challenging parameters mentioned above.

5.2 Cryptanalysis of Local Pseudorandom Generators

The cryptanalysis of local PRGs can result in key recovery or distinguishing attacks
indicating that the output sequence is not purely random. The cryptanalysis can be
closely connected to solving multivariate systems of equations. The main cryptanalysis
techniques can be categorised into constraint satisfaction problem (CSP)-based analysis,
myopics algorithms, algebraic attacks, and linear cryptanalysis.

CSP-based Analysis. A local PRG system can be naturally viewed as a random
constraint satisfaction problem in n variables, and each equation corresponds to one
constraint. The inversion of the system can be naturally formulated as finding a “planted”
solution for a CSP problem [OW14, App13]. Therefore, the ideas and results from solving
CSPs can be adopted, e.g., using a SAT solver.
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Myopic algorithms. Myopic algorithms are one kind of backtracking algorithm. In a
myopic algorithm, an attacker in each step can read some output bits and assign a value
to some input variables that are related to these read bits. The assigned values should
be consistent with the already read output bits, i.e., all the read equations still hold.
If some conflicts happen, the algorithm backtracks to some previous steps and assigns
another value.

To resist myopic algorithms, the hypergraph should enjoy some expansion to avoid
the “divide-and-conquer” situation. The expected success probability of a basic t-myopic
algorithm is exponential low under sub-linear or linear stretches, while sub-exponential
low under a polynomial stretch [CEMT09, ABR16].

Algebraic Attacks. The algebraic attacks against local PRGs are similar to the ones
against stream ciphers. The system of polynomial equations corresponding to the out-
puts can be firstly manipulated and extended, e.g., by multiplying with low-degree
polynomials, then solved by the classical methods described in Section 2.8.2, e.g., using
linearisation or using Gröbner basis algorithms [App16, CDM+18].

However, the situation becomes tricky for XOR-THR predicates, as the THR function
cannot be processed in a straightforward way. That is one reason why XOR-THR predi-
cates are considered to have more advantages over the XOR-AND predicates [MCJS19a].

Linear Cryptanalysis. In linear cryptanalysis, the non-linear terms are viewed as
biased noises with a specific probability distribution. One can either cancel the noise
by, for example, combining two equations sharing a same non-linear term, or exploring
equations sharing the same linear part and take a majority vote over the noises to
recover the value of the linear part with a high probability. In [CDM+18], the authors
introduce linear equations in local PRGs instantiated on P5 through guessing the most
often appeared variables in the quadratic terms, which results in a guess-and-determine-
style attack. If many such linear equations are collected, one may recover the secret
through solving a linear system [App16].

Linear tests can be viewed as one special type of linear cryptanalysis, in which the
attacker considers linear combinations of multiple output bits and investigates the bias
of these combinations. The result could be a distinguishing attack which indicates that
the local PRG is not fully random. A predicate with either small resiliency or a small
bit fixing degree can be susceptible to linear tests [AL18].

Sometimes, the recovered secret key is not fully correct, but the secret can still be
recovered through some self-correction techniques, as long as the recovered secret is
highly correlated with the true one [App16].



Chapter 6

Contributions and Future Work

This chapter summarises the contributions of the six included papers in the thesis,
and presents some general conclusions and potential future work.

6.1 Contributions of the Thesis

This thesis has mainly covered research in the confidentiality and integrity protection
algorithms for 5G, which primarily involves design and cryptanalysis of stream ciphers.
Five papers strictly follow this topic, plus one more paper deviating a little bit to local
pseudorandom generators, which could still be relevant to the main topic. These works
provide some information to the community for better understanding the situation and
encourage more research work to evaluate and design new algorithms for 5G and beyond.
Figure 6.1 presents a general visualisation of the contributions of our papers.

5G Confidentiality and Integrity Algorithms

Cryptanalysis of Existing Algorithms New Designs

Paper I  Cryptanalysis of  SNOW 3G

Paper II  Cryptanalysis of  ZUC

Paper III  New Design SNOW-V

Paper IV  Cryptanalysis of  SNOW-V

Paper V  Variant  SNOW-Vi

Local PRGs

Paper VI   Cryptanalysis of  Local PRGs

Figure 6.1: Contributions of the Thesis.

Specifically, in Paper I and II, we investigate the security of two confidentiality and
integrity algorithms used in 4G: SNOW 3G and ZUC, and propose academic attacks
against them which indicate that they cannot provide the full 256 bits of security. In
Paper III, we design a new cipher called SNOW-V to satisfy the requirements of 5G
in terms of speed and security, and perform deeper cryptanalysis of it in Paper IV. In
Paper V, we introduce two minor modifications to SNOW-V and propose an extreme
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performance variant called SNOW-Vi to cover more use cases, especially those where
CPUs are less capable. In Paper VI, we deviate from the main research line a little bit
and investigate the concrete security of local pseudorandom generators.

We elaborate the contributions in more detail for each paper below.

6.1.1 Paper I: Linear cryptanalysis of SNOW 3G [YJM19]
As 5G has new requirements in security on the confidentiality and integrity algorithms, it
is crucial to investigate whether currently used ciphers in 4G satisfy these requirements.
This motivates our work in Paper I, in which we investigate the security of SNOW 3G
under 256-bit keys. Specifically, we perform linear cryptanalysis of it and propose two
linear attacks with complexities much faster than exhaustive key search.

The basic idea is still to linearly approximate the non-linear FSM, but we try to
explore a linear approximation in a higher dimension, which typically admits a higher
bias. As the FSM has three 32-bit registers, we consider three consecutive keystream
words and explore the correlation between these words and the LFSR states. We find
a 24-bit linear approximation with bias measured in SEI of 2−40, by concatenating the
first bytes of the three consecutive keystream words. We experimentally verify this
bias by constructing a large number of noise samples through running many SNOW 3G
instances. With this linear approximation and its variants, we launch a distinguishing
attack against SNOW 3G with complexity 2172 and a correlation attack with complexity
2177.

These results indicate that if the key length of SNOW 3G was increased to 256
bits, there exist academic attacks much faster than exhaustive key search against it.
In other words, SNOW 3G cannot satisfy the 5G requirement for the 256-bit security
level. On the other hand, these attacks do not pose a direct threat to the cellular system
in practice, as the attacks require very long keystream sequences (e.g., 2172) while the
maximum allowed keystream length corresponding to one (key, IV) pair is restricted,
e.g., to 264 in 4G. Nonetheless, our attacks become one motivating reason for SAGE to
choose more efficient and secure candidates than SNOW 3G [saga].

6.1.2 Paper II: Spectral cryptanalysis of ZUC [YJM20]
Driven by the same motivation in Paper I, in Paper II, we perform linear cryptanalysis
of another 4G standardised confidentiality and integrity algorithm, ZUC. One main
contribution of the paper is the designed spectral tools that can have broad applications
in linear cryptanalysis of symmetric cryptographic primitives. In the spectral analysis,
we show how a linear masking in the original domain affects the spectral distribution for
some commonly used operations, e.g., modulo addition, XOR, and S-box; and by aligning
the points in the spectral domain, one can tweak the linear masks correspondingly in
the time domain to admit a higher bias. Thus one can find more powerful maskings
using a more efficient way. Another main contribution is our proposal of a new method
for computing the bias of ZUC, which solves the main obstacle of linear cryptanalysis
of ZUC introduced by the different fields in the linear and non-linear parts. We finally
present a distinguishing attack against ZUC with complexity 2236.

Though the improvement factor over exhaustive key search is not as significant as
SNOW 3G, the results also indicate that ZUC cannot provide the full 256 bits of security.
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Likewise, the attack does not pose an immediate threat to the usage of ZUC in 4G, due to
the high data requirement in the attack while restricted lengths of keystream sequences
in practice.

6.1.3 Paper III: A new design SNOW-V [EJMY19]
Considering the academic attacks in Paper I and Paper II against SNOW 3G and ZUC,
respectively, plus their insufficient efficiency in software environments, in Paper III, we
propose a new cipher called SNOW-V in response to the new requirements of 5G in
terms of speed and security. We keep the general design rationale of the SNOW-family
for SNOW-V, with a linear part consisting of two LFSRs feeding to each other and a
non-linear part FSM. Both parts operate in larger sizes and are better aligned to allow
for efficient implementations. In the FSM part, we use two AES encryption rounds to
serve as the main source of non-linearity, whose implementation can take advantage of
the intrinsic instructions, e.g., Intel AES-NI. An AEAD mode is also designed.

We further perform extensive cryptanalysis of SNOW-V in the paper and ensure
that none of the classical cryptanalysis techniques applies to it faster than exhaustive
key search. We also deeply evaluate the software and hardware implementations: the
results show that SNOW-V can achieve speeds as high as 58 Gbps and 712 Gbps in a
software and hardware environment, respectively.

SNOW-V is currently under evaluation in SAGE as a promising candidate for 5G
confidentiality and integrity algorithms [saga, sagb]. Our paper has encouraged a number
of research works devoted to investigating the security and performance of SNOW-
V [JLH20, CBB20, HII+21, GZ21].

6.1.4 Paper IV: Cryptanalysis of SNOW-V [YJM21]
In Paper IV, we dig deeper into the security of SNOW-V and particularly investigate
its resistance against guess-and-determine attacks and linear cryptanalysis.

We propose two GnD attacks against SNOW-V. We reformulate the way of comput-
ing the complexity of a GnD attack, and based on it design better guessing strategies.
Specifically, we carefully design the order of the guessing and exploit as much side infor-
mation as possible, to either reduce the required number of guesses or truncate as many
guessing paths as possible to reduce the attack complexity. The complexities of the two
GnD attacks are 2384 and 2378, respectively.

In our linear cryptanalysis, we consider a simplified variant of SNOW-V, where the
modulo additions are replaced with XOR operations. We explore various approximations
to involve as few active S-boxes as possible. We finally build a 16-bit linear approxi-
mation by using a special linear matrix masking that can cancel 11 S-boxes out of 48.
With this linear approximation, we launch a distinguishing attack of complexity 2303.

The paper has helped us to better understand the security of SNOW-V. Specifically,
the paper has sparked some ideas for further improving SNOW-V, which are incorporated
into the variant SNOW-Vi in Paper V.
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6.1.5 Paper V: An extreme performance variant SNOW-Vi [EMJY21]
In Paper V, we propose an extreme performance variant of SNOW-Vi to cover more use
cases, especially those where CPUs are less capable. This is a response to some feedback
from the community saying that some CPUs serving in base stations are relatively less
powerful, and such use cases are not fully covered by SNOW-V.

We introduce two minor modifications in the LFSR part of SNOW-V to get SNOW-
Vi, while keeping the FSM part unchanged. One modification is using two simpler but
still safe fields for the LFSRs in SNOW-Vi, which reduces the update cost and allows for
more efficient implementations. The second modification is moving one tap position from
the FLSR to FSM to another location. The new position can provide better resistance
against linear attacks, a better Key/IV mixing effect, and more efficient implementations.
Some observations are from the cryptanalysis results of SNOW-V in Paper IV.

We perform extensive software evaluation on eight different platforms with different
capabilities, which support different register sizes from 128 bits to 256 bits and different
instruction sets from the old SSE4.2 to the latest AVX-512. The results show that
the speeds of SNOW-Vi are increased by 50% over SNOW-V on all the eight different
platforms and can be up to 92 Gbps. The security properties are kept and in some
aspects even strengthened.

6.1.6 Paper VI: Cryptanalysis of local PRGs [YGJL21]
Our Paper VI deviates the main research line a little bit and targets the security of
Goldreich’s pseudorandom generators instantiated on the P5 predicate. We exploit the
low locality of P5 and propose a guess-and-determine attack and a guess-and-decode
attack using iterative decoding.

Both attacks have a guessing phase with similar guessing strategies. The strategies
are based on the observation that some guessed variables can determine some other
variables for free, and the designed guessing strategies target to introduce as many such
“free” variables as possible. After guessing a certain number of variables, the guess-and-
determine attack can recover the seed by solving a system of linear equations derived
after guessing. We perform theoretical analysis and derive the asymptotic complexity
of the attack, which matches well with our extensive experimental results. The results
significantly improve the state-of-the-art algorithm proposed by Couteau et al. at ASI-
ACRYPT 2018 [CDM+18] in terms of both asymptotic and concrete complexity.

In our guess-and-decode attack, instead of solving a linear system, we employ itera-
tive decoding to solve the quadratic system and recover the secret, which further reduces
the attack complexity. As classical iterative decoding applies to linear systems, we design
new belief propagation techniques for non-linear parity checks. We experimentally verify
these attacks and break the existing suggested challenge parameters with a large gap.
We further propose some new challenge parameters to encourage more cryptanalysis.

We also extend the attacks to other local PRGs based on more general predicates,
e.g., XOR-AND and XOR-MAJ predicates, by carefully designing the guessing strategies
and belief propagation techniques.

Our results provide some insights in the possible secure parameters for local PRGs
over promising predicates. Besides, our belief propagation techniques provide a new idea
for solving a non-linear sparse system.
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6.2 Conclusions and Future Work

6.2.1 Conclusions
Summarising the thesis work, we could have the following general conclusions.

- When designing a new cryptographic primitive, especially a symmetric one, de-
signers should visit all the promising algorithmic attacks and ensure that none of
them applies to the new design faster than exhaustive key search. Cryptanaly-
sis results help to better understand the security of the design and may result in
improvements, e.g., the cryptanalysis of SNOW-V results in one modification in
SNOW-Vi. Besides, the design should balance between security, performance, and
cost, which is though a well-known criterion. Specifically, the new designs in the
future can focus more than before on the performance in software environments,
considering that a communication network in the future will be more cloudified.
However, hardware implementations, including the speed and cost, should still be
considered for the massive IoT devices, which may have constrained resources.

- For LFSR-based stream ciphers, linear cryptanalysis is always one of the most
powerful analysis techniques and should be primarily considered. Particularly,
when the cipher is defined over larger fields, one can always try to explore higher-
dimension linear approximations, which might provide more biased information.
Besides, spectral tools like DFT and WHT can help find good linear maskings
more efficiently and speed up bias computing. A guess-and-determine attack can
be more powerful against a stream cipher if one carefully designs the guessing order
and tries to truncate invalid guessing paths at an early stage of the guessing.

- For the confidentiality and integrity algorithms for 5G, SNOW 3G and ZUC might
not be the best candidates due to the academic attacks against them and their in-
sufficient efficiency in software environments. On the other hand, as we mentioned,
these attacks are not immediate threats in practice. If SNOW 3G and ZUC were
kept in 5G, more efficient implementations in software should be investigated to
provide higher speeds. SNOW-V and its variant are promising candidates, while
their security might need more investigation.

- When constructing local PRGs for efficient computation or advanced applications,
the underlying predicates should have reasonably large localities as the belief
propagation in our guess-and-decode attack applies to low-weight predicates with
any form of non-linearity. XOR-MAJ predicates can be better candidates than
XOR-AND predicates, as they have better cryptographic properties and resistance
against our attacks. If in some extreme case a low-locality predicate, e.g., P5, is
used, the seed size should be large enough to guarantee security.

6.2.2 Future Work
Given the conclusions above, we think that there are several directions that can be
further explored in the future.



Further investigations into SNOW-V and SNOW-Vi. Further investigations into
SNOW-V and SNOW-Vi would be beneficial to provide more reference for the evaluation
in SAGE and gain more confidence. Firstly, the security of these two ciphers should be
further and extensively investigated and check if some modifications are needed based
on the investigations. For example, in a recent pre-print paper [SJZ+21], Shi et al.
propose correlation attacks against SNOW-V and SNOW-Vi with complexity around
2249, slightly faster than exhaustive key search. This requires further investigations
into the weaknesses that result in the attacks and making corresponding improvements.
3GPP has been made aware of these cryptanalysis results and asked SAGE to assess and
determine any implications on SNOW-V [sagb]. Moreover, the performance of these two
ciphers in software and hardware in different use cases and on a larger range of CPUs
should be tested, which requires a full knowledge of the CPUs and circuits that are
being used and will be used in the future. If we go a little bit further, the side-channel
resistant implementations both in software and hardware should be looked into as well.

Investigating other ciphers for 5G and beyond. There are some other ciphers
claiming for use in 5G and beyond, e.g., the Rocca cipher proposed in 2021 [SLN+21].
More focus can be devoted to AEAD ciphers based on, e.g., sponge constructions, as they
can typically provide high security and performance. Currently, the cellular network
(including 5G) does not support AEAD yet, but how about if 6G protocol opens up
for it? It is crucial to investigate these constructions in advance to better understand
their security and performance and help choose good candidates for future use. Besides
the primitives for broadband communication, the lightweight cryptographic primitives
targeting massive machine communication and low-latency communication also deserve
more investigations from different aspects.

Spectral tools extended to other ciphers. Our vectorised approximation idea and
spectral analysis tools can be possibly extended and applied to other constructions. I
personally speculate that the spectral tools may be well applied to ARX-based ciphers
since the transforms between different domains for the two main operations, XOR and
modulo addition, are already investigated.

More investigations to local PRGs and relevant constructions. Our guess-and-
determine and guess-and-decode attacks have mainly applied to P5 and some general
XOR-AND and XOR-MAJ predicates, while there are many new predicates or improved
variants appearing as well, e.g., the variant of P5 proposed in [LV17]. The attacks may
have high complexity when directly applied to these predicates, as these predicates can
be more complex. However, we believe that some advanced techniques can help, e.g.,
using a trellis or look-up tables. That will be one of our future work. Besides, we believe
that our algorithmic attacks could give tighter theoretical bounds for some predicates,
e.g., for XOR-AND predicates, which deserves further investigation. The peer reviewers
also suggest investigating more in the theoretical complexity of the guess-and-decode
attack, especially the complexity of iterative decoding for non-linear systems, for future
work, and we think density evolution [CF02] might help. A similar idea using other
decoding techniques can also be considered and applied to a broader range of instances,
not only restricted to local PRGs.
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Paper I

Vectorized linear approximations for attacks
on SNOW 3G

Abstract

SNOW 3G is a stream cipher designed in 2006 by ETSI/SAGE, serving in 3GPP as
one of the standard algorithms for data confidentiality and integrity protection. It
is also included in the 4G LTE standard. In this paper we derive vectorized linear
approximations of the finite state machine in SNOW 3G. In particular, we show one 24-
bit approximation with a bias around 2−37 and one byte-oriented approximation with a
bias around 2−40. We then use the approximations to launch attacks on SNOW 3G. The
first approximation is used in a distinguishing attack resulting in an expected complexity
of 2172 and the second one can be used in a standard fast correlation attack resulting in
key recovery in an expected complexity of 2177. If the key length in SNOW 3G would
be increased to 256 bits, the results show that there are then academic attacks on such
a version faster than the exhaustive key search.

Keywords: SNOW 3G, Stream Cipher, 5G Mobile System Security.

1 Introduction

SNOW 3G is a word-oriented stream cipher being used as the core of 3GPP Confiden-
tiality and Integrity Algorithms UEA2 & UIA2 for UMTS and LTE networks [ETS06a].
It is one member of the SNOW family with two predecessors SNOW 1.0 [EJ00] and
SNOW 2.0 [EJ02]. SNOW 1.0 was submitted to NESSIE project in 2000 by Ekdahl and
Johansson but was refused due to some weakness. In 2002, the improved version SNOW
2.0 was published and later selected as an ISO standard in 2005. The SNOW ciphers
consist of a linearly updated part through an LFSR (Linear Feedback Shift Register)
and a non-linear part referred to as an FSM (Finite State Machine). They are all based
on operations on 32-bit words, making them quite efficient in both software and hard-
ware environments. SNOW 3G differs from SNOW 2.0 by introducing a third 32-bit
register in the FSM and a second 32-bit S-box application to update that register. This
presumably makes SNOW 3G a much harder target in an attack compared to SNOW
2.0.

Jing Yang, Thomas Johansson, and Alexander Maximov. Vectorized linear approximations for
attacks on SNOW 3G. IACR Transactions on Symmetric Cryptology, pages 249–271, 2019.
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Just as for other stream ciphers, the class of linear approximation attacks, like dis-
tinguishing attacks and correlation attacks, is the main threat to the SNOW ciphers.
The basic idea for these attacks is to approximate nonlinear blocks used in the cipher
with linear expressions and then derive a linear relationship between output values from
different time instances. In a distinguishing attack, a cryptanalyst tries to derive some
samples from the keystream and find evidence that such a sample sequence is not be-
having like a truly random sequence using some statistical tools, e.g., hypothesis testing.
When the linear relationship also involves symbols from the LFSR states, some corre-
lation between the keystream and the LFSR states can be explored to recover the key,
which is the foundation of a correlation attack.

Several distinguishing attacks and correlation attacks have been proposed on SNOW
1.0 and SNOW 2.0, where the basic idea is to approximate the FSM part. In [CHJ02],
a distinguishing attack on SNOW 1.0 with complexity 2100 was proposed using linear
masking to get a binary approximation with a bias 2−8.3, which became one reason for
the rejection of SNOW 1.0 from the NESSIE project. In order to resist against this
attack, the authors improved the design and proposed SNOW 2.0, which is, however,
still vulnerable to some distinguishing attacks. A distinguishing attack based on a
linear masking method with complexity 2225 and an improved version with complexity
2174 were proposed in [WBDC03] and [NW06], respectively. In [LLP08] and [ZXM15],
correlation attacks on SNOW 2.0 were proposed with complexities 2204.38 and 2164.15.
For SNOW 3G, however, no significant attack of this type has ever been published.

The cryptographic security of SNOW 3G has been studied in depth. As an algorithm
appearing in a main standard, it has been thoroughly evaluated by the standardization
consortium before its adoption. Some evaluation results can be found in [ETS06b]. There
are several side-channel attacks and fault attacks, targeting specific implementations
of the algorithm, such as the attacks given in [DC09] and [BHNS10]. There are also
attacks targeting the initialization phase on versions of SNOW 3G with reduced number
of initialization rounds [BPSZ10b, BPSZ10a]. At FSE 2006, Nyberg and Wallén [NW06]
examined linear distinguishing attacks on SNOW 2.0, but devoted one section to SNOW
3G. The best linear approximation of the FSM they found had a bias of 2−274 and they
also derived an upper bound on 2−96 for any binary linear approximation. Here the bias
as given in the paper was recalculated, now expressed using Squared Euclidean Imbalance,
as is commonly used for non-binary linear approximations. Note that [NW06] considered
only binary approximations and the key to improvements is to use approximations over
larger alphabets.

In this paper, we give one distinguishing attack and one correlation attack on SNOW
3G by finding efficient linear approximations of the nonlinear part of the FSM. We derive
a 24-bit linear approximation1 by masking and truncating three consecutive keystream
words with the bias 2−37.37 and we further derive an 8-bit approximation from the 24-
bit one with the bias 2−40.97. The 24-bit approximation is then employed to launch a
distinguishing attack requiring a keystream length of around 2172. This strongest and
largest 24-bit approximation cannot be used in a correlation attack, but the derived 8-bit
approximation, which is linear overGF (28) can be used to give a correlation attack which

1The 24-bit noise distribution of the linear approximation is available at https://portal.
research.lu.se/portal/sv/publications/vectorized-linear-approximations-for-attacks-on-
snow-3g(80dd21a7-5111-4af3-89b2-9a9661c040c2).html.
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has complexity around 2177. This is to the best of our knowledge the first significant
result on attacking the full SNOW 3G. In particular, if the key length in SNOW 3G
would be increased to 256 bits, the results show that there are then academic attacks
on such a version faster than the exhaustive key search.

The rest of this paper is organized as follows. We briefly describe the design and
structure of SNOW 3G in Section 2 and then elaborate on the process of finding linear
approximations of the FSM in Section 3. In Section 4, we give the experimental verifi-
cation of the approximations by running the cipher to get a large number of samples.
In Section 5, we give a distinguishing attack and a correlation attack, based on the
vectorized linear approximations derived in Section 3, and in Section 6, we conclude the
paper.

2 Description of SNOW 3G

In this section, we give a brief description of the SNOW 3G algorithm. We first note that
a stream cipher like SNOW 3G takes as input a secret key K and a public value known
as the IV (initial vector) value. For each such pair of key and IV, (K, IV ), the algorithm
produces an output sequence, usually called the keystream, denoted z(t), t = 1, 2, . . .. In
SNOW 3G, the key and IV are both 128-bit long and each keystream symbol is a 32-bit
word, so we write z(t) ∈ GF (232), t = 1, 2, . . .. Furthermore, each pair should produce
a unique keystream sequence, and the typical operation of such a stream cipher is to
produce many different keystreams for many different public IV values, while using the
same key.

The overall schematic of SNOW 3G algorithm is shown in Figure 1. Just as SNOW
1.0 and SNOW 2.0, it consists of a linear part, the LFSR, and a nonlinear part, the FSM.
The FSM is used to break the linearity of the LFSR contribution. For more details on
the design of SNOW 3G, we refer to the original design document [ETS06a].

s0s2s5s11s15 s1

αα-1

R1 R2 R3S1 S2

z(t)
FSM

Figure 1: The keystream generation phase of the SNOW-3G stream cipher

The LFSR part consists of 16 cells denoted (s0, s1, ..., s15) each containing 32 bits
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thus having 512 bits in total. Every value in a cell is considered as an element from
GF (232) and the LFSR sequence is defined by the generating polynomial

P (x) = αx16 + x14 + α−1x5 + 1 ∈ GF (232)[x],

where α is a root of the polynomial x4 + β23x3 + β245x2 + β48x+ β239 ∈ GF (28)[x] and
β is a root of x8 + x7 + x5 + x3 + 1 ∈ GF (2)[x]. If we denote the state at clock t as
(s

(t)
0 , s

(t)
1 , ..., s

(t)
15 ), then at the next clock t+ 1, s(t)

i is shifted to s(t+1)
i−1 , i.e., s(t)

i = s
(t+1)
i−1 ,

for 1 ≤ i ≤ 15, while s(t+1)
15 is updated by:

s
(t+1)
15 = α−1s

(t)
11 ⊕ s

(t)
2 ⊕ αs

(t)
0 ,

where ⊕ denotes a bitwise XOR operation. Note that α and α−1 are two constants in
GF (232) and the update consequently includes two multiplications in this field.

For the FSM part, it has three internal 32-bit registers R1, R2 and R3, connected by
some linear and nonlinear operations. The FSM takes two words from the LFSR part as
the inputs, s15 and s5, and outputs a 32-bit keystream word by xoring with s0, giving
the following formula for the generation of the keystream:

z(t) = (R1(t) �32 s
(t)
15 )⊕R2(t) ⊕ s(t)

0 .

Here �32 denotes integer addition modulo 232. The registers in the FSM are then
updated through the following steps:

R2(t+1) = S1(R1(t)),

R3(t+1) = S2(R2(t)),

R1(t+1) = R2(t) �32 (R3(t) ⊕ s(t)
5 ),

where S1, S2 are substitution boxes (S-boxes) composed of four bytewise substitutions
followed by the MixColumn operation of Rijndael. Below we give the details of how
they are constructed by using little-endian style. The 32-bit registers in FSM could be
expressed as four parallel bytes. Let W = (w0, w1, w2, w3) be the input to the substitu-
tion boxes with w0 being the least and w3 the most significant byte. The operations of
the two S-boxes are as follows.

S-Box S1: S1 is a 32-bit to 32-bit mapping operating on four bytes. Bytes are
interpreted as elements of GF(28) defined by the polynomial x8 + x4 + x3 + x+ 1. The
underlaying 8-bit S-box SR(x) is the Rijndael AES SBox [DR13]. In general, S1 is
described by

S1(W ) = L1 · SR(W ),

which can be expressed in more details as follows. Let R = (r0, r1, r2, r3) be the four
byte output through R = S1(W ). Then

r0

r1

r2

r3

 =


x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x

 ·

SR(w0)
SR(w1)
SR(w2)
SR(w3)

 . (1)
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S-Box S2: S2 is also a 32-bit to 32-bit mapping operating on four bytes. Bytes
are again interpreted as elements of GF(28) but this time defined by the polynomial
y8 + y6 + y5 + y3 + 1. The underlaying 8-bit SBox SQ(x) is another 8-to-8 bit S-box
derived from the Dickson polynomials. In general, S2 is described by

S2(W ) = L2 · SQ(W ),

and in more details S2(W ) is:
r0

r1

r2

r3

 =


y y + 1 1 1
1 y y + 1 1
1 1 y y + 1

y + 1 1 1 y

 ·

SQ(w0)
SQ(w1)
SQ(w2)
SQ(w3)

 . (2)

Like other stream ciphers, SNOW 3G has the initialization phase during which the
cipher is clocked without producing output, to fully mix the key and IV into the LFSR
state and the FSM registers. During the initialization phase, the key and the IV, each
consisting of four 32-bit words, are first loaded into the LFSR state and the registers
in the FSM are initialized to be zero. Then the cipher runs 32 times with the output
from the FSM feeding back to the LFSR instead of giving a keystream output. After
the initialization, the cipher enters the keystream mode, with the first output word from
the FSM being discarded and the following FSM outputs form the keystream by xoring
with s0. Since the attacks in this paper only use the keystream mode, we do not give
more details of the initilization mode, but refer to the design document [ETS06a].

3 Approximations of the FSM

A main class of attacks on stream ciphers are the so-called linear distinguishing attacks
and (fast) correlation attacks. They both build on the idea of approximating some
nonlinear operations as linear ones, thereby introducing some approximation noise. The
most simple form utilizes binary approximations and has a strong connection to linear
cryptanalysis of block ciphers. Recent work in cryptanalysis of stream ciphers have
shown that approximations on larger alphabets can improve the attacks considerably,
e.g., in [ZXM15] the authors used the terminology large-unit linear approximations.

For stream ciphers built around an LFSR, it makes sense to provide approximations
that are linear with respect to some binary algebraic structure, such as GF (2)n or
GF (2n). Since the LFSR part is linearly described in GF (2)n or possibly GF (2n), the
main obstacle is to approximate the FSM. We will return in Section 5 to the case of how
to use an approximation in attacks on the full cipher.

The FSM part in SNOW 3G takes inputs from s
(t)
15 , s

(t)
5 , s

(t)
0 and outputs z(t), with t

varying. It also contains three unknown values in the registers R1, R2 and R3. As such,
they need to be cancelled and a linear approximation of the FSM can thus be described
as a linear expression including only s(t)

15 , s
(t)
5 , s

(t)
0 and z(t) for different t values. Such an

expression is a good approximation if the corresponding expression has a distribution
that is biased. So in general, we are interested in finding an expression of the form⊕

i∈I
(c(t+i)z z(t+i) ⊕ c(t+i)15 s

(t+i)
15 ⊕ c(t+i)5 s

(t+i)
5 ⊕ c(t+i)0 s

(t+i)
0 ),
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for some time set I, where operations are inGF (2)n (orGF (2n)), and c(t+i)z , c
(t+i)
15 , c

(t+i)
5 ,

c
(t+i)
0 are now m-dimensional matrices and the inputs are considered as column vectors.
In order to determine the quality of an approximation, we consider m-bit random vari-
ables E(t), defined as the above expression, i.e.,

E(t) =
⊕
i∈I

(c(t+i)z z(t+i) ⊕ c(t+i)15 s
(t+i)
15 ⊕ c(t+i)5 s

(t+i)
5 ⊕ c(t+i)0 s

(t+i)
0 ).

Each such random variable has the same distribution, denoted D. The quality of the
linear approximation is measured by the bias of the distribution, which can be defined
in many ways. Using the SEI (Squared Euclidean Imbalance) as defined in [BJV04], the
bias for the distribution D is computed as

ε(D) = |D| ·
|D|−1∑
x=0

(
D(x)− 1

|D|

)2

.

We note that when the bias is measured in SEI, the number of samples required to
distinguish samples drawn from D from the uniform distribution is in the order of
1/ε(D) [BJV04], [HG97]. We are now ready to investigate how to find expressions of
the above form with a large bias.

3.1 A 24-bit linear approximation of the FSM
In this first approach, we are targeting an approximation with as large alphabet size
as possible, in order to get a bias as large as possible. The novel parts consist in
determining how to build the approximation and how to efficiently compute the bias
when the alphabet size and the number of involved variables are large.

Let R̂1, R̂2, R̂3 be the content of the FSM registers at time t. Then consider the
following word-oriented expressions on three consecutive keystream words:

z(t−1) = (S−1
R (L−1

1 R̂2)� s(t−1)
15 )⊕ S−1

Q (L−1
2 R̂3)⊕ s(t−1)

0 ,

z(t) = (R̂1� s(t)
15 )⊕ R̂2⊕ s(t)

0 ,

L−1
1 z(t+1) = L−1

1 (R̂2� (R̂3⊕ s(t)
5 )� s(t+1)

15 )⊕ SR(R̂1)⊕ L−1
1 s

(t+1)
0 .

(3)

Let us introduce the following notation that applies to three byte-oriented 32-bit
vectors: AB

C


[i,j,k]

=

A[i]
B[j]
C[k]

 ,

where i, j, k are corresponding bytes of A,B, and C, respectively. So A[i] denotes the
i-th byte of a 32-bit byte-oriented vector, for i = 0, 1, 2 or 3.
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Now we consider a three-byte sampling of the following form: z(t−1)

z(t)

L−1
1 z(t+1)


[0,0,0]︸ ︷︷ ︸

Sampling in time (t)

=

(S−1
R (L−1

1 R̂2)� s(t−1)
15 )⊕ s(t−1)

15 ⊕ S−1
Q (L−1

2 R̂3)

R̂2

L−1
1 [(R̂2� (R̂3⊕ s(t)

5 )� s(t+1)
15 )⊕ s(t)

5 ⊕ s
(t+1)
15 ]


[0,0,0]︸ ︷︷ ︸

24-bit Noise N2

⊕

 0

(R̂1� s(t)
15 )⊕ s(t)

15

SR(R̂1)


[0,0,0]︸ ︷︷ ︸

24-bit Noise N1

⊕

 s
(t−1)
0 ⊕ s(t−1)

15

s
(t)
15 ⊕ s

(t)
0

L−1
1 [s

(t+1)
0 ⊕ s(t)

5 ⊕ s
(t+1)
15 ]


[0,0,0]

.

︸ ︷︷ ︸
Contribution from the LFSR

Basically, we want to achieve a linear approximation where the bias is as large as possible
and the choice of multiplying z(t+1) with L−1

1 is chosen to have a really small influence
of the noise related to the register R̂1.

As already indicated in the above formula, our linear approximation is z(t−1)

z(t)

L−1
1 z(t+1)


[0,0,0]

=

 s
(t−1)
0 ⊕ s(t−1)

15

s
(t)
15 ⊕ s

(t)
0

L−1
1 [s

(t+1)
0 ⊕ s(t)

5 ⊕ s
(t+1)
15 ]


[0,0,0]

⊕N (t)
tot ,

where N (t)
tot = N1(t) ⊕N2(t) and

N1(t) =

 0

(R̂1� s(t)
15 )⊕ s(t)

15

SR(R̂1)


[0,0,0]

,

N2(t) =

(S−1
R (L−1

1 R̂2)� s(t−1)
15 )⊕ s(t−1)

15 ⊕ S−1
Q (L−1

2 R̂3)

R̂2

L−1
1 [(R̂2� (R̂3⊕ s(t)

5 )� s(t+1)
15 )⊕ s(t)

5 ⊕ s
(t+1)
15 ]


[0,0,0]

,

Since the distributions of N (t)
tot , N1(t), N2(t) are independent of t, we simplify them by

writing Ntot, N1, N2, respectively. Note also that N1 and N2 are independent.

3.1.1 Computation of the 24-bit noise distributions for N1 and N2

Computing the distribution of N1 is trivial, we simply run over all possible values of
R̂1[0] and s

(t)
15 [0], which is of complexity O(216), where the notation O(x) means that

the number of simple operations is c · x for some small constant c.
Computation for N2 is more tricky and below we explain how we do that. We can
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rewrite N2 as:

N2 =


(S−1
R ((L−1

1 R̂2)[0]︸ ︷︷ ︸
Linear part A

)� s(t−1)
15 [0])⊕ s(t−1)

15 [0]⊕ S−1
Q ((L−1

2 R̂3)[0]︸ ︷︷ ︸
Linear part B

)

R̂2[0]

(L−1
1 ((R̂2� (R̂3⊕ s(t)

5 )� s(t+1)
15 )⊕ s(t)

5 ⊕ s
(t+1)
15 ))[0]︸ ︷︷ ︸

Linear part C

 .

The idea behind the computation technique is to compute 256 24-bit distributions of
the triple bytes (A,B,C), conditioned on the value of the byte R̂2[0] ∈ [0, . . . , 255]. Let
us denote those distributions as DR̂2[0](A,B,C). The distribution table of N2 is then
constructed as follows: we initialize the distribution table N2 with all zeroes; then, for
each combination of R̂2[0], s

(t−1)
15 [0], A,B,C (in total 240 choices) we do:

Pr{N2 =

(S−1
R (A)� s(t−1)

15 [0])⊕ s(t−1)
15 [0]⊕ S−1

Q (B)

R̂2[0]
C

}+ = 2−16 ·DR̂2[0](A,B,C),

where 2−16 is the normalization factor since for each (A,B,C) we also loop over R̂2[0]

and s
(t−1)
15 [0] and, thus, there will be 2562 distributions added to the table N2. Also

note that we can actually compute distributions DR̂2[0](A,B,C) one by one for each
value of R̂2[0] and add to the accumulating distribution of N2. This way, we do not
need to store all of them in RAM simultaneously.

3.1.2 Computation of sub-noises DR̂2[0](A,B,C)

What remains is to show how to compute DR̂2[0](A,B,C) for a given (fixed) byte value
of R̂2[0]. The expression for which we want to compute the distribution is as follows:AB

C

 =

 (L−1
1 R̂2)[0]

(L−1
2 R̂3)[0]

(L−1
1 [(R̂2� (R̂3⊕ s(t)

5 )� s(t+1)
15 )⊕ s(t)

5 ⊕ s
(t+1)
15 ])[0]


=


⊕3

i=0eiR̂2[i]⊕3
i=0diR̂3[i]⊕3

i=0ei[(R̂2[i]� (R̂3[i]⊕ s(t)
5 [i])� s(t+1)

15 [i]� ci)⊕ s(t)
5 [i]⊕ s(t+1)

15 [i]]

 ,

where the coefficients are 8 × 8 Boolean matrices ei = L−1
1 [0, i] and di = L−1

2 [0, i],
for i = 0, 1, 2, 3. The new variables ci are the input carry values that come from the
arithmetical addition of the previous byte(s), i.e., bytes 0 to i− 1, of the 3 terms: R̂2[i],
(R̂3[i]⊕ s(t)

5 [i]) and s(t+1)
15 [i]. Note that the range of these carry values is 0 ≤ ci ≤ 2 and

the first one is c0 = 0.
We will later explain how to deal with carry values ci, but, at the moment, let us

rewrite the above expression in a new form as follows. To simplify upcoming formulae,
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let us define:

ti = R̂2[i]� (R̂3[i]⊕ s(t)
5 [i])� s(t+1)

15 [i],

ui = s
(t)
5 [i]⊕ s(t+1)

15 [i],

and then we have AB
C

 =

 ⊕3
i=0eiR̂2[i]⊕3
i=0diR̂3[i]⊕3

i=0ei[(ti � ci)⊕ ui]

 =

=

 e0R̂2[0]

d0R̂3[0]
e0[(t0 � c0)⊕ u0]


→o0︸ ︷︷ ︸

ER̂2[0],k=0,c0=0,o0=0..2(A0,B0,C0)

⊕

 e1R̂2[1]

d1R̂3[1]
e1[(t1 � c1)⊕ u1]


→o1︸ ︷︷ ︸

ER̂2[0],k=1,c1=0..2,o1=0..2(A1,B1,C1)

⊕

 e2R̂2[2]

d2R̂3[2]
e2[(t2 � c2)⊕ u2]


→o2︸ ︷︷ ︸

ER̂2[0],k=2,c2=0..2,o2=0..2(A2,B2,C2)

⊕

 e3R̂2[3]

d3R̂3[3]
e3[(t3 � c3)⊕ u3]


→o3︸ ︷︷ ︸

ER̂2[0],k=3,c3=0..2,o3=0..2(A3,B3,C3)

,

where ci are input carry values, and oi are output carry values related to the sub-
expressions (ti � ci)→ (8-bit resulting value, output carry oi).

Case with 4 parallel 8-bit adders �8. In case we substitute 32-bit full adders �
with 4 parallel 8-bit adders �8, all input and output carry values are all 0 and can be
ignored. In this case, we have that the above distribution of (A,B,C) can be expressed
as a XOR-convolution of 4 independent sub-distributions. This is due to each of the
four sub-distributions are expressed using different byte variables, which are uniformly
distributed and independent on each other.

Case with full 32-bit adders �. In this case the only dependency between the
above 4 sub-distributions are the carry values that propagate from one sub-distribution
to the next sub-distribution.

In order to compute the distribution of DR̂2[0](A,B,C) we will actually compute
the number of combinations of the involved bytes for each resulting triple (A,B,C),
then, in the end, the 24-bit vector of integer values will be normalized to actually get
the distribution with probabilities. I.e., we will use a combinatorial approach in this
section.

Let us defineAkBk
Ck

 =

 ekR̂2[k]

dkR̂3[k]
ek[(tk � ck)⊕ uk]


→ok

, for k = 0, 1, 2, 3,

and introduce intermediate E-vectors

ER̂2[0], k=0,1,2,3, ck=0,1,2, ok=0,1,2(Ak, Bk, Ck),
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each of which is a 24-bit vector, i.e. of size 224 for all choices of the three bytes
(Ak, Bk, Ck), and each cell is an integer value (which can be large). In each index
(Ak, Bk, Ck) the integer value corresponds to the number of combinations of the vari-
ables R̂2[k], R̂3[k], s

(t)
5 [k], s

(t+1)
15 [k] involved in the 24-bit expression (Ak, Bk, Ck) for the

k’s sub-distribution, k = 0, 1, 2, 3, given the value of the input carry ck, such that the
resulting output carry in the sub-expression tk � ck is ok.

Then, the first 3 E-vectors for k = 0 and o0 = 0, 1, 2,

ER̂2[0], k=0, c0=0, o0=0,1,2(A0, B0, C0),

can be computed by trying all possible byte values of R̂3[0], s
(t)
5 [0], s

(t+1)
15 [0] in time

O(224). Note that the value R̂2[0] is fixed and the input carry c0 = 0. Thus, the first
sub-distribution is only associated with 3 E-vectors, and we do not need to loop over
the values of R̂2[0].

The next 3× 3 E-vectors for k = 1 and c1, o1 ∈ [0, 1, 2],

ER̂2[0], k=1, c1=0,1,2, o1=0,1,2(A1, B1, C1),

are computed by trying all possible values of c1, R̂2[1], R̂3[1], s
(t)
5 [1], s

(t+1)
15 [1] in time

O(3 · 232). We continue this way to compute all E-vectors.
The next step is to use E-vectors in order to receive the combined 24-bit vector that

contains the number of combinations resulting for each choice of the (A,B,C) triple.
Example. Let us first give a small example to demonstrate the technique. Assume

we want to compute the 24-bit vector of combinations (A,B,C) when the carry value
from the first sub-distribution to the second sub-distribution is o0 = 2, the next carry
value that propagates to the third sub-distribution is o1 = 0, and the carry value that
propagates to the last sub-distribution is o2 = 1. Then, we should perform a XOR-
convolution of E-vectors that are matching in their input/output carry values, i.e. c0 =
0, c1 = o0 = 2, c2 = o1 = 0, c3 = o2 = 1. For a single choice (A = a,B = b, C = c) we
then compute:

EExample(A = a,B = b, C = c) =
∑

o3=0..2

∑
a0..2,b0..2,c0..2∈[0..255]

ER̂2[0],k=0,c0=0,o0=2(a0, b0, c0)

·ER̂2[0],k=1,c1=2,o1=0(a1, b1, c1) · ER̂2[0],k=2,c2=0,o2=1(a2, b2, c2)

·ER̂2[0],k=3,c3=1,o3
(a⊕ a0 ⊕ a1 ⊕ a2, b⊕ b0 ⊕ b1 ⊕ b2, c⊕ c0 ⊕ c1 ⊕ c2),

which implies that in order to compute the whole vector EExample(A,B,C) the complex-
ity is O(3 · 296), but the time for the above convolution can be reduced down through
a series of XOR-convolutions: 4 forward and 1 inverse FWHTs, 3 point-wise vector
multiplications, and 2 vector summations, i.e. O((5 · 24 + 3 + 2) · 224) = O(125 · 224).

EExample(A,B,C) =ER̂2[0],k=0,c0=0,o0=2(A0, B0, C0)

×ER̂2[0],k=1,c1=2,o1=0(A1, B1, C1)

×ER̂2[0],k=2,c2=0,o2=1(A2, B2, C2)

×
2∑

o3=0

ER̂2[0],k=3,c3=1,o3
(A3, B3, C3),
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where × denotes a XOR-convolution over 24-bit E-vectors of integers, and
∑

is a point-
wise arithmetical summation of the vectors. Since the last output carry o3 is truncated
in the 32-bit addition �, we then accumulate all 3 vectors corresponding to the value of
o3 into one vector all together, thus, the last output carry is ignored.

Final convolution. The idea is clear – we should try all possible variants of in-
termediate carry propagations, perform a series of XOR-convolutions of E-vectors that
are matching in the input/output carries, and then accumulate the resulting vectors of
combinations into one final vector, ER̂2[0](A,B,C), as follows:

ER̂2[0](A,B,C) =

2∑
v0=0

2∑
v1=0

2∑
v2=0

2∑
v3=0

ER̂2[0], k=0, c0=0, o0=v0
(A0, B0, C0)

×ER̂2[0], k=1, c1=v0, o1=v1
(A1, B1, C1)

×ER̂2[0], k=2, c2=v1, o2=v2
(A2, B2, C2)

×ER̂2[0], k=3, c3=v2, o3=v3
(A3, B3, C3).

The resulting distribution is then

DR̂2[0](A,B,C) = 2−120 · ER̂2[0](A,B,C),

where 2−120 is the normalization factor, i.e., it reflects the sum of all integer values in
the final vector E, that can be verified by counting the expected total number of combi-
nations: 24 bits of choices for R̂2 (R̂2[0] is given), and 32 bits for each of R̂3, s

(t)
5 , s

(t+1)
15 ,

thus we should have 224+3·32 = 2120 combinations in total.
Optimizations and speed up. A single XOR-convolution can be done with Fast

Walsh-Hadamard Transform (FWHT) having time complexity O(N logN) where, in our
case, we have N = 224. Also note that FWHT is a linear transformation. So convolution
in the time domain corresponds to point-wise multiplication in the frequency domain;
and, summation in the time domain corresponds to summation in the frequency domain.
Thus, there is no need to switch between the time and frequency domains for mixed
summation and convolution operations, we can do most of the above in the frequency
domain without switching.

We can speed up the computations even further as follows. Note that the E-vectors
for k = 1, 2, 3 do not depend on the value of R̂2[0], thus, we can compute and combine
through convolutions the upper 3 bytes only once, then use the resulting 3 vectors,
corresponding to the input carry c1, for further computations of DR̂2[0](A,B,C) for all
values of R̂2[0].
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Optimization ideas can be detailed by the following steps:

∀v2 ∈ [0..2] : T3v2(A,B,C) =

2∑
v3=0

ER̂2[0], k=3, c3=v2, o3=v3
(A3, B3, C3)

∀v1 ∈ [0..2] : T2v1(A,B,C) =

2∑
v2=0

T3v2(A,B,C)× ER̂2[0], k=2, c2=v1, o2=v2
(A2, B2, C2)

∀v0 ∈ [0..2] : T1v0(A,B,C) =

2∑
v1=0

T2v1(A,B,C)× ER̂2[0], k=1, c1=v0, o1=v1
(A1, B1, C1)

ER̂2[0](A,B,C) =

2∑
v0=0

T1v0(A,B,C)× ER̂2[0], k=0, c0=0, o0=v0
(A0, B0, C0).

I.e., three vectors of T1 can be precomputed once and be used for all values of R̂2[0].
Recall that in the original Section 3.1.2, without optimizations, the number of point-wise
vector multiplications is 34 ·3 = 243 and the number of vector summations is 34−1 = 80.
With the proposed optimizations, the last step (having T1 vectors being precomputed)
requires only 3 point-wise vector multiplications and 2 vector summations, as well as
the amount of RAM needed is reduced a lot since all the above steps can be done as
soon as intermediate E-vectors are ready. Also note, the 3 vectors of T3 can be ready
“for free” if during the preparation of E-vectors for k = 3 we simply ignore the output
carry o3 by forcing it to be always 0.

Total time complexity for N2. Precomputation of 3 vectors of T1 has time com-
plexity O(3·3·232

to construct 21 E vectors for k = 1, 2, 3+224 ·(24·(3+9+9)FWHTs on 21 E-vectors+

18× + 12+)) ≈ O(235.47). In order to compute one DR̂2[0](A,B,C) we therefore need to
compute three E-vectors for k = 0, c0 = 0, o0 = 0, 1, 2, in complexity O(224), and per-
form 4 24-bit FWHTs: 3 for ER̂2[0],k=0,c0=0,o0=0,1,2 and 1 inverse FWHT in the end. We
also need to make 3 point-wise vector multiplications and 2 vector summations. Thus,
the additional time complexity per R̂2[0] value is therefore O(224

to construct E for k = 0+224 ·
(24 ·4FWHTs+3×+2+)) ≈ O(230.67). Accumulating the above, the total time complexity
to compute the distribution of N2 can be estimated as O(235.47 + 28 · 230.67 + 240) ≈
O(240.53).

3.1.3 Computation results and bias values

We have implemented the above computation method, computed the distribution for
N1 and N2, and then the 24-bit total noise distribution for Ntot = N1 ⊕ N2 for the
proposed approximation. Note that the approximation takes into account the full 32-bit
adders �. We have received the following results regarding the corresponding biases:
ε(N1) > 1, ε(N2) ≈ 2−29.391880, and

ε(Ntot) ≈ 2−37.37, ε(2×Ntot) ≈ 2−80.21, ε(3×Ntot) ≈ 2−121.66, ε(4×Ntot) ≈ 2−162.76.

Here ε(i×Ntot) is the notion for the bias of the resulting distribution when summing i
independent random variables distributed as Ntot using bitwise XOR.
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3.2 An 8-bit approximation
As will be clear later, the 24-bit approximation cannot be used in a straight-forward
manner in a fast correlation attack. For such a case, one would need an approximation
that can be completely described over a finite field.

From the 24-bit noise distribution that we computed in the previous subsection, we
can further derive an 8-bit approximation with operations in the Rijndael field GF (28),
with the noise now denoted N ′tot. The approximation has the following form,

Λz(t−1)[0]⊕ z(t)[0]⊕ Γ (L−1
1 z(t+1))[0] = N ′tot

⊕ (Λ(s
(t−1)
0 ⊕ s(t−1)

15 )⊕ s(t)
0 ⊕ s

(t)
15 ⊕ ΓL

−1
1 [s

(t+1)
0 ⊕ s(t)

5 ⊕ s
(t+1)
15 ])[0], (4)

where Γ,Λ are some nonzero constants in GF (28). For each possible choice of Γ,Λ ∈
GF (28) we compute the 8-bit distribution of N ′tot directly from the given 24-bit distri-
bution of Ntot and then we compute the corresponding bias,

N ′tot = ΛNtot[0]⊕Ntot[1]⊕ ΓNtot[2].

Searching through all choices of Γ and Λ would normally imply the computational
complexity O(248), but we can reduce it down to O(∼ 240) by the following technique.
In the loop for Γ , we first precompute the joint 16-bit distribution of (Ntot[0], Ntot[1]⊕
ΓNtot[2]) with complexity O(224), then we loop for Λ and use the precomputed joint dis-
tribution to derive the 8-bit distribution ofN ′tot. The best choice for constants appears to
be Γ = 0x9c and Λ = 0x08 (alternatively, Λ = 0x18 also gives the best approximation)
and the resulting bias of N ′tot is:

ε(N ′tot) ≈ 2−40.97, ε(2×N ′tot) ≈ 2−81.94,

ε(3×N ′tot) ≈ 2−122.91, ε(4×N ′tot) ≈ 2−163.88.

4 Experimental verification

In this section, we experimentally verify the correctness of the bias derived in the previous
section. The experimental verification can be done by running the cipher and collecting
a large number of samples. For distributions of smaller sizes one can fully verify them
by experimentally determining the exact distribution, i.e., every probability value in the
distribution is correct; while for larger distributions, this might not be computationally
possible. Instead, we can use them in a hypothesis testing and in this way demonstrate
that it can be used in a distinguisher. This will be the case for the 24-bit approximation
from Section 3.

We consider deciding the sample distribution between the uniform distribution and
the noise distribution derived in Section 3 by hypothesis testing. We will follow the
hypothesis testing approach as formulated in information theory, see [CT12]. It is cen-
tered around the divergence (or relative entropy, or Kullback Leibler distance), denoted
D(PX ||PY ), between two distributions PX and PY over the same alphabet and defined as
D(PX ||PY ) =

∑
i P (X = i) log P (X=i)

P (Y=i) . The relative entropy is used to measure the dis-
tance between two distributions: the closer the distributions are, the smaller D(PX ||PY )
would be. If the distributions are the same, D(PX ||PY ) = 0.
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Furthermore, if we have a sequence of n sample symbols x = x0, x1, . . . , xn−1 from
the same alphabet A then we can count the number of occurrences of each symbol a ∈ A,
denoted N(a|x) and forming the type (or empirical distribution; or sample distribution)
by assigning P (X = a) = N(a|x)/n.

Let us denote the uniform distribution as PU , the noise distribution derived in
Section 3 as PN . Assume we collect n samples x from an unknown distribution PX .
Then the hypothesis testing can be modeled as below with two hypotheses:{

H0 : PX = PN ,

H1 : PX = PU .
(5)

In our case we are considering 24-bit distributions, so |A| = 224 and the sample distri-
bution is denoted PXn , with n as the length of the sample symbols.

We use the Neyman-Pearson lemma to make the optimum decision for the hypothesis
testing, according to the distances from PXn to PU and PN , respectively. The decision
problem is a maximum-likelihood test and the log-likelihood ratio can be written as

L = nD(PXn ||PU )− nD(PXn ||PN ).

Then we define the decision rule as below

PX =

{
PN , if D(PXn ||PU ) > D(PXn ||PN ),

PU , if D(PXn ||PU ) < D(PXn ||PN ).
(6)

With the hypothesis-testing problem defined above and PN being the 24-bit noise
distribution from the previous section, we build a distinguisher to decide the underlying
sample distribution. We run 64 parallel SNOW 3G instances with random initial states,
each clocking 240 times and collect the targeted samples. At each clock t, we combine
(z(t−1) ⊕ s(t−1)

0 ⊕ s(t−1)
15 )[0], (z(t) ⊕ s(t)

15 ⊕ s
(t)
0 )[0], (L−1

1 [z(t+1) ⊕ s(t+1)
0 ⊕ s(t)

5 ⊕ s
(t+1)
15 ])[0],

which is exactly the xor-sum of the keystream and LFSR part in (3), to make a 24-bit
integer and increase the occurrence of the corresponding entry in the distribution table.
We also collect the least three significant bytes of z(t) and concatenate them into a 24-bit
variable, which is regarded as a comparison sample drawn from a uniform distribution.

After this process, we get the tables of occurrences of all possible 24-bit values and
their corresponding probabilities. Then these sample distributions are tested by the deci-
sion rule given in (6) to get the answer to which distribution they follow, by calculating
the distances to the uniform distribution PU and noise distribution PN , respectively.
There are two types of errors to the correctness of the distinguisher: TYPE I errors,
the errors of guessing a noise distribution as random; and TYPE II errors, the errors of
falsely guessing a uniform distribution as the biased one.

Figure 2 shows the distances of one sample sequence to a uniform distribution and
the noise distribution and their differences under different lengths of samples. We can
see from the first subfigure that with an increase in the length of samples, the distances
to the uniform and noise distribution are both decreasing. This means that the sample
distribution is approaching both the random distribution and the noise distribution,
but it is hard to tell to which one the sample distribution is closest to, just from the
first subfigure. Instead, we can get the answer from the second subfigure, showing the
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Figure 2: Distances to the uniform distribution and noise distribution
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Figure 3: Error probabilities under different lengths of samples

difference of the divergence of the two distances, i.e., D(PX ||PU )−D(PX ||PN ). We can
see that while fluctuating around 0 in the beginning, the difference becomes stable and
positive after length 239.58, indicating D(PX ||PU ) > D(PX ||PN ) and that the sample
distribution is closer to the noise distribution. The difference at length 240 is 0.5∗10−11,
i.e., around 2−37.54 and we can expect that it will converge to around 2−37.37. This is
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so because with the increase in keystream samples, D(PX ||PN ) will converge to 0 and
D(PX ||PU ) would get close to the bias we derived [BJV04].

Figure 3 then shows the TYPE I and II error probabilities for the distinguisher under
different lengths of samples. We run 64 parallel SNOW 3G instances with random initial
states, each clocking 240 times, and record the distribution table of the samples for each
instance. Whenever another 238 samples are collected, we make a hypothesis testing of
the obtained distribution and record the type I and type II errors. After the collection
has finished, we make larger samples by combining distribution from some different
instances, e.g., samples of length 241 from two 240 instances, and further record the
errors under the hypothesis testing. From the result in Figure 3, we could see that while
fluctuating, the error probabilities are becoming smaller with an increase in the amount
of samples, which indicates that the guesses are becoming more accurate. From length
240, we can distinguish the samples with large success probabilities, while at the length
241.5, there are no errors in our 21 sample sequences. The result matches well with
the bias obtained in Section 3 and the conclusion that O(1/ε) samples are needed to
distinguish the distribution from random when the bias is ε.

5 Attacks based on the new vectorized linear approx-
imations

We are now ready to use our vectorized linear approximations of the FSM to launch
attacks. We recall that the approximation on three bytes we derived in Section 3 is of
the form below,(

z(t−1)[0], z(t)[0], (L−1
1 z(t+1))[0]

)
= (n0, n1, n2)

⊕
(

(s
(t−1)
15 ⊕ s(t−1)

0 )[0], (s
(t)
15 ⊕ s

(t)
0 )[0], (L−1

1 s
(t)
5 ⊕ L

−1
1 s

(t+1)
15 ⊕ L−1

1 s
(t+1)
0 )[0]

)
, (7)

where (n0, n1, n2) denotes the noise in the 24-bit linear approximation. We have com-
puted the bias of this noise to be about 2−37 in Section 3 and experimentally verified
it in Section 4. We now consider how to launch a distinguishing attack with this 24-bit
approximation in the next subsection. Fast correlation attacks will be considered in
Section 5.2.

5.1 A distinguishing attack
In a distinguishing attack we build an algorithm that takes a sequence as input and de-
termines with a small error probability whether the sequence stems from the considered
keystream generator, or if it is a truly random sequence. A potential application would
be a case when only two messages m,m′ are possible, and from the ciphertext c only, we
would like to determine which message was sent. One then forms a candidate keystream
by computing c⊕m and inputs this to the distinguisher. If the distinguisher finds that
this candidate keystream is likely to have been generated from the keystream generator,
it is likely that the sent message was m.

The basic idea for finding a distinguishing attack in our scenario is to completely
remove the contribution from the LFSR part, leaving only a linear function of known
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output symbols as a sample from a noisy distribution. After collecting enough samples,
one can distinguish the considered keystream from a truly random sequence.

Considering the relationship in (7), we would like to cancel the LFSR contribution

S(t) =
(

(s
(t−1)
15 ⊕ s(t−1)

0 )[0], (s
(t)
15 ⊕ s

(t)
0 )[0], (L−1

1 s
(t)
5 ⊕ L

−1
1 s

(t+1)
15 ⊕ L−1

1 s
(t+1)
0 )[0]

)
.

Since s(j)
i = s

(i+j)
0 and for simplicity, we write s(t)

0 simply as s(t). It is easy to verify the
following theorem.

Theorem 1. If one can find t1, t2, t3 such that s(0) ⊕ s(t1) ⊕ s(t2) ⊕ s(t3) = 0 then

S(t) ⊕ S(t+t1) ⊕ S(t+t2) ⊕ S(t+t3) = (0, 0, 0).

Proof. Since s(0) ⊕ s(t1) ⊕ s(t2) ⊕ s(t3) = 0, with any time shift the equation would
still hold, i.e., s(t) ⊕ s(t+t1) ⊕ s(t+t2) ⊕ s(t+t3) = 0. For the other terms in S(t), the
xor-sum from the values at 0, t1, t2, t3 would also be 0. Let us take the term s

(t−1)
15 for

example: since s(t−1)
15 = s

(t+14)
0 , then

⊕3
i=0 s

(t+ti−1)
15 =

⊕3
i=0 s

(t+ti+14)
0 = 0. Then we

have
⊕3

i=0 S
(t+ti) = (0, 0, 0).

Assuming that we have found t1, t2, t3 satisfying Theorem 1, we can create samples
from a biased distribution by computing samples x(t) as

x(t) =

3∑
i=0

(
z(t+ti−1)[0], z(t+ti)[0], (L−1

1 z(t+ti+1))[0]
)
,

where t0 = 0. The samples x(t) are then drawn from a noisy distribution, which is the
distribution of the sum of 4 noise variables like Ntot. This was previously computed to
have a bias of ε(4 ×Ntot) = 2−163 and hence it requires in the order of 2163 keystream
symbols to distinguish the samples from a uniform distribution. It should be noted here
that we assume that the noise variables at the four time instances are independent, thus
resulting in the total bias as ε(4×Ntot) = 2−163. The bias is actually larger since there
is a dependence between the LFSR states from the four time instances, due to their sum
being zero. But we have a too high complexity in computing the bias for such a case,
so we regard the noise variables as independent.

The remaining problem here is to examine the computational complexity of finding
t1, t2, t3 satisfying s(0)⊕ s(t1)⊕ s(t2)⊕ s(t3) = 0. The sequence s(t) is generated using the
feedback polynomial P (x) = αx16 +x14 +α−1x5 + 1 ∈ GF (232)[x]. We are thus seeking
a weight 4 multiple K(x) of the feedback polynomial where all coefficients are set to one.
We may first argue about the expected degree q of such a polynomial. Let us consider all
t ≤ q, then we can create

(
q
3

)
different combinations of s(0)⊕s(t1)⊕s(t2)⊕s(t3) expressed

in the initial state. Since there are 2512 possible such combinations, we can expect that
we need to go to a degree such that roughly q3/6 ≈ 2512, resulting in q ≈ 2172.

Finally, we need an efficient way to find a weight 4 multiple. Here we use a slight
generalization of the algorithm proposed by Löndahl and Johansson in [LJ14]. The
algorithm solves the problem with computational complexity of only around 2d, where
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d = log q, and similar storage. The algorithm uses the idea of duplicating the desired
multiple to many instances and then finding one of them with very large probability.
The solution to problem associated to the SNOW 3G case can be described as follows:

Assume that K(x) is the weight 4 multiple of the lowest degree and assume that its
degree is around 2d as expected. Algorithm 1 considers and creates all weight 4 multiples
up to degree 2d+b where b is a small integer, but will only find those that include two
monomials xi1 and xi2 such that φ(xi1 + xi2 mod P (x)) = 0, where φ() means the d
least significant bits in the representation of the polynomial.

Algorithm 1 Finding a multiple of P (x) with weight 4 and all nonzero coefficients one
Input Polynomial P (x), a small integer b
Output A polynomial multiple K(x) = P (x)Q(x) of weight 4 and expected degree 2d

with nonzero coefficients set to be one
1. From P (x), create all residues xi1 mod P (x), for 0 ≤ i1 < 2d+b and put (xi1 mod
P (x), i1) in a list L1. Sort L1 according to the residue value of each entry.
2. Create all residues xi1 + xi2 mod P (x) such that φ(xi1 + xi2 mod P (x)) = 0, for
0 ≤ i1 < i2 < 2d+b and put in a list L2. Here φ() means the d least significant
bits. This is done by merging the sorted list L1 by itself and keeping only residues
φ(xi1 + xi2 mod P (x)) = 0. The list L2 is sorted according to the residue value.
3. In the final step we merge the sorted list L2 with itself to create a list L, keeping
only residues xi1 + xi2 + xi3 + xi4 = 0 mod P (x).

As K(x) is of weight 4, any polynomial xi1K(x) is also of weight 4 and since we
consider all weight 4 multiples up to degree 2d+b we will consider 2d+b − 2d such weight
4 polynomials, i.e. about 2d(2b − 1) duplicates of K(x). As the probability for a single
weight 4 polynomial to have the condition φ(xi1 + xi2 mod P (x)) = 0 can be approx-
imated to be around 2−d, there will be a large probability that at least one duplicate
of xi1K(x) will survive in Step 2 in Algorithm 1 and will be included in the output.
Further details and experimental verification can be found in [LJ14].

Regarding complexity, we note that the tables are all of size around 2d. Creation of
L1 costs roughly 2d and creation of L2 costs about the same as we are only accessing
entries in L1 with the same d least significant bits. For a sufficiently large b, one iteration
of Algorithm 1 (inner loop) succeds with a high probability.

To conclude, we have described a distinguishing attack on SNOW 3G for which we
need a keystream length of around 2172 and similar complexity. It uses a precomputation
step of complexity around 2172 and required memory is of the same size.

5.2 A fast correlation attack
A fast correlation attack is a key recovery attack, which is a much stronger attack
than a distinguishing attack. It tries to recover the key by exploring the correlation
between the keystream and the output of the LFSR states, which always exists for
nonlinear functions[Sie84]. It is commonly modeled as a decoding problem in GF (2)n

or GF (2n), with the observed keystream samples y = (y0, y1, ..., yN−1) being the noisy
version of the LFSR sequence u = (u0, u1, ..., uN−1) through a discrete memoryless
channel (DMC) with non-uniform noise e = (e0, e1, ..., eN−1), i.e., yi = ui + ei for
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1 ≤ i ≤ N − 1. It should be noted here that u and z might not be the exact output
from the LFSR and the keystream of the considered keystream generator, but can be
some linear combinations of them. The LFSR sequence u = (u0, u1, ..., uN−1) is regarded
as a codeword generated from the information words (u0, u1, ..., ul−1), which is the initial
state of LFSR by u = (u0, u1, ..., ul−1)G, where G = (g0,g1, ...,gN−1) with each element
gi being a column vector of length l. Then the correlation attack is converted into
decoding an [N, l] linear code with N being the code length and l the length of the
information word. The main problem is to find methods of efficient decoding as a
straight-forward approach of running through all codewords to find the closest one to
the received vector is requiring a huge computational complexity. A common approach is
to find parity checks that can be combined to form parity checks in a lower-dimensional
code, which is then more efficiently decoded.

The correlation attacks always have two stages: a preprocessing stage, during which
as many parity check equations of the [N, l] code as possible are generated and processed;
and an online decoding stage, during which the decoding is executed according to these
generated parity check equations. Research on correlation attacks have been mainly
focused on these two aspects: finding parity check equations with low weights [Pen96],
[CT00], typically 3, 4 or 5, and exploring more effecient decoding techniques to solve
the decoding process [JJ99b], [JJ99a].

The framework of a fast correlation attack is defined over a finite field. It is usually
the binary case but a larger alphabet is possible as long as the operations are in a finite
field. Our strongest (24-bit) approximation does not fulfill this condition and it cannot be
used in a straight-forward manner. Instead, we rely on the 8-bit approximation from (4),
which is an approximation over GF (28). Below we first give a correlation attack using
the method in [ZXM15] with the byte-based linear approximation in (4). Specifically, the
attack employs the k-tree algorithm in [Wag02] to generate parity check equations during
the preprocessing stage and the Fast Walsh Transform (FWT) technique to accelerate
the decoding process during the decoding stage.

5.2.1 A fast correlation attack based on an approximation in GF (28)

We consider the two sequences,

y(t) = Λz(t−1)[0]⊕ z(t)[0]⊕ Γ (L−1
1 z(t+1))[0]

and

u(t) = (Λ(s
(t−1)
0 ⊕ s(t−1)

15 )⊕ s(t)
0 ⊕ s

(t)
15 ⊕ ΓL

−1
1 [s

(t+1)
0 ⊕ s(t)

5 ⊕ s
(t+1)
15 ])[0],

both defined in GF (28) and we know from before that y(t) = u(t) + e(t), where e(t) has
the same distribution as N ′tot. Note that u(t) is a sequence defined over GF (28), while
the s(t) sequence is defined over an extension field of GF (28). It can be verified that
an LFSR with state (s0, s1, ..., s15) ∈ GF (232)16 can also be described through a length
64 LFSR over GF (28) with state (u0, u1, ...u62, u63) ∈ GF (28)64, i.e., u(t) can indeed be
described as the sequence from a length 64 LFSR over GF (28). Below we give the 8-bit
correlation attack based on such an LFSR.
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Preprocessing Stage: Generating the Parity Check Equations

Since decoding an [N, l] linear code involves a large complexity when l is large, the
method in [CJS00] can be used to convert the [N, l] code C1 into a simpler one [N ′, l′] de-
noted C2 with l′ < l. The key point is to find a k-tuple of column vectors (gi1 ,gi2 , ...,gik)
from G satisfying gi1 ⊕ gi2 ⊕ ... ⊕ gik = (c0, c1, ..., cl′−1, 0, ..., 0)T , i.e., the xor-sums of
the last l− l′ elements are all zero. Then for such a tuple, the following equation holds,
which is a parity check for u1, ..., ul′ ,

k⊕
j=1

uij = (u0, u1, ...ul−1)

k⊕
j=1

gij = c0u0 ⊕ c1u1 ⊕ ...⊕ cl′−1ul′−1.

Correspondingly,

k⊕
j=1

yij =

k⊕
j=1

(uij ⊕ eij ) = c0u0 ⊕ c1u1 ⊕ ...⊕ cl′−1ul′−1 ⊕
k⊕
j=1

eij .

If we denote Yi =
⊕k

j=1 yij , Ui =
⊕k

j=1 uij and Ei =
⊕k

j=1 eij , we have Yi =
Ui ⊕ Ei. If we collect N ′ such parity checks, we can construct a new [N ′, l′] code,
with U = (U0, U1, ..., UN ′−1) being the output of a converted LFSR with l′ states and
Y = (Y0, Y1, ..., YN ′−1) being the noisy version of U through a more noisy channel with
noise E = (E0, E1, ..., EN ′−1). Since l′ < l, the decoding complexity is reduced. Then
the remaining work is to solve the decoding problem efficiently, which we will describe
in detail in the processing stage.

As for the complexity for the preprocessing stage, with the k-tree algorithm in
[Wag02] employed to find such parity check equations, the time/space complexities are
O(k2n(l−l′)/(1+log k)) and the sizes of lists are O(2n(l−l′)/(1+log k)), with n being the size
of the finite field, n = 8 in our case. Note that ρ1+log k such tuples could be found
with ρ times as much work as finding a single solution, i.e., O(ρk2n(l−l′)/(1+log k))
for time and space and O(ρ2n(l−l′)/(1+log k)) for the size of each list, as long as
ρ ≤ 2n(l−l′)/(log k(1+log k).

Processing Stage: Decoding the code

We now move to the process of decoding the [N ′, l′] code, following the method in
[ZXM15] and using the FWT to accelerate the decoding process. The main idea is to
make a distinguisher defined as I(û) = ci0(u′0 ⊕ u0) ⊕ ... ⊕ cil′−1

(u′l′−1 ⊕ ul′−1) ⊕ Ei =
Yi ⊕ ci0u′0 ⊕ ...⊕ cil′−1

u′l′−1 for a guess û = (u′0, u
′
1, ..., u

′
l′−1) of the first l′ LFSR states,

where i denotes the i-th tuple. I(û) would be biased for the correct guess since only the
noise term Ei remains.

The next step is to check the balancedness of I(û) for every guessed û to find the
correct key. Firstly, the correlations c(〈a, I〉) of the Boolean function 〈a, I〉, i.e., the
inner product of a and I where a ∈ GF (2)n, is obtained and then the SEI of I(û)
can be derived by ∆(û) =

∑
a∈GF (2m) c

2(〈a, I〉) according to [NH07]. Then we can
verify whether I(û) is biased or not and further recover the key. To get the correlations
c(〈a, I〉) efficiently, the method in [LV04] could be used. Firstly, the vectorial Boolean
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function I can be divided into n linearly independent Boolean functions I1, ..., In, each
expressed as Ij = 〈wj , û〉 ⊕ 〈vj , Yi〉 where wj ∈ GF (2)nl

′
, vj ∈ GF (2)n are two binary

coefficient vectors. Then FWT can be used to compute the correlation of each Ii. It
is stated in [ZXM15] that the total correlation can be further derived by the Piling-up
Lemma. We refer to [ZXM15] for a more detailed description of this process and we use
the complexity formulas from it.

For SNOW 3G, we use the 8-bit linear approximation which has a bias of ε(N ′tot) ≈
2−40.970689. We can first rewrite the LFSR sequence symbols as linear functions of 64
initial state bytes, with a new and more complex generating polynomial. Then use
the preprocessing stage described before to generate the parity check equations with
parameters l = 64, k = 4. The SEI of k = 4 folded noise variables is ε(4 × N ′tot) ≈
2−163.88. We then tested different choices for l′ and found that under l′ = 20 the total
complexity is the lowest. The number of parity check equationsmk required in this case is
mk = 2171.67. The time/space complexity of preprocessing is ρk2n(l−l′)/(1+log k) = 2176.56

and the required length of the keystream is 2176.56. With complexity of n(mk+l′n2l
′n)+

2n+l′n = 2174.75, 20·8 = 160 bits of the LFSR initial states could be recovered. Therefore,
the time/memory/data/pre-computation complexities are all upper bounded by 2176.56.

5.2.2 Potential Correlation Attack using a 16-bit approximation

In Section 3, we got the 24-bit and 8-bit linear approximations with biases 2−37 and
2−41, respectively. We would obviously like to use the 24-bit approximation to launch
a correlation attack. But as explained before, the 24-bit approximation is not defined
over a finite field and cannot be used directly in a fast correlation attack. Now we report
some findings on building a 16-bit approximation by an experimental method based on
the 8-bit approximation derived before. Specifically, we concatenate two consecutive
8-bit symbols to build one 16-bit symbol, i.e., (y(t), y(t+1)). The theoretical distribution
for such a pair of bytes is too computationally consuming to compute, but since we know
the bias for a single byte we can get an bound on the bias.

We run a large amount of SNOW 3G instances in parallel with random initial states
and collect (y(t), y(t+1)) by (4) at each clock, obtaining 253 16-bit samples in total. We
then record the occurrence of each entry in the distribution table, and got the bias
2−36.8293. However, the bias here is not very accurate and more samples are needed
for full confidence. Even so, we could still get a general estimation of the bias. After
we collected these samples, we used the method in Section 4 to distinguish the 16-bit
and 8-bit samples between the uniform distribution and the respective 16-bit and 8-bit
distributions we derived.

Table 1 shows the TYPE I errors and probabilities for the two cases under different
lengths of samples. We can see directly from the table that the error probability for
16-bit distinguishing is much smaller than the 8-bit one, indicating the bias of the 16-bit
approximation is larger than the latter. Considering the error probabilities to be 0 for
16-bit and 8-bit distinguishing are after lengths 242 and 246, respectively, we could make
a general estimation that the bias for the 16-bit approximation is around 2−38.

Now we briefly explain how to use this 16-bit approximation in a correlation attack.
First we point out that any output from the LFSR at clock t, u(t), can be derived from
the initial states (u0, u1, ..., u63) by u(t) =

⊕63
i=0 c

(t)
i ui, where c

(t)
i ∈ GF (28). Then we
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Length 240 241 242 243 244 245 246

Samples 8192 4096 2048 1024 512 256 128
16-bit 626(0.076) 94(0.023) 3(0.001) 0 0 0 0
8-bit 2895(0.353) 1260(0.308) 445(0.217) 148(0.144) 40(0.078) 7(0.027) 0

Table 1: Errors and error probabilities (in the brackets) under different lengths of
samples

have,

y(t) = u(t) + e(t) =

63⊕
i=0

c
(t)
i ui ⊕ e(t). (8)

At the next clock t + 1, the value in the (i + 1)-th cell is shifted to the i-th cell for
0 ≤ i ≤ 62 and only the 63-rd cell is updated, which can be expressed as

u(t+1) =

62⊕
i=0

c
(t)
i ui+1 ⊕ c(t)63 u

′
63,

where u′63 is the new value for the 63-rd cell updated by u′63 =
⊕62

i=0 γiui, where γi’s
are the feedback coefficients of the LFSR in GF (28). Then y(t+1) can be expressed as,

y(t+1) = u(t+1) + e(t+1) =

62⊕
i=0

c
(t)
i ui+1 ⊕ c(t)63

62⊕
i=0

γiui ⊕ e(t+1). (9)

Assume by the k-tree algorithm, we have found a k-tuple combination, say k = 4,
with (t1, t2, t3, t4) which maps the xor-sum of the output to the first l′ 8-bit symbols in
the LFSR, i.e.,

4⊕
j=1

y(tj) =

4⊕
j=1

(

63⊕
i=0

c
(tj)
i ui ⊕ e(tj)) =

l′−1⊕
i=0

ciui ⊕ E,

i.e., c(t1)
i ⊕c(t2)

i ⊕c(t3)
i ⊕c(t4)

i = ci for 0 ≤ i ≤ l′−1, while c(t1)
i ⊕c(t2)

i ⊕c(t3)
i ⊕c(t4)

i = 0 for
l′ ≤ i ≤ 63, where E =

⊕4
j=1 e

(tj). We aim to build another part of the 16-bit symbol
by getting

⊕4
i=1 y

(ti+1) from (9). We get

4⊕
j=1

y(tj+1) =

4⊕
j=1

(u(tj+1) ⊕ e(tj+1)) =

4⊕
j=1

(

62⊕
i=0

c
(ti)
i ui+1 ⊕ c(ti)63

62⊕
i=0

γiui ⊕ e(ti+1)).

Since c(t1)
i ⊕c(t2)

i ⊕c(t3)
i ⊕c(t4)

i = 0 and c(t1)
63 γi⊕c(t2)

63 γi⊕c(t3)
63 γi⊕c(t4)

63 γi = 0 for l′ ≤ i ≤ 63,
we could get

4⊕
j=1

y(tj+1) =

4⊕
j=1

(

l′−1⊕
i=0

c
(ti)
i ui+1 ⊕ c(ti)63

l′−1⊕
i=0

γiui ⊕ e(ti+1)).
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We can see
⊕4

j=1 y
(tj+1) can be derived from (u0, u1, ...ul′) and we express it as

4⊕
j=1

y(tj+1) =

l′⊕
i=0

c′iui ⊕ E′,

with c′i being some new coefficients and E′ =
⊕4

j=1 e
(ti+1). Then the 16-bit approxima-

tion can be expressed as:

(

4⊕
j=1

y(tj),

4⊕
j=1

y(tj+1)) = (

l′−1⊕
i=0

ciui,

l′⊕
i=0

c′iui)⊕ (E,E′).

Here (E,E′) can be regarded as following the 16-bit distribution we obtained in the
beginning of this subsection. We could see, compared to the 8-bit correlation attack
where the output is mapped to the first l′ states, here the 16-bit symbol is mapped to
the first l′ + 1 states, i.e., one more state is involved. If we find N ′ tuples like this, we
could build a new [N ′, l′ + 1] code with the 16-bit approximation as the noisy channel.
Then we proceed to the decoding stage to recover the l′ + 1 states.

Next, let us check the complexity. For the preprocessing phase, we could still use the
k-tree method to find parity check equations, but through a different DMC with a smaller
noise. Using the method before, we could get the best result in terms of complexity is
now under l′ = 19. Now 2159.72 parity check equations are required with time/space
complexity of 2175.24 and the required length of keystream sample is 2175.24. For the
decoding process, the complexity is 2176.06. From the result, we can find that while the
complexity is still upper bounded by the same order around 2176, the required number
of parity check equations reduces from 2171.67 to 2159.72. These complexity results are
based on only experimental result and are not with full confidence.

6 Conclusion

In this paper, we propose a distinguishing attack and a correlation attack on SNOW
3G using new linear approximations over larger alphabets. We first derive a 24-bit
and an 8-bit linear approximation of the FSM and verify them by an experimental
test using hypothesis testing. Then we used the derived approximations to launch a
distinguishing attack and correlation attack. For the distinguishing attack, we find a
weight 4 multiple of the generating polynomial to cancel out the contribution from the
LFSR and distinguish the corresponding keystream sample sequence with complexity
around 2172. For the correlation attack, we use the 8-bit approximation to recover 160
bits of the initial state with complexity around 2177. As far as we know, these are the
first distinguishing and correlation attacks on SNOW 3G. If the key length in SNOW
3G would be increased to 256 bits, the results show that there are then academic attacks
on such a version faster than the exhaustive key search.

A possible way to improve the results and achieve a higher bias would be to consider
even larger alphabets in the approximations, but this would require much more complex
simulation tasks to find and verify biases of different choices of approximation. Another
interesting question would be to launch distinguishing attacks which are based directly
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on the weight 4 recurrence relation for the LFSR, which has nonzero coefficients that are
not all one. If so, it would remove the requirement of having a very long keystream and
the attacks could be applied on a large set of short keystreams generated with different
IVs.
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Paper II

Spectral analysis of ZUC-256

Abstract

In this paper we develop a number of generic techniques and algorithms in spectral
analysis of large linear approximations for use in cryptanalysis. We apply the developed
tools for cryptanalysis of ZUC-256 and give a distinguishing attack with complexity
around 2236. Although the attack is only 220 times faster than exhaustive key search,
the result indicates that ZUC-256 does not provide a source with full 256-bit entropy in
the generated keystream, which would be expected from a 256-bit key. To the best of our
knowledge, this is the first known academic attack on full ZUC-256 with a computational
complexity that is below exhaustive key search.

Keywords: ZUC-256, Stream Cipher, 5G Mobile System Security.

1 Introduction

ZUC is the stream cipher being used as the core of 3GPP Confidentiality and Integrity
Algorithms UEA3 & UIA3 for LTE networks [ETS11a]. It was initially proposed in 2010
as the candidate of UEA3 & UIA3 for use in China. After external and public evaluation
and two ZUC workshops, respectively in 2010 and 2011, it was ultimately accepted by
3GPP SA3 as a new inclusion in the LTE standards with a 128-bit security level, i.e.,
the secret key is 128-bit long.

Like most stream ciphers, ZUC has a linear part, which is an LFSR, and a non-
linear part, called the F function, to disrupt the linearity of the LFSR contribution.
The design is different from common stream ciphers which are often defined over binary
fields GF (2) or extension fields of GF (2), the LFSR in ZUC is defined over a prime field
GF (p) with p = 231 − 1 while the registers in F are defined over GF (232). There is a
bit-reorganization (BR) layer between the LFSR and F serving as a connection layer to
extract bits from the LFSR and push them into F . Thus standard cryptanalysis against
common stream ciphers can not be directly applied to ZUC and till now, there is no
efficient cryptanalysis of ZUC with an attack faster than exhaustive key search.

After ZUC was announced, there were a number of research work conducted to evalu-
ate the cipher [ETS11b], [STL10], [WHN+12]. A weakness in the initialization phase was
found in [STL10], [WHN+12] and this directly resulted in an improved version. After

Jing Yang, Thomas Johansson, and Alexander Maximov. Spectral analysis of ZUC-256. IACR
Transactions on Symmetric Cryptology, pages 266–288, 2020.
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the adoption as the UEA3 & UIA3 standard, there were additional work in cryptanal-
ysis of ZUC. A guess-and-determine attack on ZUC was proposed in [GDL13] based on
half-words, i.e. 16-bit blocks, by splitting the registers in the LFSR and FSM into high
and low 16 bits, where some carry bits are introduced due to the splitting. It requires 6
keystream words and the complexity is O(2392), which is, however, higher than exhaus-
tive key search. In [ZFL11], a differential trail covering 24 rounds of the initialization
stage is given, but this does not pose a threat since ZUC has 32 initialization rounds.
[LMVH15] also shows that weak inputs do not exist in ZUC when it is initialized with
32 rounds. These results indicate that ZUC is resistant against common attacks.

In January 2018, ZUC-256 was announced as the 256-bit version of ZUC [Tea18]
in order to satisfy the 256-bit security level requirement of 5G from 3GPP [3GP18].
Compared to ZUC-128, the structure of ZUC-256 remains the same, while only the
initialization and message authentication code generation phases are improved to match
with the 256-bit security level. Subsequently, in July 2018, a workshop on ZUC-256 was
held and some general cryptanalyses were presented, but no obvious weaknesses of ZUC-
256 were found. To conclude, till now, there are no efficient cryptanalysis techniques
succeeding to reduce the claimed security levels of ZUC (128-bit or 256-bit).

In this paper, we propose a distinguishing attack on ZUC-256 with computational
complexity around 2236, by linearly approximating the non-linear part F and the dif-
ferent finite fields between the LFSR and F . The important techniques we employ to
find a good linear approximation and compute the bias are called spectral tools here
for cryptanalysis, using e.g., the Walsh Hadamard Transform(WHT) and the Discrete
Fourier Transform (DFT). The spectral tools for cryptanalysis are widely used in linear
cryptanalysis to, for example, efficiently compute the distribution or the bias of a linear
approximation, since there exist fast algorithms for WHT and DFT which can reduce
the computational complexity from O(N2) to O(N logN) [MJ05], [LD16]. It is also
widely used to investigate the properties of Boolean functions and S-boxes, which can
be considered as vectorial Boolean functions, like correlation, autocorrelation, propaga-
tion characteristics and value distributions [NH07], [HN12]. We explore the use of WHT
and DFT and find new results about efficiently computing the bias or correlations. Im-
portantly, we show how a permutation or a linear masking in the time domain would
affect the spectrum points in the frequency domain for widely used operations and com-
ponents, such as �,⊕, and S-boxes. Based on that, we give a number of further results
on how to choose linear maskings in the time domain by considering the behavior of
noise variables in the frequency domain such that a decent approximation with a large
bias can be found.

We employ the new findings in spectral analysis of ZUC-256 and use them to develop
a distinguishing attack. Even though the distinguishing attack is not a very strong one,
it indicates that ZUC-256 can not achieve the full 256-bit security level under this case.

The rest of this paper is organized as follows. We first give the general design and
structure of ZUC-256 in Section 2 and then the spectral analysis techniques are given
in Section 3. After that, we in Section 4 give a distinguishing attack on ZUC-256 using
the spectral tools. Specifically, we first derive a linear approximation in Section 4.1; and
then we show how to efficiently derive the bias of the approximation in Section 4.2 ∼
Section 4.4 by using the spectral analysis and a technique called “bit-slicing technique”;
and lastly we give the distinguishing attack based on the derived approximation. In
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Section 5, we conclude the paper.

2 Description of ZUC-256

In this section we give a brief description of the ZUC-256 algorithm. Basically, the
structure of ZUC-256 is exactly the same as that of ZUC-128, except that the length
of the secret key K is changed to be 256-bit long and the loading process of the key
and IV is modified accordingly [Tea18]. ZUC-256 takes a 256-bit secret key K and
a 128-bit initial vector IV as input and produces a sequence that is usually called
keystream. In this paper, we use Z(t) to denote the generated keystream block at a time
instance t for t = 1, 2, . . .. In ZUC-256, each keystream block is a 32-bit word, so we
write Z(t) ∈ GF (232), t = 1, 2, . . .. Furthermore, each (K, IV ) pair should produce a
unique keystream sequence, and in practice K is usually fixed and the IV value varies
to generate many different keystream sequences.

S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15

1+28 220221217215

mod (231-1)

X0 X1 X2 X3

R1 R2

<<< 16

Z

S*L1 S*L2

T1

T1'

T2

T2'

Figure 1: The keystream generation phase of the ZUC-256 stream cipher

The overall schematic of the ZUC-256 algorithm is shown in Figure 1. It consists
of three layers: the top layer is a linear feedback shift register (LFSR) of 16 stages; the
bottom layer is a nonlinear block which is called F function; while the middle layer,
called bit-reorganization (BR) layer, is a connection layer between the LFSR and F .
Now we would give some details of the three layers, and for more details we refer to the
original design document [ETS11a].
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The LFSR Layer

The LFSR part consists of 16 cells denoted (s0, s1, ..., s15) each holding 31 bits and
giving 496 bits in total. Every value in the cells is an element from the finite field GF (p),
where p = 231 − 1 and it can be written in a binary representation as

x = x0 + x12 + . . .+ x30230,

where xi ∈ {0, 1} for 0 ≤ i ≤ 30. Then 2k · x mod p is computed as x≪31 k, where
≪31 k is the 31-bit left circular shift by k steps. This makes the implementation quite
efficient. One can see that the LFSR in ZUC is operating over a prime field instead of
GF (2) or GF (2n) as most stream ciphers do. This makes it insusceptible to common
linear cryptanalysis. The feedback polynomial of the LFSR is given by:

P (x) = −x16 + 215x15 + 217x13 + 221x10 + 220x4 + (1 + 28) ≡ 0 mod p.

P (x) is a primitive polynomial over GF (p) and this ensures that the LFSR sequence
is an m-sequence with period p16 − 1 ≈ 2496. If we denote the LFSR state at clock t as
(s

(t)
0 , s

(t)
1 , ..., s

(t)
15 ), then at the next clock t+ 1, si is shifted to si−1, i.e., s

(t)
i = s

(t+1)
i−1 , for

1 ≤ i ≤ 15, while s(t+1)
15 is updated by:

s
(t+1)
15 = 215s

(t)
15 + 217s

(t)
13 + 221s

(t)
10 + 220s

(t)
4 + (1 + 28)s

(t)
0 mod p.

If s(t+1)
15 = 0, then set s(t+1)

15 = p (i.e., the representation of element 0 is the binary
representation of p).

The BR Layer

The BR layer is the connection layer between the LFSR and F . It extracts 128 bits
from the LFSR and forms four 32-bit words X0, X1, X2, X3 with the first three being
fed to F and the last one XOR-ed with the output of F to finally generate the keystream
symbol. For a cell si in the LFSR, the low and high 16 bits are extracted as:

siL = si[0...15] and siH = si[15...30].

Then X0, X1, X2, X3 are constructed as follows:

X0 = s15H ||s14L, X1 = s11L||s9H , X2 = s7L||s5H , X3 = s2L||s0H ,

where h||l denotes the concatenation of two 16-bit integers h and l into a 32-bit one,
with l being the least significant bits and h being the most significant bits of the result.
Then X1, X2 will be sent into F to update the registers there.

The Non-linear Layer F

The nonlinear layer F has two internal 32-bit registers R1 and R2 being updated
through linear and nonlinear operations. It is a compression function taking X0, X1, X2
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as the input and producing one 32-bit word which would be used to generate the
keystream symbol as below:

Z(t) = ((R1(t) ⊕X0)�32 R2(t))⊕X3.

Then F is updated by:

T1 = R1(t) �32 X1,

T2 = R2(t) ⊕X2,

R1(t+1) = S(L1(T1L||T2H)),

R2(t+1) = S(L2(T2L||T1H)).

Here S = (S0, S1, S0, S1) is a 32×32 S-box composed of four juxtaposed S-boxes, where
S0 and S1 are two different 8-to-8-bit S-boxes. L1, L2 are two 32× 32 linear transforms
which are defined as follows:

L1(X) = X ⊕ (X≪32 2)⊕ (X≪32 10)⊕ (X≪32 18)⊕ (X≪32 24),

L2(X) = X ⊕ (X≪32 8)⊕ (X≪32 14)⊕ (X≪32 22)⊕ (X≪32 30).

Just like other stream ciphers, ZUC-256 uses an initialization phase before generating
a keystream sequence, to fully mix the secret key and IV. During the initialization phase,
the key and IV are loaded into the LFSR registers and the cipher runs 32 iterations
with the output from the F function being fed back to the LFSR instead of producing
keystream symbols. After the initialization, the cipher enters the keystream mode, with
the first output word from F being discarded and the following outputs forming the
keystream symbols by XOR-ing with X3. Since the attack in this paper only uses the
keystream mode, we do not give the details of the initialization mode, but refer to the
design document for the details [ETS11a], [Tea18].

3 Spectral tools for cryptanalysis

In multidimensional linear cryptanalysis one often has to deal with large distributions,
and be able to find good approximations with large biases that can further be used in
an attack. In this section, we give several techniques in spectral analysis which help to
efficiently explore a good linear approximation and compute its bias. We will later use
most of the presented techniques in cryptanalysis of ZUC-256.

Notations. Let X(1), X(2), . . . , X(t) be t independent random variables taking val-
ues from an alphabet of n-bit integers, such that the total size of the alphabet is

N = 2n.

For a random variable X, let the sequence of Xk, k = 0, 1, . . . , N − 1 represent the
distribution table of X, i.e., Xk = Pr{X = k}, or a sequence of occurrence values in
the time domain, e.g. Xk = the number of occurrences of X = k. If such a sequence of
numbers would be normalized by dividing each entry by the total number of occurrences,
we would talk about an empirical distribution or a type [CT12].
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We will denote by W(X) the N -point Walsh-Hadamard Transform (WHT) and by
F(X) the N -point Discrete Fourier Transform (DFT). Individual values of the trans-
forms will be addressed by W(X)k and F(X)k, for k = 0, 1, . . . , N − 1. We will denote
by X̂k the spectrum value of a point k, i.e., X̂k =W(X)k or X̂k = F(X)k, depending on
the context. The values X̂k, for k = 0, 1, . . . , N − 1, in the frequency domain constitute
the spectrum of X.

When considering Boolean operations, such as k ·M , where k is an n-bit integer (or
an index) andM is an n×n Boolean matrix, it should be understood as that the integer
k is 1-to-1 mapped to a Boolean vector of length n containing the corresponding bits of
the integer k in its binary representation. Then a Boolean multiplication is performed
modulo 2, and the resulting Boolean vector can thus be 1-to-1 mapped back to an n-bit
integer.

WHT and DFT. The DFT is defined as:

X̂k = F(X)k =

N−1∑
j=0

Xj · e−
i2π
N kj , for k = 0, 1, ..., N − 1,

where ω0 = e−i2π/N is a primitive N -th root of unity. Every point value F(X)k is a
complex number with the real part Re() and imaginary part Im(), i.e., X̂k = Re(X̂k) +
i · Im(X̂k). WHT is a special variant of DFT and it is defined as

X̂k =W(X)k =

N−1∑
j=0

Xj · (−1)k·j ,

where k · j now denotes the bitwise dot product of the binary representation of the n-bit
indices k and j. I.e., one can rewrite the dot product in the vectorial binary form:

k · t = (k0, k1, . . . , kn−1) · (j0, j1, . . . , jn−1)T mod 2,

where ki, ji are the i-th bits of the binary representation of k and j, for i = 0, 1, . . . , n−1.
Every W(X)k has only the real part and it is an integer.

The squared magnitude at a point k is derived by |X̂k|2 = Re(X̂k)2 + Im(X̂k)2. The
point k = 0 in the spectrum represents the sum of all values in the time domain for both
WHT and DFT cases, i.e.,

|X̂0| =
N−1∑
j=0

Xj . (1)

There are many well-known fast algorithms computing DFT or WHT in time
O(N logN) and this makes the spectral transform widely used in cryptanalysis and in
many other areas as well.

Convolutions. A typical operation in linear multidimensional cryptanalysis is to
compute the distribution of a noise variable which is the sum (⊕ or �) of other noise
variables (referred to as sub-noise variables). While computing the distribution directly
in the time domain might be complicated, the complexity could be largely reduced when
using DFT and WHT [MJ05] through:

(X(1) �X(2) � . . .�X(t))k = F−1(F(X(1)) · F(X(2)) · . . . · F(X(t)))k,

(X(1) ⊕X(2) ⊕ . . .⊕X(t))k =W−1(W(X(1)) · W(X(2)) · . . . · W(X(t)))k, (2)
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where · is the point-wise multiplication of two spectrum vectors. In particular, the
overall complexity is now O(t ·N logN).

3.1 Precision problems and the bias in the frequency domain
The bias of a multidimensional noise variable X is often expressed in the time domain as
the Squared Euclidean Imbalance (SEI), which is also called the capacity in some papers
[HN12], defined in [BJV04] as follows:

ε(X) = N

N−1∑
i=0

(Xi/f − 1/N)2, (3)

where f =
∑N−1
i=0 Xi is the normalization factor, used in case when the distribution

table of X is not normalized. For example, the table in the time domain for X stores the
number of occurrences of each entry. If the distribution table of X is already normalized
then f = 1, as expected for the sum of all probabilities.

It is known that to distinguish a noise distribution X with the above bias ε(X) from
random using a hypothesis testing, one needs to collect O(1/ε(X)) samples from this
distribution [BJV04], [HG97].

Precision problems. Assume that we want to compute the bias of a noise variable
X, which is the sum (⊕ or �) of t other sub-noises X(1), . . . , X(t) using the convolution
formulae given in Equation (2). If the expected bias is ε(X) ≈ 2−p, then in practice we
would expect to have probability values around 2−n ± 2−p/2−n, in average, and then a
float data type should be able to maintain at least O(|p/2|) bits of precision for every
value of Xk in the time domain, conditioned that the float data type has the exponent
field (e.g., data types float and double in standard C).

For example, when we want to compute a bias ε > 2−512 (p = 512) then underlying
data types for float or integer values should hold at least 256 bits of precision. This
forces a program to utilize a large number arithmetic (e.g., BIGNUM, Quad, etc), which
requires larger RAM and HDD storage, and expensive computation time.

In the following, we show that the bias of X may be computed in the frequency
domain without having to switch to the time domain, and the required precision may
fit well into the standard type double in C/C++.

Theorem 1. For an n-bit random variable X with either normalized or non-normalized
probability distribution (X0, X1, ..., XN−1) and its spectrum (X̂0, X̂1, ..., X̂N−1), com-
puted either in DFT or WHT, the bias ε(X) can be computed in the frequency domain
as the sum of normalized squared magnitudes of all nonzero points, where the zero point,
X̂0, serves as the normalization factor, i.e.,

ε(X) =
1

|X̂0|2

N−1∑
i=1

|X̂i|2.

Proof. From Equation (1) we get that the normalization factor is f = |X̂0|. The SEI
expression can be written as ε(X) = N

∑N−1
i=0 (Xi/f − Ui)

2, where U is the uniform
distribution. According to Parseval’s theorem, we can derive ε(X) = N

∑N−1
i=0 |Xi/f −
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Ui|2 = N · 1
N

∑N−1
i=0 |F(X/f − U)i|2 =

∑N−1
i=0 |X̂i/f − Ûi|2. Since X̂0 = f, Û0 = 1, and

Ûk = 0 for k = 1, 2, . . . , N − 1, we get that ε(X) =
∑N−1
i=1 |X̂i/f |2, from which the proof

follows.

Theorem 1 means that the required precision of values in the frequency domain can
be as small as just a few bits, but the exponent value must be correct and preserved.
In C/C++ it is therefore good enough to store the spectrum of a distribution in type
double which has 52 bits of precision and the smallest exponent it can hold is 2−1023.
We can barely imagine cryptanalysis where the expected bias will be smaller than that
(and if it will, we can always change the factor X̂0 to a larger value).

A similar technique to compute the bias in the frequency domain has been given
in [BJV04], but the probability sequence in the time domain there is the probability
differences to the uniform distribution, while the probability sequence here is the original
probabilities of the variable X. By this, we could further directly compute the bias of
the sum (� or ⊕) of several sub-noises in the frequency domain by combining Theorem 1
and Equation (2): the bias of the �-sum of several sub-noises can be computed by

ε(X(1) � . . .�X(t)) =
1

f

N−1∑
k=1

|F(X(1))k|2 · . . . · |F(X(t))k|2 =
1

f

N−1∑
k=1

(
t∏
i=1

|F(X(i))k|

)2

,

where f = |F(X(1))0|2 · . . . · |F(X(t))0|2 =

(
t∏
i=1

|F(X(i))0|

)2

, (4)

and a similar result holds under the ⊕-sum for the WHT case. Note, if we convert each
spectrum value |F(X(i))k| to log2(|F(X(i))k|2) (and, similarly, for the WHT case), then
arithmetics in the frequency domain, such as in Equation (4), change from computing
products to computing sums. This can give additional speed-up, RAM and storage
savings. Later we will show how these results help to find a good approximation.

The main observation and motivation for developing further algorithms.
In linear cryptanalysis of stream ciphers where we have an FSM and an LFSR, the
approach is usually to first linearly approximate the FSM and get a noise variable X
of the linear approximation, then the LFSR contribution in the linear approximation
is canceled out by combining several (say t) time instances, such that only noise terms
remain. Thus, the final noise is the t-folded noise of X, written as t×X (i.e., the total
noise is the sum of t independent noise variables that follow the same distribution as
X), for which the bias is written ε(t ×X). Usually, an attacker tries to maximize this
value.

One important observation from Theorem 1 and Equation (4) is that if there is a
peak (maximum) value |X̂k| in the spectrum of X at some nonzero position k, then that
peak value will be the dominating contributor to the bias ε(t×X), as it will contribute
|X̂k|2t, while other points in the spectrum of X will have a much less (or even negligible)
contribution to the total bias as t grows.

This important observation also affects the case when trying to align the spectrum
points from several sub-noises with different distributions to achieve a large bias. We
should actually try to move the peak spectrum values of each sub-noise such that they
are aligned at some nonzero index k. Then the product of those peak values will result
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in a large total bias value. This motivates us to develop further algorithms to permute or
linearly mask variables and align them at an expected or desired spectrum location k in
the frequency domain. In the next sections we will give new findings and algorithms for
WHT and DFT cases, which can be helpful in searching for a good linear approximation
for common operations in the nonlinear part of a stream cipher, such as �,⊕, S-boxes,
etc.

3.2 Algorithms for WHT type approximations
Consider the expression

X = M (1)X(1) ⊕M (2)X(2) ⊕ . . .⊕M (t)X(t), (5)

where distribution tables of X(i)’s are known, and an attacker can freely select n × n
full-rank Boolean matricesM (i), i = 1 . . . t; we want to find a method to efficiently search
for the choices of M (i)’s to maximize the total bias ε(X). Below we first give a theorem
and then an algorithm to achieve this.

Theorem 2. Given an n-bit variable X and its distribution, for an n × n full-rank
Boolean matrix M we have

W(M ·X)k =W(X)k·M

Proof. Note that Pr{M · X = j} = Pr{X = M−1 · j}, then we have W(M · X)k =∑N−1
j=0 XM−1·j(−1)k·j

[i=M−1·j]
=

∑N−1
i=0 Xi(−1)k·M ·i =W(X)k·M .

Note that the left-side matrix multiplication M · X is switched to the right-side
matrix multiplication k ·M .

We want to maximize ε(X) in Equation (5) and we know that if spectrum values
of X(i)’s are aligned after linear masking of M (i)’s, we could achieve a large bias. By
“aligned” we mean that the largest spectrum magnitudes of each X(i) are at the same
location, and this holds for the second largest, the third largest spectrum magnitudes and
so on. But in practice, it is unlikely to achieve such a perfect alignment for all spectrum
points. Instead, we can try to align n largest spectrum magnitudes and thus getting a
decent bias. Algorithm 1 below can be used to achieve this based on Theorem 2.

Intuitively, the main trick in Algorithm 1 happens in the step 12. For example, let
us take the first row of K as the integer k, and the first row from Λ as the integer λ.
The integer λ will eventually be the first value in the sorted list, λ = λ1, where we have
|W(X(q))λ1

| → max. Following Theorem 2 we then get that the k’th spectrum point of
M (q)X(q), expressed as W(M (q)X(q))k = W(X(q))k·M(q) , now actually have the largest
spectrum value W(X(q))λ1 , since k ·M (q) = λ = λ1 by construction in that step 12.
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Algorithm 1 Find M (1), . . . ,M (t) that maximize spectrum points of X at n indices K
Input The distributions of X(i)’s (1 ≤ i ≤ t) and the index matrix K, which must be
an n × n full-rank Boolean matrix where each row Kj,∗ is a binary form of the j-th
spectrum index where we want the best alignment to happen.
Output The n× n full-rank Boolean matrices M (1),M (2), . . . ,M (t)

1: procedure WhtMatrixAlign(K,X(1), . . . , X(t))
2: for q = 1, . . . , t do
3: Compute W =W(X(q))
4: Let {λ1, λ2, . . . , λN−1} be all nonzero indices sorted as |Wλi | ≥ |Wλj |, i < j
5: Construct the n× n Boolean matrix Λ in a greedy approach as follows:
6: Set a variable l = 1 and an n× n Boolean matrix Λ = 0
7: for i = 0, 1, . . . , n− 1 do
8: do
9: Set the i-th row of Λ as Λi,∗ = λl

10: l := l + 1
11: while rank(Λ) 6= (i+ 1)

12: Then we want that K ·M (q) = Λ, from which we derive M (q) = K−1 · Λ.

As a comment, in Algorithm 1 we do not really have to sort and find all N−1 indices
of λ, it is most likely that the inner loop will use just a bit more than n values of the
first “best” λ’s. Thus, it is enough to only collect the best c · n indices, for some small
c = 2, 3, 4, out of which the full-rank matrix Λ can be constructed. We note that the
algorithm does not necessarily give the best overall bias, but it guarantees that at least
n points in the spectrum of X will have the largest possible peak values.

Linear approximation of S-boxes. S-boxes, which can be regarded as vectorial
Boolean functions, are widely used in both stream ciphers and block ciphers, serving as
the main nonlinear component to disrupt the linearity. Therefore, linear approximations
of S-boxes are widely studied in cryptanalysis. For one dimensional approximations of
an S-box, i.e., ax ⊕ bS(x) where a, b ∈ GF (2n) are linear masks, the common way
is to construct a linear approximation table (LAT), by trying all possibilities of a, b
values. The complexity is O(22n), which is affordable for small S-boxes, e.g., 4-bit,
8-bit. WHT is usually employed to speed up the process. For multiple (vectorized)
linear approximations, i.e., Ax⊕BS(x), where A,B are n× n full-rank binary masking
matrices, testing every choice of A,B would be impossible, and the main task is rather
to find A,B such that the linear approximation would be highly biased. Some papers
investigated properties of multiple linear approximations, such as [HN12], [HCN19], but
there is not much research on how a linear masking in the time domain would affect the
spectrum points in the frequency domain, and how to explore good linear maskings to
achieve a highly biased approximation. Below we give some new results in these aspects.

Let S(x) be an S-box that maps ZN → ZN , and x ∈ ZN , N = 2n. For the sake of
notation in this section the expression of the kind W(F (x)) means the WHT over the
distribution table that is constructed through the function F (x) : ZN → ZN by running
through all values of x.

For an n-bit S-box S(x) and an n-bit integer k, let us introduce the k-th binary-valued
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(i.e., ±1/N) function, associated with S(x), as follows

B
[k]
{S(x)} = 1/N · (−1)k·S(x), for x = 0, 1, . . . , N − 1,

where k ·S(x) is the scalar product of two binary vectors, i.e., k ·S(x) =
⊕n−1

i=0 ki ·S(x)i,
and 1/N is the normalization factor. Such a combination (without the normalization
factor 1/N) is called a component of the S-box, and for a well-chosen S-box, every
component should have good cryptographic properties. We can derive the following
results.

Theorem 3. For a given S-box S(x) and a full-rank Boolean matrix Q we have

W(S(x)⊕Q · x)k =W(B
[k]
{S(x)})k·Q.

Proof. Let X be a non-normalized noise distribution of the expression (S(x) ⊕ Q · x),
where every Xj is the number of different values of x for which j = S(x)⊕Q · x. Then
we have:

W(S(x)⊕Q·x)k =
1

N

N−1∑
j=0

Xj ·(−1)k·j =
1

N

N−1∑
x=0

(−1)k·(S(x)⊕Q·x) =

N−1∑
x=0

B
[k]
{S(x)}·(−1)k·Q·x,

from which the result follows, since the last term is exactly W(B
[k]
{S(x)})k·Q.

Theorem 3 can now be used to derive a matrix Q such that at least n points in the
noise spectrum, where the noise variable is X = S(x) ⊕ Q · x, will have peak values,
thus, making the total bias ε(X) large. Basically, we first search for the > n best one-
dimensional linear masks and then we build a matrix Q that contains these best peak
values in the spectrum, see Algorithm 2 for details.

In Algorithm 2, the choice of the parameter c should be such that we would not
need to generate final rows of K and Λ randomly. Alternatively, one can also modify
the algorithm as follows: when a new triple is added to Φ, we run the greedy algorithm
and flag records in Φ that are used to construct K and Λ. After that, the first worst
triple in Φ (starting from the end of Φ) that was not flagged is removed if the size of Φ
reaches the limit.

The algorithm does not guarantee to get the maximum possible overall bias, but it
guarantees that at least the maximum possible peak value will be present in the noise
spectrum, which would allow to get a fairly large bias in the end. The complexity is
O(N2 logN), but in practice there are usually other sub-noises that depend solely on
k and λ, which can be used to select a subset of “promising” k and λ values for actual
probing of the total noise spectrum, as it will be shown later for the ZUC-256 case.

Other useful formulae on spectral analysis of S-boxes can be derived in Corollary 1,
based on Theorem 2 and Theorem 3.

Corollary 1. LetM,P,Q be n×n full-rank Boolean matrices, and let S(x) be a bijective
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Algorithm 2 Find Q that maximizes n spectrum points of S(x)⊕Q · x
Input The n-bit S-box S(x)
Output The n× n full-rank Boolean matrix Q
1: procedure WhtSBoxApproximation(S(x))
2: Let Φ be the sorted list of maximum c · n (for some small c ≈ 4) best triples

(k, λ, ω) sorted by the magnitude of ω, where k is the index of the binary-valued
function of the S-box, λ denotes the index of the spectrum points and ω is the
corresponding spectrum value. If the list is full and we want to add a new triple
then the last (worst) list entry is removed.

3: for k = 1, . . . , N − 1 do
4: Compute W =W(B

[k]
{S(x)}), where B

[k]
{S(x)} = 1/N · (−1)k·S(x)

5: for λ = 1, . . . , N − 1 do
6: Consider the triple (k, λ, ω = |Wλ|). If ω is larger than that in the worst

triple of Φ (with the smallest ω), then add (k, λ, ω = |Wλ|) to the list.
7: From the list Φ use the greedy approach to construct the n×n full-rank Boolean

matrices K and Λ, similar to how it was done in Algorithm 1.
8: Set l = 0
9: for i = 0, 1, . . . , n− 1 do

10: do
11: if l = |Φ| then
12: generate the remaining rows of K and Λ randomly
13: exit from the for-loop
14: Set the i-th row ofK as the k value of the l-th entry of Φ, i.e.,Ki,∗ = Φ(l).k
15: Set the i-th row of Λ as the λ value of the l-th entry of Φ, i.e., Λi,∗ = Φ(l).λ
16: l := l + 1
17: while rank(K) 6= (i+ 1) or rank(Λ) 6= (i+ 1)

18: Set Q = K−1Λ.

S-box over n-bit integers. Then

W(MS(Px)⊕Qx)k =W(M(S(x)⊕M−1QP−1x))k =W(S(x)⊕M−1QP−1x)k·M

(6)

=W(B
[k·M ]
{S(x)})k·M ·M−1QP−1 =W(B

[k·M ]
{S(x)})k·QP−1 , (7)

W(MS(Px)⊕Qx)k =W(Mx⊕QP−1S−1(x))k =W(B
[k·QP−1]
{S−1(x)})k·M , (8)

W(M(S(Px)⊕Qx))k =W(S(x)⊕QP−1x)k·M =W(B
[k·M ]
{S(x)})k·MQP−1 , (9)

W(B
[k·P ]
{S(x)})k·Q =W(B

[k·Q]
{S−1(x)})k·P . (10)

Theorem 4 (Linear transformation of S-boxes). Let us consider the following k-th
binary-valued function at its spectrum point λ = k · M , for some full-rank Boolean
matrix M , where the original S-box S(x) is linearly transformed with other full-rank
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Boolean matrices R and Q,

W(B
[k]
{RS(Qx)})λ. (11)

We want to find a set of the best m triples {(k, λ, ε)} sorted by the maximum bias
ε. Assume we have a fast method to find best m triples {(k′, λ′, ε)} for W(Bk

′

{S(x)})λ′

instead, then that set can be converted to {(k, λ, ε)} as follows:

{(k, λ, ε)} = {(k′ ·R−1, λ′ ·Q, ε)}.

Proof. W(B
[k]
{RS(Qx)})λ =W(RS(Qx)⊕Mx)k =W(RS(x)⊕MQ−1x)k =

=W(B
[k·R]
{S(x)})k·MQ−1 , and the result follows.

Theorem 5 (S-box as a disjoint combination). Let us consider an n-bit S-box con-
structed from t smaller n1, n2, . . . , nt-bit S-boxes S1(x1), S2(x2), . . . , St(xt), such that

S(x) =
(
S1(x1) S2(x2) . . . St(xt)

)T
,

where the n-bit input integer x is split into t ni-bit (n =
∑
i ni) disjoint sub-values as

x = (x1|x2| . . . |xt). Let us also split indices k, λ in a similar way as k = (k1|k2| . . . |kt)
and λ = (λ1|λ2| . . . |λt). Then we have the following result

W(B
[k]
{S(x)})λ =

t∏
i=1

W(B
[ki]
{Si(x)})λi .

Proof. Since all xi’s are independent from each other, the combined bias at any point λ
is the product of sub-biases at corresponding λi’s for each ki-th binary-valued function
of the corresponding S-box Si(x), which can be proved by below.

t∏
i=1

W(B
[ki]
{Si(x)})λi = (

1

N1

N1−1∑
x1=0

(−1)k1S1(x1)⊕λ1x1) · ... · ( 1

Nt

Nt−1∑
xt=0

(−1)ktSt(xt)⊕λtxt)

=
1

N1N2...Nt

N1−1∑
x1=0

...

Nt−1∑
xt=0

(−1)k1S1(x1)⊕λ1x1⊕...⊕ktSt(xt)⊕λtxt

=
1

N

N−1∑
x=0

(−1)kS(x)⊕λx =W(B
[k]
{S(x)})λ.

Theorem 4 and Theorem 5 pave the way to compute the bias of any pair (k, λ) in
Equation (11) efficiently in time O(t), without even having to construct a large n-bit
distribution of the S-box approximation (e.g., X = RS(Qx) ⊕Mx), given that S(x) is
constructed from smaller S-boxes, which is a common case in cipher designs. E.g., we
can simply precompute the tables of {(ki, λi, ε)} exhaustively for smaller S-boxes, then
apply the theorems to compute the bias for a large composite S-box for any pair (k, λ).
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For example, let X = RS(Qx)⊕Mx be the noise variable as the result of an approxi-
mation of a large n-bit composite S-box, RS(Qx), where R and Q are some known n×n
Boolean matrices, and Mx is the approximation of that large S-box with a selectable
(or given) n×n full-rank Boolean matrix M . Then, if we want to get the value of some
spectrum point k of X we do: compute λ = k ·M (Theorem 3), then convert the indices
as k′ = k ·R and λ′ = λ ·Q−1 (Theorem 4), and split them into t n1, . . . , nt-bit integers
as k′ = (k′1, . . . , k

′
t) and λ′ = (λ′1, . . . , λ

′
t) (Theorem 5). Then, the desired spectrum

value at the index k is derived as

W(X)k =

t∏
i=1

W(B
[k′i]

{Si(x)})λ′i .

Alongside, this also leads to an efficient and fast algorithm to search for the best set
of triples {(k, λ, ε)} in Equation (11), by “reverting” the procedure. These findings have
a direct application in the upcoming cryptanalysis of ZUC-256.

General approach of spectral cryptanalysis using WHT. With the tools and
methods developed in this subsection, we can now propose a general framework for
finding the best approximation, based on probing spectral indices.

1. Derive the total noise expression based on basic approximations and S-box ap-
proximations. The noise expression may involve ⊕ operations, Boolean matrices
multiplications, where some of the matrices can be selected by the attacker.

2. Derive the expression for the k-th spectrum point of the total noise, using the
formulae that we found earlier.

3. Convert expressions such as k ·M , where the matrix M is selectable, to be some
parameter λ. If there are more selectable matrices then more λ’s can be used.

4. Probe different tuples (k, λ, . . .) to find the maximum peak value in the spectrum
for the total noise. The search space for k’s and λ’s may be shrunk by spectrum
values of basic approximations.

5. Convert the best found tuple into the selected matrices, and compute the final
multidimensional bias using the constructed matrices.

3.3 Algorithms for DFT type approximations
In this section we provide a few ideas on spectral analysis for DFT type convolutions.
Although these methods were not used in the presented attack on ZUC-256, they can
be quite helpful in linear cryptanalysis for some other ciphers.

Consider the expression

X = c1X
(1) � c2X

(2) � . . .� ctX
(t) mod N, (12)

where, again, N = 2n and the attacker can choose the constants ci’s, which must be
odd, and X(i)’s are independent random variables. We will propose the algorithm to
find the best combination of the constants ci’s such that the total noise X will have the
best peak spectrum value.
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The theorem below would help to decide how to rearrange the spectrum points in
the frequency domain to achieve a larger total bias, by multiplication with a constant
in the time domain, which is a linear masking.

Theorem 6. For a given distribution of X and an odd constant c we have

F(c ·X)k = F(X)k·c mod N ,

for any spectrum index k = 0, 1, . . . , N − 1.

Proof. F(c·X)k =
∑N−1
n=0 xc−1n·

(
e−i2π/N

)kn
=
∑N−1
n=0 xn·

(
e−i2π/N

)k·c·n
= F(X)k·c mod N .

Corollary 2. Any spectrum value at index k = 2m(1+2q), for some m = 0 . . . n−1, q =
0 . . . 2n−m−1−1, can only be relocated to another index k′ of the form k′ = 2m(1 + 2q′),
for some q′ = 0 . . . 2n−m−1 − 1.

Proof. The constant c is odd and c = 1 + 2r, for some r. If F(c ·X)k′ = F(X)k, we get
that c · k′ ≡ k mod N , and then k′ ≡ 2m(1 + 2q) · (1 + 2r)−1 mod N .

Corollary 3. Any spectrum value at index k = 2m(1+2q), for some m = 0 . . . n−1, q =
0 . . . 2n−m−1 − 1, can be relocated to the index 2m in the spectrum by applying the
constant c = 1 + 2q.

Proof. F(c ·X)2m = F((1 + 2q) ·X)2m = F(X)2m(1+2q) = F(X)k.

The results above can be used to solve the problem of finding the constants ci in
Equation (12) such that the spectrum of X would contain the maximum possible peak
value.

Algorithm 3 Find ci’s that maximize the peak spectrum point of X in Equation (12)

Input The distributions of X(i), for i = 1, 2, . . . , t.
Output The coefficients ci, for i = 1, 2, . . . , t.
1: procedure DftConstantsAlign(X(1), X(2), . . . , X(t))
2: Initialize a t× n matrix Ψ with 0, each cell of which contains the pair (c, ω).
3: for i = 1, . . . , t do
4: Compute W = F(X(i))
5: for m = 0, . . . , n− 1 and q = 0, . . . , 2n−m−1 − 1 do
6: Set ω = |W2m(1+2q)|
7: if ω ≥ Ψi,m.ω (i.e., the ω value of the entry in the i-th row and m-th

column in Ψ) then set Ψi,m = (1 + 2q, ω)

8: Set m′ = 0 and ω′ = 0
9: for m = 0, . . . , n− 1 do

10: Compute ω =
∏t
i=1 Ψi,m.ω

11: if ω > ω′ then set m′ = m and ω′ = ω
12: for i = 1, . . . , t do
13: Assign ci = Ψi,m′ .c (i.e., the c value of the entry in the i-th row and m′-th

column in Ψ)
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The complexity of the above algorithm is O(t ·N logN).

4 Linear cryptanalysis of ZUC-256

In this section, we perform linear cryptanalysis on ZUC-256. Normally, the basic idea
of linear cryptanalysis is to approximate nonlinear operations as linear ones and further
to find some linear relationships between the generated keystream symbols or between
keystream symbols and the LFSR state words, and thus respectively resulting into a
distinguishing attack and correlation attack. In a distinguishing attack over a binary
or an extension field over GF (2), the common way is to find LFSR states at several
time instances (usually 3, 4 or 5) which are XOR-ed to be zero such that the LFSR
contribution in the linear approximation is canceled out while only noise terms remain
which would be biased. This common way, however, does not apply well on ZUC, since
the LFSR in ZUC is defined over a prime field GF (231 − 1) which is different to the
extension field GF (232) in the function F .

In this section, we describe a more general approach where the expression that we
use to cancel out the LFSR contribution is directly included in the full noise expres-
sion, which effectively reduces the total noise, i.e., the final bias is larger. This general
approach may be used in cryptanalysis of any other stream cipher where an LFSR is
involved.

Below we first give our linear approximation of the full ZUC-256, including the LFSR
state cancellation process. Then we describe in details how we employ the spectral tools
given in Section 3 and a technique we call “bit-slicing” to efficiently compute the bias.
Finally, we use the derived linear approximation to launch a distinguishing attack on
ZUC-256.

4.1 Linear approximation

Any LFSR’s 31-bit word s(t)
x at a time instance t and a cell index x can be expressed

as s(t+x)
0 , for 0 ≤ t and 0 ≤ x ≤ 15. Thus, in this section, we will omit the lower index

and refer to an LFSR’s word by using the time instance only, i.e., s(t+x). We then try
to find a four-tuple of time instances t1, t2, t3, t4 such that,

s(t1) + s(t2) = s(t3) + s(t4) mod p (where p = 231 − 1). (13)

Note that for any time offset δ, Equation (13) also holds since the LFSR update is a
linear transformation in the ring 1 + Zp; i.e., if Equation (13) is true then the following
is also true:

∀δ : s(t1+δ) + s(t2+δ) = s(t3+δ) + s(t4+δ) mod p.

At each time instance ti, we define a 32-bit variable X(ti) which is the concatenation
of the low and high 16-bit parts of s(ti+a) and s(ti+b), for some constants 0 ≤ a, b ≤
15, a 6= b, following the description of the BR layer in ZUC-256, i.e., X(ti) is one of
X0(ti) = (s

(ti+15)
H ||s(ti+14)

L ), X1(ti) = (s
(ti+11)
L ||s(ti+9)

H ), X2(ti) = (s
(ti+7)
L ||s(ti+5)

H ), or
X3(ti) = (s

(ti+2)
L ||s(ti)

H ). Then one can derive the following relation for X(ti)’s according
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to Equation (13):

X(t1) �16 X
(t2) = X(t3) �16 X

(t4) �16 C
(t1), (14)

where �16 is the 16-bit arithmetic addition, i.e., addition modulo 216, of the low and
high 16-bit halves of X(ti)’s in parallel. Here C(t1) = (C

(t1)
H ||C(t1)

L ) is a 32-bit random
carry variable from the approximation of the modulo p, and it can only take the values
C

(t1)
L , C

(t1)
H ∈ {0,−1,+1} mod 216, where the values in the low and high parts of C(t1)

are independent. As an example, the approximation in Equation (14) for X(ti) = X1(ti)

is then written as:(
s

(t1+9)
H

s
(t1+11)
L

)
︸ ︷︷ ︸

X1(t1)

�16

(
s

(t2+9)
H

s
(t2+11)
L

)
︸ ︷︷ ︸

X1(t2)

=

(
s

(t3+9)
H

s
(t3+11)
L

)
︸ ︷︷ ︸

X1(t3)

�16

(
s

(t4+9)
H

s
(t4+11)
L

)
︸ ︷︷ ︸

X1(t4)

�16

(
C1

(t1)
L

C1
(t1)
H

)
︸ ︷︷ ︸
C1(t1)

.

Next, we would like to derive the distribution of the carries C(t1)
L , C

(t1)
H , and to achieve

that, we first give a theorem.

Theorem 7. Let a modulus p be of the form p = 2n − 1, for an integer n > 1. Assume
a1, a2, a3, a4 ∈ 1 + Zp, such that a1 + a2 = a3 + a4 mod p. For integers s and t with
0 ≤ s < n and 1 ≤ t ≤ (n− s), we extract “middle” t-bit values with the bit-offset s as
A

(s)
i = bai/2sc mod 2t, for i = 1, 2, 3, 4. Then we can get the following approximation

A
(s)
1 �t A

(s)
2 = A

(s)
3 �t A

(s)
4 �t Q

(s) mod 2t, (15)

where the carry value Q(s) ∈ {0,−1,+1} 1 and it has the distribution Pr{Q(s) = 0} =
(2p2 + 1)/3p2, and Pr{Q(s) = −1} = Pr{Q(s) = +1} = (p2 − 1)/6p2.

Proof. The proof is given in Appendix 1.

Corollary 4. The distribution for C(t1)(note here t1 denotes the time instance) in
Equation (14) is as follows:

Pr{C(t1)
L = 0} = Pr{C(t1)

H = 0} ≈ 2/3,

P r{C(t1)
L = −1} = Pr{C(t1)

H = −1} ≈ 1/6,

P r{C(t1)
L = +1} = Pr{C(t1)

H = +1} ≈ 1/6.

Proof. Given the relation in Equation (14), we basically need to consider these two 16-bit
cases independently (since a 6= b): s(t1+a)

L �16s
(t2+a)
L = s

(t3+a)
L �16s

(t4+a)
L �16E

(t1+a)
L and

s
(t1+b)
H �16s

(t2+b)
H = s

(t3+b)
H �16s

(t4+b)
H �16E

(t1+b)
H , for some constants 0 ≤ a, b ≤ 15, a 6= b,

where the carry C(t1) is either (E
(t1+a)
L ||E(t1+b)

H ) or (E
(t1+b)
H ||E(t1+a)

L ).
The distributions of E(t1+a)

L and E(t1+b)
H can be respectively proved through Theo-

rem 7 by setting n = 31, s = 0, t = 16 and n = 31, s = 15, t = 16. The probability values
can be approximated as 2/3 and 1/6 with an error < 2−63.

1In a special case when t = 1 bit the values of Q(s) are {0, 1}, since (−1) ≡ 1 mod 2; the probabilities
of Pr{Q(s) = −1} and Pr{Q(s) = +1} are then combined into a single case when Q(s) = 1.
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Next, we list the expressions for generating keystream symbols at time instances t
and t+ 1 as follows,

Z(t) = [(T2(t) ⊕X2(t))� ((T1(t) �X1(t))⊕X0(t))]⊕X3(t),

Z(t+1) = [SL2(T2′(t))� (SL1(T1′(t))⊕X0(t+1))]⊕X3(t+1),

where � is the arithmetic subtraction modulo 232 and (T1′, T2′) = (T1, T2)≪ 16 is a
cyclic shift 16 bits to the left. Then we give the full approximation of ZUC-256 based
on Equation (13) and its approximation in Equation (14) as follows:

Mσ[Z(t1) ⊕ Z(t2) ⊕ Z(t3) ⊕ Z(t4)]⊕ [Z(t1+1) ⊕ Z(t2+1) ⊕ Z(t3+1) ⊕ Z(t4+1)]

= MσN1(t1) ⊕
⊕

t∈{t1,...,t4}

M(σT1(t) ⊕ σT2(t)︸ ︷︷ ︸
=T1′(t)⊕T2′(t)

)⊕N2(t1)

⊕
⊕

t∈{t1,...,t4}

(SL1(T1′(t))⊕ SL2(T2′(t)))

= MσN1(t1) ⊕N2(t1)

⊕
⊕

t∈{t1,...,t4}

[
M · T1′(t) ⊕ SL1(T1′(t))⊕M · T2′(t) ⊕ SL2(T2′(t))

]
,

where σ is the swap of the high and low 16 bits of a 32-bit argument, and M is some
32 × 32 full-rank Boolean matrix that we can choose, which serves as a linear masking
matrix. The expressions for the noiseN1(t1) (we further splitN1(t1) = N1a(t1)⊕N1b(t1))
and noise N2(t1) are as follows:

N1a(t1) = [((T2(t1) ⊕X2(t1))� ((T1(t1) �X1(t1))⊕X0(t1)))] (16)

⊕ [((T2(t2) ⊕X2(t2))� ((T1(t2) �X1(t2))⊕X0(t2)))]

⊕ [((T2(t3) ⊕X2(t3))� ((T1(t3) �X1(t3))⊕X0(t3)))]

⊕ [((T2(t4) ⊕ (X2(t1) �16 X2(t2) �16 X2(t3) �16 C2(t1)))� ((T1(t4)

� (X1(t1) �16 X1(t2) �16 X1(t3) �16 C1(t1)))

⊕ (X0(t1) �16 X0(t2) �16 X0(t3) �16 C0(t1))))]⊕
⊕

t∈{t1,...,t4}

(T1(t) ⊕ T2(t)),

N1b(t1) = X3(t1) ⊕X3(t2) ⊕X3(t3) ⊕ (X3(t1) �16 X3(t2) �16 X3(t3) �16 C3(t1)),

and

N2(t1) = [[(SL2(T2′(t1))� (SL1(T1′(t1))⊕X0(t1+1)))⊕X3(t1+1)]

⊕ [(SL2(T2′(t2))� (SL1(T1′(t2))⊕X0(t2+1)))⊕X3(t2+1)]

⊕ [(SL2(T2′(t3))� (SL1(T1′(t3))⊕X0(t3+1)))⊕X3(t3+1)]

⊕ [(SL2(T2′(t4))� (SL1(T1′(t4))⊕ (X0(t1+1) �16 X0(t2+1)

�16 X0(t3+1) �16 C0(t1+1))))⊕ (X3(t1+1) �16 X3(t2+1) �16 X3(t3+1)
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�16 C3(t1+1))]]⊕
⊕

t∈{t1,...,t4}

(SL1(T1′(t))⊕ SL2(T2′(t))).

In our analysis we consider noise variables N1(t1) and N2(t1) as independent. By
this assumption the attacker actually looses some advantage since there is a dependency
between, for example, T1(t1), T2(t1) in N1(t1) and SL1(T1′(t1)), SL2(T2′(t1)) in N2(t1).
The attack can be stronger if we could take into account these dependencies, since then
there will be more information in these noise distributions. However, it is practically
hard to compute the bias in that scenario.

Next we want to compute the distribution and the bias of the noise terms. However,
as one can note, there are many variables involved in each sub-noise expression. For
example, the sub-noise N1a(t1) involves 17 32-bit variables, and 3 C-carries. In order to
compute the distribution of N1a(t1), a naive loop over all combinations of the involved
variables would imply the complexity O(93 · 217·32), which is computationally infeasible.

In the next subsections we make a recap of the bit-slicing technique and show how
we adapt it to our case to compute the distributions of the above noise terms.

4.2 Recap on the bit-slicing technique from [MJ05]
Let an n-bit noise variable N be expressed in terms of several n-bit uniformly distributed
independent variables, using any combination of bitwise Boolean functions (AND, OR,
XOR, etc.) and arithmetical addition � and subtraction � modulo 2n. The distribution
of such a noise expression, referred to as a pseudo-linear function in [MJ05], can be
efficiently derived through the so-called “bit-slicing” technique in complexity O(k · 2n +
k2n · 2n/2), for some (usually small) k.

The general idea behind the technique is that if we know the set of distributions for
(n−1)-bit truncated inputs for each possible outcome vector of the sub-carries’ values for
corresponding arithmetical sub-expressions, then we can easily extend these distributions
to the n-bit truncated distributions with a new vector of output sub-carries’ values.
Then, the algorithm may be viewed as a Markov chain where the nodes are viewed as a
vector of probabilities for each combination of sub-carries, and some transition matrices
are used to go from the (n− 1)-th state to the n-th state.

Example. Let us explain the technique on a small example. Let n = 32 bits and
the noise N is expressed in terms of random 32-bit variables A,B,C:

N = [(A�B � C)︸ ︷︷ ︸
inner ADD-1

⊕ (A� C)︸ ︷︷ ︸
inner ADD-2

]�B

︸ ︷︷ ︸
outer ADD-3

. (17)

For each n-bit value X with (xn−1 . . . x1x0) as its binary form, we will compute the
number of combinations of A,B,C such that the value of N is equal to X.

Carries and the state. Here we have 3 arithmetical parts: two inner and one outer.
We express the carries using a vector denoted (c1, c2, c3), where c1 ∈ {−1, 0,+1}, c2 ∈
{0, 1}, c3 ∈ {−1, 0}. At each bit position i, 0 ≤ i ≤ n− 1, we would have the input carry
vector coming from the first i − 1 bits, (c1in, c2in, c3in), and the output carry vector
(c1out, c2out, c3out) going to the (i+ 1)-th bit position. Introduce a mapping function τ
as: τ(c1, c2, c3) = ((c1 + 1) · 2 + c2) · 2 + (c3 + 1) ∈ [0 . . . 11], that maps each value of the
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carry vector to a unique integer index. Thus, at every step i, we will have a column vector
Vi of length k = 12, each entry of which corresponds to a certain combination of output
carries (c1out, c2out, c3out), and the values are respectively the number of combinations
of the i-bit truncated variables A,B,C such that the first i bits of N are equal to the
first i bits of X. The initial vector is V0 = (0, . . . 0, 1( in the index τ(c1 = 0, c2 = 0, c3 =
0)), 0, . . . , 0)T.

Transition matrices. We will construct two k×k (12×12) transition matrices,M0

and M1, associated with every bit position i for the i-th bit value of X, xi, being either
0 or 1, such that the vector Vi+1 is derived by Vi+1 = Mxi · Vi. I.e., when the i-th bit of
X, xi, is 0, we apply M0, otherwise M1. These two matrices are constructed as follows:
initialize M0 and M1 with zeroes; loop through all possible choices of the i-th bits of
A,B,C ∈ {0, 1}3 and all possible values of (c1in, c2in, c3in); then for each combination
we compute the resulting bit r ∈ {0, 1} by evaluating the noise expression, and the vector
of output carries (c1out, c2out, c3out); we then increase the corresponding matrix cell by
1 as ++Mr[τ(c1out, c2out, c3out)][τ(c1in, c2in, c3in)] at the same time. Note, the inner
output carries c1out and c2out should not be summed up in the outer output carry c3out,
while only the resulting 1-bit values of inner sums should go to the outer expression.

In Appendix 2 we give the code in C for computing the transition matrices M0 and
M1 for the exampled noise expression given in Equation (17).

The general formulae can now be derived as follows:

Pr{N = (xn−1 . . . x0)} =
1

2t·n
· (1, 1, . . . , 1) ·

n−1∏
i=n/2

Mxi︸ ︷︷ ︸
High part, H[(xn−1...xn/2)]

·
n/2−1∏
i=0

Mxi · V0︸ ︷︷ ︸
Low part, L[(xn/2−1...x0)]

, (18)

where t is the number of involved random variables, in our example t = 3, and 1/2t·n is
the normalization factor for the distribution. The left-side row vector (1, 1, . . . , 1) due
to the last carries are truncated by the modulo 2n operation and thus all combinations
for all carries’ outcomes should be summed up to the result.

Precomputed vectors. We intentionally split Equation (18) into two parts, since
it shows that the computation of Pr{N = X} for all values of X ∈ {0, 1, . . . , 2n−1} can
be accelerated by precomputing two tables of the middle sub-vectors in Equation (18)
for all possible values of the high (H[(xn−1 . . . xn/2)]) and low (L[(xn/2−1 . . . x0)]) halves
of X, independently. The whole precomputation takes time O(n · 2n/2 · k2). Then the
probability Pr{N = X} is a simple scalar product, computed in time O(k) as:

Pr{N = (xn−1 . . . x0)} =
1

2t·n
·H[(xn−1 . . . xn/2)] · L[(xn/2−1 . . . x0)].

4.3 Bit-slicing technique adaptation to compute N1a, N1b and
N2

In this section we will describe in more details how we adapt the bit-slicing technique in
order to compute the “heaviest” noise N1a. The remaining noises are computationally
less demanding and can be derived with similar adaptation techniques.
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A direct application of the bit-slicing technique to compute N1a, given in Equa-
tion (16), is complicated due to: (1) we have �16 adders that block some of the sub-
carries to propagate between the 15-th and 16-th bits; and (2) we have random C-carries
that can have 3 values at the 0-th and 16-th bits.

The first problem is resolved by introducing two special transition matrices M (15)
r

(for r = 0, 1) which are only applied to the bit 15. In these matrices, output sub-carries
in all involved �16 would not propagate to the next bit 16 and are forced to be 0.

The second problem is solved by introducing another two special transition ma-
trices M (0)

r (for r = 0, 1) that are only applied to the bits 0 and 16. These special
matrices take into account C-values that are added to the 0-th and 16-th bits. The im-
portant fact here is that all input sub-carries at bit positions where C’s are involved are
always 0, and this makes it possible to keep the sub-carry values in the expressions like
(X3(t1)�16X3(t2)�16X3(t3)�16C3(t1)) in the smaller range {−1, 0,+1}, since a C-value
∈ {−1, 0,+1} only appears at the first bit under the 16-bit addition/subtraction where
input carries are zeroes, and in the next bits C = 0. Thus, to constructM (0)

r ’s, we do the
following: loop through the 1-bit random variables involved in the noise expression; loop
through sub-carries that propagate over 32 bits; do not loop through the carries that
are involved in 16-bit propagations; and loop through C ∈ {−1, 0,+1} values. Then,
instead of increasing the corresponding entry of M (0)

r by 1, we actually add the product
of the probabilities of all involved C-values.

Transition matrices for the remaining bits (except the bits 0, 15, 16) are constructed
as usual, but C-values are all 0.

Additional adaptation is done in the part of L/H precomputed tables of vectors.
We know that the low and high precomputations meet in the middle at the bits 15 and
16, where all sub-carries in �16 adders vanish to 0. This makes it possible to shrink
the size of the vectors and only leave the states with sub-carries that propagate over all
32-bits of the noise expression.

Complexity. For N1a we have the following situation: we have 17 32-bit variables
(T1 and T2 in 4 time instances and X0, X1, X2 in 3 time instances); 8 carries that
propagate over 32 bits having binary values either {0,+1} or {−1, 0}; 3 carries that
propagate over 16 bits in the range {−1, 0,+1}. Thus we get the dimension of all
involved transition matrices by k = 28 · 33, i.e., the matrices are of size 212.8 × 212.8. If
each entry of a matrix is of C-type double (8 bytes), then one transition matrix occupies
around 365Mb of RAM.

The precomputation phase to compute low (L) and high (H) tables of vectors has
time complexity around O(22·12.8 · 32 · 216) = O(246.6). The size of the stored L/H
vectors was dramatically reduced from the vector lengths k = 212.8 down to the lengths
k′ = 28, since there are only 8 binary-valued sub-carries that propagate between the bits
15 and 16, while other carries were “truncated” by applying the matrix M (15)

r .
The total time complexity to construct the noise N1a is, therefore, O(246.6 +232 ·28).

We compute N1b and N2 with a similar adaptation of the bit-slicing technique, but the
time complexity there is a lot smaller.
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4.4 Spectral analysis to find the matrix M

With the methods presented in Section 3, the spectral analysis becomes rather simple
for the ZUC-256 case, and we below give necessary expressions to perform that. Let us
recall that the expression for the total noise is:

N
(t1)
tot = MσN1(t1) ⊕N2(t1)

⊕
⊕

t∈{t1,...,t4}

[
SL1(T1′(t))⊕M · T1′(t) ⊕ SL2(T2′(t))⊕M · T2′(t)

]
.

The spectrum expression at some point k can thus be derived as follows.

W(N
(t1)
tot )k =W(MσN1)k · W(N2)k · W(SL1(x)⊕Mx)4

k · W(SL2(x)⊕Mx)4
k

=W(σN1)λ · W(N2)k · W(B
[k]
{SL1(x)})

4
λ · W(B

[k]
{SL2(x)})

4
λ,

where λ = k ·M .
Our strategy for the spectral analysis was as follows. We selected≈ 224.78 “promising”

spectrum points for λ where |W(σN1)λ|2 > 2−150, and also selected ≈ 218 “promising”
spectrum points for k where |W(N2)k|2 > 2−80. Then we tried all combinations of the
selected (k, λ) and computed the total spectrum value. For the computation of spectrum
points for S-boxes (e.g., for W(B

[k]
{SL1(x)})

4
λ), we utilized Theorem 4 and Theorem 5, so

that we did not have to construct the full 32-bit distributions of the S-box approxima-
tions, but exploring a spectrum point in time O(1). The total complexity of the analysis
is ≈ O(241).

We then collected the best pairs {(k, λ)} in terms of the largest peak spectrum values,
and constructed two full-rank 32× 32 Boolean matrices K and Λ from the indices (k, λ)
with the greedy approach given in Algorithm 2. Then the matrix M was derived as
M = K−1 · Λ.

Results. We only used seven pairs from the result of the spectrum analysis (since
many other pairs did not give us full-rank matrices K and Λ), and the remaining 25
rows of K,Λ were randomly generated. Thereafter, we tested that matrix M in the full
approximation and received the total bias:

ε(N
(t1)
tot ) ≈ 2−236.380623.

The 32× 32 binary matrix M is given below as a vector of 32-bit integers, where the
bit Mi,j , for 0 ≤ i, j ≤ 31, is extracted as Mi,j = bM[i]/2jc mod 2, and in standard C
it is then Mi,j =(M[i]>>j)&1.

4.5 A distinguishing attack on ZUC-256
In a distinguishing attack, an adversary aims to find some linear relationships between
the generated keystream symbols by canceling the LFSR contribution in the linear ap-
proximation, thus being able to distinguish the keystream sequence from random.

In Section 4.1, we have shown that if we could find four time instances t1, t2, t3, t4 such
that s(t1) + s(t2) = s(t3) + s(t4) mod p, we can build the keystream samples Mσ[Z(t1)⊕
Z(t2)⊕Z(t3)⊕Z(t4)]⊕ [Z(t1+1)⊕Z(t3+1)⊕Z(t3+1)⊕Z(t4+1)] to be biased with a bias of
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2−236.38. By collecting around O(2236.38) such samples, we could distinguish this sample
sequence from random, thus resulting in a distinguishing attack.

The remaining problem is how we can find such a time instance tuple t1, t2, t3, t4
satisfying the requirement, i.e., s(t1) + s(t2) = s(t3) + s(t4) mod p. This problem is
equivalent to finding a weight 4 multiple of the feedback polynomial, for which there
already exist a number of research results [LJ14][YJM19]. We use the algorithm in
[LJ14] to solve this problem. But here we should find a weight 4 multiple with two
coefficients being 1 and the other two being −1. Let us first figure out how far we
should run the cipher, i.e., the degree of the multiple, to find such a tuple. Let q be the
expected degree. If we consider all t ≤ q, we could create

(
q
3

)
different combinations of

s(t1) + s(t2) − s(t3) − s(t4) when we fix one time instance. Since there are 2496 possible
such combinations, we can expect that we need to go to the length such that

(
q
3

)
≈ 2496,

resulting in q ≈ 2167. We use the algorithm in [LJ14] to find the time instance tuple,
but note that at the last step, instead of keeping xi1 + xi2 + xi3 + xi4 = 0 mod P (x), we
should keep xi1 + xi2 − xi3 − xi4 = 0 mod P (x). The algorithm requires computational
complexity of q and similar storage. For our case, the complexity is 2167. The algorithm
to find the time instance tuple can be found in Appendix 3.

Thus we succeed to have a distinguishing attack on ZUC-256, for which we need to
run the cipher around 2236 iterations and collect 2236 samples.

5 Conclusions

In this paper, we give a number of spectral tools for linear cryptanalysis and further
apply them to ZUC-256 resulting in a distinguishing attack on ZUC-256 faster than
exhaustive key search.

We explored how a linear masking in the time domain would affect the spectrum
points in the frequency domain under some commonly used operations in cryptography,
such as �,⊕, and S-boxes, in both WHT and DFT types. We also gave a number of
results and algorithms about how to find a good linear masking in the time domain by
aligning the spectrum points in the frequency domain.

For the distinguishing attack, we first derive a linear approximation of the non-
linear part F and the transformation from GF (p) field in LFSR to GF (232) in F . We
then employ the spectral tools to find good linear maskings and adapt the bit-slicing
technique to efficiently compute the bias of the approximation. The linear approximation
is then used to launch a distinguishing attack by finding a weight 4 multiple of the
generating polynomial to cancel the contribution from the LFSR. The complexity of the
distinguishing attack is O(2236). It indicates that ZUC-256 does not provide a source
with full 256-bit entropy in the generated keystream, as would be expected from a 256-bit
key.

Acknowledgements

We would like to thank all reviewers for providing valuable comments to the manuscript.
This work was in part financially supported by the Swedish Foundation for Strategic
Research, grant RIT17-0005. The author Jing Yang is also supported by the scholarship

131



from the National Digital Switching System Engineering and Technological Research
Center, China.

References

[3GP18] 3GPP TSG-SA. Study on the support of 256-bit algorithms for 5G (release
16), November 2018. https://www.3gpp.org/ftp/tsg_sa/WG3_Security/
TSGS3_93_Spokane/Docs.

[BJV04] Thomas Baigneres, Pascal Junod, and Serge Vaudenay. How far can we go
beyond linear cryptanalysis? In International Conference on the Theory
and Application of Cryptology and Information Security, pages 432–450.
Springer, 2004.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory. John
Wiley & Sons, 2012.

[ETS11a] ETSI/SAGE. Specification of the 3GPP confidentiality and integrity algo-
rithms 128-EEA3 & 128-EIA3. document 2: ZUC specification, 2011.

[ETS11b] ETSI/SAGE. Specification of the 3GPP confidentiality and integrity algo-
rithms 128-EEA3 & 128-EIA3. document 4: Design and evaluation report,
2011.

[GDL13] Jie Guan, Lin Ding, and Shu-Kai Liu. Guess and determine attack on SNOW
3G and ZUC. Journal of Software, 6:1324–1333, 2013.

[HCN19] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional linear
cryptanalysis. Journal of Cryptology, 32(1):1–34, 2019.

[HG97] Helena Handschuh and Henri Gilbert. χ2 cryptanalysis of the SEAL encryp-
tion algorithm. In International Workshop on Fast Software Encryption,
pages 1–12. Springer, 1997.

[HN12] Miia Hermelin and Kaisa Nyberg. Multidimensional linear distinguishing
attacks and Boolean functions. Cryptography and Communications, 4(1):47–
64, 2012.

[LD16] Yi Lu and Yvo Desmedt. Walsh transforms and cryptographic applications
in bias computing. Cryptography and Communications, 8(3):435–453, 2016.

[LJ14] Carl Löndahl and Thomas Johansson. Improved algorithms for finding low-
weight polynomial multiples in F2[x] and some cryptographic applications.
Designs, codes and cryptography, 73(2):625–640, 2014.

[LMVH15] Frédéric Lafitte, Olivier Markowitch, and Dirk Van Heule. SAT based anal-
ysis of LTE stream cipher ZUC. Journal of Information Security and Ap-
plications, 22:54–65, 2015.

132



[MJ05] Alexander Maximov and Thomas Johansson. Fast computation of large
distributions and its cryptographic applications. In International Confer-
ence on the Theory and Application of Cryptology and Information Security,
pages 313–332. Springer, 2005.

[NH07] Kaisa Nyberg and Miia Hermelin. Multidimensional Walsh transform and
a characterization of bent functions. In 2007 IEEE Information Theory
Workshop on Information Theory for Wireless Networks, pages 1–4. IEEE,
2007.

[STL10] B Sun, XH Tang, and C Li. Preliminary cryptanalysis results of ZUC. In
Proc. of the Record of the 1st International Workshop on ZUC Algorithm,
2010.

[Tea18] ZUC Design Team. The ZUC-256 Stream Cipher, 2018. http://www.is.
cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf.

[WHN+12] Hongjun Wu, Tao Huang, Phuong Ha Nguyen, Huaxiong Wang, and San
Ling. Differential attacks against stream cipher ZUC. In International Con-
ference on the Theory and Application of Cryptology and Information Secu-
rity, pages 262–277. Springer, 2012.

[YJM19] Jing Yang, Thomas Johansson, and Alexander Maximov. Vectorized linear
approximations for attacks on SNOW 3G. In 27th Annual Fast Software
Encryption Conference, FSE 2020, 2019.

[ZFL11] Chunfang Zhou, Xiutao Feng, and Dongdai Lin. The initialization stage
analysis of ZUC v1. 5. In International Conference on Cryptology and Net-
work Security, pages 40–53. Springer, 2011.

133



Appendices

1 The proof of Theorem 7

Case when s = 0. Given a1, a2 and a3, the value of a4 would be fixed. Thus, the total
number of all possible combinations of ai’s is p3.

When a1 + a2 = a3 + a4 = k for 2 ≤ k ≤ 2p, the carry value Q(0) = 0 for any t. One
can get that there are (k−1)2 solutions for the combinations of ai’s when 2 ≤ k ≤ p+1,
and (2p+ 1− k)2 solutions when p+ 2 ≤ k ≤ 2p. Then the probability Pr{Q(0) = 0} in
this case is calculated as (1+22+...(p−1)2+p2+(p−1)2+...+22+1)/p3 = (2p2+1)/3p2.

Similarly, we can get that when a1 + a2 = a3 + a4 + p or a1 + a2 + p = a3 + a4,
which are two equally likely events, the carry values of Q(0) would respectively be ±p
mod 2t = ±(2n − 1) mod 2t = ±1 mod 2t, both with equal probability (1 − (2p2 +
1)/3p2)/2 = (p2 − 1)/6p2.

Case when s 6= 0. Let us define the set S(0) = {(a1, a2, a3, a4) : a1 + a2 = a3 + a4

mod p}, which corresponds to all p3 valid combinations of ai’s when s = 0, and S(s) =
{(2sa1, 2

sa2, 2
sa3, 2

sa4) : (a1, a2, a3, a4) ∈ S(0)} for the case when s 6= 0. Clearly,
|S(s)| = |S(0)| and each tuple from S(s) also satisfies 2sa1 + 2sa2 = 2sa3 + 2sa4 mod p,
thus, every tuple of S(s) must also be an element of S(0). The mapping ai → 2sai is
injective since 2s is invertible modulo p (2s · 2n−s = 1 mod p). Therefore, we get that
S(0) → S(s) is an injective mapping and the two sets are equal to each other.

Let us pick any tuple (a1, a2, a3, a4) ∈ S(0) assuming the case when s = 0, then we
extract the lower t-bit values of ai as A

(0)
i . The corresponding carry value is then derived

as Q(0) = (A
(0)
1 �t A

(0)
2 )�t (A

(0)
3 �t A

(0)
4 ) mod 2t.

Now we observe that with the selected modulus p = 2n − 1, the multiplication 2 · x
mod p is just a circular rotation by 1 bit of x to the left. Thus, in the corresponding
mapped tuple (2sa1, 2

sa2, 2
sa3, 2

sa4) ∈ S(s) each ai value is just circularly rotated by s
bits to the left. Then the extracted “middle” t-bit values of 2sai’s, here denoted as A

′(s)
i ’s,

are consistent with A(0)
i ’s. As a consequence, the resulting carry value will also match,

Q′(s) = Q(0). I.e., the mapping S(0) → S(s) is not only injective but also preserves all
other properties including the carry values, therefore, the space of carry values and their
probabilities for s 6= 0 are the same as for the case when s = 0.
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2 Computation of transition matrices for the exam-
pled noise expression given in Equation (17)

// M[0] and M[1] for approximation: N = ((A + B - C) ^ (A + C)) - B
#define tau(c1 , c2 , c3) (((c3 + 1) * 2 + c2) * 3 + c1 + 1)
long long M[2][12][12];
memset(M, 0, sizeof M);

for(int a=0; a<=1; ++a)
for(int b=0; b<=1; ++b)
for(int c=0; c<=1; ++c)
for(int c1in=-1; c1in <=1; ++c1in)
for(int c2in= 0; c2in <=1; ++c2in)
for(int c3in=-1; c3in <=0; ++c3in)
{

// process subexpression -1 (inner)
int expr1 = a + b - c + c1in;
int result1 = expr1 & 1, c1out = expr1 >> 1;

// process subexpression -2 (inner)
int expr2 = a + c + c2in;
int result2 = expr2 & 1, c2out = expr2 >> 1;

// process subexpression -3 (outer)
// (!) note that c1out and c2out are not included
int expr3 = (result1 ^ result2) - b + c3in;
int result3 = expr3 & 1, c3out = expr3 >> 1;

// mapping of in/out carries into indices in the range [0..11]
int in = tau(c1in , c2in , c3in );
int out = tau(c1out , c2out , c3out);

// add 1 combination to the corresponding in/out carries
M[result3 ][out][in] += 1;

}
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3 The algorithm to find a multiple of P (x)

Algorithm 4 Finding a multiple of P (x) with weight 4 and two nonzero coefficients
being 1 and the other two being -1
Input Polynomial P (x), a small integer b
Output A polynomial multiple K(x) = P (x)Q(x) of weight 4 and expected degree 2d

with two of the nonzero coefficients being 1 and the other two being -1
1. From P (x), create all residues xi1 mod P (x), for 0 ≤ i1 < 2d+b and put (xi1 mod
P (x), i1) in a list L1. Sort L1 according to the residue value of each entry.
2. Create all residues xi1 + xi2 mod P (x) such that φ(xi1 + xi2 mod P (x)) = 0, for
0 ≤ i1 < i2 < 2d+b and put in a list L2. Here φ() means the d least significant
bits. This is done by merging the sorted list L1 by itself and keeping only residues
φ(xi1 + xi2 mod P (x)) = 0. The list L2 is sorted according to the residue value.
3. In the final step we merge the sorted list L2 with itself to create a list L, keeping
only residues xi1 + xi2 − xi3 − xi4 = 0 mod P (x), i.e., xi1 + xi2 = xi3 + xi4 mod P (x).
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Paper III

A new SNOW stream cipher called SNOW-V

Abstract

In this paper we are proposing a new member in the SNOW family of stream ciphers,
called SNOW-V. The motivation is to meet an industry demand of very high speed
encryption in a virtualized environment, something that can be expected to be relevant in
a future 5G mobile communication system. We are revising the SNOW 3G architecture
to be competitive in such a pure software environment, making use of both existing
acceleration instructions for the AES encryption round function as well as the ability
of modern CPUs to handle large vectors of integers (e.g. SIMD instructions). We
have kept the general design from SNOW 3G, in terms of linear feedback shift register
(LFSR) and Finite State Machine (FSM), but both entities are updated to better align
with vectorized implementations. The LFSR part is new and operates 8 times the speed
of the FSM. We have furthermore increased the total state size by using 128-bit registers
in the FSM, we use the full AES encryption round function in the FSM update, and,
finally, the initialization phase includes a masking with key bits at its end. The result is
an algorithm generally much faster than AES-256 and with expected security not worse
than AES-256.

Keywords: SNOW, Stream Cipher, 5G Mobile System Security.

1 Introduction

Stream ciphers have always played an important part in securing the various generations
of 3GPP mobile telephony systems, starting with the GSM system employing the A5
suit of ciphers, continuing with the use of SNOW 3G as one of the core algorithm for
integrity and confidentiality in both UMTS and LTE. When we now turn to the next
generation system, called 5G, we see some fundamental changes in system architecture
and security level that in many cases invalidate the previous algorithms. We will focus
on the LTE (or 4G, as it is commonly called) system when describing the current state
in link protection for mobile systems.

The basis for the link security in all 3GPP generations of mobile telephony systems
is a shared secret key between the device (commonly called the User Equipment, UE)

Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. Anew SNOW stream
cipher called SNOW-V.IACR Transactions on Symmetric Cryptology, pages 1–42, 2019.
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and the home network, the Mobile Network Operator that the user has a service agree-
ment with, and from whom the user receives the credentials in form of a UICC with a
USIM application (often referred to as the SIM-card). The shared key is stored in the
Home Subscriber Server (HSS) and in the Secure Element on the UICC. From this key,
through a set of key derivations, the home network and the UE both agree on new keys
to be used for integrity and confidentiality protection of the control channel, and con-
fidentiality protection of the user data channel. The 4G system defines three different
possible algorithms for integrity (128-EIAx) and confidentiality (128-EEAx), based on
three different primitives SNOW 3G [SAG06], AES [oST01], and ZUC [SAG11]. The
algorithms used in UMTS and LTE are all using the 128-bit key size, and are depicted
in Table 1.

UMTS LTE
Integrity Encryption Integrity Encryption

Kasumi UIA1 UEA1
SNOW 3G UIA2 UEA2 EIA1 EEA1
AES EIA2 EEA2
ZUC EIA3 EEA3

Table 1: Base algorithms used in UMTS and LTE for integrity and confidentiality.

The SNOW family of stream ciphers started with the SNOW [EJ01] proposal in
the European project NESSIE, a call for new primitives. Two attacks [HR02, CHJ02]
were soon discovered and the design was subsequently updated to the SNOW 2.0 [EJ02]
design. Attacks on SNOW 2.0 will be more discussed in Section 3. The ETSI Security
Algorithm Group of Experts (SAGE) modified the SNOW 2.0 design and proposed the
resulting cipher SNOW 3G as one of the algorithms protecting the air interface in 3GPP
telecommunication networks.

Although sufficient for 4G system, these 128-EIAx and 128-EEAx algorithms face
some challenges in the 5G environment. For the 5G system, the 3GPP standard-
ization organization is looking towards increasing the security level to 256-bit key
lengths [SA318]. For ExA1, and ExA2, this does not immediately appear to be a prob-
lem, since both the underlying primitives (AES and SNOW) are specified for 256-bit
keys. ZUC is currently only specified and evaluated under 128-bit key strength, but
another version, ZUC-256, supporting 256-bit keys has recently been presented [Bin].
However, since the design of the radio and core network will also fundamentally change
in the 5G system, there are other challenges. Many of the network nodes will become
virtualized [3GP] and thus the ability to use specialized hardware for the cryptographic
primitives will be reduced. Many newer processors from both Intel and ARM now
include instructions to accelerate AES, and it will be fairly easy to reach encryption
speeds of 20-25 Gbps for EIA2 and EEA2, but for the stream ciphers SNOW and
ZUC, we need to look for other solutions. Current benchmarks on SNOW 3G gives
approximately 9 Gbps in a pure software implementation, which is far too low for the
targeted speed of 20 Gbps downlink in the 5G system (see, e.g., [ITU17]).

In this paper we revise the SNOW 2.0/ SNOW 3G design to be competitive in a
pure software environment, relying on both the acceleration instructions for the AES
round function as well as the ability of modern CPUs to handle large vectors of integers
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(e.g. SIMD instructions). We have kept most of the design from SNOW 3G, in terms of
linear feedback shift register (LFSR) and Finite State Machine (FSM), but both entities
are updated to better align with vectorized implementations. We have also increased
the total state size by going from 32-bit registers to 128-bit registers in the FSM. Each
clocking of SNOW-V (V for Virtualization) now produces 128 bits of keystream.

We also propose an AEAD (Authenticated Encryption with Associated Data) oper-
ational mode to provide both confidentiality and integrity protection. The keystream
width of 128 bits makes the authentication framework of GMAC [Dwo07] very easy to
be adopted to SNOW-V.

This paper is organized as follows. In Section 2, we present the new design, includ-
ing pseudocode. In Section 3 we give a brief security analysis, describing most of the
common attack approaches and how they apply to SNOW-V. In Section 4 we describe
how authentication can be included in an AEAD mode of operation. Then software im-
plementation aspects are considered in Section 5, and in Section 6 software performance
results and implementation aspects using future SIMD instruction set are presented. We
end the paper with some conclusions in Section 7.

2 The design

SNOW-V follows the design pattern of previous SNOW versions and consists of an LFSR
part and an FSM part. The overall schematic is shown in Figure 1. The LFSR part is
now a circular construction consisting of two shift registers, each feeding into the other.
The FSM has three 128-bit registers and two instances of a single AES encryption round
function.

Starting with the LFSR part, we will now provide a detailed description of the design.
The two LFSRs are named LFSR-A and LFSR-B, both of length 16 and with a cell size
of 16 bits. The 32 cells are denoted a15 . . . a0 and b15 . . . b0 respectively.

Each cell represents an element in F216 , but LFSR-A and LFSR-B have different
generating polynomials. The elements of LFSR-A are generated by the polynomial

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x+ 1 ∈ F2[x] (1)

and the elements of LFSR-B are generated by

gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x+ 1 ∈ F2[x]. (2)

When we consider these elements of F216 as words, the x0 position will be the least sig-
nificant bit in the word. Let α ∈ FA216 be a root of gA(x) and β ∈ FB216 be a root of gB(x).
At time t ≥ 0 we denote the states of the LFSRs as (a

(t)
15 , a

(t)
14 , . . . , a

(t)
1 , a

(t)
0 ), a

(t)
i ∈ FA216

and (b
(t)
15 , b

(t)
14 , . . . , b

(t)
1 , b

(t)
0 ), b

(t)
i ∈ FB216 respectively for LFSR-A and LFSR-B. Referring

to Figure 1, the elements a(t)
0 and b

(t)
0 are the elements to first exit the LFSRs. The

LFSRs produce sequences a(t) and b(t), t ≥ 0 which are given by the expressions

a(t+16) = b(t) + αa(t) + a(t+1) + α−1a(t+8) mod gA(α) (3)

and
b(t+16) = a(t) + βb(t) + b(t+3) + β−1b(t+8) mod gB(β), (4)

139



C1

� �−1

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

��−1

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

T2 128 bits

T1 128 bits

R1 AES Enc
Round R2 R3

128 bit keystream output
z

FSM

C2

AES Enc
Round

σ

Figure 1: Overall schematics of SNOW-V.

where the initial states of the LFSRs are given by (a(15), a(14), . . . , a(0)) and (b(15), b(14), . . . ,
b(0)). We would like to emphasize the notation here; a(t) means the symbol produced
by the linear recursion in Equation (3) at time t, whereas a(t)

i , 0 ≤ i ≤ 15 are the values
of the cells in the LFSR-A at time t. In the case of α and β, the notation α−1 and β−1

are the inverses in the respective implemented fields.
As the reader might notice, we are a bit sloppy in Equation (3) and Equation (4)

and apply the field addition operation between elements of different fields, but it should
be interpreted as an implicit bit pattern preserving conversion between the fields.

Each time we update the LFSR part, we clock LFSR-A and LFSR-B 8 times, i.e.,
256 bits of the total 512-bit state will be updated in a single step, and the two taps
T1 and T2 will have fresh values. In Appendix 1 we give the proof that this circular
construction gives the maximum cycle length of 2512 − 1.

The tap T1 is formed by considering (b15, b14, . . . , b8) as a 128-bit word where b8 is
the least significant part. Similarly, T2 is formed by considering (a7, a6, . . . , a0) as a
128-bit word where a0 is the least significant part. The mapping is pictured in Figure 2,
and the expressions are given by

T1(t) = (b
(8t)
15 , b

(8t)
14 , . . . , b

(8t)
8 ), (5)

T2(t) = (a
(8t)
7 , a

(8t)
6 , . . . , a

(8t)
0 ). (6)
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b8 b9 b10 b11 b12 b13 b14 b15 ... 15...015...015...015...015...015...015...015...0

Figure 2: Mapping the 16-bit words of the LFSRs into 128-bit words T1 and T2.

We will now turn to the FSM. The FSM takes the two blocks T1 and T2 from the
LFSR part as inputs and produces a 128-bit keystream as output. R1, R2, and R3
are 128-bit registers, ⊕ denotes a bitwise XOR operation, and �32 denotes a parallel
application of four additions modulo 232 over each sub-word. So the four 32-bit parts of
the 128-bit words are added with carry, but the carry does not propagate from a lower
32-bit word to the higher.

The output, z(t) at time t ≥ 0, is given by the expression

z(t) = (R1(t) �32 T1(t))⊕R2(t). (7)

Registers R2 and R3 are updated through a full AES encryption round function as shown
in Figure 3, see [oST01] for details. Let us denote the AES encryption round function

SubBytes ShiftRows MixColumns

AES Enc 
Round 

Round key 

Figure 3: Internal functions of the AES encryption round function.

by AESR(IN,KEY ). The mapping between the 128-bit registers and the state array
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of the AES round function follows the definition in [oST01], and is pictured in Figure 4.
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Figure 4: Mapping between a 128-bit register value and the state array of the AES
round function.

We can now write the update expressions for the registers as

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t))), (8)

R2(t+1) = AESR(R1(t), C1), (9)

R3(t+1) = AESR(R2(t), C2). (10)

The values of the two round key constants C1 and C2 are set to zero, and σ is a byte-
oriented permutation given by

σ = [ 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 ]. (11)

This should be interpreted as byte 0 is moved to position 0, byte 4 is moved to position
1, byte 8 is moved to position 2, and so on. Position 0 is the least significant byte in
accordance to the mapping described above. The chosen σ implements the transposition
of the mapped AES state matrix.

2.1 Initialization
Initialization is done as described in this subsection. The algorithm has a 256-bit key
K and a 128-bit initialization vector(IV) as inputs. The key is denoted by

K = (k15, k14, . . . , k1, k0),

where each ki, 0 ≤ i ≤ 15, is a 16-bit vector. The IV vector is denoted by

IV = (iv7, iv6, . . . , iv1, iv0),

where again each ivi, 0 ≤ i ≤ 7, is a 16-bit vector.

142



The first step of the initialization is to load the key and IV into the LFSRs by
assigning

(a15, a14, . . . , a0) = (k7, k6, . . . , k0, iv7, iv6, . . . , iv0)

and
(b15, b14, . . . , b0) = (k15, k14, . . . , k8, 0, 0, . . . , 0).

Note that (b7, . . . , b0) will have a non-zero value when SNOW-V is used in AEAD-mode,
see Section 4.

Then the initialization consists of 16 steps where the cipher is updated in the same
way as in the running-key mode, with the exception that the 128-bit output z is not an
output but is xored into the LFSR structure to positions (a15, a14, . . . , a8) in every step.
Additionally, at the two last steps of the initialization phase, we xor the key into the R1
register, inspired by [HK18]. We also limit the keystream length to a maximum of 264

for a single pair of key and IV vectors, and each key may be used with a maximum of
264 different IV vectors.

The pseudocode in Algorithm 1 clarifies the procedure.

Algorithm 1 SNOW-V initialization

1: procedure Initialization(K, IV )
2: (a15, a14, . . . , a8)← (k7, k6, . . . , k0)
3: (a7, a6, . . . , a0)← (iv7, iv6, . . . , iv0)
4: (b15, b14, . . . , b8)← (k15, k14, . . . , k8)
5: (b7, b6, . . . , b0)← (0, 0, . . . , 0)
6: R1, R2, R3← 0, 0, 0
7: for t = 1...16 do
8: T1← (b15, b14, . . . , b8)
9: z ← (R1�32 T1)⊕R2

10: FSMupdate()
11: LFSRupdate()
12: (a15, a14, . . . , a8)← (a15, a14, . . . , a8)⊕ z
13: if t = 15 then R1← R1⊕ (k7, k6, . . . , k0)

14: if t = 16 then R1← R1⊕ (k15, k14, . . . , k8)

This completes the description of SNOW-V, and the full algorithm can be summa-
rized in the pseudocode as in Algorithm 2, Algorithm 3, and Algorithm 4.

3 Security analysis

The main and most important design criterion is the security of the design. This section
contains a brief analysis for a number of possible standard attack approaches. Before
going into the details of various attacks, we need to have a clear picture of the expected
security. We have the target of providing 256-bit security in SNOW-V, by which we
mean that we claim that the total cost of finding the secret key given some keystreams
is not significantly smaller than 2256 simple operations.
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Algorithm 2 SNOW-V algorithm

1: procedure SNOW-V(K, IV )
2: Initialization(K, IV )
3: while more keystream blocks needed do
4: T1← (b15, b14, . . . , b8)
5: z ← (R1�32 T1)⊕R2
6: FSMupdate()
7: LFSRupdate()
8: Output keystream symbol z

Algorithm 3 LFSR update algorithm

1: procedure LFSRupdate()
2: for i = 0...7 do
3: tmpa ← b0 + αa0 + a1 + α−1a8 mod gA(α)
4: tmpb ← a0 + βb0 + b3 + β−1b8 mod gB(β)
5: (a15, a14, . . . , a0)← (tmpa, a15, . . . , a1)
6: (b15, b14, . . . , b0)← (tmpb, b15, . . . , b1)

Algorithm 4 FSM update algorithm

1: procedure FSMupdate()
2: T2← (a7, a6, . . . , a0)
3: tmp← R2�32 (R3⊕ T2)
4: R3← AESR(R2) . Note that the round keys for these AES
5: R2← AESR(R1) . encryption rounds are C1 = C2 = 0
6: R1← σ(tmp)

The use of the algorithm is limited to keystreams of length at most 264 and we also
limit the number of different keystreams that are produced for a fixed key to be at
most 264. There seem to be no use cases where it makes sense to violate this limitation.
Although attacks beyond these limits are certainly of academic interest, an attack claim-
ing to break the cipher should meet this requirement. In Section 3.1 and Section 3.4
we give some cryptanalysis results also for the case when σ is replaced by the identity
mapping σ0. This may aid the understanding of the strength of different methods of
cryptanalysis.

We also frequently compare with AES-256 in the GCM mode. We note that exhaus-
tive key search of AES-256 requires computational cost around 2256. However, if used in
the GCM mode, it actually takes complexity (and data) around 264 to distinguish such
keystreams from random. For SNOW-V, we claim that the security is never worse than
the security of AES-256 in the GCM mode, for any kind of attack on the algorithmic
level.
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3.1 Initialization attacks through MDM/AIDA/cube attacks
Stream ciphers always have an initialization phase before producing keystream bits,
during which the key and IV are loaded and mixed by running the cipher a few rounds
(16 for SNOW-V) without giving outputs until the state becomes random-like. It should
be difficult for a cryptanalyst to predict the keystream or get some information about
the initial key according to the output after initialization. It then becomes vital to make
sure that the key/IV loading has no fatal flaws and the initialization round is carefully
chosen in order not to result in a resource waste (too many rounds) or some weakness
(too few rounds).

A chosen IV attack is one type of attacks targeting this problem [Mj06, EJT07], in
which the adversary attempts to build a distinguishing attack to introduce randomness
failures in the output by selecting and running through certain IV values. The ratio-
nales behind are that: 1) a stream cipher can be regarded as a succession of single-valued
boolean functions fi with each keystream bit as the output and key/IV as the inputs,
and 2) any monomial coefficient in the algebraic normal form (ANF) representations
of these Boolean functions should appear to be 1 (or 0) with probability 1/2 if fi is
drawn uniformly at random [Sta13]. If one can distinguish the output from a random
distribution under some key/IV settings with acceptable complexity, the cipher is be-
lieved to be unsafe. In this attack, the adversary fixes the key and a subset of IV bits
and runs through all possible values of the non-fixed IV bits, which are called a cube.
The truth tables of the boolean functions can be derived, which are further used to
compute the monomial coefficients of the ANF and compared with expected values. If
there exists a big gap between them, the output is believed to be non-random. The best
and most commonly used monomial is the maximum degree monomial (MDM) and the
corresponding test is called MDM test. In [Sta10] one even allows setting arbitrary key
values to build a non-randomness detector to further check whether the initialization is
robust enough. It should be noted that the MDM test and AIDA (algebraic IV differ-
ential attack)/cube distinguishers [Vie07, DS09] are various forms of using higher order
differentials [Lai94] on stream ciphers.

We employ the greedy MDM test algorithm in [Sta10] to test the SNOW-V initial-
ization. We start with the worst 3-bit set under which the randomness result deviates
the most from the expected value and gradually increase to a 24-bit set. Every time
when one more bit is added from the remaining bits, we select the bit resulting in the
worst randomness result until we get a 24-bit set (larger sets can be tested on more
powerful computers). Figure 5 shows the maximum number of initialization rounds fail-
ing the MDM test under different bit set sizes for SNOW-V under permutation σ and
no permutation σ0 (identity mapping). The results for 1, 2 and 3-bit sets are obtained
through exhaustive search, while for the sets with larger sizes, the results are based on
greedy searching from the obtained worst 3-bit set. It can be seen that the performance
under σ is better, indicating the cipher is mixed better and faster in this case. In both
cases, roughly the first 7 rounds fail the MDM test, ensuring a large security gap to 16
rounds. One can also note that the number of rounds the MDM test can detect grows
very slowly with the size of the set of key/IV bits that are exhausted. In an attack, one
could consider sets of sizes up to 64 bits. This indicates that the 16 initialization rounds
in SNOW-V should be enough for the cipher and that the output of the cipher has
become random-like after the initialization. It also indicates that significantly reducing
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the number of rounds might be dangerous.
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Figure 5: The maximum number of initialization rounds failing the MDM test under
different bit set sizes.

Recently, cube attacks based on division property have got a lot of research and
application on multiple stream ciphers. Division property, proposed by Todo et al. in
[Tod15], is a generalization of integral property being used to find integral distinguishers
or launch cube attacks. Unlike traditional experimental attacks where the ciphers are
regarded as black boxes, division property based attacks explore the internal structures
of ciphers and trails of division property according to propagation rules for different
operations. These rules could be expressed with some (in)equalities and the attacks are
modeled as MILP(Mixed Integer Linear Programming) problems with certain constrains
and objective functions. Some optimization tools such as Gurobi, Cplex could then help
to solve the problems very efficiently and identify if the attacks are feasible or not in
certain cases.

In [TIHM17], division property was introduced into cube attacks to evaluate the set
of key bits J involved in the superpoly given a certain cube I. After obtaining the set
J , attackers are able to recover the superpoly by building the truth table and further
to recover part of the key by querying the encryption oracle. The time complexity
of recovering the superpoly is 2|I|+|J|, which is feasible when |I| + |J | is smaller than
the security bit level. Authors in [WHT+18] further improved the attack by exploiting
various algebraic properties of superpolies. They introduced a technique to evaluate the
upper bound of the algebraic degree, denoted as d, of the superpoly to avoid recovering
the coefficients of monomials with degrees larger than d. Hence, only

(|J|
≤d
)
coefficients

need to be recovered and the time complexity reduces to 2|I| ×
(|J|
≤d
)
.

We evaluate SNOW-V with division property based cube attacks using the method
described above. The MILP model of division property for SNOW-V which can eval-
uate all division trails when the initialization rounds are reduced to R is illustrated in
Algorithm 5. We first load key and IV bits to the LFSR state and initialize R1, R2,
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R3 to 0 according to the initialization specification of SNOW-V (Algorithm 1). Since
K and IV are loaded into LFSR states through one-by-one mapping, we do not intro-
duce more intermediate variables in the model. In every round, we deal with the first
and last 7 iterations of LFSR update differently since they have different propagation
trails: the function LFSRupdate for the last 7 LFSR updates consists of copy, xor,
multiplication (with α, β, α−1, β−1), shift to update the LFSR state while for the
first round, the function LFSRupdateFirstIter involves in more complicated copy trails
to get T1 and T2. The funcAES function is four parallel AES rounds consisting of sbox,
shiftrow and mixcolumn whose propagation rules could be found in [Tod15]. The
function funcModAdd consists of 4 parallel modular additions whose propagation rule
has been established in [SWW17] and funcXor represents xor rule for 128 bits. The
functions of multiplication and mixcolumn have consistent characteristic: the sum
of input equals to the sum of output in terms of division property while the functions
shift, shiftrow and sigma only permute the division property vectors.

Algorithm 5 MILP model of division property for SNOW-V

1: procedure SnowvCore(round R)
2: Prepare empty MILP ModelM
3: M.var ← s0

i for i ∈ {0, 1, ..., 511} andR10
i , R20

i , R30
i for i ∈ {0, 1, ..., 127}

4: (M, s0,R10,R20,R30) = init (M,K, IV )
5: for r = 1 to R− 1 do
6: (M,T1,T2, sr,0) = LFSRupdateFirstIter (M, sr−1)
7: (M,X) = funcModAdd (M,R1r−1,T1)
8: (M,Zr) = funcXor (M,X,R2r−1)
9: (M,Y ) = funcXor (M,R3r−1,T2)

10: (M,U) = funcModAdd (M,R2r−1,Y )
11: (M,R1r) = sigma (M,U)
12: (M,R3r) = funcAES (M,R2r−1)
13: (M,R2r) = funcAES (M,R1r−1)
14: for i = 1 to 7 do
15: (M, sr,i) = LFSRupdate (M, sr,i−1)

16: (M, sr128...255) = funcXor (M, sr,7128...255,Z
r)

17: (M, sr0...127, s
r
256...511) = (M, sr,70...127, s

r,7
256...511)

18: (M,X) = funcModAdd (M,R1R−1, sR−1
384...511)

19: (M,ZR) = funcXor (M,X,R2R−1)
20: for i = 0 to 383 do
21: M.con← sR−1

i = 0

22: for i = 0 to 127 do
23: M.con← R3R−1

i = 0

24: M.con←
∑
ZRi = 1

25: returnM

We tried different cubes and Table 2 listed some examples under which adversaries
have good advantages for permutations σ and σ0. The time complexity in the table
shows the time complexity of superpoly recovery. One can see, all key bits are involved
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Rounds 3 4 5 6 7
cube size |I| 15 40 128 128 128
degree d 17 145(27) 256(106) 256(254) 256

involved key size |J | 131(113) 256(96) 256 256 256
time complexity 284.9(281.1) > 2256(2119.5) > 2256 > 2256 > 2256

Table 2: Cube attacks on reduced-rounds of SNOW-V (values in round brackets are
for the case with σ as identity (σ0) where the value is different).

in the superpolies from the 4-th round under permutation σ while 5-th round under
σ0, which indicates the good mixing effect after 4(or 5) rounds and guarantees a large
enough security margin for 16 rounds. The results match well with the research on
division property based distinguishing attacks on AES in [Tod15], where only 4-round
distinguisher could be found with 2120 plaintexts and the conclusion in [SWW16] that in-
tegral distinguishers for AES based on division property covering more than four rounds
probably do not exist.

3.2 Other initialization attacks
Another attack possibility is to launch a differential attack, either in the IV bits only,
or in combination with key bits. The latter would then lead to a related-key attack.
Since the initialization contains 16 rounds, each including two applications of the AES
encryption round function, the differential would have to go through a lot of highly
nonlinear operations, which makes this approach less successful.

Finally, a further option is the slide attacks [BW99]. Such sliding properties have
been considered on previous versions in the SNOW family [KY11]. The idea is to have
the same initial state for two different key/IV pairs in different time instances. Then
they will produce the same keystream with the difference of a shift in time. Since the
required IV values vary with the choice of key bits, it is questionable whether such an
approach is useful at all in cryptanalysis, but at least it indicates that the cipher is
not to be considered as a random function of both the key and IV. For SNOW-V such
properties would still be much more difficult to find, due to the update of 128-bit blocks
in each time instance and the use of the FP(1)-mode [HK18] in the initialization.

3.3 Time/Memory/Data tradeoff attacks
A Time/Memory/Data tradeoff (TMD-TO) attack is a generic method of inverting ci-
phers by balancing between spent time, required memory and obtained data, which
can be much more efficient and applicable than an exhaustive key search attack. Some
stream ciphers are vulnerable to TMD-TO attacks, and their effective key lengths (e.g.,
n-bit) could then be reduced towards the birthday bound (i.e., n/2), typically happening
if the state size is small. A well known such attack on A5/1 was given in [BSW01].

The TMD-TO attacks have two phases: a preprocessing phase, during which the
mapping table from different secret keys or internal states to keystreams is computed
and stored with time complexity P and memoryM ; and a real-time phase, when attack-
ers have intercepted D keystreams and search them in the table with time complexity
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T , expecting to get some matches and further recover the corresponding input. By
balancing between parameters P,D,M , and T under some tradeoff curves, attackers
can launch attacks according to their available time, memory and data resources. The
most popular tradeoffs are Babbage-Golic (BG) [Bab95, Gol97] and Biryukov-Shamir
(BS) [BS00] tradeoff with curves TM = N , P = M with T ≤ D; and TM2D2 = N2,
P = N/D with T ≥ D2, where N is the input space, respectively. Attackers can try to
reconstruct the internal state at a specific time or recover the secret key.

The rationale behind the TMD-TO attacks that try to reconstruct the internal state is
that in many stream ciphers, the internal state update process is invertible, which means
that if an attacker manages to reconstruct an internal state at any specific time, it can not
only obtain subsequently generated keystreams by running the cipher forwards, but also
recover previous states iteratively and further get the underlying secret key by running
backwards. But for the SNOW-V case, attackers have no obvious ways to reconstruct
the internal state, since SNOW-V has a large internal state with 896 bits (2 × 256-bit
LFSRs + 3 × 128-bit registers), which is 3.5 times the secret key length. The best attack
complexity achieved is under BG tradeoff with point T = M = D = N1/2 = 2448, which
is still much worse than the exhaustive key search attack. Actually, SNOW-V satisfies
the rule derived from TMD-TO attacks in [Gol97] and widely applied in the design of
new ciphers, that the size of the internal state should be at least twice the size of the
secret key to get the expected security level.

Moreover, in SNOW-V, attackers would get even less even if they reconstructed an
internal state. While computing subsequent keystreams corresponding to that specific
IV is still possible, they can not trivially recover the secret key or keystreams under
other IV values. This is due to the key masking to the register R1 at the last two
rounds of initialization, which represents an instantiation of the FP(1)-mode introduced
in [HK18].

Attackers can also try to recover the secret key directly. To do so, some mappings
from different key/IV pairs to generated keystream segments are firstly pre-computed
and stored [HS05, DK08]. If attackers get some keystream data under different secret
keys corresponding to these IV values, they can search them in the table to expect a
collision and further recover some of the secret keys directly. The tradeoff curves are
still the same as that to recover the internal states except N is now changed to be the
size of the set of all possible (K, IV ) pairs. In the SNOW-V case, the sizes of key and
IV spaces are 2256 and 2128, respectively. Two typical points for BG and BS attacks are
T = D = M = 2192 and T = 2256, D = M = 2128. Someone would question that the
efficient size of the key in the first tradeoff is reduced from 256 to 192 bits, but actually,
no ciphers including AES-256 can be immune to this as long as their IV sizes are smaller
than the key sizes. In any case, the corresponding multikey attacks on AES-256 are not
more costly.

3.4 Linear distinguishing attacks and correlation attacks
Traditionally, the main threat against stream ciphers has been various types of linear
attacks, either in the form of distinguishing attacks on the keystreams, or state recovery
attacks through correlation attacks. The basic foundations of correlation attacks can be
found in papers like [CJS01, CJM02] and an overview of distinguishing attacks is to be
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found in [HJB09].
The basic technique for these types of attacks is to use linear approximations of the

nonlinear operations used in the cipher and then derive a linear relationship between
output values from different time instances. Such a relationship will then hold only as a
very rough approximation, which in turn can be thought of as a linear function of some
given output bits being considered as a sample drawn from a nonuniform distribution.
This approach may give a distinguishing property for the keystream. If the relationship
also involves state bits, the same arguments may give samples that are highly noisy
observations of state bits, which in turn may be linear combinations of the original
initial state. This may give a way to recover the state and that is the foundation of a
correlation attack.

For SNOW 2.0, several distinguishing attacks and correlation attacks have been
proposed [NW06, ZXM15]. The basic idea has been to approximate the FSM part
through linear masking and then to cancel out the contributions of the registers by
combining expressions for several keystream words. We should note that this kind of
attacks tend to require an extremely large length of the keystream. Also, no significant
attack of this type on SNOW 3G has been published. We now consider a similar approach
for making some basic arguments on SNOW-V.

We recall the FSM equations:

z(t) = (R1(t) �32 T1(t))⊕R2(t),

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t))),

R2(t+1) = AESR(R1(t)),

R3(t+1) = AESR(R2(t)).

A linear approximation of the FSM would then try to cancel out the contribution
from the registers, leaving keystream symbols and the LFSR contribution. Assume that
the value of the registers at some time t is (R̂1, R̂2, R̂3). Then we have

z(t) = (R̂1�32 T1(t))⊕ R̂2,

R1(t+1) = σ(R̂2�32 (R̂3⊕ T2(t))),

R2(t+1) = AESR(R̂1),

R3(t+1) = AESR(R̂2).

For time t+ 1,

z(t+1) = (σ(R̂2�32 (R̂3⊕ T2(t)))�32 T1(t+1))⊕AESR(R̂1).

It is now straight-forward to see that since z(t) depends only on R̂1 and z(t+1) depends
on both R̂1 and R̂2, there can be no biased linear approximation using only z(t) and
z(t+1). So the minimum number of equations that needs to be considered is three. To
simplify coming derivations, we introduce the expressions for z(t−1), i.e.,

z(t−1) = ((AESR)−1(R̂2)�32 T1(t−1))⊕ (AESR)−1(R̂3),
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and seek a biased expression involving z(t−1), z(t), z(t+1).
Consider all 128-bit variables as column vectors of 16 bytes. Then AESR(X) can

be written as L · S(X), where S is an application of the 16 AES S-Boxes, one on each
byte of X, and L is a linear transformation over the 16 bytes (including both ShiftRow
and MixColumn). Furthermore, (AESR)−1(X) = S−1(L−1 · X). We now introduce
simplifications to the SNOW-V algorithm to show the best results on versions weaker
than the proposed algorithm.

3.4.1 Analysis of the bias using σ0 and using byte-wise addition �8

We assume that there is no byte-wise permutation, i.e., σ0 is just the identity. Further-
more, instead of �32 we consider a modulo addition which is restricted to each byte,
denoted �8. With this simplification all operations are byte-oriented and the investiga-
tion of linear approximations is easier.

Let us now seek a byte-oriented linear approximation. We examine the following
three equations.

z(t−1) = (S−1(L−1 · R̂2)�8 T1(t−1))⊕ S−1(L−1 · R̂3),

z(t) = (R̂1�8 T1(t))⊕ R̂2,

L−1z(t+1) = L−1((R̂2�8 (R̂3⊕ T2(t)))�8 T1(t+1))⊕ S(R̂1).

Let Xi denote the ith byte of a vector of bytes X. Summing up the three z-terms on
the left side and taking byte 0 gives us

[z(t−1) ⊕ z(t) ⊕ L−1z(t+1)]0 = [N1⊕N2⊕N3⊕ T1(t) ⊕ T1(t−1) ⊕ L−1(T2(t) ⊕ T1(t+1))]0,

where

N1 = (S−1(L−1 · R̂2)�8 T1(t−1))⊕ S−1(L−1 · R̂2)⊕ T1(t−1),

N2 = (R̂1�8 T1(t))⊕ S(R̂1)⊕ T1(t),

N3 = L−1((R̂2�8 (R̂3⊕ T2(t))�8 T1(t+1))⊕ T2(t) ⊕ T1(t+1))⊕ R̂2︸ ︷︷ ︸
Linear part A

⊕ S−1( L−1 · R̂2︸ ︷︷ ︸
Linear part B

)⊕ S−1( L−1 · R̂3︸ ︷︷ ︸
Linear part C

).

The general idea is that [N1⊕N2⊕N3]0 is a biased distribution. It is true because
the (types of) noise variables n1, n2, n3 defined below are biased, which can be checked:

n1 = (x�8 y)⊕ x⊕ y,
n2 = (x�8 y)⊕ S(x)⊕ y,
n3 = (x�8 y)⊕ x⊕ S(x)⊕ y.

Each of the noise terms N1, N2, N3 given above are of the above types and hence the
sum of them can also be a biased distribution.

Computation of the bias: it remains to compute the bias and the N30 part is
the most complicated case (although we are computing the bias of [N1⊕N2⊕N3]0 as
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there is a dependence between N1 and N3). The noise N3 at byte 0 can be rewritten
as:

N30 =
∑3
i=0(ci · Ui)⊕ R̂20 ⊕ S−1

(∑3
i=0(ci · R̂2i)

)
⊕ S−1

(∑3
i=0(ci · R̂3i)

)
,

where the coefficients are c = [e b d 9]. First note that Ui is the variable corresponding
to Ui = (R̂2i�8 (R̂3i⊕T2

(t)
i )�8 T1

(t+1)
i )⊕T2

(t)
i ⊕T1

(t+1)
i , for 0 ≤ i ≤ 3. Note also that

L−1 corresponds to first applying the inverse MixColumn and then the inverse ShiftRow
(which does not change the position of byte 0).

The idea of computing the distribution is now simple. We assume that we have
8-bit adders �8 instead of the original 32-bit ones, keeping all operations within bytes.
We try all combinations of the first bytes of the inputs R̂20, R̂30, T2

(t)
0 , T1

(t+1)
0 which

leads to a partial sum as a 3-byte value denoted A|B|C, as marked in the equations
above. Thus, we can compute the distribution D0(A|B|C). We also compute similar
distributions for every "slice" of the inputs, Dk(A|B|C), k = 0, 1, 2, 3, corresponding to
inputs R̂2k, R̂3k, T2

(t)
k , T1

(t+1)
k .

The XOR-convolution of the computed distributions of the partial linear expres-
sions gives the combined distribution of the triple A|B|C over all possible 32-bit inputs.
Having that total distribution, it is then easy to construct the 8-bit distribution of N30.

Let D be a distribution of a noise variable X. Then we compute the bias denoted
ε(X) = ε(D) using the Squared Euclidean Imbalance as in [ZXM15], defined through

ε(D) = |D|
|D|−1∑
x=0

(
D(x)− 1

|D|

)2

.

The number of samples needed to distinguish a source of noise D from random is roughly
O(1/ε). The results when we use 8-bit adders �8, and σ identity are as follows: ε(N1) >
1, ε(N2) ≈ 2−2.9, ε(N3) ≈ 2−46.0, and

ε(Ntot) ≈ 2−53.5, ε(2×Ntot) ≈ 2−106.8, ε(3×Ntot) ≈ 2−160.2, ε(4×Ntot) ≈ 2−213.6.

Here the N1, N2, N3 denotes the partial noise as described above and Ntot represents
the full noise of a single approximation, i.e., Ntot = [N1⊕N2⊕N3]0. Finally, i×Ntot
denotes the noise obtained by a sum of i such independent noise terms.

3.4.2 Analysis of the bias using σ0 and using 32-bit �32

In order to deal with 32-bit adders we should actually compute partial noise distribu-
tions Dk that also correspond to different values of input and output carries (0, 1, or 2)
and then perform sums and convolutions over matching distribution tables. It is compu-
tationally more demanding but not unreachable and we have computed the biases also
in this case.

The results when using 32-bit adders �, and σ as identity are as follows: ε(N1) >
1, ε(N2) ≈ 2−2.9, ε(N3) ≈ 2−46.4, and

ε(Ntot) ≈ 2−58.7, ε(2×Ntot) ≈ 2−118.4, ε(3×Ntot) ≈ 2−177.8, ε(4×Ntot) ≈ 2−237.1.
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3.4.3 Using the bias in a fast correlation attack

A detected bias can be used in a distinguishing attack if one can find, say, a weight
3 or weight 4 multiple of the polynomial corresponding to the byte-oriented sequence
W (t) = [T1(t)⊕T1(t−1)⊕L−1(T2(t)⊕T1(t+1))]0. Since the LFSR feedback is defined in
F216 , it can be rewritten in F28 and there will be a linear recursion relation forW (t) over
F28 . The complexity of finding a weight 3 or weight 4 multiple with general methods
is far more than that of exhaustive key search. Instead, a fast correlation attack looks
more promising. In such an attack the LFSR state at some initial time is considered
as a length 64 byte vector v = (v0, v1, . . . v63), vi ∈ F28 and every W (t) is written as a
linear combination of initial state bytes, i.e., W (t) = wt · vT , where the vector wt is
computed through the recursion for W (t). If we now look for pairs of vectors wt and
wt′ such that wt ⊕wt′ is zero in the last d entries, we can form the sum

[z(t−1) ⊕ z(t) ⊕ L−1z(t+1)]0 ⊕ [z(t′−1) ⊕ z(t′) ⊕ L−1z(t′+1)]0

which approximates W (t)⊕W (t′) with a noise which is the sum of two noise variables
of the form Ntot, which has a bias of 2−118.4. In the attack we guess 64− d byte entries
of the initial state and then we need to find in the order of 2118 pairs of vectors that
have the same last d entries. Through a birthday argument, assuming we generate all
such values up to t0, we need to have t20 ≈ 2118+8d. For example, if d = 36 then we need
to guess 28 ·8 = 224 bits and we need to generate output until time t0 = 2203. Following
the complexity estimations of e.g. [ZXM15] we end up with a complexity slightly below
exhaustive key search. This however requires a keystream of length t0 = 2203, which can
be compared to the maximum keystream length allowed which is 264. The attack also
uses memory of size 2203 units, each storing the necessary information of one time unit.
So the relevance of such attacks is indeed questionable.

3.4.4 Analysis of the bias using σ as proposed

In this scenario, we use σ as given in Section 2. This presumably makes the bias of
linear approximations for the FSM to be much smaller, and we will sketch some ideas
on how to find good linear approximations. Let us again return to the equations for a
three word approximation, and use 8-bit adders �8 in order to simplify derivations:

z(t−1) = (S−1(L−1 · R̂2)�8 T1(t−1))⊕ S−1(L−1 · R̂3),

z(t) = (R̂1�8 T1(t))⊕ R̂2,

z(t+1) = (σ(R̂2�8 (R̂3⊕ T2(t)))�8 T1(t+1))⊕ L · S(R̂1).

We consider a byte-oriented linear approximation with left side Λ0z
(t−1) ⊕ Λ1z

(t) ⊕
Λ2z

(t+1), where Λi are length 16 row vectors of bytes viewed as elements in F28 .
Recall now that if a particular byte is only present once as a linear term or in an

S-box expression in the right side, then the approximation will be unbiased. However,
if it appears at least twice in different types of expressions, it is likely to give a biased
contribution.

The first observation we can do is that the bytes in R̂1 appear only in two different
expressions: as the direct value R̂1 in the expression for z(t) and as L · S(R̂1) in the
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expression for z(t+1). In turn, this means that Λ1z
(t)⊕Λ2z

(t+1) depends on R̂1 through
Λ1R̂1 ⊕ Λ2L · S(R̂1). It is biased only if every byte present in Λ1R̂1 is also present in
Λ2L · R̂1 and we come to the conclusion that Λ2 = Λ1L

−1, in its straightforward case.
Now we consider the contributions from R̂2 and R̂3. For R̂2 we have contributions

Λ0S
−1(L−1 · R̂2), Λ1R̂2 and Λ1L

−1σ(R̂2 �8 ...). When σ0 was used, we could simply
consider byte 0 (Λ0 = Λ1 = (1, 0, . . . , 0)) because it involved four bytes (byte 0-3) and
they all appeared at least twice in the above expression. But for the actual σ, this is
no longer possible since L−1σ(R̂2) includes different bytes in a position, compared to
L−1 · R̂2.

We have not been able to find better approximations than the ones that include all 16
bytes of R̂2 and R̂3, and 4 bytes of R̂1 in the approximation. One such example would
be Λ0 = Λ1 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), which would nearly correspond to
the sum of 4 approximations of the previous kind with σ0 (no-permutation).

In our best attempt to approximate the FSM of the proposed algorithm, we have got
the total noise (with �8) having the bias (more details can be found in Appendix 2):

ε(Ntot) ≈ 2−214.8 and ε(2×Ntot) ≈ 2−429.7.

3.5 Algebraic attacks
In an algebraic attack the attacker derives a number of nonlinear equations in either
unknown key bits or unknown state bits and solves the system of equations. In general,
the problem of solving a system of nonlinear equations is not known to be solvable in
polynomial time (even for quadratic equations), but some special cases might be solved
efficiently [CKPS00].

For SNOW 2.0 there was a very interesting algebraic attack on a simplified version,
given in [BG05]. However, due to the use of three FSM registers instead of two, applying
such an approach on SNOW-V does not give such a nice quadratic system as in [BG05].

So for a general algebraic attack, we should either target the key or the state. For
the latter, one would need to use equations from 7 keystream blocks to be able to
solve for the 7 ∗ 128 bit internal state. That would involve nonlinearity from 11 AES
encryption round functions and 13 �32 operations. Instead, targeting the key bits would
require stepping through the equations of the 16 initialization rounds together with the
equations of two keystream blocks. Both these approaches give systems of nonlinear
equations that appear to be much more difficult to solve than corresponding equations
for AES-256. This is due to the use of the �32 operation.

3.6 Guess-and-determine attacks
In a guess-and-determine attack one guesses part of the state and from the keystream
equations, determines the value of other parts of the state. The goal is to guess as few
bits as possible and determine as many as possible through keystream equations. For the
case of SNOW-V, the equation z(t) = (R1(t) �32 T1(t))⊕ R2(t) involves three unknown
values, each of size 128 bits. In order to determine some state bits, one then has to guess
two of them, i.e. guessing 256 bits. Then looking at the equation for z(t+1), it would
require the guess of one more 128 bit value. This indicates that a guess-and-determine
attack would not be successful.
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3.7 Other attacks
We have not made any specific design choices to explicitly support implementations
that should protect against side-channel attacks and fault attacks. So such attacks, if
relevant for an application, have to be considered when the algorithm is implemented.
In particular, information leakage from the CPU in a software implementation must be
carefully considered.

4 AEAD mode of operation

The GMAC integrity and authentication algorithm specified in [Dwo07] can easily be
adopted to work with SNOW-V to define an AEAD mode of operation. We will use
notations from [Dwo07] in the following. In GCM, an unspecified block cipher is used in
counter mode to encrypt the plaintext. Additionally, the block cipher is used to produce
the final authentication tag T , and to derive the key H used in the function GHASHH .

Z(0) Z(3)Z(2) Z(n+1)Z(1)

Keystream output z: 

Key H

Plaintext1 Plaintext2 Plaintextn

...

AAD

MULH

Ciphertext1 Ciphertext2 Ciphertextn

MULH MULH MULH

len(AAD) || len(C)

...

MULH

Auth tag T

GHASHH

Tag mask MT

MT

Figure 6: How SNOW-V is used together with GHASHH to enable AEAD.

When using SNOW-V together with the GHASHH algorithm, the key H is the very
first keystream output z(0). Then we use keystream output z(1) as the final masking for
the tag, similarly to the encrypted value of J0 in [Dwo07]. To encrypt the n plaintext
blocks, we use the keystream outputs z(2), . . . , z(n+1), feeding the ciphertext blocks into
GHASHH .
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SNOW-V works as described in Section 2 with a single change. During initialization
of the LFSRs, we set the lower part of the LFSR-B to the following hex values:

(b7, b6, . . . , b0) = (6D6F, 6854, 676E, 694A, 2064, 6B45, 7865, 6C41). (12)

The hex values are the UTF8 encoding of the names of the authors.
An overview of how SNOW-V is used together with the GHASHH algorithm is

shown in Figure 6. The padding of the Additional Authenticated Data (AAD) and how
to concatenate the length of the AAD and the length of the ciphertext C and all other
restrictions on plaintext length and change of IV from [Dwo07] remain. We have only
defined a new way to derive the counter mode keystream, and the additional key and
tag mask needed in the GCM algorithm.

5 Software implementation aspects

One important change in future telecom networks is the virtualization of the network
functions. This puts new requirements on the crypto algorithms used to protect the
traffic in that it needs to execute fast in a pure software implementation on modern
CPUs. According to [ITU17], the minimum requirements related to 5G radio interface
are 10 Gbps uplink and 20 Gbps downlink, at peak data rates. Classical encryption
algorithms cannot reach these high speeds in pure software without any hardware sup-
port.

Nowadays, most of CPU vendors provide large registers and vectorized SIMD in-
structions, such as AVX2 set of instructions (intrinsics) that can execute over registers
of up to 256 bits. Typical instructions include such functions as XOR, AND, nADD32,
etc., applied to long registers, where, depending on the instruction, a single register can
be represented as a vector of 8/16/32/64-bit values.

AES is one of the most widely used crypto algorithms and it has received special
support from CPU vendors in the form of SIMD instructions (AES-NI for Intel) that
makes it possible to execute AES quite fast even on user-grade laptops. Crypto ciphers
SNOW 3G and ZUC, standardized in 4G, and other ciphers (to our best knowledge),
cannot reach the speed even close to AES when AES-NI is used.

SNOW-V is designed to perform very fast in software, with the aim to utilize currently
available SIMD instructions. However, even without AES-NI, SNOW-V can be imple-
mented quite efficiently with 16/32/64-bit registers. Our take-away is that if a given
platform supports AES-NI then other SIMD instructions are also likely supported. If
AES-NI is not available then AES-256 will be much slower than SNOW-V, and actually,
slower than SNOW 3G as well. This section is written with Intel intrinsics notation,
but similar implementations can likely be made on other CPUs, e.g. AMD and ARM.
A comprehensive guide on Intel’s intrinsics can be found in [Int18].

The FSM part of SNOW-V is quite straightforward to implement using 128-bit regis-
ters __m128i and AES-NI intrinsic function _mm_aesenc_si128(). For 4 parallel arith-
metic additions one can use _mm_add_epi32()1. The 16-byte permutation σ can be
done with _mm_shuffle_epi8().

1This intrinsic is intended for addition of signed integers but because most CPUs use two’s com-
plement representation for negative numbers, it will produce the correct results also for the unsigned
addition needed in SNOW-V.
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The key to an efficient implementation of the LFSRs is choosing the right data
structures. We propose to store the content of the two LFSRs in two 256-bit registers
__m256i hi, lo, such that:

lo[127..0 bits] = {a7, . . . , a0} hi[127..0 bits] = {a15, . . . , a8}
lo[255..128 bits] = {b7, . . . , b0} hi[255..128 bits] = {b15, . . . , b8}

To perform a single LFSR update (8 steps), we only need to calculate new values for one
register, hi_new=update(lo, hi) while the other register update is a copy lo_new=hi.

Let gA=0x990f represents the generating polynomial gA(α) of the field FA216 , without
the term α16. Then, multiplication of x by α in FA216 can be done as follows: we first
shift x«1, then, based on the 15th bit of the original x, we XOR the result with gA. This
may be done with only 4 instructions, using 16-bit values

mul_alpha(uint16 x, uint16 gA):= (x<<1) xor (((signed int16)x >>15) and gA)

Note that the condition wether to xor with gA or not is implemented with the
help of the 16-bit mask = (signed int16)x » 15, where the mask is created by the
arithmetical shift of the signed x to the right by 15 positions. The arithmetical shift
to the right results in propagation of the sign (15th) bit, thus forming the mask either
0xffff in case the bit 15 was 1, or 0x0000, otherwise.

The above trick can be applied to the combined 256-bit vector lo= (b7, . . . , b0, a7, . . . , a0)
to multiply the first half with α from the first base field FA216 and the high part with β from
the second base field FB216 , simultaneously. Here we need to use _mm256_srai_epi16()
that performs arithmetical shift to the right of 16 16-bit signed integers represented in
the combined 256-bit register lo. Obviously, the and operand should be done with the
constant where the low 8 x 16-bit values are gA=0x990f and the second half contains
gB=0xc963.

A similar idea is applied for multiplication of hi by α−1 and β−1. In our reference
implementation we found the way with only 4 instructions with the help of a non-trivial
intrinsic _mm256_sign_epi16() – however, if that intrinsic is not available then there is
an alternative solution with 5 instructions.

The results of the above two steps should be XORed together with the values at
tap offsets 1 and 3 for LFSRs A and B, respectively. The latter part is just byte
shuffling that can be done with _mm256_blend_epi32() and _mm256_alignr_epi8(),
three instructions in total.

6 Software performance evaluation

In this section we give software performance benchmarks of SNOW-V-(GCM), imple-
mented by us in C++ (Visual Studio 2017) utilizing AVX2/AES-NI/ PCLMULQDQ
intrinsics. All performance tests were carried out on a user-grade laptop with Intel i7-
8650U CPU @1.90GHz with Turbo Boost up to @4.20GHz, testing each algorithm on
a single process/thread and with various lengths of the input plaintext. Before each
encryption process, we perform a key/IV setup procedure. In the first place, we should
compare SNOW-V with AES since it demonstrates the fastest speed on commodity CPUs
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with available AES-NI instructions set. Perhaps, the second best choice algorithm, that
is in various places serves as a backup for AES, is ChaCha20, and we should compare
with that as well. We also include our best possible implementation of SNOW-3G in
order to demonstrate the advantage of the new member of the SNOW family of stream
ciphers.

For a fair and most challenging comparison we have downloaded the latest OpenSSL
(3.0.0-dev, 2019-04-01) sources, and built it with the latest NASM and Visual Studio
2017 for that certain native x64 machine, with most possible optimizations switched on.

Implementations of the algorithms AES-256-(CBC, CTR, GCM) and ChaCha20-
(Poly1305) in OpenSSL are the most recent and highly optimized assembly codes that
utilize AVX2/AES-NI/PCLMULQDQ, instructions stitching, and other best practice
optimization techniques. OpenSSL’s command line tool was used for performance eval-
uation of the selected algorithms; it runs an algorithm for a chosen number of seconds
and delivers the number of bytes per second processed, out of which we derive the speed
in Gigabits/sec (Gbps).

In order to fully align our own measurements of SNOW-V with the numbers given by
OpenSSL, we actually extracted and adopted the benchmarking code from OpenSSL’s
sources and did exactly the same way of measurements of SNOW-V. To negotiate pitfalls
from the system and the OS, we benchmarked every considered algorithm several times,
for 1-3 seconds, then picked the best values (a similar method is used in SUPERCOP
benchmarking approach). The results are presented in Table 3.

Encryption only Size of input plaintext (bytes)
16384 8192 4096 2048 1024 256 64

SNOW-3G-128 (C++) 9.22 9.07 8.89 8.50 7.81 5.38 2.37
AES-256-CBC (asm) 8.50 8.50 8.49 8.48 8.42 8.11 7.07
ChaCha20 (asm) 26.53 26.41 26.29 25.86 24.99 11.80 5.61

AES-256-CTR (asm) 35.06 34.82 34.16 32.94 30.95 22.67 11.32
SNOW-V (C++) 58.25 56.98 54.60 50.70 45.28 26.37 9.85

AEAD mode
ChaCha20-Poly1305 (asm) 18.46 18.24 18.16 17.54 16.99 8.98 4.29

AES-256-GCM (asm) 34.42 33.86 32.74 30.49 27.22 17.32 8.54
SNOW-V-GCM (C++) 38.91 37.66 34.86 30.71 26.16 13.93 5.16

Table 3: Performance comparison of SNOW-V-(GCM) and best OpenSSL’s
algorithms. Performance values are given in Gbps.

For a large plaintext, SNOW-V outperforms AES-256-CBC by around 6.5 times,
even though AES-256-CBC is implemented in an optimized assembly code with AES-NI.
SNOW-V is also 2 times faster than ChaCha20. An encryption in AES-256-CTR can
be done in "parallel", so that the technique called "instructions interleaving" makes it
possible to speed up a lot. Even here, SNOW-V is 66% faster than AES-256-CTR.

We would like to note that running an algorithm for even 1 second includes a lot of
system overhead such as OS’s scheduler, switching to other hundreds of OS’s processes
and services, switching CPUs’ contexts and affinity for load balancing, etc. When we
tried to measure SNOW-V for a very small fraction of a second (basically, measuring a
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single encryption), we have seen the speed goes up to 67Gbps (for encryption of 16384
bytes), which indicates that the OS’s overhead is a significant factor.

One could notice from our measurements that AEAD mode of OpenSSL’s AES-
256-GCM is almost for "free" (35.06Gbps vs. 34.42Gbps). This was achieved by careful
instructions interleaving and stitching techniques done in their optimized assembly code.
In case of SNOW-V-GCM we, however, did not get GHASH for "free" in our C++
implementation (58.25Gbps vs. 38.91Gbps), but we think that an optimized assembly
implementation of SNOW-V-(GCM) could potentially give a better result.

AVX512 is a new set of intrinsics utilizing wider 512-bit registers, and a subset of
the AVX512 instructions is currently only available on high-end Intel CPUs. In this new
set of intrinsics, there is an instruction to perform 4 AES encryption rounds in parallel
_mm512_aesenc_epi128(), which would speed up AES-256-CTR by around x4 times.

For SNOW-V it will mainly reduce the number of instructions, as several operations
in both the LFSR and the FSM can be combined in a single new AVX512 instruction.
A first approximation is that the number of instructions will be approximately halved,
but we need to evaluate SNOW-V on a full AVX512 implementation first. Since SNOW-
V would only use half of the 512-bit wide registers, the second half could be used to
perform another SNOW-V instance in parallel, with its own key and IV. Thus, as a
rough estimate, the speed of SNOW-V could be increased by 2-4 times.

We also did small tests for ARM NEON implementations of SNOW-V and AES
on an Apple A11 ARM processor2. Note that ARM architectures for devices are very
different from Intel desktop/server architectures in the sense that there is not a stan-
dardized implementation of the SoC. It is up to the SoC designer to decide on e.g. cache
configurations. At least, this test gives some indication of relative performance. The
SNOW-V implementation is a single threaded code using NEON intrinsics in C, and
the AES-CTR implementation is a single threaded assembly code from OpenSSL 1.1.1c.
The results are presented in Table 4.

Size of input plaintext (bytes)
16384 8192 4096 2048 1024 256 64

SNOW-V (C) 23.59 23.24 22.38 21.31 19.39 12.31 5.0
AES-CTR (asm) 15.97 15.87 15.59 15.08 14.34 10.62 5.04

Table 4: Performance comparison of SNOW-V and AES-CTR on an Apple A11 ARM
processor. Performance values are given in Gbps.

7 Conclusions

A new 128-bit stream cipher called SNOW-V is presented. It follows the design princi-
ples of the previous ciphers in the SNOW family, but leverages the AES round function
instruction support found in many modern CPUs. In a single thread implementation
in software, SNOW-V outperforms AES in all comparable modes of operation for plain-
text lengths above 256 bytes. Basic cryptanalysis of the new design is presented and

2 Tests were run on an Apple iPhone X.
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SNOW-V is argued to be resistant against these attacks. Finally, an AEAD mode of
operation based on the well known GCM scheme is given. Test vectors and reference im-
plementations are given in Appendix 3, Appendix 4, and Appendix 5. We also provide a
brief hardware evaluation of SNOW-V in Appendix 6, including a 64-bit implementation
utilizing a single AES core.
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Appendices

1 Remarks about the maximum period of the LFSR
structure

We can denote the LFSR state at time t ≥ 0 as

S(t) = (a
(t)
0 , a

(t)
1 , ..., a

(t)
14 , a

(t)
15 , b

(t)
0 , b

(t)
1 , ..., b

(t)
14 , b

(t)
15 )

with 32 16-bit cells, i.e., 512 bits in total. If we consider the binary representation of
the state, then the next state at t+ 1, S(t+1) can be written as,

S(t+1) = S(t)M

where M is the 512× 512 state transition matrix.
Every cell of the next state except a(t+1)

15 , b
(t+1)
15 is determined by a shift from the

neighboring cell, that is a(t+1)
i = a

(t)
i+1, b

(t+1)
i = b

(t)
i+1 for i = 0, 1, ...14, and the corre-

sponding binary state transition submatrices for such update are identity matrix MI

with size 16× 16. As for a15, b15, we can rewrite them in the polynomial form. Suppose
the bases for finite fields FA216 and FB216 are respectively (1, α, ..., α15),(1, β, ..., β15), then
every state element can be expressed as a polynomial corresponding to the two bases.

For instance, a certain element e ∈ FA216 can be interpreted as e = e0+e1α+, ...,+e14α
14+

e15α
15, where ei denotes the value at the i-th position of e. Then,

eα mod gA(α)=(e15α
16 + e14α

15+, ...,+e1α
2 + e0α) mod gA(α)
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Since
α16 mod gA(α) = α15 + α12 + α11 + α8 + α3 + α2 + α+ 1,

eα mod gA(α) can be expanded and rearranged as,

=e15(α15+α12+α11+α8+α3+α2+α+1) + e14α
15+, ...,+e1α

2 + e0α
= (e15 + e14)α15 + e13α

14 + e12α
13 + (e15 + e11)α12 + (e15 + e10)α11+

e9α
10 + e8α

9 + (e15 + e7)α8 + e6α
7 + e5α

6 + e4α
5 + e3α

4 + (e15 + e2)α3

+(e15 + e1)α2 + (e15 + e0)α+e15

= (e0, e1, ..., e15)Mα(1, α, ..., α15)T

From which we can deduce the matrix

Mα =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1

With the same method, we can also derive Mα−1 ,Mβ ,Mβ−1 . Then we can rewrite the
update for a(t+1)

15 , b
(t+1)
15 in a matrix form,

a
(t+1)
15 = b

(t)
0 MI + a

(t)
0 Mα + a

(t)
1 MI + a

(t)
8 Mα−1

b
(t+1)
15 = a

(t)
0 MI + b

(t)
0 Mβ + b

(t)
3 MI + b

(t)
8 Mβ−1

165



Then the complete binary transition matrix for the LFSR update can be written as,

M =

0 1 ... 7 ... 14 15 ... 18 ... 23 ... 30 31
0 Mα MI

1 MI MI

2 MI

... ...
8 MI Mα−1

... ...
15 MI

16 MI Mβ

... ...
19 MI MI

... ...
24 MI Mβ−1

... ...
31 MI

where every element in the 32× 32 matrix is a 16× 16 matrix and all the other empty
places are 16× 16 zero matrices. Then we can get the 512× 512 transition matrix
and some mathematical tools, such as Sagemath, can be employed to verify whether
it is primitive. We employ the built-in function charpoly() in Sagemath to get the
characteristic polynomial, which is,

m(x) =
x512 + x491 + x489 + x480 + x478 + x475 + x474 + x473 + x472 + x468 + x467+
x466 + x464 + x455 + x453 + x452 + x445 + x444 + x443 + x441 + x438 + x437+
x434 + x433 + x429 + x426 + x425 + x424 + x423 + x422 + x420 + x419 + x418+
x417 + x416 + x415 + x410 + x409 + x407 + x405 + x404 + x402 + x394 + x393+
x391 + x390 + x385 + x384 + x383 + x382 + x381 + x380 + x374 + x371 + x369+
x368 + x367 + x366 + x365 + x363 + x361 + x360 + x358 + x357 + x354 + x351+
x345 + x344 + x341 + x339 + x337 + x336 + x334 + x330 + x325 + x324 + x321+
x317 + x315 + x314 + x313 + x311 + x310 + x309 + x308 + x307 + x305 + x302+
x299 + x296 + x292 + x291 + x284 + x283 + x281 + x280 + x279 + x276 + x275 +
x273 + x271 + x267 + x264 + x263 + x262 + x260 + x259 + x258 + x257 + x256+
x254 + x253 + x251 + x249 + x248 + x247 + x246 + x245 + x243 + x242 + x240+
x238 + x236 + x229 + x225 + x218 + x217 + x216 + x215 + x214 + x209 + x208+
x207 + x205 + x204 + x203 + x201 + x198 + x193 + x192 + x190 + x189 + x187+
x186 + x185 + x180 + x178 + x176 + x173 + x170 + x169 + x167 + x165 + x164 +
x163 + x162 + x160 + x159 + x155 + x152 + x151 + x150 + x149 + x148 + x147+
x145 + x144 + x142 + x141 + x136 + x134 + x131 + x126 + x125 + x123 + x122 +
x121 + x118 + x117 + x114 + x113 + x109 + x106 + x105 + x104 + x103 + x101+
x100 + x96 + x95 + x94 + x91 + x87 + x86 + x85 + x83 + x82 + x81 + x78 +
x76 + x74 + x73 + x69 + x68 + x67 + x66 + x64 + x63 + x62 + x61 + x59 +
x56 + x54 + x53 + x50 + x49 + x47 + x42 + x38 + x36 + x35 + x33 + x25+
x24 + x23 + x20 + x16 + x15 + x14 + x13 + x11 + x9 + x6 + x+ 1

Then we can verify it primitive by Sagemath, which indicates the LFSR structure has
the maximum period 2512−1.
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2 Details on the exampled linear approximation of the
FSM for the proposed algorithm

In this Section we provide more details on the exampled approximation given in Sec-
tion 3.4.4. We, again, assume 8-bit adders �8, instead of �32. Recall the exampled
approximation where Λ0 = Λ1 = [1 1 1 1 0 0 ... 0], and Λ2 = Λ1 · L−1. We can thus
analyse the following expressions on three consecutive keystream words z(t−1), z(t), and
z(t+1):

z(t−1) = (S−1(L−1 · R̂2)�8 T1(t−1))⊕ S−1(L−1 · R̂3),

z(t) = (R̂1�8 T1(t))⊕ R̂2,

L−1z(t+1) = L−1(σ(R̂2�8 (R̂3⊕ T2(t)))�8 T1(t+1))⊕ S(R̂1).

The exampled approximation is the sum (⊕) of the first 4 bytes of the above 3 expres-
sions. In order to make it easier to follow our derivations we give explicit matrices for
L−1 and L−1σ in Listing 1.

Listing 1: Matrices L−1 (left) and L−1σ (right).
e b d 9 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 e 0 0 0 | b 0 0 0 | d 0 0 0 | 9 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 9 e b d 0 0 0 9 | 0 0 0 e | 0 0 0 b | 0 0 0 d
0 0 0 0 | 0 0 0 0 | d 9 e b | 0 0 0 0 0 0 d 0 | 0 0 9 0 | 0 0 e 0 | 0 0 b 0
0 0 0 0 | b d 9 e | 0 0 0 0 | 0 0 0 0 0 b 0 0 | 0 d 0 0 | 0 9 0 0 | 0 e 0 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 | e b d 9 | 0 0 0 0 | 0 0 0 0 0 e 0 0 | 0 b 0 0 | 0 d 0 0 | 0 9 0 0
9 e b d | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 9 0 0 0 | e 0 0 0 | b 0 0 0 | d 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | d 9 e b 0 0 0 d | 0 0 0 9 | 0 0 0 e | 0 0 0 b
0 0 0 0 | 0 0 0 0 | b d 9 e | 0 0 0 0 0 0 b 0 | 0 0 d 0 | 0 0 9 0 | 0 0 e 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 | 0 0 0 0 | e b d 9 | 0 0 0 0 0 0 e 0 | 0 0 b 0 | 0 0 d 0 | 0 0 9 0
0 0 0 0 | 9 e b d | 0 0 0 0 | 0 0 0 0 0 9 0 0 | 0 e 0 0 | 0 b 0 0 | 0 d 0 0
d 9 e b | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 d 0 0 0 | 9 0 0 0 | e 0 0 0 | b 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | b d 9 e 0 0 0 b | 0 0 0 d | 0 0 0 9 | 0 0 0 e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | e b d 9 0 0 0 e | 0 0 0 b | 0 0 0 d | 0 0 0 9
0 0 0 0 | 0 0 0 0 | 9 e b d | 0 0 0 0 0 0 9 0 | 0 0 e 0 | 0 0 b 0 | 0 0 d 0
0 0 0 0 | d 9 e b | 0 0 0 0 | 0 0 0 0 0 d 0 0 | 0 9 0 0 | 0 e 0 0 | 0 b 0 0
b d 9 e | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 b 0 0 0 | d 0 0 0 | 9 0 0 0 | e 0 0 0

We first note that with �8 for any 16-byte expression W we have:

3∑
i=0

[L−1σ ·W ]i =

3∑
i=0

3∑
j=0

c4j+(−i mod 4)W4j+(−i mod 4) =

3∑
i=0

3∑
j=0

c4i+jW4i+j ,

where the coefficients are:

c = [e b d 9 b d 9 e d 9 e b 9 e b d].
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Then we get the following linear approximation of the FSM:

3∑
i=0

[
L−1z(t+1) ⊕ z(t) ⊕ z(t−1)

]
i

=

3∑
i=0

S(R̂1i)⊕ (R̂1i �8 T1
(t)
i )⊕ T1

(t)
i︸ ︷︷ ︸

Noise N1i

⊕T1
(t)
i



⊕
3∑
i=0

R̂2i ⊕
3∑
j=0

c4i+j [(R̂24i+j �8 (R̂34i+j ⊕ X̂i,j)�8 Ŷi,j)⊕ X̂i,j ⊕ Ŷi,j︸ ︷︷ ︸
Linear part Ci of N2i

⊕X̂i,j ⊕ Ŷi,j ]



⊕
3∑
i=0


S−1(

3∑
j=0

c4i+jR̂24i+j︸ ︷︷ ︸
Linear part Ai of N2i

)�8 T1
(t−1)
i

⊕ S−1(

3∑
j=0

c4i+jR̂34i+j︸ ︷︷ ︸
Linear part Bi of N2i

)

 ,

where X̂i,j = T2
(t)
4i+j and Ŷi,j = (σ−1T1(t+1))4i+j .

In the above it now becomes clear that we need to compute byte-oriented distri-
butions of two independent noise variables N1 and N2. The first noise is trivial to
compute, while the second N2 is a bit more complicated, but it can be computed with
the technique mentioned in Section 3.4.1. I.e., for every i we first compute 4 partial joint
distributions Di,j(Ai,j |Bi,j |Ci,j) of linear parts A|B|C for each j = 0...3, then we use
Fast Walsh-Hadamard Transform to perform the XOR-convolutions in order to get the
complete 24-bit joint distribution Di(Ai|Bi|Ci) for all possible 32-bit input arguments
running over j = 0, 1, 2, 3, for that certain i. Having that joint distribution Di(Ai|Bi|Ci)
being computed it is then trivial to compute the 8-bit sub-noise distribution N2i: we
simply loop over all possible choices of Ai, Bi, Ci, T1

(t−1)
i , and approximate ...�8T1

(t−1)
i

by adding that term outside of S−1, near by the linear part A. I.e., we compute

Pr{N2i = (S−1(Ai)�8 T1
(t−1)
i )⊕ T1

(t−1)
i ⊕ S−1(Bi)⊕ Ci} +=

1

28
·Di(Ai|Bi|Ci).

We repeat the above for each i, and the total noise N2 is the XOR-convolution of the
four independent sub-distributions N2i.

We would like to note that the first sub-distribution N20 has a smaller bias since 4
bytes of the term R̂2i in the linear part C of N2 are added to N20, while the remaining
3 sub-distributions are free from these terms. This means that N20 includes 4 approx-
imations of type n3 with a smaller bias (≈ 2−3.3) than those of the types n1(≈ 23.1)
and n2(≈ 2−2.9). Our computation results are as follows: ε(N2i=0) ≈ 2−53.828334,
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ε(N2i=1..3) ≈ 2−30.382642, ε(N1i=0..3) ≈ 2−2.920807, and

ε(

3∑
i=0

N1i) ≈ 2−26.446376,

ε(

3∑
i=0

N2i) ≈ 2−187.562693,

ε(Ntot) ≈ 2−214.848865,

ε(2×Ntot) ≈ 2−429.674887.

3 Test Vectors

This section presents test vectors for SNOW-V with three different keys and IVs. The
vectors are written with the least significant byte of the 128-bit word appearing to
the left in the row. For the keys, the lower 128-bit part is written on the first row,
followed by the high part on the second row.

Listing 2: Test vectors for SNOW-V.
1 == SNOW -V test vectors #1:
2 key = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4 iv = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
5 Initialization phase , z =
6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
7 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
8 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5
9 ea ea ea ea eb eb eb eb eb eb eb eb eb eb eb eb

10 55 f7 f7 c2 e8 e8 dd 4a e8 dd 4a e8 dd 4a e8 e8
11 c7 2a 23 bf e8 93 73 30 23 bc 66 ec 94 d2 eb b2
12 a7 dd ca f3 13 87 61 02 6e ad f4 2b 54 e3 ef cf
13 6a 67 62 3e 6f 8a f9 79 1e cd 81 83 c5 86 8e 3a
14 45 10 1e 83 a2 c6 dd eb 40 86 38 2d ac fb 3b 65
15 3c c4 df 56 ec bf c1 06 6d ac 02 c5 0a 68 3c fe
16 0c cb e1 de 2e 41 af da 70 98 d5 60 19 20 06 98
17 53 cd 98 69 c7 78 ca de d7 db 45 9b 6f 45 8b 10
18 8d 94 0b e5 9f bd b1 61 c1 21 fc 29 7a 3d 0a 15
19 26 13 2c 14 9e af 12 cc d3 2f 35 76 f6 43 68 94
20 0e 75 be 09 54 18 1e f5 8a 60 a9 a9 54 3a 05 ff
21 dc 77 a4 97 23 eb 65 6a e1 8f 28 2c f1 de 1d 00
22 Keystream phase , z =
23 69 ca 6d af 9a e3 b7 2d b1 34 a8 5a 83 7e 41 9d
24 ec 08 aa d3 9d 7b 0f 00 9b 60 b2 8c 53 43 00 ed
25 84 ab f5 94 fb 08 a7 f1 f3 a2 df 18 e6 17 68 3b
26 48 1f a3 78 07 9d cf 04 db 53 b5 d6 29 a9 eb 9d
27 03 1c 15 9d cc d0 a5 0c 4d 5d bf 51 15 d8 70 39
28 c0 d0 3c a1 37 0c 19 40 03 47 a0 b4 d2 e9 db e5
29 cb ca 60 82 14 a2 65 82 cf 68 09 16 b3 45 13 21
30 95 4f df 30 84 af 02 f6 a8 e2 48 1d e6 bf 82 79
31

32

33 == SNOW -V test vectors #2:
34 key = ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
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35 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
36 iv = ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
37 Initialization phase , z =
38 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
39 d3 07 d2 07 d3 07 d2 07 d3 07 2d f8 2e f8 2d f8
40 65 f6 62 f6 65 f6 62 f6 65 f6 62 f6 65 f6 62 f6
41 fe 86 fe 86 f5 2d f2 2d 31 96 d7 54 6a e8 6a e8
42 8b d8 8a a5 c8 29 c6 26 7c 51 37 97 bf 9a c8 7c
43 21 c0 4a 14 e4 1c 34 95 d0 9c 96 e5 48 60 89 81
44 7c ce 64 29 1a cf 8f 4a 06 ca 55 65 3f c4 93 97
45 0a f9 1c 75 0f d3 80 e3 48 6b ff e5 c7 bb e3 d4
46 89 60 89 a2 e6 f0 7c 2c 92 ed 62 ed 9d 43 61 98
47 ff 04 bf 72 41 c0 7f 6b 17 fd 90 c8 8a 61 bf ca
48 97 88 78 33 20 08 2f f6 f9 34 45 18 6e 71 bc bc
49 7e 17 b4 ff 42 3a 2e 2c c7 c5 0f 84 5d 9b b3 ee
50 32 40 8c 85 58 e0 d2 7e f5 a3 a8 d7 63 32 25 dc
51 a2 93 73 c3 48 2b 3f 1a d3 3b b4 57 a3 0d 7f e4
52 72 e0 95 5b 9a 83 3a 3f db 98 68 56 35 80 b4 b0
53 94 9f be 85 a4 e5 35 7f bf 75 e9 86 4d 2c 7b a1
54 Keystream phase , z =
55 30 76 09 fb 10 10 12 54 4b c1 75 e3 17 fb 25 ff
56 33 0d 0d e2 5a f6 aa d1 05 05 b8 9b 1e 09 a8 ec
57 dd 46 72 cc bb 98 c7 f2 c4 e2 4a f5 27 28 36 c8
58 7c c7 3a 81 76 b3 9c e9 30 3b 3e 76 4e 9b e3 e7
59 48 f7 65 1a 7c 7e 81 3f d5 24 90 23 1e 56 f7 c1
60 44 e4 38 e7 77 11 a6 b0 ba fb 60 45 0c 62 d7 d9
61 b9 24 1d 12 44 fc b4 9d a1 e5 2b 80 13 de cd d4
62 86 04 ff fc 62 67 6e 70 3b 3a b8 49 cb a6 ea 09
63

64

65 == SNOW -V test vectors #3:
66 key = 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
67 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
68 iv = 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
69 Initialization phase , z =
70 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
71 66 d4 2d 92 ac 52 b6 44 63 3c c3 71 c3 91 c6 24
72 a2 d7 ea be 3f 04 8e 50 00 b1 7b 74 2f 34 5e 49
73 96 a7 34 ed fd 07 46 9d c8 f9 a2 91 fc 13 76 73
74 58 c8 70 73 d8 a2 a1 bd 03 e7 a1 4c c7 b7 db 89
75 7e 86 eb 71 d6 dc 00 99 d1 31 e3 1b 54 c5 3e f8
76 a8 ca ff 06 0d c0 9e 67 cc 95 62 16 17 19 8c f2
77 c0 99 3a 55 f3 e2 d7 8d 6a f7 e1 57 0f a1 63 02
78 39 8f a0 7e ab a2 73 89 94 f9 ac 3e 8e b1 ff 64
79 15 32 31 6a 42 5c 12 a6 39 ce 79 cb 30 43 47 1e
80 2e 7a 44 fd ad 23 77 5a f1 61 1c ca 5b b2 1e 95
81 93 69 c8 20 a9 37 d5 c8 b6 7a df 84 45 5e 13 c3
82 c1 0f 8d b5 fb 37 08 31 11 d1 c8 44 6e a2 ac 9e
83 13 ac 34 20 7b 01 b7 ab d3 57 02 a1 ed 98 9b dc
84 0b 15 43 a4 74 26 2c 76 a3 e2 73 57 28 4b dc 67
85 7b 79 91 96 cf 6b 76 27 f8 dd a1 89 bb af dc 93
86 Keystream phase , z =
87 aa 81 ea fb 8b 86 16 ce 3e 5c e2 22 24 61 c5 0a
88 6a b4 48 77 56 de 4b d3 1c 90 4f 3d 97 8a fe 56
89 33 4f 10 dd df 2b 95 31 76 9a 71 05 0b e4 38 5f
90 c2 b6 19 2c 7a 85 7b e8 b4 fc 28 b7 09 f0 8f 11
91 f2 06 49 e2 ee f2 49 80 f8 6c 4c 11 36 41 fe d2
92 f3 f6 fa 2b 91 95 12 06 b8 01 db 15 46 65 17 a6
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93 33 0a dd a6 b3 5b 26 5e fd 72 2e 86 77 b4 8b fc
94 15 b4 41 18 de 52 d0 73 b0 ad 0f e7 59 4d 62 91

Listing 3: Test vectors for SNOW-V-GCM.
1 == SNOW -V test vectors #1:
2 key = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4 iv = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
5 Initialization phase , z =
6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
7 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
8 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5
9 ea ea ea ea eb eb eb eb eb eb eb eb eb eb eb eb

10 55 f7 f7 c2 e8 e8 dd 4a e8 dd 4a e8 dd 4a e8 e8
11 c7 2a 23 bf e8 93 73 30 23 bc 66 ec 94 d2 eb b2
12 a7 dd ca f3 13 87 61 02 6e ad f4 2b 54 e3 ef cf
13 6a 67 62 3e 6f 8a f9 79 1e cd 81 83 c5 86 8e 3a
14 45 10 1e 83 a2 c6 dd eb 40 86 38 2d ac fb 3b 65
15 3c c4 df 56 ec bf c1 06 6d ac 02 c5 0a 68 3c fe
16 0c cb e1 de 2e 41 af da 70 98 d5 60 19 20 06 98
17 53 cd 98 69 c7 78 ca de d7 db 45 9b 6f 45 8b 10
18 8d 94 0b e5 9f bd b1 61 c1 21 fc 29 7a 3d 0a 15
19 26 13 2c 14 9e af 12 cc d3 2f 35 76 f6 43 68 94
20 0e 75 be 09 54 18 1e f5 8a 60 a9 a9 54 3a 05 ff
21 dc 77 a4 97 23 eb 65 6a e1 8f 28 2c f1 de 1d 00
22 Keystream phase , z =
23 69 ca 6d af 9a e3 b7 2d b1 34 a8 5a 83 7e 41 9d
24 ec 08 aa d3 9d 7b 0f 00 9b 60 b2 8c 53 43 00 ed
25 84 ab f5 94 fb 08 a7 f1 f3 a2 df 18 e6 17 68 3b
26 48 1f a3 78 07 9d cf 04 db 53 b5 d6 29 a9 eb 9d
27 03 1c 15 9d cc d0 a5 0c 4d 5d bf 51 15 d8 70 39
28 c0 d0 3c a1 37 0c 19 40 03 47 a0 b4 d2 e9 db e5
29 cb ca 60 82 14 a2 65 82 cf 68 09 16 b3 45 13 21
30 95 4f df 30 84 af 02 f6 a8 e2 48 1d e6 bf 82 79
31

32

33 == SNOW -V test vectors #2:
34 key = ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
35 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
36 iv = ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
37 Initialization phase , z =
38 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
39 d3 07 d2 07 d3 07 d2 07 d3 07 2d f8 2e f8 2d f8
40 65 f6 62 f6 65 f6 62 f6 65 f6 62 f6 65 f6 62 f6
41 fe 86 fe 86 f5 2d f2 2d 31 96 d7 54 6a e8 6a e8
42 8b d8 8a a5 c8 29 c6 26 7c 51 37 97 bf 9a c8 7c
43 21 c0 4a 14 e4 1c 34 95 d0 9c 96 e5 48 60 89 81
44 7c ce 64 29 1a cf 8f 4a 06 ca 55 65 3f c4 93 97
45 0a f9 1c 75 0f d3 80 e3 48 6b ff e5 c7 bb e3 d4
46 89 60 89 a2 e6 f0 7c 2c 92 ed 62 ed 9d 43 61 98
47 ff 04 bf 72 41 c0 7f 6b 17 fd 90 c8 8a 61 bf ca
48 97 88 78 33 20 08 2f f6 f9 34 45 18 6e 71 bc bc
49 7e 17 b4 ff 42 3a 2e 2c c7 c5 0f 84 5d 9b b3 ee
50 32 40 8c 85 58 e0 d2 7e f5 a3 a8 d7 63 32 25 dc
51 a2 93 73 c3 48 2b 3f 1a d3 3b b4 57 a3 0d 7f e4
52 72 e0 95 5b 9a 83 3a 3f db 98 68 56 35 80 b4 b0
53 94 9f be 85 a4 e5 35 7f bf 75 e9 86 4d 2c 7b a1
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54 Keystream phase , z =
55 30 76 09 fb 10 10 12 54 4b c1 75 e3 17 fb 25 ff
56 33 0d 0d e2 5a f6 aa d1 05 05 b8 9b 1e 09 a8 ec
57 dd 46 72 cc bb 98 c7 f2 c4 e2 4a f5 27 28 36 c8
58 7c c7 3a 81 76 b3 9c e9 30 3b 3e 76 4e 9b e3 e7
59 48 f7 65 1a 7c 7e 81 3f d5 24 90 23 1e 56 f7 c1
60 44 e4 38 e7 77 11 a6 b0 ba fb 60 45 0c 62 d7 d9
61 b9 24 1d 12 44 fc b4 9d a1 e5 2b 80 13 de cd d4
62 86 04 ff fc 62 67 6e 70 3b 3a b8 49 cb a6 ea 09
63

64

65 == SNOW -V test vectors #3:
66 key = 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
67 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
68 iv = 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
69 Initialization phase , z =
70 0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
71 66 d4 2d 92 ac 52 b6 44 63 3c c3 71 c3 91 c6 24
72 a2 d7 ea be 3f 04 8e 50 00 b1 7b 74 2f 34 5e 49
73 96 a7 34 ed fd 07 46 9d c8 f9 a2 91 fc 13 76 73
74 58 c8 70 73 d8 a2 a1 bd 03 e7 a1 4c c7 b7 db 89
75 7e 86 eb 71 d6 dc 00 99 d1 31 e3 1b 54 c5 3e f8
76 a8 ca ff 06 0d c0 9e 67 cc 95 62 16 17 19 8c f2
77 c0 99 3a 55 f3 e2 d7 8d 6a f7 e1 57 0f a1 63 02
78 39 8f a0 7e ab a2 73 89 94 f9 ac 3e 8e b1 ff 64
79 15 32 31 6a 42 5c 12 a6 39 ce 79 cb 30 43 47 1e
80 2e 7a 44 fd ad 23 77 5a f1 61 1c ca 5b b2 1e 95
81 93 69 c8 20 a9 37 d5 c8 b6 7a df 84 45 5e 13 c3
82 c1 0f 8d b5 fb 37 08 31 11 d1 c8 44 6e a2 ac 9e
83 13 ac 34 20 7b 01 b7 ab d3 57 02 a1 ed 98 9b dc
84 0b 15 43 a4 74 26 2c 76 a3 e2 73 57 28 4b dc 67
85 7b 79 91 96 cf 6b 76 27 f8 dd a1 89 bb af dc 93
86 Keystream phase , z =
87 aa 81 ea fb 8b 86 16 ce 3e 5c e2 22 24 61 c5 0a
88 6a b4 48 77 56 de 4b d3 1c 90 4f 3d 97 8a fe 56
89 33 4f 10 dd df 2b 95 31 76 9a 71 05 0b e4 38 5f
90 c2 b6 19 2c 7a 85 7b e8 b4 fc 28 b7 09 f0 8f 11
91 f2 06 49 e2 ee f2 49 80 f8 6c 4c 11 36 41 fe d2
92 f3 f6 fa 2b 91 95 12 06 b8 01 db 15 46 65 17 a6
93 33 0a dd a6 b3 5b 26 5e fd 72 2e 86 77 b4 8b fc
94 15 b4 41 18 de 52 d0 73 b0 ad 0f e7 59 4d 62 91

4 SNOW-V 32-bit Reference Implementation in C/C++

1 // SNOW-V 32-bit Reference Implementation (Endianness-free)
2 #include <stdint.h>
3 #include <stdlib.h>
4

5 typedef uint8_t u8;
6 typedef uint16_t u16;
7 typedef uint32_t u32;
8

9 u8 SBox[256] =
10 {
11 0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
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12 0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
13 0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
14 0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
15 0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
16 0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
17 0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
18 0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
19 0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
20 0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
21 0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
22 0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
23 0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
24 0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
25 0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
26 0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
27 };
28 u8 Sigma[16] = {0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15};
29 u32 AesKey1[4] = { 0, 0, 0, 0 };
30 u32 AesKey2[4] = { 0, 0, 0, 0 };
31

32 #define MAKEU32(a, b) (((u32)(a) << 16) | ((u32)(b) ))
33 #define MAKEU16(a, b) (((u16)(a) << 8) | ((u16)(b) ))
34

35 struct SnowV32
36 {
37 u16 A[16], B[16]; // LFSR
38 u32 R1[4], R2[4], R3[4]; // FSM
39

40 void aes_enc_round(u32 * result, u32 * state, u32 * roundKey)
41 {
42 #define ROTL32(word32, offset) ((word32 << offset) | (word32 >> (32 - offset)))
43 #define SB(index, offset) (((u32)(sb[(index) % 16])) << (offset * 8))
44 #define MKSTEP(j)\
45 w = SB(j * 4 + 0, 3) | SB(j * 4 + 5, 0) | SB(j * 4 + 10, 1) | SB(j * 4 + 15, 2)←↩

;\
46 t = ROTL32(w, 16) ^ ((w << 1) & 0xfefefefeUL) ^ (((w >> 7) & 0x01010101UL) * 0←↩

x1b);\
47 result[j] = roundKey[j] ^ w ^ t ^ ROTL32(t, 8)
48

49 u32 w, t;
50 u8 sb[16];
51 for (int i = 0; i < 4; i++)
52 for (int j = 0; j < 4; j++)
53 sb[i * 4 + j] = SBox[(state[i] >> (j * 8)) & 0xff];
54

55 MKSTEP(0);
56 MKSTEP(1);
57 MKSTEP(2);
58 MKSTEP(3);
59 }
60

61 u16 mul_x(u16 v, u16 c)
62 { if (v & 0x8000)
63 return(v << 1) ^ c;
64 else
65 return (v << 1);
66 }
67
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68 u16 mul_x_inv(u16 v, u16 d)
69 { if (v & 0x0001)
70 return(v >> 1) ^ d;
71 else
72 return (v >> 1);
73 }
74

75 void permute_sigma(u32 * state)
76 { u8 tmp[16];
77

78 for (int i = 0; i < 16; i++)
79 tmp[i] = (u8)(state[Sigma[i] >> 2] >> ((Sigma[i] & 3) << 3));
80

81 for (int i = 0; i < 4; i++)
82 state[i] = MAKEU32(MAKEU16(tmp[4 * i + 3], tmp[4 * i + 2]),
83 MAKEU16(tmp[4 * i + 1], tmp[4 * i]));
84 }
85

86 void fsm_update(void)
87 { u32 R1temp[4];
88 memcpy(R1temp, R1, sizeof(R1));
89

90 for (int i = 0; i < 4; i++)
91 { u32 T2 = MAKEU32(A[2 * i + 1], A[2 * i]);
92 R1[i] = (T2 ^ R3[i]) + R2[i];
93 }
94 permute_sigma(R1);
95 aes_enc_round(R3, R2, AesKey2);
96 aes_enc_round(R2, R1temp, AesKey1);
97 }
98

99 void lfsr_update(void)
100 {
101 for (int i = 0; i < 8; i++)
102 { u16 u = mul_x(A[0], 0x990f) ^ A[1] ^ mul_x_inv(A[8], 0xcc87) ^ B[0];
103 u16 v = mul_x(B[0], 0xc963) ^ B[3] ^ mul_x_inv(B[8], 0xe4b1) ^ A←↩

[0];
104

105 for (int j = 0; j < 15; j++)
106 { A[j] = A[j + 1];
107 B[j] = B[j + 1];
108 }
109

110 A[15] = u;
111 B[15] = v;
112 }
113 }
114

115 void keystream(u8 * z)
116 {
117 for (int i = 0; i < 4; i++)
118 { u32 T1 = MAKEU32(B[2 * i + 9], B[2 * i + 8]);
119 u32 v = (T1 + R1[i]) ^ R2[i];
120 z[i * 4 + 0] = (v >> 0) & 0xff;
121 z[i * 4 + 1] = (v >> 8) & 0xff;
122 z[i * 4 + 2] = (v >> 16) & 0xff;
123 z[i * 4 + 3] = (v >> 24) & 0xff;
124 }
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125

126 fsm_update();
127 lfsr_update();
128 }
129

130 void keyiv_setup(u8 * key, u8 * iv, int is_aead_mode)
131 {
132 for (int i = 0; i < 8; i++)
133 { A[i] = MAKEU16(iv[2 * i + 1], iv[2 * i]);
134 A[i + 8] = MAKEU16(key[2 * i + 1], key[2 * i]);
135 B[i] = 0x0000;
136 B[i + 8] = MAKEU16(key[2 * i + 17], key[2 * i + 16]);
137 }
138

139 if(is_aead_mode == 1)
140 { B[0] = 0x6C41;
141 B[1] = 0x7865;
142 B[2] = 0x6B45;
143 B[3] = 0x2064;
144 B[4] = 0x694A;
145 B[5] = 0x676E;
146 B[6] = 0x6854;
147 B[7] = 0x6D6F;
148 }
149

150 for (int i = 0; i < 4; i++)
151 R1[i] = R2[i] = R3[i] = 0x00000000;
152

153 for (int i = 0; i < 16; i++)
154 { u8 z[16];
155 keystream(z);
156

157 for (int j = 0; j < 8; j++)
158 A[j + 8] ^= MAKEU16(z[2 * j + 1], z[2 * j]);
159

160 if (i == 14)
161 for (int j = 0; j < 4; j++)
162 R1[j] ^= MAKEU32(MAKEU16(key[4 * j + 3], key[4 * j ←↩

+ 2]),
163 MAKEU16(key[4 * j + 1], key[4 * j + ←↩

0]));
164 if (i == 15)
165 for (int j = 0; j < 4; j++)
166 R1[j] ^= MAKEU32(MAKEU16(key[4 * j + 19], key[4 * j←↩

+ 18]),
167 MAKEU16(key[4 * j + 17], key[4 * j +←↩

16]));
168 }
169 }
170 };

1 // AEAD mode: SNOW-V-GCM in C++ (Endianness-free)
2 #include <stdint.h>
3 #include <stdlib.h>
4 #include "SNOWV.h"

175



5 #include "ghash.h"
6

7 #define min(a, b) (((a) < (b)) ? (a) : (b))
8

9 void snowv_gcm_encrypt(u8 * A, u8 * ciphertext, u8 * plaintext, u64 plaintext_sz,
10 u8 * aad, u64 aad_sz, u8 * key32, u8 * iv16)
11 {
12 u8 Hkey[16], endPad[16];
13 struct SnowV32 snowv;
14 memset(A, 0, 16);
15 snowv.keyiv_setup(key32, iv16, 1);
16 snowv.keystream(Hkey);
17 snowv.keystream(endPad);
18 ghash_update(Hkey, A, aad, aad_sz);
19

20 for (u64 i = 0; i < plaintext_sz; i += 16)
21 { u8 key_stream[16];
22 snowv.keystream(key_stream);
23 for(u8 j = 0; j < min(16, plaintext_sz - i); j++)
24 ciphertext[i + j] = key_stream[j] ^ plaintext[i + j];
25 }
26

27 ghash_update(Hkey, A, ciphertext, plaintext_sz);
28 ghash_final(Hkey, A, aad_sz, plaintext_sz, endPad);
29 }
30

31 void snowv_gcm_decrypt(u8 * A, u8 * ciphertext, u8 * plaintext, u64 ciphertext_sz,
32 u8 * aad, u64 aad_sz, u8 * key32, u8 * iv16)
33 {
34 u8 Hkey[16], endPad[16], auth[16] = {0x00};
35 struct SnowV32 snowv;
36 snowv.keyiv_setup(key32, iv16, 1);
37 snowv.keystream(Hkey);
38 snowv.keystream(endPad);
39 ghash_update(Hkey, auth, aad, aad_sz);
40 ghash_update(Hkey, auth, ciphertext, ciphertext_sz);
41 ghash_final(Hkey, auth, aad_sz, ciphertext_sz, endPad);
42 for(int i = 0; i < 16; i++)
43 if(auth[i] != A[i])
44 { printf("Authentication Failed!");
45 exit(1);
46 }
47

48 for (u64 i = 0; i < ciphertext_sz; i += 16)
49 { u8 key_stream[16];
50 snowv.keystream(key_stream);
51 for(u8 j = 0; j < min(16, ciphertext_sz - i); j++)
52 plaintext[i + j] = key_stream[j] ^ ciphertext[i + j];
53 }
54 }

1 // Informative: an exampled implementation of GHASH core (C++)
2 #define XOR2x64(dst, src) ((u64*)(dst))[0] ^= ((u64*)(src))[0], \
3 ((u64*)(dst))[1] ^= ((u64*)(src))[1]
4 #define XOR3x64(dst, src1, src2) ((u64*)(dst))[0] = ((u64*)(src1))[0] ^ ((u64*)(src2))←↩

[0], \
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5 ((u64*)(dst))[1] = ((u64*)(src1))[1] ^ ((u64*)(src2))[1]
6

7 void ghash_mult(u8 * out, const u8 * x, const u8 * y)
8 { char tmp[17];
9 u64 c0, c1, u0 = ((u64*)y)[0], u1 = ((u64*)y)[1];

10 memset(out, 0, 16);
11

12 for (int i = 0; i < 16; i++)
13 for (int j = 7; j >= 0; j--)
14 { if ((x[i] >> j) & 1) ((u64*)out)[0] ^= u0, ((u64*)out)[1] ^= u1;
15 c0 = (u0 << 7) & 0x8080808080808080ULL;
16 c1 = (u1 << 7) & 0x8080808080808080ULL;
17 u0 = (u0 >> 1) & 0x7f7f7f7f7f7f7f7fULL;
18 u1 = (u1 >> 1) & 0x7f7f7f7f7f7f7f7fULL;
19 ((u64*)(tmp + 1))[0] = c0;
20 ((u64*)(tmp + 1))[1] = c1;
21 tmp[0] = (tmp[16] >> 7) & 0xe1;
22 u0 ^= ((u64*)tmp)[0];
23 u1 ^= ((u64*)tmp)[1];
24 }
25 }
26

27 void ghash_update(const u8 * H, u8 * A, const u8 * data, long long length)
28 { u8 tmp[16];
29 for( ;length >= 16; length -=16, data += 16)
30 { XOR3x64(tmp, data, A);
31 ghash_mult(A, tmp, H);
32 }
33 if(!length) return;
34 memset(tmp, 0, 16);
35 memcpy(tmp, data, length);
36 XOR2x64(tmp, A);
37 ghash_mult(A, tmp, H);
38 }
39

40 void ghash_final(const u8 * H, u8 * A, u64 lenAAD, u64 lenC, const u8 * maskingBlock)
41 {
42 u8 tmp[16];
43 lenAAD <<= 3;
44 lenC <<= 3;
45 for(int i=0; i<8; ++i)
46 { tmp[7-i] = (u8)(lenAAD >> (8 * i));
47 tmp[15-i] = (u8)(lenC >> (8 * i));
48 }
49 XOR2x64(tmp, A);
50 ghash_mult(A, tmp, H);
51 XOR2x64(A, maskingBlock); /* The resulting AuthTag is in A[] */
52 }

5 SNOW-V Reference Implementation with SIMD

1 // SNOW-V Reference Implementation utilizing AES-NI, SSE2, SSSE3, AVX, AVX2 (Little ←↩
endian)

2 #include <immintrin.h>
3 #define vpset16(value) _mm256_set1_epi16(value)
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4 const __m256i _snowv_mul = _mm256_blend_epi32(vpset16( 0x990f), vpset16( 0xc963), 0xf0)←↩
;

5 const __m256i _snowv_inv = _mm256_blend_epi32(vpset16(-0xcc87), vpset16(-0xe4b1), 0xf0)←↩
;

6 const __m128i _snowv_aead = _mm_lddqu_si128((__m128i*)"AlexEkd JingThom");
7 const __m128i _snowv_sigma= _mm_set_epi8(15,11,7,3,14,10,6,2,13,9,5,1,12,8,4,0);
8 const __m128i _snowv_zero = _mm_setzero_si128();
9

10 struct SnowV256
11 {
12 __m256i hi, lo; // LFSR
13 __m128i R1, R2, R3; // FSM
14

15 inline __m128i keystream(void)
16 {
17 // Extract the tags T1 and T2
18 __m128i T1 = _mm256_extracti128_si256(hi, 1);
19 __m128i T2 = _mm256_castsi256_si128(lo);
20

21 // LFSR Update
22 __m256i mulx = _mm256_xor_si256(_mm256_slli_epi16(lo, 1),
23 _mm256_and_si256(_snowv_mul, _mm256_srai_epi16(←↩

lo, 15)));
24 __m256i invx = _mm256_xor_si256(_mm256_srli_epi16(hi, 1),
25 _mm256_sign_epi16(_snowv_inv, _mm256_slli_epi16(←↩

hi, 15)));
26 __m256i hi_old = hi;
27 hi = _mm256_xor_si256(
28 _mm256_xor_si256(
29 _mm256_blend_epi32(
30 _mm256_alignr_epi8(hi, lo, 1 * 2),
31 _mm256_alignr_epi8(hi, lo, 3 * 2), 0xf0),
32 _mm256_permute4x64_epi64(lo, 0x4e)),
33 _mm256_xor_si256(invx, mulx));
34 lo = hi_old;
35

36 // Keystream word
37 __m128i z = _mm_xor_si128(R2, _mm_add_epi32(R1, T1));
38

39 // FSM Update
40 __m128i R3new = _mm_aesenc_si128(R2, _snowv_zero);
41 __m128i R2new = _mm_aesenc_si128(R1, _snowv_zero);
42 R1 = _mm_shuffle_epi8(_mm_add_epi32(R2, _mm_xor_si128(R3, T2)), ←↩

_snowv_sigma);
43 R3 = R3new;
44 R2 = R2new;
45 return z;
46 }
47

48 template<int aead_mode = 0>
49 inline void keyiv_setup(const unsigned char * key, const unsigned char * iv)
50 {
51 R1 = R2 = R3 = _mm_setzero_si128();
52 hi = _mm256_lddqu_si256((const __m256i*)key);
53 lo = _mm256_zextsi128_si256(_mm_lddqu_si128((__m128i*)iv));
54 if (aead_mode)
55 lo = _mm256_insertf128_si256(lo, _snowv_aead, 1);
56
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57 for (int i = 0; i < 15; ++i)
58 hi = _mm256_xor_si256(hi, _mm256_zextsi128_si256( keystream() ));
59

60 R1 = _mm_xor_si128(R1, _mm_lddqu_si128((__m128i*)(key + 0)));
61 hi = _mm256_xor_si256(hi, _mm256_zextsi128_si256( keystream() ));
62 R1 = _mm_xor_si128(R1, _mm_lddqu_si128((__m128i*)(key + 16)));
63 }
64 };

1 // AEAD mode: SNOW-V-GCM with SIMD (Little Endian)
2 #define SNOWV_ENCDEC(snowv, out, in) _mm_storeu_si128((__m128i*)(out),\
3 _mm_xor_si128(_mm_lddqu_si128((__m128i*)(in)), snowv.keystream()))
4

5 // Any external implementation of GHASH
6 struct ghash_context;
7 extern void ghash_init (ghash_context & gh, __m128i H);
8 extern void ghash_update(ghash_context & gh, const u8 * data, long long length);
9 extern __m128i ghash_final (ghash_context & gh, u64 lenAAD, u64 lenC, __m128i endPad);

10

11 // Note: ciphertext must reserve [plaintext_sz + 16] bytes
12 long long snowv_gcm_encrypt(u8 * ciphertext, const u8 * plaintext, u64 plaintext_sz,
13 const u8 * aad, u64 aad_sz, const u8 * key32, const u8 * iv16)
14 {
15 ghash_context gh;
16 SnowV256 snowv;
17 snowv.keyiv_setup<1>(key32, iv16); // init with AEAD mode
18 ghash_init(gh, snowv.keystream() ); // GHASH key H
19 __m128i endPad = snowv.keystream(); // ending pad
20 ghash_update(gh, aad, aad_sz); // push AAD into GHASH
21

22 // SNOW-V Encryption
23 for (long long i = 0; i < plaintext_sz; i += 16)
24 SNOWV_ENCDEC(snowv, ciphertext + i, plaintext + i);
25

26 // Push ciphertext into GHASH
27 ghash_update(gh, ciphertext, plaintext_sz);
28

29 // Finalize GCM mode and add the authorization tag to the end of the ciphertext
30 _mm_storeu_si128((__m128i*)(ciphertext + plaintext_sz),
31 ghash_final(gh, aad_sz, plaintext_sz, endPad));
32

33 // return the total length of the ciphertext
34 return plaintext_sz + 16;
35 }
36

37 // Note: plaintext must reserve [ciphertext_sz - 16] bytes
38 long long snowv_gcm_decrypt(u8 * plaintext, const u8 * ciphertext, u64 ciphertext_sz,
39 const u8 * aad, u64 aad_sz, const u8 * key32, const u8 * iv16)
40 {
41 ghash_context gh;
42 SnowV256 snowv;
43 snowv.keyiv_setup<1>(key32, iv16); // init with AEAD mode
44 ghash_init(gh, snowv.keystream() ); // GHASH key H
45 ghash_update(gh, aad, aad_sz); // push AAD into GHASH
46 ghash_update(gh, ciphertext, (ciphertext_sz -= 16) ); // push ciphertext to ←↩

GHASH
47

48 // Finalize GCM mode and verify the authorization tag
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49 __m128i auth = ghash_final(gh, aad_sz, ciphertext_sz, snowv.keystream());
50 auth = _mm_xor_si128(auth, _mm_lddqu_si128((__m128i*)(ciphertext + ciphertext_sz←↩

)));
51

52 if (!_mm_test_all_zeros(auth, auth))
53 return -1; // auth tag is not correct? return a negative value
54

55 // SNOW-V Decryption
56 for (long long i = 0; i < ciphertext_sz; i += 16)
57 SNOWV_ENCDEC(snowv, ciphertext + i, plaintext + i);
58

59 // return the total length of the plaintext
60 return ciphertext_sz;
61 }

6 Hardware implementation aspects

When designing new algorithms targeting existing systems, reusability of hardware com-
ponents is important to reduce area and cost of the ASICs. Many systems dealing with
network communication security implement some form of AES acceleration, either in
a specialized ASIC or as specialized CPU instructions. SNOW-V leverages this co-
existence by using two full AES encryption rounds as the main nonlinear element. A
hardware implementation of SNOW-V can utilize either one or two external AES cores,
if present, or implement its own AES encryption rounds in a stand-alone design for
maximum speed. Although a 128-bit implementation is straight-forward from the algo-
rithm description, it has some drawbacks when we only have one single external AES
core available, as is the case in many constraint implementations. In this section we will
consider how to implement SNOW-V using a single AES core with a 64-bit hardware
architecture. We will refer to the 64-bit and 128-bit hardware implementations as the
64-SNOW-V and 128-SNOW-V respectively.

6.1 SNOW-V 64-bit Hardware Architecture
In this section we propose a 64-bit hardware architecture where SNOW-V requires a
single AES encryption core (external or built-in), and each clocking of 64-SNOW-V
produces 64 bits of the keystream.

Cons: additional two 64-bit delay registers D1 and D2 are needed; the logic needs
additional 6 64-bit multiplexers; two clocks to produce 128 bits of keystream that actu-
ally halves the speed.

Pros: a single AES encryption core is needed; produces 64 bits of keystream at each
clock; all basic operations in both FSM and LFSR, such as XOR and ADD, are now
halved in size.

In order to utilize a single AES core the FSM update function should be split into two
steps. The main critical path is the AES EncRound, which means that while splitting
FSM into two stages we should avoid any extra logic on the input and output signals of
the AES core. Thus, input to and output from the AES core must be registers.

Let us split all 128-bit registers and all 128-bit signals of the FSM block, say X, into
two 64-bit halves as Xa (low) and Xb (high). We also assume that the tap values T1
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and T2 from the LFSRs also arrive in 64-bit chunks, such that every even clock FSM
gets T1a and T2a, and every odd clock T1b and T2b.
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Figure 7: Splitting of FSM into two steps in order to utilize only one AES core
(excluding initialization steps).

In Figure 7 we propose a possible way to split the FSM such that it contains the
two circuits for even and odd steps, 0 and 1 resp. (excluding the gates needed for
initialization). One can notice that after these two steps the content of the registers
R1, R2, R3 become updated to new 128-bit values ′R1,′R2,′R3, and ready to process
the next 128 bits of data with the same two steps. The above two circuits are then
combined into a single circuit using multiplexers.

In Figure 8 the complete hardware architecture for 64-bit SNOW-V is presented.
There are 7 64-bit multiplexers in total, and we denote the control signal to them by
M1..M7, respectively. There are also 5 64-bit AND gates, the purpose of which is to
either bypass the signal or block it. Those AND blocks are controlled by four signals
GA, GZ , GK , GF , the latter controls 2x64 AND-blocks. The Control Unit in Figure 8
generates the control signals for the multiplexers and AND gates depending on the state
of SNOW-V.

Critical path. Our primary assumption is that the AES encryption round would be
themain critical path (MCP). However, one can easily determine that the secondary crit-
ical path (SCP) would be the sequence AND-MUX-XOR-ADD-XOR-MUX over 2x32-bit
integers, denoted by red wires in Figure 8. Thus, when selecting 32-bit adders one should
make sure that they are fast enough so that the MCP is sustained.

The algorithm has 3 stages:
Stage 1 – Loading. The design is constructed in such a way that the registers do

not need to have any RESET signal. Instead, all registers will be sequentially loaded with
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Figure 8: Hardware architecture of 64-bit SNOW-V with a single AES core.

the key and IV, and the remaining registers will be zeroized, during this stage.
The stage begins with a strobe signal on LOAD, and the first 64-bit chunk of data is

expected on the IN_DATA bus. In total, the stage expects to receive 8 64-bit words each
clock in the following order: {iv0, iv1, k0, k1, 0, 0, k2, k3}.

In this stage, the control unit should block AND gates GZ = GA = 0, and set
M6 = 1, in order to concatenate LFSRs A and B into a single large LFSR while shifting
in the initialization data. In order to zeroize FSM registers, the control unit should
block GF = 0 and also enforce the multiplexer inputs M4 = 1,M5 = M7 = 0. GK is set
to 0.

After the 8 clocks where the key and IV are loaded, we proceed to stage 2.
Stage 2 – Initialization. In this stage, the FSM works in the same way as when

it produces keystream output symbols, i.e. the multiplexer control signals switches
according to even/odd clock cycle as explained previously. The LFSRs are connected
together by setting GZ = GA = 1 and switching M6 = 0 to disable any external input.

Note that we placed the AND gating after the registers R3a, R3b, so that we do
not add extra depth to the critical path of AES core, hence these registers will not be
zeroized. To overcome this problem the control unit generates GF = 0 in the first clock
of this stage, and then sets GF = 1 until the end of stage 2. We keep GK = 0 for the
first 28 clocks. In the remaining 4 clocks we need to XOR the key K to R1 according to
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the initialization procedure. So we enable GK = 1 and expect to receive {k0, k1, k2, k3}
consecutively from the input bus IN_DATA. After this, the circuit is ready to produce
keystream words.

Stage 3 – Keystream generation. Both LFSR and FSM operate normally. The
control unit in this stage detaches the Z signal from being feeded into LFSR-A by setting
GZ = 0. The input bus is also detached by setting GK = M6 = 0.

6.2 Theoretical Analysis of 64/128-bit SNOW-V in Hardware
The area will be estimated in terms of gate equivalence (GE), where 1GE = size of
a NAND gate. The speed will be estimated in terms of Gigabits per second (Gbps),
based on known speed results of AES circuits. We will use GE values given in [Sam00]
for 1-speed technology elements.

For comparison with AES, we will use one of the more recent results from [UMHA16]
where an area-speed optimized AES-128 (10 rounds) on NanGate 15nm technology runs
with the speed 71.19 Gbps and has the area 17232 GE. This means that having the
same design, AES-256 (14 rounds) would run with the speed of 50.85 Gbps.

Our basic assumption is that the AES core is the critical path of the SNOW-V circuit.
Thus, if SNOW-V would utilize a single AES core as above, the speed of 64-SNOW-V
could be as high as 356 Gbps. The speed of 128-SNOW-V with two AES cores is
therefore as high as 712 Gbps. What remains is to calculate the hardware cost of
SNOW-V, excluding the external AES core, but including the cost of integration into
that external AES core. We will also exclude the control unit, as this can be implemented
with a very few gates and latches and every implementation will have slightly different
needs of control and ready signaling.

State Registers. For 64-SNOW-V, there are 512 registers for the LFSR and
6x64+2x64 registers for the FSM. Since our 64-bit implementation does not require
complex latches (e.g., no RESET), we can use the simplest D-latch with Q-output only
from [Sam00] [FD1Q]. The total cost is 1024 ∗ 4.33 = 4434 GE.

For 128-SNOW-V we also need 512 registers for the LFSRs without reset, and 3x128
registers with RESET [FD2Q], thus resulting in 512*4.33+(3*128)*5.67 = 4394 GE.

For arithmetical 32-bit adders we suggest to take, for example, a Han-Carlson
32-bit adder, as it has a low area overhead (15%-25% larger than Ripple-Carry adders)
and a very small delay O(log(n)) – which is important in order to keep the critical
path upper bounded by the AES round function. We can estimate these components as
4x(30FADD3 + 2HADD2)+20%= 4(30∗6.33+2∗3.67)∗1.20 = 947 GE for 64-SNOW-V
and 1894 GE for 128-SNOW-V.

The remaining part of the FSM update logic therefore contains 3x64AND2 +
6x64MUX2 + 4x64XOR2 = 3 ∗ 64 ∗ 1.33 + 6 ∗ 64 ∗ 2.33 + 4 ∗ 64 ∗ 2.33 = 1747 GE for
64-SNOW-V and (128AND2+3x128XOR2)=1065 GE for 128-SNOW-V.

LFSR Update logic involves two circuits for the feedback functions. 16-bit field
multiplications by α, α−1, β, β−1 can be done with 8 XORs in each case, since the Ham-
ming weight of both gA(α) and gB(β) is 8.

However, let us have a closer look on how each bit of, e.g. a16 is calculated. Each
bit a16[i], 14 ≥ i ≥ 1 is unconditionally depending on four bits, namely

a16[i] : a0[i− 1] + a1[i] + a8[i+ 1] + b0[i] (13)
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The end bits are easy to work out too. Some of the bits of a16 are also depending on
a0[15] and a8[0], due to the multiplication with α and α−1. Table 5 gives a full overview
of the dependencies for both a16 and b16.

i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Depending on

a16[i]
X X X X X X X X a0[15]
X X X X X X X X a8[0]

b16[i]
X X X X X X X X b0[15]
X X X X X X X X b8[0]

Table 5: Bit dependencies due to multiplications for a16 and b16.

This means that in order to compute a16[i], we have to XOR 4, 5, or 6 different input
bits. For example, in the table above we see that the a16[13] is only dependent on the
basic input bits in Appendix 6.2, and the XOR gate needs 4 inputs:

a16[13] = a0[12] + a1[13] + a8[14] + b0[13].

On the other hand, a16[11] needs to XOR 6 inputs:

a16[11] = a0[10] + a1[11] + a8[12] + b0[11] + a0[15] + a8[0].

since the multiplication with α and α−1 will both influence that bit.
Following the hardware architecture of 64-SNOW-V given in Figure 8 we have to

split the calculation of the feedback function LFSR-A due to the control AND-gateway.
Also, the circuit should compute 4 16-bit updates in parallel. Summarizing, we get (a)
LFSR-A feedback function, excluding input from b0: 4x(5XOR3 + 6XOR4 + 5XOR5)
≈ 4∗ (5∗4.00 + 6∗6.00 + 5∗8.00) = 384 GE ; (b) LFSR-B feedback function, including
input from a0: 4x(4XOR4 + 8XOR5 + 4XOR6) ≈ 4 ∗ (4 ∗ 6.00 + 8 ∗ 8.00 + 4 ∗ 10.00)
= 512 GE; (c) the remaining part of LFSR block: 2x64AND2 + 64XOR3 + 64MUX2
= 64 ∗ (2 ∗ 1.33 + 4.00 + 2.33) = 575 GE. For 128-SNOW-V we simply double the above
numbers.

Integration into an external AES Engine requires input multiplexers for 128
bits of the plaintext and 128 bits for the round key. However, the AES round keys C1
and C2 are zeroes so that we can use 128AND gates, instead. In total we get 128MUX2
+ 128AND2 = 128 ∗ (2.33 + 1.33) = 468 GE for 64-SNOW-V. 128-SNOW-V requires
two such integration circuits.

In case we decide to implement SNOW-V with its own internal AES EncRound, the
hardware cost could be as small as 16 AES SBoxes, plus some logic for MixColumn.
Also note that in this case the critical path decreases since we only need the forward
SBox and thus any outer multiplexing logic for a combined forward and inverse SBox
can be removed. This could lead to a potential speed up for 128-SNOW-V.

The part MixColumn of AES encryption round, applied to the AES state {ri,j} for
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0 ≤ i, j ≤ 3, is the following matrix multiplication.
r′0,j
r′1,j
r′2,j
r′3,j

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·

r0,j

r1,j

r2,j

r3,j

 , 0 ≤ j ≤ 3.

That can be computed in a depth 2 circuit, for each 0 ≤ j ≤ 3, as t0 = r0 + r1,
t1 = r1 + r2, t2 = r2 + r3, t3 = r3 + r0, and then r′0 = 2t0 + t2 + r1, r′1 = 2t1 + t3 + r2,
r′2 = 2t2 + t0 + r3, r′3 = 2t3 + t1 + r0, where multiplication 2ti is the multiplication by x
in the Rijndael field and can be implemented with 3XOR2. The cost of MixColumn is
therefore 4x4x(8XOR2 + 8XOR3 + 3XOR2) = 922 GE3.

The cost of a single forward SBox is around 220 GE (see, e.g., [RMTA18]). Thus,
for a single internal AES EncRound the total cost is 16 ∗ 220 + 922 = 4442 GE.
Summarizing the above we can derive the comparison given in Table 6 .

Hardware AES-256 64-SNOW-V 64-SNOW-V 128-SNOW-V 128-SNOW-V
design from [UMHA16] 1xAES 1xAES 2xAES 2xAES

ext. core int. round ext. cores int. rounds
Area 17232 GE 9067 GE 13041 GE 11231 GE 19179 GE
Speed 50.85 Gbps 358 Gbps 358+ Gbps 712 Gbps 712+ Gbps

Table 6: Theoretical comparison of four SNOW-V versions vs AES-256 in hardware.

3Recent results in [Max19] suggest that MixColumn can be implemented with 4x92 gates. However,
we believe that the proposed classical solution with 4x108 gates is a better choice since it has a lower
depth of the critical path, thus allowing SNOW-V to perform faster.
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Paper IV

Improved guess-and-determine and
distinguishing attacks on SNOW-V

Abstract

In this paper, we investigate the security of SNOW-V, demonstrating two guess-and-
determine (GnD) attacks against the full version with complexities 2384 and 2378, re-
spectively, and one distinguishing attack against a reduced variant with complexity 2303.
Our GnD attacks use enumeration with recursion to explore valid guessing paths, and try
to truncate as many invalid guessing paths as possible at early stages of the recursion by
carefully designing the order of guessing. In our first GnD attack, we guess three 128-bit
state variables, determine the remaining four according to four consecutive keystream
words. We finally use the next three keystream words to verify the correct guess. The
second GnD attack is similar but exploits one more keystream word as side information
helping to truncate more guessing paths. Our distinguishing attack targets a reduced
variant where 32-bit adders are replaced with exclusive-OR operations. The samples
can be collected from short keystream sequences under different (key, IV) pairs. These
attacks do not threaten SNOW-V, but provide more in-depth details for understanding
its security and give new ideas for cryptanalysis of other ciphers.

Keywords: SNOW-V, Guess-and-determine attack, Distinguishing attack.

1 Introduction

SNOW-V [EJMY19] is a new member of the SNOW family of stream ciphers, proposed in
2019 in response to the new requirements of the confidentiality and integrity algorithms
in 5G and beyond from 3GPP [3GP19]. First, the 256-bit security level is expected
in 5G to resist against attackers equipped with quantum computing capability, while
the predecessor SNOW 3G being used in 4G was only specified for 128-bit key length.
If the key length in SNOW 3G would be increased to 256 bits, there exist academic
attacks against it much faster than exhaustive key search, see e.g., [YJM19]. Besides,
the algorithms are expected to achieve high throughput in software environments, as
many of the network nodes in 5G can be virtualised and the ability to use specialised
hardware for cryptographic primitives will thus be reduced. The targeted speed for

Jing Yang, Thomas Johansson, and Alexander Maximov. Improved guess-and-determine and dis-
tinguishing attacks on SNOW-V. IACR Transactions on Symmetric Cryptology, pages 54-83, 2021.
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downlink transmission in 5G is 20 Gbps, while current performance benchmarks for
SNOW 3G only give approximately 9 Gbps in a pure software environment [YJ20].
3GPP has asked ETSI SAGE (Security Algorithms Group of Experts) to select and
evaluate efficient confidentiality and integrity algorithms for 5G use [3GP19]. SNOW-V
is designed given these motivating facts and aims to provide a 256-bit security level and
perform fast enough in software environments. It has been submitted to SAGE and is
under evaluation [SAG20].

SNOW-V follows the design principles of the SNOW family, with a linear part con-
sisting of LFSRs (Linear Feedback Shift Registers) to serve as the source of pseudo-
randomness, and a non-linear part called FSM (Finite State Machine) to disrupt the
linearity. Both parts are redesigned and better aligned to adapt to the higher per-
formance and stronger security demands in 5G. The FSM part is now increased to a
larger size and accommodates two AES encryption rounds to serve as two large S-boxes
providing non-linearity, thus taking full advantage of the intrinsic instruction of AES
encryption round supported by most mainstream CPUs. SNOW-V can achieve rates
up to 58 Gbps for encryption in a pure software environment [EJMY19] and more than
1 Tbps in hardware [CBB20].

Since proposed, SNOW-V has received internal and external evaluations [EJMY19,
CDM20], which exhaustively visit all the promising cryptanalysis techniques of stream
ciphers and ensure that none of them applies to SNOW-V faster than exhaustive key
search. After that, more in-depth and focused studies followed, e.g., [JLH20, GZ21,
HII+21]. For example, the paper [HII+21] investigates the security of the initialisation
of SNOW-V, using MILP (Mixed-integer linear programming) model to efficiently search
for integral and differential characteristics. The resulting distinguishing and key recovery
attacks are applicable to SNOW-V with reduced initialisation rounds of five, out of the
original 16, which indicates that the initialisation has a good security margin. Below we
give a more detailed introduction to the guess-and-determine attacks [JLH20, CDM20]
and linear cryptanalysis [GZ21] against SNOW-V, and present our contribution.

Guess-and-determine (GnD) attacks. A basic GnD attack of complexity 2512 is
proposed in the evaluation report [CDM20]. In this attack, one has to guess three out of
the seven internal 128-bit state variables and derive another three using three consecutive
keystream words. Although not all derivation details were given, it was assumed that the
derivation is possible with a negligible time, leading to recovering six state variables in
time complexity 2384. The last seventh state variable is recovered by guessing, thus the
total complexity is 2512. The next four keystream words are thereafter used to verify
the correct guess. The authors in [JLH20] propose a byte-based GnD attack against
SNOW-V with complexity 2406 using seven keystream words. In their attack, the state
variables are split into bytes with some carriers introduced, and dynamic programming
tool is used to help search a good guessing path that requires guessing as few bytes as
possible. Both GnD attacks require seven consecutive 128-bit keystream words which
looks reasonable, as the internal state has seven 128-bit unknown variables that needs
to be either guessed or determined.

Our contribution. Our GnD attacks follow the research line of the GnD attack in
[CDM20] and fill the gaps of it. In our first GnD attack, we find an efficient recursive
enumeration technique in a byte-wise manner to determine three more state variables
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given three guesses and three consecutive keystream words, such that the complexity of
deriving six state variables is still 2384. We then use the same enumeration way to derive
the last seventh state variable with negligible overhead, thus the total attack complexity
is 2384. This improves the GnD attacks both in [CDM20] (2512) and [JLH20] (2406).

In our recursive enumeration technique, we take full advantage of the observation
that some guessing values will not give valid solutions at some point in the middle of the
guessing process, and one can immediately terminate this guessing branch and trace back
to guess another value. Thus, some efforts of going deeper can be saved. The earlier and
more often one can find such cases, the more efforts can be saved. We carefully design
the guessing order of the guesses, such that most guessing paths would be truncated at
some point without going into the end, resulting in the total GnD attack complexity
2384.

In our second GnD attack, we use one additional “backward” keystream word as side
information to impose more constraints and truncate more “forward” guessing paths,
thus further reduce the complexity to 2378. In order to retrieve the side information
efficiently (e.g., instantly) we need a volatile table of size 2128 bits, which might be
implemented in RAM or HDD. The improvement factor over the first GnD attack is not
so significant, but the idea of using side information to refute more guessing paths and
thus reduce the overall time complexity is interesting in general.

Linear cryptanalysis. The SNOW family of stream ciphers is constructed from two
components – the LFSR, serving as the source of pseudo-randomness, and the FSM,
providing nonlinearity. In typical linear cryptanalysis of such a construction, the non-
linear part FSM is approximated by a linear expression between some keystream words
and LFSR variables plus a biased noise variable N (t), while the variables in the FSM
are cancelled. In a distinguishing attack, such linear expressions at k time instances cor-
responding to either the feedback polynomial or a low-weight (usually 3 or 4) multiple
of it will be combined (typically through exclusive-OR operation), such that the contri-
bution terms from the LFSR are cancelled. Hence, the linear expressions involve only
the keystream symbols and noises, making a reorganised keystream sample sequence
biased and distinguishable from random, given enough number of samples. As the FSM
approximation expression is repeated k times, the total noise would then involve k sub-
noises.

For example, in SNOW 2.0 [EJ02], the LFSR has a feedback polynomial of weight
four in the time frame of width 17 over F232 .The authors of [WBDC03, NW06] found a
very strong approximation of the FSM such that the bias is large, and combining four
such approximations to cancel out the LFSR contribution led to a distinguishing attack
of overall complexity 2225 in [WBDC03] and further improved to 2174 in [NW06]. Note
that in both papers the feedback polynomial is used to find the four time instances such
that the LFSR contribution can be cancelled, and the required samples can be collected
from many short keystreams under different key and IV (Initialisation Vector) pairs.

A straightforward prevention of above situation is to increase the number of taps
in the LFSR update function. In this case the direct usage of the feedback polynomial
would involve many more sub-noises, and the bias of the total noise would be very small.
However, there is a possibility to find a theoretical low-weigh multiple of any feedback
polynomial, due to the birthday paradox, such that one can still construct a biased noise
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sample from several keystream words but far apart in time instances, i.e., the attacker
needs a long keystream sequence to collect one single sample. This strategy was used in,
e.g., the recent cryptanalysis of ZUC-256 [YJM20] and SNOW 3G [YJM19], in which
weight-4 multiples are used. In SNOW-V, an equivalent 32×16-bit LFSR has a feedback
polynomial of weight 12.

In [GZ21], the authors perform linear cryptanalysis of SNOW-V and propose correla-
tion attacks against three reduced variants of it, in which either a permutation operation
is omitted or 32-bit arithmetic additions are replaced with 8-bit ones. The closest vari-
ant is SNOW-V�32,�8

, in which one �32 (four parallel 32-bit adders) is replaced by �8

(16 parallel 8-bit adders), and the complexity of the correlation attack against it is 2377.
Correlation attacks are focused on recovering the internal state and thus require a single
long keystream under a fixed (key, IV) pair.

Our contribution. In our distinguishing attack, we target a reduced variant of
SNOW-V, denoted SNOW-V⊕, in which the 32-bit adders are replaced with exclusive-
OR. Unlike the classical approach, e.g., the above mentioned, where one first approxi-
mates the FSM and thereafter cancels the LFSR contribution by combining expressions
at several time instances, we do it vice-versa and cancel the LFSR contribution directly
without combining several approximations. We explore the fact that three LFSR regis-
ters appear twice in three consecutive keystream words – the minimum needed for the
FSM approximation in SNOW-V – and moreover, they happen to contribute linearly in
SNOW-V⊕ thus can be directly cancelled.

Therefore, we consider three consecutive 128-bit keystream words and linearly com-
bine the bytes in these keystream words, such that the contribution from the LFSR is
directly cancelled. We then explore linear masking coefficients in an efficient way to
cancel out as many S-box approximations in the FSM as possible, thus to make the bias
larger. We find a bias evaluated using Squared Euclidean Imbalance (SEI) around 2−303

and give a distinguishing attack with complexity 2303. A single noise sample is collected
from just three 128-bit consecutive keystream words, and the samples can be collected
from many short keystream sequences under different (key, IV) pairs.

Though none of existing and our cryptanalysis efforts result in a valid attack against
SNOW-V faster than exhaustive key search, they are still of great importance for fully
understanding the security of the cipher. Table 1 lists the main existing cryptanalysis
results against SNOW-V, and comparison with new results in this paper.

Outline. We first provide some notations and expressions in Section 2, together with
a brief description of SNOW-V. We then demonstrate two guess-and-determine attacks
in Section 3 and Section 4, respectively. In Section 5, we perform linear cryptanaly-
sis against SNOW-V and propose a distinguishing attack against the reduced variant
SNOW-V⊕. We end the paper with conclusions in Section 6.
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Attack Complexity Data Reference
Guess-and-Determine 2512 7 keystream words [CDM20]

2406 7 keystream words [JLH20]
2384 7 keystream words Section 3
2378* 8 keystream words Section 4

Linear Cryptanalysis 2377** long keystream 2254 [GZ21]
2303*** short keystreams Section 5

Integral Distinguisher 248 (5 rounds) 248 [HII+21]
Differential Distinguisher 297 (4 rounds) 297 [HII+21]
Differential Key Recovery 2154 (4 rounds) 227

* The attack has memory complexity 2128 as it needs a volatile table of size 2128

bits.
** The attack is applied on the reduced variant SNOW-V�32,�8

.
*** The attack is applied on the reduced variant SNOW-V⊕.

Table 1: Attacks against SNOW-V and its variants.

2 Preliminaries

2.1 Notations
The exclusive-OR and addition modulo 2m are denoted by ⊕ and �m, respectively.
|| denotes the concatenation operation. The m-dimensional binary extension field is
denoted as F2m . For two variables x, y ∈ F2m , xy denotes the multiplication over F2m .
Given two vectors a,b of length t, a = (at−1, . . . , a1, a0) and b = (bt−1, . . . , b1, b0),
where ai, bi ∈ F2m for 0 ≤ i ≤ t − 1, we use ab to denote the point-wise multiplication
computed as ab = ⊕ti=0aibi, where aibi is the multiplication over F2m . We sometimes
also use (at−1, . . . , a1, a0) ·(bt−1, . . . , b1, b0) to denote the same point-wise multiplication.
If m = 1, ab is the standard inner product.

The variables throughout the paper are normally 128-bit long, unless otherwise spec-
ified. For a 128-bit variable x, we can express it as a byte vector (x15, x14, . . . , x1, x0),
where xi (0 ≤ i ≤ 15) is the i-th byte. We use several subscripts to indicate several bytes
of a variable. For example, x1,5,7 denotes the 1-st, 5-th, 7-th bytes of x. To express the
vector of these bytes, we add a notation [·] outside. For example, [x1,5,7] denotes the
byte vector (x1, x5, x7). We add || between subscript indices to denote the concatenation
of these bytes, e.g., x1||5||7 denotes x1||x5||x7.

2.2 Introduction to SNOW-V
In this section, we give a brief introduction to SNOW-V and predefine some notations
and expressions which will be frequently used in the subsequent cryptanalysis. The
overall schematic of SNOW-V is depicted in Figure 1. It follows the design principles of
the SNOW-family, consisting of the LFSR part and the FSM.

The LFSR part is a new circular construction consisting of two 256-bit registers,
named LFSR-A and LFSR-B, feeding to each other. Both LFSRs have 16 cells, each of
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C1

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

T2 128 bits

T1 128 bits

R1 AES Enc
Round R2 R3

128 bit keystream output
z

FSM

C2

AES Enc
Round

σ

Figure 1: Overall schematic of SNOW-V [EJMY19].

which holds an element from the finite field F216 . These elements in LFSR-A, denoted
a15, . . . , a0, and LFSR-B, denoted b15, . . . , b0, are generated according to the generating
polynomials gA(x) and gB(x), respectively, which are expressed as below:

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x+ 1 ∈ F2[x],

gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x+ 1 ∈ F2[x].

Denote the state of LFSR-A and LFSR-B at clock t by (a
(t)
15 , . . . , a

(t)
0 ) and (b

(t)
15 , . . . , b

(t)
0 ),

respectively. Every time when clocking, the value in a cell is shifted to the next cell with
a smaller index and a(t)

0 , b
(t)
0 exit the LFSRs. The values in cell a15, b15 are updated as:

a(t+16) = b(t) + αa(t) + a(t+1) + α−1a(t+8) mod gA(α),

b(t+16) = a(t) + βb(t) + b(t+3) + β−1b(t+8) mod gB(β),

where α, β are roots of the two generating polynomials gA(α) and gB(β), respectively.
Such a construction has the maximum cycle of length 2512 − 1.

Every time when updating the LFSR part, LFSR-A and LFSR-B are clocked eight
times, thus half of the states will be updated. After that, the two taps T1 and T2,
which are formed by considering (b15, b14, . . . , b9, b8), and (a7, a6, . . . , a1, a0) as two 128-
bit words, are fed to the FSM.
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The FSM has three 128-bit registers, denoted R1, R2 and R3. It takes T1, T2 as
inputs and produces a 128-bit keystream word z by the expression below,

z(t) = (R1(t) �32 T1(t))⊕R2(t). (1)

The three registers are then updated as follows:

R2(t+1) = AESR(R1(t)), (2)

R3(t+1) = AESR(R2(t)), (3)

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t))), (4)

where AESR() is one AES encryption round and σ is a byte-oriented permutation defined
as σ = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15]. The AES encryption rounds and �32

provide the source of non-linearity.
The design document has also specified the initialisation phase and AEAD (Authen-

ticated encryption with associated data) mode; as they are not relevant to our attacks,
we skip the details but refer to the design document [EJMY19].

Notations and Expressions. We give some notations and expressions here which will
be frequently used in the guess-and-determine attacks and linear cryptanalysis.

We use (R1, R2, R3) and (A0, A1, B0, B1) to denote the values of the registers in
FSM and in LFSR, respectively, at some specific time t, where A0 (B0) and A1 (B1)
are the low and high 128 bits of LFSR-A (LFSR-B), respectively. Thus, these seven
variables are all 128-bit long and represents the whole state of the cipher. We can then
get the following expressions:

B1(t−1) = B0, B0(t+1) = B1, B1(t+1) = A0⊕ lβ(B0)⊕ hβ(B1),

A0(t+1) = A1, R1(t−1) = AES−1
R (R2), R2(t−1) = AES−1

R (R3),

where AES−1
R () is the inverse of one AES encryption round. Here lβ and hβ are two

linear operations relevant to the update of the LFSR, and are defined as below:

lβ(X) = (β(X15||14) || · · · || β(X1||0))⊕X�3·2, (5)

hβ(X) = (β−1(X15||14) || · · · || β−1(X1||0))⊕X�5·2, (6)

where X is a 128-bit variable and X�k, X�k denote the left and right shift by k bytes,
respectively. The multiplication operation with β or β−1 are applied to every 16-bit word
independently over the field of LFSR-B. They can be expressed as the multiplication of
the bit vector of the word and the binary 16× 16-bit matrices of β or β−1. The binary
matrix representations of β and β−1 are given in Appendix 1. The explicit expressions
of lβ(X) and hβ(X) in bytes are given in Appendix 2.

The expressions for three consecutive keystream words at clock t − 1, t and t + 1,
which will be frequently used in our attacks, are derived as follows:

z(t−1) = (AES−1
R (R2)�32 B0)⊕AES−1

R (R3)),

z(t) = (R1�32 B1)⊕R2, (7)

z(t+1) = (σ(R2�32 (R3⊕A0))�32 (A0⊕ lβ(B0)⊕ hβ(B1)))⊕AESR(R1).
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3 The first guess-and-determine attack (T = 2384)

In this section, we fill the gaps of the GnD attack in [CDM20] and improve the complexity
from 2512 there down to 2384. We first introduce some basics about guess-and-determine
attacks, which apply to our second GnD attack in Section 4 as well. We then describe
the attack in details and discuss its complexity.

3.1 Basics about guess-and-determine attacks
In a guess-and-determine attack, one guesses some variables and determines others ac-
cording to some predefined relationships. In a GnD attack against a stream cipher, if
all the variables in the whole state could be determined through guessing a number t of
bits, where t is smaller than the security level, the attack is then faster than exhaustive
key search. Knowing the whole state of a stream cipher at a certain time allows to
trivially recover the whole keystream corresponding to the specific secret key and IV. If
the initialisation phase has no special protection, one can even recover the secret key.

In this paper, we call every ordered tuple of values of the guessed and further de-
termined variables a guessing path or a guess-and-determine path, and use end-nodes to
denote the end points of the guessing paths. Usually, the complexity of a GnD attack is
computed as 2t, if one simply loops over all the possible values of the chosen variables
for guessing. However, we notice that by guessing the variables in a careful order, one
can either guess fewer variables or truncate some guessing paths in which the already
known (either guessed or determined) variables fail to satisfy some equation constraints
in the middle. In the latter case, we can immediately trace back without going further
and turn to guess another value, thus the complexity could be reduced.
T = 0 ;
f o r ( x=0; x<256; x++)
f o r (y=0; y<256; y++)
f o r ( z=0; z<256; z++)
{ T = T + 1 ;
. . .
}

Listing 1: A simple GnD loop.

For example, consider the simplest loop in the pseudo-code in Listing 1, where x, y, z
are three 8-bit variables, it is straightforward to get that the complexity is T = 224.
T = 0 ;
f o r ( x=0; x<256; x++)
f o r (y = L1 [ x ] . f i r s t ; y!=NULL; y=y−>next )
f o r ( z = L2 [ x , y ] . f i r s t ; z !=NULL; z=z−>next )
{ T = T + 1 ;
. . .
}

Listing 2: A more complex GnD loop.

However, for a different loop shown in Listing 2, where L1[x] are lists depending on
the specific values of x and L2[x, y] are lists depending on the values of x, y, the size of
the loop is not fixed but rather depends on the lengths of lists L1[x] and L2[x, y]. For
example, for a specific value of x, after we have gone through every value of L1[x] for y
(and correspondingly subsequent z), we can immediately trace back to another x value,
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instead of considering all the 256 values of y. In this case, the complexity is not simply
224, but instead the number of valid looping paths.

Thus the complexity of a guess-and-determine attack could be expressed as c · T ,
where c is some constant coefficient which we will explain later, and T is not just the
size of the guessing loop, but rather dominated by the number of guessing paths that
the attack algorithm will reach an end-node. If the exact value of T is infeasible to
compute, the average value of it over the guessed variables is instead considered.

We will use the term enumeration to denote going through all the valid guess-
and-determine paths, and the size/length of such an enumeration will decide the GnD
complexity T . We would like to mention that the organisation of an enumeration may
not be only plain loops, but some more sophisticated algorithms, e.g., enumeration by
recursion, in which we adopt a recursion algorithm to explore all the solutions satisfying
a certain equation or a system of conditions.

The other term c indicates some constant complexity, which solely depends on the
concrete platform and the operations how other values are determined from the known
ones. For example, the value of c for computing D given A,B through D = A ⊕ B or
A = (D�B)⊕ (D⊕S(B)) (S denotes S-box operation) will be different. Obviously, the
complexity for the former example can be ignored as it almost consumes nothing, thus
c = 1; however, for the latter case, it is not trivial to get the value of D directly, and
enumerations or some other techniques are required. Thus, the cost for simple deriva-
tions are normally ignored, while if a derivation involves enumeration, the complexity
of it should be included.

3.2 Steps of the first GnD attack
In our first GnD attack, we guess three 128-bit state variables R1, R2, B0 and use three
consecutive keystream words to determine three more, R3, B1 and A0. The guessing
path is quite similar to the one in [CDM20], which guesses R1, R2, R3 instead, and then
similarly deriving B0, B1, A0. The derivations for R3 and B1 are simple, while tricky
for A0. It is assumed in [CDM20] that A0 can be derived efficiently with negligible
complexity but no details are provided. We will fill this gap in Section 3.2.2 by breaking
down A0 into bytes in a similar manner as in [JLH20], but handling the order of deriva-
tions and carries in a better way. After that, we use one more keystream word z(t+2) to
determine the final state variable A1 using the same way for deriving A0 with negligible
time, instead of purely guessing it with complexity 2128 as done in [CDM20], which
helps to reduce the total complexity 2512 there to 2384. Finally we use three additional
keystream words to verify the correct guess. In total, seven 128-bit keystream words are
required to determine the seven 128-bit state variables. A simplified flowchart of this
GnD attack can be found in Appendix 6.

3.2.1 Initial guessing set and derivations

We consider the three consecutive keystream words given in Equation (7) and introduce
two intermediate 128-bit variables, C and D, which are defined as follows:

C = lβ(B0)⊕ hβ(B1), (8)
D = σ(R2�32 (R3⊕A0))�32 (A0⊕ C). (9)
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Correspondingly, the three keystream words can be rewritten as:

z(t−1) =(AES−1
R (R2)�32 B0)⊕AES−1

R (R3),

z(t) =(R1�32 B1)⊕R2, (10)

z(t+1) =AESR(R1)⊕D.

There are six unknown variables in Equation (10), and to determine all of them,
one has to guess not less than three. Since R1 and R2 appear twice in the expressions,
we prefer to first guess them. Let us initially guess (R1, R2, B0) with complexity 2384.
Then the variables R3, B1 and D will be directly determined from Equation (10), re-
spectively. Thus, all the variables in Equation (10) are known, either through guessing
or determining. Besides, the intermediate variable C in Equation (8) is also determined,
and our last step is to determine the values of the remaining two state variables, A0 and
A1.

If we find an efficient way to enumerate all the solutions for A0 (and A1) without
additional guesses, the overall GnD complexity will be exactly 2384. We next show how
we efficiently find the solutions of A0 in Section 3.2.2, and use the same method to derive
the last state variable A1 with negligible complexity in Section 3.2.3.

3.2.2 Deriving A0 using a 10-step recursive enumeration

A0 is determined using Equation (9), while we mention that even when all other variables
in Equation (9) are fixed, the value of A0 might not be uniquely or directly determined
as A0 appears twice in the equation with non-linear operations in between. So the task
now is to efficiently find the solutions for A0 in Equation (9), and we next show how we
achieve it in a byte-wise fashion. Each byte of D, Di (15 ≥ i ≥ 0) is expressed as:

Di = (R2j �8 (R3j ⊕A0j)�8 uj)�8 (A0i ⊕ Ci)�8 vi, j = σ(i), (11)

where uj , vi ∈ {0, 1} are carry bits that arrive from arithmetic additions of the previous
bytes. We call these byte-wise equations as D-equations. Note that some carry values
are already known: uk = vk = 0 for k = 0, 4, 8, 12. For other carriers, we do not have to
guess them if we derive the bytes of A0 in a careful order in 10 steps as given in Table 2.

Table 2: The 10 steps to derive A0.

Step 0: D0 = (R20 �8 (R30 ⊕A00)�8 u0)�8 (A00 ⊕ C0)�8 v0

where u0 = v0 = 0
derive → (A00, u1, v1)

Step 1: D1 = (R24 �8 (R34 ⊕A04)�8 u4)�8 (A01 ⊕ C1)�8 v1

D4 = (R21 �8 (R31 ⊕A01)�8 u1)�8 (A04 ⊕ C4)�8 v4

where u4 = v4 = 0 and u1, v1 are known from Step 0
derive → (A01, A04, u2, v2, u5, v5)

Step 2: D5 = (R25 �8 (R35 ⊕A05)�8 u5)�8 (A05 ⊕ C5)�8 v5

where u5, v5 are known from Step 1
derive → (A05, u6, v6)
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Step 3: D2 = (R28 �8 (R38 ⊕A08)�8 u8)�8 (A02 ⊕ C2)�8 v2

D8 = (R22 �8 (R32 ⊕A02)�8 u2)�8 (A08 ⊕ C8)�8 v8

where u8 = v8 = 0 and u2, v2 are known from Step 1
derive → (A02, A08, u3, v3, u9, v9)

Step 4: D3 = (R212 �8 (R312 ⊕A012)�8 u12)�8 (A03 ⊕ C3)�8 v3

D12 = (R23 �8 (R33 ⊕A03)�8 u3)�8 (A012 ⊕ C12)�8 v12

where u12 = v12 = 0 and u3, v3 are known from Step 3
derive → (A03, A012, u13, v13)

Step 5: D6 = (R29 �8 (R39 ⊕A09)�8 u9)�8 (A06 ⊕ C6)�8 v6

D9 = (R26 �8 (R36 ⊕A06)�8 u6)�8 (A09 ⊕ C9)�8 v9

where u6, v6, u9, v9 are known from Steps 2 and 3
derive → (A06, A09, u7, v7, u10, v10)

Step 6: D10 = (R210 �8 (R310 ⊕A010)�8 u10)�8 (A010 ⊕ C10)�8 v10

where u10, v10 are known from Step 5
derive → (A010, u11, v11)

Step 7: D7 = (R213 �8 (R313 ⊕A013)�8 u13)�8 (A07 ⊕ C7)�8 v7

D13 = (R27 �8 (R37 ⊕A07)�8 u7)�8 (A013 ⊕ C13)�8 v13

where u7, v7, u13, v13 are known from Steps 4 and 5
derive → (A07, A013, u14, v14)

Step 8: D11 = (R214 �8 (R314 ⊕A014)�8 u14)�8 (A011 ⊕ C11)�8 v11

D14 = (R211 �8 (R311 ⊕A011)�8 u11)�8 (A014 ⊕ C14)�8 v14

where u11, v11, u14, v14 are known from Steps 6 and 7
derive → (A011, A014, u15, v15)

Step 9: D15 = (R215 �8 (R315 ⊕A015)�8 u15)�8 (A015 ⊕ C15)�8 v15

where u15, v15 are known from Step 8
derive → (A015)

For each of the 2384 values of the initial guessing set (R1, R2, B0), we could have
different numbers, either zero or nonzero, of solutions for A0. Most of the guessing
values will not even pass the first step in Table 2 as no valid solutions exist for the first
D-equation, and we can immediately trace back to guess another value of (R1, R2, B0);
while other guessing values could have more than one solutions. However, we will show
in Section 3.3.1 that the average number of solutions over (R1, R2, B0) is exactly one.

The simplest way to enumerate all solutions is to use a recursion procedure. For
example, we can loop for all values of A00 in the first step, and for each valid solution
we recursively call the second step, and so on. If we only use simple loops for enumerating
all the solutions in each step in Table 2, the constant c in the complexity will be quite
big (c ≈ 28), but later in Section 3.3.3 we will show how to reduce c to much smaller in
a number of efficient ways.

3.2.3 Deriving A1 and final verification

After the above initial guessing and enumeration, we now know six out of seven 128-bit
variables of the state. There will be 2384 guessing paths that arrive to this final stage
of the attack. In order to derive the final 128-bit state variable A1, we use the fourth
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keystream word z(t+2):

z(t+2) = (R1(t+2) �32 B1(t+2))⊕R2(t+2),

where

R1(t+2) = σ(R2(t+1) �32 (R3(t+1) ⊕A1)) = σ(AESR(R1)�32 (AESR(R2)⊕A1)),

R2(t+2) = AESR(R1(t+1)) = AESR(σ(R2�32 (R3⊕A0))),

B1(t+2) = A0(t+1) ⊕ lβ(B0(t+1))⊕ hβ(B1(t+1))

= A1⊕ lβ(B1)⊕ hβ(A0⊕ lβ(B0)⊕ hβ(B1)).

Denote C ′ = lβ(B1)⊕ hβ(A0⊕ lβ(B0)⊕ hβ(B1)), then we can get the equation for A1:

z(t+2) ⊕R2(t+2) = σ(R2(t+1) �32 (R3(t+1) ⊕A1))�32 (A1⊕ C ′).

One can see that the equation above has exactly the same form as the expression for
A0 in Equation (9), and therefore, we could use the ten steps in Table 2 to enumerate
all solutions for A1. The distribution of the number of solutions will be the same and
there will be one solution in average for each tuple of values of the other variables.

So far, we have guessed three state variables and determined the remaining four,
such that the values of the seven 128-bit words satisfy the four consecutive 128-bit
keystream words. The number of valid combinations of values is 2384 and in order to
decide which one is correct, we use the subsequent three keystream words for verification.
The verification only involves simple derivations thus the cost can be ignored.

3.3 Discussion on the complexity

3.3.1 Study of the two types of D-equations in the 10 steps

In this section, we compute the distribution of the number of solutions for the D-
equations in Table 2 and show that the average value is exactly one.

In Equation (11), the input carry bits uj , vi can be removed by setting R2′j = R2j�uj
and D′i = Di � vi, respectively, which will not influence the distribution or the average
value of the number of solutions. The ten steps in Table 2 can be divided into two
equivalent types, which we denote by Type-1 and Type-2 D-equations.

Type-1 equations have the form:

A = (B �n (C ⊕X))�n (X ⊕D),

where (A,B,C,D) are n-bit variables andX is the unknown which we need to enumerate.
Such Type-1 equations appear in Steps {0, 2, 6, 9}.

Type-2 equations have the form:

A1 = (B1 �n (C1 ⊕X1))�n (X2 ⊕D1),

A2 = (B2 �n (C2 ⊕X2))�n (X1 ⊕D2),

where X1, X2 are two unknown variables that we want to enumerate, while others are
n-bit known variables. Such Type-2 equations appear in Steps {1, 3, 4, 5, 7, 8}.
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For both types of equations, we have computed the distribution tables of the number
of solutions for the unknown X-bytes, given that other known variables are uniformly
distributed. We exhaustively (with some optimisations and cut-offs) try all the values
of the known variables, and count the number of solutions for the unknowns.

Table 3 presents the probabilities ofX having different numbers of solutions for Type-
1 equations corresponding to a random tuple (A,B,C,D) over F2n . The probabilities
are derived through p = x/f , where x’s are the integers in the table and f is the
corresponding normalisation factor. The probability of having at least one solution
when n = 8 can be computed easily as 2−3.91. This means that in Equation (9), only
2−3.91 of the combinations of (R2, R3, C,D) will result into valid solutions and continue
with Step 1, and so on; while for the remaining majority of the combinations we just stop
and trace back to the last step of the recursion. We can further compute the average
number of solutions, Avr, as below:

Avr =

2n−1∑
i=0

i · Pr{#Solutions = i}.

The computed average value is exactly one.

#Solutions n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8
normalisation factor f 21 23 25 27 29 211 213 215

0 1 5 23 101 431 1805 7463 30581
2 1 2 4 8 16 32 64 128
4 1 4 12 32 80 192 448
8 1 6 24 80 240 672
16 1 8 40 160 560
32 1 10 60 280
64 1 12 84
128 1 14
256 1

Table 3: Distribution table of the number of solutions of X for type-1 equations.

We also derive the distribution and average value of the number of solutions for
Type-2 equations using a similar technique. The distribution table under different n
values is given in Appendix 4. The probability of having at least one solution is 2−3.53

and the average number of solutions is one as well.
Since the ten tuples of equations are independent to each other (except the carriers,

but the carriers do not influence the probability of having solutions), the probability of
A0 having at least one solution is computed as 2−3.53×6−3.91×4 = 2−36.82. This means
that only a small fraction, i.e., 2−36.82, of the 2384 initial guesses of (R1, R2, B0) will
actually have solutions for A0, while for other guessing values, the guessing process can
be just terminated here. However, when A0 has valid solutions, the number of solutions
will be around 236.82 in average, and the overall average number of solutions is still one.
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3.3.2 The total attack complexity

As it was mentioned earlier, the large fraction of the guesses 2384 · (1−2−3.91) will fail in
Step 0 in Table 2, as it involves solving a Type-1 equation and the probability of having
at least one solution there is 2−3.91. The remaining small fraction, 2384 ·2−3.91 ≈ 2380.09,
of the guesses will advance to Step 1. The number of solutions in Step 0 will be 23.91

in average, thus the total number of guessing paths that will arrive Step 1 is again
2380.09 · 23.91 ≈ 2384. The same observation applies to every step in Table 2. Thus for
2384 input combinations to the recursive enumeration algorithm for deriving A0, we will
get 2384 possible end-nodes, exactly one per guessing tuple (R1, R2, B0) in average.

For the final step to determine A1, the situation will be the same, i.e., the majority of
the derived six-word tuple will fail the first step, and only a small fraction will advance
to the next step, and so on. The average number of solutions is again one and there are
2384 valid guessing paths. Thus the total complexity of the GnD attack is 2384.

3.3.3 Further reducing the complexity constant c

The complexity is written as c · 2384 where c is the complexity of operations involved in
each guessing path, mainly lies in solving the D-equations of either type.

Bit-wise enumeration recursion instead of byte-wise. Recall that the simplest
way to enumerate all solutions for A0 is to make a byte-wise recursion of depth ten,
and in each step we loop over the unknown byte(s) of A0, thus the overall enumeration
recursion will have a constant factor c = 256 steps. However, we can change the recursion
to be deeper with depth 10 · 8 and search for solutions of each bit(s) of A0. This will
shrink the constant c from 256 down to 2 1, since now we only need to test the binary bit-
value(s) before going to the next recursion depth while considering the resulting carriers
from the current step. So we can enumerate the 128-bit unknown A0 by deriving one or
two bits in each recursive step. We have actually implemented such a bit-wise recursive
enumeration algorithm, see Appendix 3. Note that the proposed recursion is linear with
a fixed depth, and may as well be organised as a number of (many) nested loops.

Precomputed lookup tables. Another approach is to precompute lookup tables help-
ing to instantly give the list of sub-solutions for each tuple of D-equations. The tables
record all the possible values of the known variables and the corresponding solutions for
the unknowns.

The smallest table will be of size 232 → 256 × 10 bits for Step 0, where each entry
corresponds to one value of the known variables, 256 is the maximum number of possible
solutions corresponding to one entry, and 10 bits correspond to the value of one unknown
(one byte) and two carriers (two bits). There will be exactly 232 valid records of size 10
bits in the table. An example of the smallest table is as below:

T0[R20, R30, C0, D0]→ {A00, u1, v1}.
1For a Type-2 D-equation we can loop over the first unknown bit-value (0 or 1, thus c = 2), then

derive the second unknown bit-value using the first equation, and then test the pair of the bits using
the second equation.
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The largest table is of size 268 → 256× 20 bits in Step 5:

T5[R26, R36, C6, D6, u6, v6, R29, R39, C9, D9, u9, v9]→ {A06, A09, u7, v7, u10, v10}.

Truncating guessing paths reaching the 10-step stage for deriving A0. The
number of guessing paths that reach the 10-step stage for deriving A0 can be further
reduced by guessing the variables in the initial set in bytes, instead of 128 bits, in a
careful order. We give a simple example here, and there exist some more tricky ones.
We first guess the following 25 bytes and 2 bits in complexity 2202:

R10,1,3,4,5,9,10,14,15, R20,1,4,5, R30,1,4,5, B00,1,4,5,6,7,10,11, w0,4,

where w0,4 are two carry bits for 32-bit additions. Then the following variables can be
derived:

D0 = z
(t+1)
0 ⊕ (2 · S(R10)⊕ 3 · S(R15)⊕ 1 · S(R110)⊕ 1 · S(R115)),

D1 = z
(t+1)
1 ⊕ (1 · S(R10)⊕ 2 · S(R15)⊕ 3 · S(R110)⊕ 1 · S(R115)),

D4 = z
(t+1)
4 ⊕ (1 · S(R13)⊕ 2 · S(R14)⊕ 3 · S(R19)⊕ 1 · S(R114)),

D5 = z
(t+1)
5 ⊕ (1 · S(R13)⊕ 1 · S(R14)⊕ 2 · S(R19)⊕ 3 · S(R114)),

B10||1 = (z
(t)
0||1 ⊕R20||1)�32 R10||1 �32 w0,

B14||5 = (z
(t)
4||5 ⊕R24||5)�32 R14||5 �32 w4,

C0||1 = βB00||1 ⊕B06||7 ⊕ β−1B10||1,

C4||5 = βB04||5 ⊕B010||11 ⊕ β−1B14||5.

With the set of the guessed and determined values, we can now check whether a
solution for bytes A00, A01, A04, A05 exists, in the first three steps in Table 2. The

Guess R1, R2, B0
Derive R3, B1, C, D

2384 nodes
...

...

...

10-steps recursive
enumeation for A0

2384 nodes

10-steps recursive
enumeation for A1

2384 nodes

Many nodes will have zero solutions for A0,
others will have one or multiple solutions

If we do a pre-test after guessing 202 bits,
we will truncate some (but not all) nodes

 that will anyways have zero solutions for A0

Verify the 7x128-bit state by using the next 3 keystream words

Figure 2: Illustration of the first GnD attack.
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probability of valid solutions, denoted p0−2, can be computed as p0−2 = 2−3.91×2−3.52 =
2−11.34. If no solutions exist, we just roll back and make another guess; otherwise we
guess the remaining 23 (= 48− 25) bytes of the initial guessing set and run the 10-step
algorithm to enumerate all values of A0. The total number of nodes T ′ that will arrive
to the 10-step stage will be:

T ′ = 2200+2 + (p0−2 · 2200+2) · 2184−2 = 2202 + p0−2 · 2384.

This means that only 2372.66 guessing paths (out of 2384) will reach the 10-step
stage for enumerating A0. However, the total complexity will still be 2384, as the fact
that there are 2384 solutions satisfying the three consecutive keystream words remains
unchanged. Figure 2 gives an illustration of the first GnD attack and the “effect” of the
idea to do a pre-test after guessing only 202 bits.

4 The second guess-and-determine attack (T = 2378.16)

In this section, we provide a second guess-and-determine attack which can further re-
duce the complexity by using one additional “backward” keystream block z(t−2) as side
information to truncate more “forward” guessing paths. Thus, this approach needs eight
keystream words. The improvement over the first GnD attack is not so significant,
but the idea of exploiting more equation constraints to truncate guessing paths itself is
interesting, and our second GnD attack serves as a direct illustration of it.

4.1 Use z(t−2) to truncate more guessing paths
If we want to further reduce the complexity of the first GnD attack, we could try to see
if we can use some additional information, besides those seven keystream words that are
already involved in the first attack. With such additional information, we can truncate
some portion of the guessing paths that have solutions for the D-equations while not
for the additional information, proportionally. Thus, the average number of end-points
2384 will be reduced proportionally as well. Specifically, we use one additional keystream
word at clock t− 2, i.e., z(t−2), to impose more constraints and truncate more guessing
paths. The expression of z(t−2) is shown below:

z(t−2) = (R1(t−2) �32 B1(t−2))⊕R2(t−2),

where R1(t−2), B1(t−2), R2(t−2) are derived as follows:

R1(t−2) = AES−1
R (R2(t−1)) = AES−1

R (AES−1
R (R3)),

B1(t−2) = B0(t−1),

R2(t−2) = AES−1
R (R3(t−1)) = AES−1

R ((σ(R1)�32 R2(t−1))⊕A0(t−1))

= AES−1
R ((σ(R1)�32 AES−1

R (R3))⊕A0(t−1)).

According to the LFSR update function, we can derive:

A0(t−1) = B1⊕ lβ(B0(t−1))⊕ hβ(B1(t−1)) = B1⊕ lβ(B0(t−1))⊕ hβ(B0).
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Thus z(t−2) can be written as an equation in one unknown variable B0(t−1) (given
that other variables are either known, guessed, or determined):

z(t−2) = (AES−1
R (AES−1

R (R3))︸ ︷︷ ︸
X

�32B0(t−1))

⊕AES−1
R ((σ(R1)�32 AES−1

R (R3))⊕ hβ(B0)⊕B1︸ ︷︷ ︸
Y

⊕lβ(B0(t−1))).

Using X,Y to denote the expressions in the brackets, we could simplify the above
equation as z(t−2) = (X�32B0(t−1))⊕AES−1

R (Y ⊕ lβ(B0(t−1))). Similar to the situation
for A0 in our first GnD attack, B0(t−1) appears twice with non-linear operations in
between, thus it can have different numbers of solutions given specific values of X,Y .
If we change to initially guess the two 128-bit variables X and Y , the expression of
z(t−2) can help to truncate more guessing paths that have no valid solutions for B0(t−1).
Specifically, for each guessing value of (X,Y ), if we can immediately give a binary
answer, i.e,. Yes or No, about whether there is at least one solution for B0(t−1), we
can discard those (X,Y ) values with no solutions, and only continue guessing the third
128-bit variable for the others. Note that we do not enumerate solutions for B0(t−1) in
z(t−2), otherwise we would get the same complexity 2384 as the first GnD attack, and
we will later show how we efficiently get the binary answer in Section 4.2.1. Actually,
we will guess (X,B0(t−1)) instead of (X,Y ) there, but we still first describe the idea by
guessing (X,Y ) as it is easier to illustrate how z(t−2) is exploited.

Let pz denote the probability that B0(t−1) has solutions in the equation of z(t−2),
then the total complexity of the second GnD attack would be computed as:

T = 2256︸︷︷︸
guess X,Y

·((1− pz)︸ ︷︷ ︸
“No”

+ pz︸︷︷︸
“Yes”

· 2128︸︷︷︸
3rd guess

) ≈ pz · 2384.

We have derived the specific value of pz in Appendix 7, which is 2−5.84, thus the total
complexity of the second GnD attack is around 2384−5.84 ≈ 2378.16.

4.2 Scenario of the second GnD attack
The flowchart of the second GnD attack is given in Appendix 6, which follows the steps
below:

(1) Guess X and Y with complexity 2256.

(2) For each (X,Y ) value, check if B0(t−1) in z(t−2) has solutions: if yes, continue
with guessing the third variable in the next step; otherwise roll back to the last
step.

(3) Guess B0 in complexity 2128 and further derive R2, R3 as below:

R3 from: X = AES−1
R (AES−1

R (R3)),

R2 from: z(t−1) = (AES−1
R (R2)�32 B0)⊕AES−1

R (R3)).

This step will be entered pz · 2256 times in average.
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(4) For each valid combination of (X,Y,B0), we get the following two equations in
two unknowns R1 and B1:

z(t) ⊕R2 = R1�32 B1,

Y ⊕ hβ(B0) = (σ(R1)�32 AES−1
R (R3))⊕B1. (12)

We check if B1, R1 have valid solutions given other variables, and roll back if the
answer is negative, otherwise we enumerate all solutions recursively. We have
computed the distribution and average value of the number of solutions using the
similar way for the D-equations in the first GnD attack, and the details are given
in Appendix 5. There is again one solution in average for each combination of the
known variables. Similarly, lookup tables can be precomputed to help enumerate
solutions efficiently.

(5) Enumerate all solutions for A0 as done in Section 3.2.2 in the first GnD attack;

(6) Enumerate all solutions for A1 as done in Section 3.2.3 in the first GnD attack;

(7) Use the next three keystream words to verify the correct guess.

4.2.1 Guess (X,B0(t−1)) instead of (X,Y )

In the first step, we need to give a binary answer about whether solutions exist for
B0(t−1) in the equation:

z(t−2) = (B0(t−1) �32 X)⊕AES−1
R (lβ(B0(t−1))⊕ Y ).

One simple way to achieve this is to run an enumeration algorithm on B0(t−1), and
whenever a solution is found, we stop and return “Yes”. This is similar to the process
of computing pz in Appendix 7. The process is actually an enumeration algorithm on
B0(t−1) with complexity 248−5.84, resulting in the total complexity even higher than
2384.

However, we can actually guess (X,B0(t−1)) instead of (X,Y ), and Y can be uniquely
determined given (X,B0(t−1)). But it could happen that for different (X,B0(t−1)) pairs,
the values of (X,Y ) are the same. So for every new X we must ensure that the value of
Y is new, and skip the cases when the pair (X,Y ) has already been considered. Thus,
for each new value of X we make a binary vector of length 2128 in which we flag (i.e.,
set to 1) those Y ’s that have already been considered for that specific value of X. Thus,
in step (1) in Section 4.2, we guess (X,B0(t−1)) and determine Y , and in step (2), we
check if (X,Y ) pair has already been flagged: if so, we roll back to guess another value;
otherwise, continue with guessing B0 in step (3). Other steps are just the same as before.
T = 0 ;
N = pow(2 , 128) ; // 2 to the power o f 128
char f l a g [N ] ;
f o r (X = 0 ; X < N; ++X)
{ f o r ( i = 0 ; i < N; ++i )

f l a g [ i ] = 0 ;
f o r (B0 = 0 ; B0 < N; ++B0) // B0 at c l o ck t−1
{ de r i v e Y;

i f ( f l a g [Y] == 0)
{ // we ente r t h i s branch with p r obab i l i t y p_z in average
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f l a g [Y] = 1 ;
f o r (B0t = 0 ; B0t < N; ++B0t )
// guess the th i rd unknown B0t : B0 at c l o ck t
{ T = T + 1 ; // complexity to enumerate a l l guess ba s i s

(∗ ) . . . f u r t h e r d e r i v a t i on and enumerations , Steps 3−7
}

}
}

}

Listing 3: Outline of the second GnD attack.

Listing 3 gives the pseudo-code of the second GnD attack. It is easy to see that the
number of times that the GnD attack arrives to the point (*) is T ≈ 2256 ·pz ·2128 where
pz = 2−5.84, thus the complexity is about 2378. However, in order to gain the advantage
in time complexity over the first GnD attack we have to use memory of size 2128 bits.

5 Linear cryptanalysis of SNOW-V⊕
The basic idea of linear cryptanalysis is to approximate the non-linear operations of a ci-
pher as linear ones, and further to explore linear relationships either between keystream
words, or between keystream words and initial states, which could result into a distin-
guishing attack or a correlation attack, respectively. Usually, such a linear approximation
will introduce a noise, and the quality of the linear approximation is measured by the
bias of this noise, which will directly influence the attack complexity. There are many
ways to define the bias and derive the complexity, and in our attack, we use SEI as
defined in [BJV04]. For a variable with distribution D, the SEI of it is computed as:

ε(D) = |D| ·
|D|−1∑
i=0

(
D[i]− 1

|D|

)2

,

where D[i] is the occurrence probability of the value in the i-th entry. For a distribution
with SEI ε(D), the number of samples required to distinguish it from the uniform random
distribution is in the order of 1/ε(D) [BJV04].

In this section, we perform linear cryptanalysis of SNOW-V and propose a distin-
guishing attack with complexity 2303 against a reduced version SNOW-V⊕ in which the
32-bit adders are replaced with exclusive-OR. In the attack we explore the feature that
three consecutive keystream words contain the contribution from the LFSR linearly and
redundantly, due to the chosen tap positions of T1 and T2 in the design. Thus, unlike
the linear attacks against the predecessors SNOW 2.0 (e.g., [WBDC03, NW06]), and
SNOW 3G [YJM19], where one first approximates the FSM and then cancels out the
contribution from the LFSR either according to the feedback polynomial or a multiple
of it, here we do it vice-versa. We will first cancel the LFSR variables locally within
these three keystream words without combining several time instances, and thereafter
construct a noise expression based on the remaining expressions over the FSM variables.

5.1 Linear approximation
We first express the operations in the AES encryption round as L · S, where S denotes
S-box operation and L is the combination of the ShiftRow and MixColumn operations.
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Similarly, the inverse AES encryption round can be expressed as S−1 · L−1, where S−1

denotes the inverse S-box operation and L−1 is the combination of inverse MixColumn
and inverse ShiftRow operations. L and L−1 can be expressed as two 16 × 16-byte
matrices, in which each entry is an element from F28 . The expressions of L and L−1

are given in Appendix 1. Besides, we replace �32 with ⊕, and make a substitution of
the variables R2, R3 as L · R2, L · R3, respectively. Hence, R2, R3 are not the original
variables, but for ease of reading, we still use the original notations. Then the expressions
of the three consecutive keystream words in Equation (7) can be rewritten as follows:

z(t−1) = S−1(R2)⊕B0⊕ S−1(R3),

z(t) = R1⊕B1⊕ L ·R2,

z(t+1) = σL ·R2⊕ σL ·R3⊕ (σA0⊕A0)⊕ lβ(B0)⊕ hβ(B1)⊕ L · S(R1).

The variables B0, B1, A0 are contributions from the LFSR, and we would like to
cancel them out first. To achieve so, we apply two linear operations lβ , hβ , which can be
expressed as two 128×128 binary matrices, to z(t) and z(t−1), respectively, and introduce
a new 128-bit variable W defined as below:

W = lβ(z(t−1))⊕ hβ(z(t))⊕ z(t+1). (13)

The contribution from the variables B0 and B1 is cancelled in W , and what remains
from the LFSR is only (σA0⊕A0). Now let us introduce ten byte-based variables from
W , shown below:

E0 = W0, E1 = W1 ⊕W4, E2 = W5, E3 = W2 ⊕W8, E4 = W6 ⊕W9,

E5 = W10, E6 = W3 ⊕W12, E7 = W7 ⊕W13, E8 = W11 ⊕W14, E9 = W15,

where Wi is the i-th byte of W . Each byte-wise expression Ek (0 ≤ k ≤ 9) cancels out
the contribution from A0, and only the byte variables from registers R1, R2, R3 remain.
Each of the above Ek terms can be expressed in a form as below:

Ek =

15⊕
i=0

[l
(1)
k,i ·R1i ⊕ n(1)

k,i · S(R1i)]

⊕[l
(2)
k,i ·R2i ⊕ n(2)

k,i · S
−1(R2i)]⊕ [l

(3)
k,i ·R3i ⊕ n(3)

k,i · S
−1(R3i)], (14)

where l(j)k,i , n
(j)
k,i (j ∈ {1, 2, 3}, 0 ≤ k ≤ 9, 0 ≤ i ≤ 15) are 8 × 8 binary matrices that

can be derived following the expressions of W and E terms. This means that each Ek
can contain up to 48 independent noise terms of the form ax ⊕ bS(x), i.e., up to 48
approximations of the S-boxes or the inverse S-boxes. We can derive the expression for
the total noise N as a linear combination of these ten E-bytes as follows:

N = c0 · E0 ⊕ c1 · E1 ⊕ · · · ⊕ c9 · E9,

where ci’s are linear masking coefficients or binary matrices that an attacker can freely
choose. It is computationally infeasible to exhaust all the values of these matrices, and
below we show how we efficiently search them to achieve a decent bias.
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Since we have ten byte expressions each of which can have up to 48 S-box approxi-
mations, it is possible to find some linear combinations of these ten bytes such that some
S-box approximations could be removed in N , i.e., the coefficients of the linear part and
the S-box part of some bytes both become zero. Now we are interested in the maximum
number of S-box approximations that can be removed, as it can give a higher bias.

We first use MILP (Mixed-Integer Linear Programming) to help find a lower bound
on the number of active S-boxes, as done in [ENP19]. By solving the MILP problem,
we get a first insight that there will be not less than 37 active S-boxes. We next show
how we explore linear masking coefficients to remove as many S-box approximations as
possible.

5.2 Exploring maskings to remove S-box approximations
We can construct a w-bit noise Nw using the ten 8-bit E-expressions, which is expressed
in a matrix form as below:

Nw =
(
c0 c1 . . . c9

)
w×10·8 ·


E0

E1

...
E9


10·8

= c ·E,

where ci’s, 0 ≤ i ≤ 9, are w × 8 binary matrices that the attacker can choose freely,
but with the constraint that the rank of c is w, i.e., all w rows are nonzero and linearly
independent. For simplicity, let us introduce 96 8-bit variables as follows:

for i = 0, . . . , 15 : Xi = R1i, Yi = S(R1i),

X16+i = R2i, Y16+i = S−1(R2i),

X32+i = R3i, Y32+i = S−1(R3i).

Note that every Xj (0 ≤ j ≤ 47) can be regarded as a uniformly distributed random
variable, and Yj is the corresponding value after applying the S-box or inverse S-box.
Thus, an expression of the form a ·Xj ⊕ b · Yj , where a, b are two linear maskings, can
be possibly biased only when a 6= 0, b 6= 0. When a = 0, b 6= 0 or a 6= 0, b = 0, the
expression will be uniform; and when a = 0, b = 0, this approximation can be removed.
Since every Ei is a linear expression of the X,Y variables, the expression of the noise
Nw can be rewritten as:

Nw =
(
c0 c1 . . . c9

)
w×10·8 ·

A10·8×48·8 ·

 X0

...
X47


48·8

⊕B10·8×48·8 ·

 Y0

...
Y47


48·8


= c · [A ·X⊕B ·Y],

where A and B are two 10 ·8×48 ·8 binary matrices derived from the ten E-expressions
in Equation (14). It is therefore clear that the total w-bit noise Nw consists of at most
48 sub-noise parts:

Nw =

47⊕
i=0

(c ·A)[0:w−1; 8i:8i+7]︸ ︷︷ ︸
ai

·Xi ⊕ (c ·B)[0:w−1; 8i:8i+7]︸ ︷︷ ︸
bi

·Yi,
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where ai and bi are w × 8 binary sub-matrices, constituted from the w rows and the
eight columns from 8i to 8i+ 7 of the matrices c ·A and c ·B, respectively. There are
in total 96 such matrices.

Obviously, if ai = bi = 0, the i-th sub-noise part vanishes to zero, and thus the total
noise will have a larger bias. If, on the other hand, only one of the two matrices is zero,
the contribution of that i-th sub-noise will make some or all bits of Nw pure random,
thus these bits will have no contribution to the bias. If all bits are affected and become
random, the total bias will be 0. Therefore, we are interested in selecting the masking
matrix c such that we can cancel as many S-box approximations out of 48 as possible,
meanwhile guaranteeing that the xor-sum of the remaining sub-noises is biased. Next
we show how we achieve this.

Algorithm to derive the linear masking matrix c. Let us select k distinct
indices {i1, i2, . . . , ik} ∈ {0, 1, . . . , 47}, and we want to cancel the sub-noise parts corre-
sponding to these k indices, i.e., to make aij = bij = 0 for j = 1, 2, . . . , k, by carefully
choosing the linear masking ci’s. We can construct a matrix K that consists of the
corresponding 8-bit columns taken from the matrices A and B:

K10·8×2k·8 =
A[0:7; 8i1:8i1+7] B[0:7; 8i1:8i1+7] . . . A[0:7; 8ik:8ik+7] B[0:7; 8ik:8ik+7]

A[8:15; 8i1:8i1+7] B[8:15; 8i1:8i1+7] . . . A[8:15; 8ik:8ik+7] B[8:15; 8ik:8ik+7]

...
A[72:79; 8i1:8i1+7] B[72:79; 8i1:8i1+7] . . . A[72:79; 8ik:8ik+7] B[72:79; 8ik:8ik+7]

 ,

and we want to find a nonzero matrix c such that:

cw×80 ·K80×2k·8 = 0w×2k·8.

First of all, if the rank r of the matrix K is 80, there are no valid solutions of c satisfying
c ·K = 0. While if r < 80, there exist w = 80− r nonzero linear combinations that will
map through K to zero. This also explains how the size w for the total noise Nw was
derived in our attack.

In order to search for the kernel linear combinations, we initially set c as a square
identity matrix c80×80 = I80×80, then perform the standard Gaussian elimination on
the binary matrix K to transform it to the row echelon form K′, and apply the same
operations to the matrix c80×80. This is quite similar to the steps of deriving an inverse
matrix of K, if K would be a square matrix.

In the end, we get the row echelon form K′ = c ·K, where the last w = 80− r rows
of K′ are zeroes, while the matrix c will be of the full-rank 80. Then we keep the last w
rows of c and discard all other r rows, thus deriving the desired cw×80 satisfying c·K = 0.

Search strategy for a good linear approximation. It is now clear that a larger
bias of the total noise can be achieved by removing as many S-box approximations
(out of 48) as possible. We can do it by exhaustively selecting k indices in

(
48
k

)
ways,

then applying the algorithm above to check if a solution for the matrix c exists for the
selected sub-noises, and if so, derive w and the corresponding linear masking matrix c.
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Then given the derived cw×80, we construct the distribution of the total w-bit noise Nw
and compute the bias. We pick the solution for which the total bias is the largest.

Correction approach. For many k-tuples of indices we would get a full-rank K, and
thus we do not have to continue further computations. However, another step of cutting
out k-tuples is to do a correction approach for the matrix c. If w is shrunk down to
0 during such a correction, there is no need to continue further computations and we
jump to the next k-tuple. The correction idea is as follows.

Given a derived masking matrix cw×80, we can meet the situation when some of the
48 sub-noises will have ai = 0 and bi 6= 0 (or vice versa), which means that some bits of
the w-bit total noise become uniformly distributed. In such a case, we can try to correct
the masking matrix cw×80 by removing those rows where the rows of bi are nonzero.
In this way we shrink w down but get ai = bi = 0. If w becomes 0 at the end of this
procedure, we proceed to the next k-tuple.

If for all 48 sub-noises we get either ai = 0, bi = 0 or ai 6= 0, bi 6= 0, the resulting
linear masking matrix c may lead to a biased total noise. We then construct the distri-
bution of the total noise Nw and compute the corresponding bias. When constructing
the distribution, we can utilise the Walsh-Hadamard Transforms to speed up the con-
volution of the 48 w-bit sub-noises [MJ05, YJM19].

Results. In our simulations we managed to find a 16-bit approximation N16, i.e.,
w = 16, and the masking matrix c16×80 can effectively eliminate nine S-box approxima-
tions. The received bias (SEI) is

ε(N16) ≈ 2−303.

The linear masking c16×80 is given in Listing 4, where the bits are encoded as 64-bit
unsigned integers in C/C++, and are mapped to the bits of c as follows:

c16×80[i, j] = (C[i][j/64]� (j%64))&1.

uint64_t C[16][2] = {
{ 0x0000020200020000ULL , 0x0000ULL}, { 0x94730000005e0000ULL , 0x0000ULL},
{ 0x0000080800080000ULL , 0x0000ULL}, { 0x48c4159600fa0120ULL , 0x0002ULL},
{ 0x48c421a200ce0120ULL , 0x0002ULL}, { 0x0000444400440000ULL , 0x0000ULL},
{ 0x3c15810000220080ULL , 0x0001ULL}, { 0x0000000000000022ULL , 0x0000ULL},
{ 0x40c1000000600000ULL , 0x0100ULL}, { 0x0000000000000008ULL , 0x0000ULL},
{ 0x0000000000000060ULL , 0x0000ULL}, { 0x0000000000000021ULL , 0x0000ULL},
{ 0x0000000000000004ULL , 0x0000ULL}, { 0x0000000000000010ULL , 0x0000ULL},
{ 0x4b39000000ee0000ULL , 0x0000ULL}, { 0x54cc000000fe0000ULL , 0x8000ULL }};

Listing 4: The linear masking c16×80.

We also tested if there exists a linear masking that can eliminate ten or more S-
box approximations. We ran our exhaustive search program with k = 10 for all the(

48
10

)
≈ 232.6 10-tuples, but with no valid results returned. By this we confirm that at

most nine S-box approximations can be removed from the total noise expression.

5.3 Distinguishing attack
If all arithmetic additions are substituted with exclusive-OR, we could have a distin-
guishing attack against this variant with data complexity 2303. Specifically, one should
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collect around 2303 different triples of consecutive keystream words and construct the
sequence of 16-byte words {W} of length 2303 by applying Equation (13) for each triple;
then build the sequence of 10-byte words {E} from {W}; and, finally, apply the linear
masking c16×80 given in Listing 4 to each word in {E}, thus receiving the sequence
of length 2303 of biased 16-bit noise samples {N16}, which can be distinguished from
random.

The bias derived in our attack does not depend on the key or IV, and the time width
to build a single sample is just three keystream words, which means that the data in our
attack can be collected from many short keystream sequences under different (key, IV)
pairs. Though the data complexity is still out of reach in practice, the attacking scenario
is more relevant to the practical situation. The attack can also be used to recover some
unknown bits of a plaintext encrypted a large number of times with different IVs and
potentially different keys, e.g., in a broadcast setting [SSS+19].

Discussion on the full version. If we take the 32-bit adders into consideration,
the bias would change. However, how the bias would vary is not clear, as the �32

operations can be seen as part of multiple S-boxes and their approximations. On the
other hand, it is computationally difficult to compute the bias by exhaustive looping.
We do not have a good idea about how to compute that bias in practice, and leave it as
an open question for further research.

6 Conclusions

In this paper, we investigate the security of SNOW-V and propose two guess-and-
determine attacks with complexities 2384 and 2378, respectively, and one distinguishing
attack against a reduced version, in which the 32-bit adders are replaced with exclusive-
OR, with complexity 2303. These attacks do not threaten the full SNOW-V, but provide
deeper understanding into its security. Besides, our attacks provide new ideas for crypt-
analysis against other ciphers. Specifically, we recommend that in a guess-and-determine
attack, instead of simple looping, one should carefully design the order of the guessing
and always truncate those paths invalidating some equation constraints. In this way, one
can save the cost for going through the invalid guessing paths and thus the complexity
can be reduced. A very interesting open problem would be to investigate whether there
are possible speed-ups for these kind of GnD attacks using quantum computers. For
linear cryptanalysis against LFSR-based stream ciphers, it might be interesting to check
if the LFSR contribution can be cancelled locally first, then the remaining equations on
FSM variables may be used to construct a biased noise.
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Appendices

1 The matrices

0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 | 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 | 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 | 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 | 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 | 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | 1 0 0 0 0 0 0 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 0 0 0 1 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 | 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 | 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 | 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 | 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 | 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0

Listing 5: The 16× 16 binary matrices for β (left) and β−1 (right).
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e b d 9 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 2 0 0 0 | 0 3 0 0 | 0 0 1 0 | 0 0 0 1
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 9 e b d 1 0 0 0 | 0 2 0 0 | 0 0 3 0 | 0 0 0 1
0 0 0 0 | 0 0 0 0 | d 9 e b | 0 0 0 0 1 0 0 0 | 0 1 0 0 | 0 0 2 0 | 0 0 0 3
0 0 0 0 | b d 9 e | 0 0 0 0 | 0 0 0 0 3 0 0 0 | 0 1 0 0 | 0 0 1 0 | 0 0 0 2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 | e b d 9 | 0 0 0 0 | 0 0 0 0 0 0 0 1 | 2 0 0 0 | 0 3 0 0 | 0 0 1 0
9 e b d | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 0 0 0 1 | 1 0 0 0 | 0 2 0 0 | 0 0 3 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | d 9 e b 0 0 0 3 | 1 0 0 0 | 0 1 0 0 | 0 0 2 0
0 0 0 0 | 0 0 0 0 | b d 9 e | 0 0 0 0 0 0 0 2 | 3 0 0 0 | 0 1 0 0 | 0 0 1 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 | 0 0 0 0 | e b d 9 | 0 0 0 0 0 0 1 0 | 0 0 0 1 | 2 0 0 0 | 0 3 0 0
0 0 0 0 | 9 e b d | 0 0 0 0 | 0 0 0 0 0 0 3 0 | 0 0 0 1 | 1 0 0 0 | 0 2 0 0
d 9 e b | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 0 0 2 0 | 0 0 0 3 | 1 0 0 0 | 0 1 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | b d 9 e 0 0 1 0 | 0 0 0 2 | 3 0 0 0 | 0 1 0 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | e b d 9 0 3 0 0 | 0 0 1 0 | 0 0 0 1 | 2 0 0 0
0 0 0 0 | 0 0 0 0 | 9 e b d | 0 0 0 0 0 2 0 0 | 0 0 3 0 | 0 0 0 1 | 1 0 0 0
0 0 0 0 | d 9 e b | 0 0 0 0 | 0 0 0 0 0 1 0 0 | 0 0 2 0 | 0 0 0 3 | 1 0 0 0
b d 9 e | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 0 1 0 0 | 0 0 1 0 | 0 0 0 2 | 3 0 0 0

Listing 6: The L−1 (left) and L (right) matrices.

2 The operations of lβ and hβ in bytes

lβ(B0) can be expressed in bytes as below:

lβ(B0)0||1 = βB00||1 ⊕B06||7, lβ(B0)2||3 = βB02||3 ⊕B08||9,

lβ(B0)4||5 = βB04||5 ⊕B010||11, lβ(B0)6||7 = βB06||7 ⊕B012||13,

lβ(B0)8||9 = βB08||9 ⊕B014||15, lβ(B0)10||11 = βB010||11,

lβ(B0)12||13 = βB012||13, lβ(B0)14||15 = βB014||15.

hβ(B1) can be expressed in bytes as below:

hβ(B1)0||1 = β−1B10||1, hβ(B1)2||3 = β−1B12||3,

hβ(B1)4||5 = β−1B14||5, hβ(B1)6||7 = β−1B16||7

hβ(B1)8||9 = β−1B18||9, hβ(B1)10||11 = β−1B110||11 ⊕B10||1

hβ(B1)12||13 = β−1B112||13 ⊕B12||3, hβ(B1)14||15 = β−1B114||15 ⊕B14||5.

3 Recursion implementation for the 10-steps algo-
rithm

Note that for a random choice of inputs C,D,R2, R3, the probability of having at least
one solution of A0 is 2−36.82. However, if solutions exist, the average number of solutions
will be 236.82. Therefore, in the code below we also include the flag solvable=0/1 as
the argument to the method Dequation::random() that generates either a fully random
input where A0 may possibly have a solution, or a random input where A0 is guaranteed
to have a solution – that is for testing and simulation purposes.

struct Dequation
{

u8 R2[16], R3[16], C[16], D[16]; // input
u8 u[16], v[16]; // internal
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u8 A0[16]; // result

void computeD(u8 * Dr)
{

u8 T1[16];
for (int i = 0; i < 4; i++)
((u32*)T1)[i] = ((u32*)R2)[i] + (((u32*)R3)[i] ^ ((u32*)A0)[i

]);
for (int i = 0; i < 16; i++)
Dr[i] = T1[((i >> 2) | (i << 2)) & 0xf];
for (int i = 0; i < 4; i++)
((u32*)Dr)[i] += ((u32*)A0)[i] ^ ((u32*)C)[i];

}

void random(int solvable =0)
{ memset(this , 0xff , sizeof (*this));

for (int i = 0; i < 16; i++)
{ R2[i] = rand();

R3[i] = rand();
C[i] = rand();
A0[i] = rand();
D[i] = rand();

}
if(solvable) computeD(D);

}

int expr(int i, int j, int Xi, int Xj)
{ return D[i] ^ ((R2[j] + (R3[j] ^ Xj) + u[j]) + (Xi ^ C[i]) + v

[i]);
}

void solve1(int step , int i, int X=0, int bit=-1)
{

if (bit >= 0 && (expr(i, i, X, X) & (1 << bit))) return;
if (bit == 7)
{

A0[i] = X;
next_carries(i, i);
solve(step + 1);
return;

}
solve1(step , i, X, ++bit);
solve1(step , i, X ^ (1 << bit), bit);

}

void solve2(int step , int i, int j, int Xi = 0, int Xj=0, int bit
=-1)

{
if (bit >=0 && ((expr(i, j, Xi, Xj)|expr(j, i, Xj, Xi)) & (1<<

bit)))
return;

if (bit == 7)
{

A0[i] = Xi;
A0[j] = Xj;
next_carries(i, j);
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next_carries(j, i);
solve(step + 1);
return;

}
int t = (1 << ++bit);
solve2(step , i, j, Xi , Xj , bit);
solve2(step , i, j, Xi ^ t, Xj, bit);
solve2(step , i, j, Xi , Xj ^ t, bit);
solve2(step , i, j, Xi ^ t, Xj ^ t, bit);

}

void next_carries(int i, int j)
{

int nu = ((int)R2[j] + (int)(R3[j] ^ A0[j]) + (int)u[j]);
int nv = (nu & 0xff) + (int)(A0[i] ^ C[i]) + (int)v[i];
++i, ++j;
if (j & 3) u[j] = nu >> 8;
if (i & 3) v[i] = nv >> 8;

}

void solve(int step = 0)
{

static int S[10] = { 0, 1, 2, 5, 3, 6, 10, 7, 11, 15 };
if (step == 0)
u[0] = u[4] = u[8] = u[12] = v[0] = v[4] = v[8] = v[12] = 0;

if (step == 10)
{

// A solution for A0 is found! do something with it...
u8 ver [16]; // we just verify that the solution is correct
computeD(ver);
if (memcmp(D, ver , 16))
printf("ERROR: Verification of the derived A0 failed !\n");
return;

}

int i = S[step], j = ((i >> 2) | (i << 2)) & 0xf; // j = sigma
(i)

if (i == j) solve1(step , i);
else solve2(step , i, j);

}

};

Listing 7: A possible recursion organisation for 10-steps.

4 The distribution table of solutions for Type-2 equa-
tions

Consider n-bit variables A1,2, B1,2, C1,2, D1,2, X1,2 and two n-bit equations:

A1 = (B1 �n (C1 ⊕X1))�n (X2 ⊕D1),

A2 = (B2 �n (C2 ⊕X2))�n (X1 ⊕D2).
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Table 4 contains the probabilities of the pair (X1, X2) having k solutions for a random
tuple (A1,2, B1,2, C1,2, D1,2), which are derived through p = x/f , where x’s are the
integers in the table and f is the corresponding normalisation factor. For the GnD
attack against SNOW-V we are interested in the distribution where n = 8.

#Solutions n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8
factor f → 22 23 27 210 214 218 222 226

0 1 5 91 793 13484 225652 3734648 61316512
2 1 2 16 64 512 4096 32768 262144
4 1 18 119 1377 14759 150417 1478903
8 3 43 803 12265 166035 2071185
12 1 29 529 7761 100077
16 4 162 3978 76314 1256786
20 1 33 661 10405
24 5 205 5001 94273
28 1 33 661 10405
32 10 536 16552 385832
36 3 117 2691
40 5 225 5901
44 1 37 809
48 18 978 30258
52 1 37 809
56 5 225 5901
60 1 41 985
64 24 1632 61440
68 1 41
72 19 981
76 1 41
80 18 1050
84 5 217
88 5 245
92 1 41
96 56 3864
100 1 43
104 5 245
108 1 49
112 18 1050
116 1 41
120 5 273
124 1 41
128 56 4688
132 5
136 5
140 5
144 82
148 1
152 5
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156 5
160 56
164 1
168 33
172 1
176 18
180 5
184 5
188 1
192 160
196 3
200 5
204 1
208 18
212 1
216 5
220 1
224 56
228 1
232 5
236 1
240 18
244 1
248 5
252 1
256 128

Table 4: Distribution table for Type-2 equations.

5 The probability of valid solutions in Equation 12

In this section, we compute the probability of valid solutions in Equation 12. We recall
that the equations are:

z(t) ⊕R2 = R1�32 B1,

Y ⊕ hβ(B0) = (σ(R1)�32 AES−1
R (R3))⊕B1,

where R1 and B1 are the two unknowns. First we note that z(t) and R2 are independent
from the rest variables, looping over the xor-sum of z(t) and R2 is equivalent to looping
over one random variable. Thus, we use a new variable U to denote z(t)⊕R2. Similarly,
Y and B0 are independent from the rest variables, and we can regard Y ⊕ hβ(B0) as a
new variable V . Here we should be careful about hβ(B0): since hβ is a full-rank matrix,
when B0 takes all the values, hβ(B0) will also take all the values. AES−1

R (R3) can also
be regarded as a random variable W as is is a bijective mapping.
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Thus we have a simplified system of equations:

U = R1�32 B1,

V = (σ(R1)�32 W )⊕B1. (15)

According to Equation (15), we have B1 = (σ(R1)�32 W )⊕ V , and further get:

U = R1�32 ((σ(R1)�32 W )⊕ V ). (16)

The distributions of number of solutions of Equation (15) and Equation (16) are the
same, since B1 is uniquely determined given V,W and R1. We have experimentally
verified this observation over smaller dimensions. Thus we can use Equation (16) to get
the distribution of number of solutions of R1 and B1.

Similarly, we would have two types of equations, the first type with the form below,

U0 = R10 �8 ((R10 �8 W0 �8 v0)⊕ V0)�8 u0,

and the second type with the form:

U1 = R11 �8 ((R14 �8 W1 �8 v1)⊕ V1)�8 u1

U4 = R14 �8 ((R11 �8 W4 �8 v4)⊕ V4)�8 u4.

We have experimentally computed the distributions of solutions for these two types of
equations, and the probabilities of having solutions are 2−3.91 and 2−3.53, respectively.
The average number of solutions is exactly one for each combination of other variables.
The results are just the same to the ones of the D-equations for A0 in the first GnD
attack.

6 The flowcharts of the guess-and-determine attacks

Figure 3 presents simple illustrations of the proposed GnD attacks.

7 The probability pz

In this section, we derive the probability pz of B0(t−1) having solutions in the equation
of z(t−2). Recall that the equation of z(t−2) is expressed as below:

z(t−2) = (B0(t−1) �32 X)⊕AES−1
R (lβ(B0(t−1))⊕ Y ),

where AES−1
R (X) can be expressed as S−1(L−1 · X), and lβ operation is defined in

Equation (5). We temporarily replace�32 with�8. For simplicity, we denote Y ′ = L−1Y
and ignore the time notations, then we can simplify the equation as:

z = (B0�8 X)⊕ S−1(L−1lβ(B0)⊕ Y ′).

Now our task is to compute the probability of B0 having solutions given z,X, Y ′. We
use an enumeration algorithm to achieve this by considering four groups of equations
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Figure 3: Illustration of the GnD attacks (left: first; right: second).

recursively, which are given below.

Step 1. Before giving the first group of equations, we first use z12 as an example
to illustrate how to derive each byte of z in details. z12 can be expressed as:

z12 = (B012 �8 X12)

⊕ S−1((e, b, d, 9) · (β(B012||13)0, β(B012||13)1, β(B014||15)0, β(B014||15)1)⊕ Y ′12),

where β(B0i||i+1)j , i ∈ {12, 14}, j ∈ {0, 1} is the j-th byte of β(B0i||B0i+1).
For simplicity of expressions, we use [B0i,i+1,i+2,i+3] to denote the vector of the four

bytes (B0i, B0i+1, B0i+2, B0i+3) and [ψB0i,i+1,i+2,i+3] to denote the vector of the four
bytes after multiplying with β, i.e.,

[ψB0i,i+1,i+2,i+3] = (β(B0i||i+1)0, β(B0i||i+1)1, β(B0i+2||i+3)0, β(B0i+2||i+3)1),

for i = 0, 4, 8, 12.
Now consider the first group of equations:

z12 = (B012 �8 X12)⊕ S−1((e, b, d, 9) · [ψB012,13,14,15]⊕ Y ′12),

z11 = (B011 �8 X11)⊕ S−1((b, d, 9, e) · [ψB012,13,14,15]⊕ Y ′11),

z6 = (B06 �8 X6)⊕ S−1((d, 9, e, b) · [ψB012,13,14,15]⊕ Y ′6),

z1 = (B01 �8 X1)⊕ S−1((9, e, b, d) · [ψB012,13,14,15]⊕ Y ′1).
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Given the bytes of z,X, Y ′, we can freely choose the values of B013,14,15, then in z12

only B012 remains unknown. Once B012 is further determined, B01,6,11 will be derived
uniquely from z1,6,11, thus there is always a solution for these bytes if B012 in z12 has
solutions. So the main task now is to compute the probability of B012 having solutions
in z12. According to the expression of β matrix given in Appendix 1, z12 can be further
derived as:

z12 = (B012 �8 X12)⊕ S−1(e · (B012 � 1)⊕ b · (B012 � 7)⊕ Y ′′12),

where Y ′′12 is a new variable, which is the linear combination of Y ′12, B013, B014, B015.
We can compute the probability of B012 having at least one solution, denoted pz(B012),
which is:

pz(B012) ≈ 0.363230705.

Thus, in Step 1 we can loop over B013,14,15, solve B012 with valid solutions of probability
pz(B012), and further derive B01,6,11 correspondingly.

Step 2. Consider the second group of equations:

z13 = (B013 �8 X13)⊕ S−1((9, e, b, d) · ([ψB08,9,10,11]⊕ (B014, B015, 0, 0))⊕ Y ′13),

z8 = (B08 �8 X8)⊕ S−1((e, b, d, 9) · ([ψB08,9,10,11]⊕ (B014, B015, 0, 0))⊕ Y ′8),

z7 = (B07 �8 X7)⊕ S−1((b, d, 9, e) · ([ψB08,9,10,11]⊕ (B014, B015, 0, 0))⊕ Y ′7),

z2 = (B02 �8 X2)⊕ S−1((d, 9, e, b) · ([ψB08,9,10,11]⊕ (B014, B015, 0, 0))⊕ Y ′2).

Here we can only freely choose B09,10, as the values of B011,14,15 have already been
considered in Step 1. We add the linear combinations of these known variables to
the Y ′-terms, resulting in new Y ′′ variables, and use a new variable X ′13 to denote
B013 �X13, which is also known. Thus we need to find solutions of B08 that satisfies
the two equations below:

z13 = X ′13 ⊕ S−1(9 · (B08 � 1)⊕ e · (B08 � 7)⊕ Y ′′13),

z8 = (B08 �8 X8)⊕ S−1(e · (B08 � 1)⊕ b · (B08 � 7)⊕ Y ′′8 ).

We have computed that the probability of valid solutions for B08 is:

pz(B08) ≈ 0.363230705 · 2−8.

This can be understood in another way: the probability of B08 having solutions in z8 is
0.363230705, and the solutions will satisfy the equation of z13 with probability around
2−8. After we have solved B08, we can further derive B07 and B02 uniquely. Thus in
Step 2 we can loop over B09,10, solve B08 with valid solutions of probability pz(B08),
and further derive B02,7.

Step 3. We further consider the next group of equations:

z14 = (B014 �8 X14)⊕ S−1((d, 9, e, b) · ([ψB04,5,6,7]⊕ [B010,11,12,13])⊕ Y ′14),

z9 = (B09 �8 X9)⊕ S−1((9, e, b, d) · ([ψB04,5,6,7]⊕ [B010,11,12,13])⊕ Y ′9),

z4 = (B04 �8 X4)⊕ S−1((e, b, d, 9) · ([ψB04,5,6,7]⊕ [B010,11,12,13])⊕ Y ′4),

z3 = (B03 �8 X3)⊕ S−1((b, d, 9, e) · ([ψB04,5,6,7]⊕ [B010,11,12,13])⊕ Y ′3).
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The known bytes B06,7,10,11,12,13 are added to the Y ′-terms, while the bytes B09,14

are added to the X-terms. We can freely loop over B05 and solve the following equation
in B04:

z4 = (B04 �8 X4)⊕ S−1(e · (B04 � 1)⊕ b · (B04 � 7)⊕ Y ′′4 ).

The probability of valid B04 solutions in z4 is again computed as 0.363230705, and such
solutions will satisfy z14, z9 with probability around 2−16. Thus the total probability of
valid B04 solutions, denoted pz(B04), is computed as:

pz(B04) ≈ 0.363230705 · 2−16.

After B04 having been solved, B03 can be uniquely determined according to z3.
Thus in Step 3 we can loop over B05, solve B04 with valid solutions of probability
pz(B04), and further derive B03.

Step 4. The last group of equations contain the remaining four byte expressions
z0,5,10,15 in only one unknown variable B00, while other variables are already known:

z0 = (B00 �8 X0)⊕ S−1((e, b, d, 9) · ([ψB00,1,2,3]⊕ [B06,7,8,9])⊕ Y ′0),

z5 = (B05 �8 X5)⊕ S−1((9, e, b, d) · ([ψB00,1,2,3]⊕ [B06,7,8,9])⊕ Y ′5),

z10 = (B010 �8 X10)⊕ S−1((d, 9, e, b) · ([ψB00,1,2,3]⊕ [B06,7,8,9])⊕ Y ′10),

z15 = (B015 �8 X15)⊕ S−1((b, d, 9, e) · ([ψB00,1,2,3]⊕ [B06,7,8,9])⊕ Y ′15).

Similarly, B00 will have valid solutions with probability 0.363230705 in z0, and these
solutions will satisfy z5, z10, z15 with probability 2−24. Thus the probability of valid B00

solutions, denoted pz(B00), is:

pz(B00) ≈ 0.363230705 · 2−24.

Summary. We can freely choose six bytes of B0, i.e., B05,9,10,13,14,15, of total size
248, which will result into valid solutions for bytes B00,4,8,12 with probability pz(B00) ·
pz(B04) · pz(B08) · pz(B12). Other bytes will be further uniquely determined. Thus the
total probability pz is computed as:

pz = 248 · pz(B00) · pz(B04) · pz(B08) · pz(B12) ≈ 2−5.84.

We cannot really compute an exact success probability for 32-bit adders �32, but
one can expect that it would be very similar to the derived probability, as only several
carrier bits need to be further considered.
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Paper V

SNOW-Vi: An Extreme Performance Variant
of SNOW-V for Lower Grade CPUs

Abstract

SNOW 3G is a stream cipher used as one of the standard algorithms for data con-
fidentiality and integrity protection over the air interface in the 3G and 4G mobile
communication systems. SNOW-V is a recent new version that was proposed as a can-
didate for inclusion in the 5G standard. In this paper, we propose a faster variant of
SNOW-V, called SNOW-Vi, that can reach the targeted speeds for 5G in a software
implementation on a larger variety of CPU architectures. SNOW-Vi differs in the way
how the LFSR is updated and also introduces a new location of the tap T2 for stronger
security, while everything else is kept the same as in SNOW-V. The throughput in a
software environment is increased by around 50% in average, up to 92 Gbps. This makes
the applicability of the cipher much wider and more use cases are covered. The security
analyses previously done for SNOW-V are not affected in most aspects, and SNOW-Vi
provides the same 256-bit security level as SNOW-V.

Keywords: SNOW, stream cipher, 5G mobile system security.

1 Introduction

Symmetric ciphers play an important role in securing the transmitted data in various
generations of 3GPP mobile telephony systems. The stream cipher SNOW 3G is one
of the core algorithms for integrity and confidentiality protection in both UMTS and
LTE, together with AES and ZUC. In the current generation system, called 5G, we see
fundamental changes in the system architecture and new demands in security, which
pose several challenges to existing cryptographic algorithms [3GP20].

Firstly, the 3GPP standardisation organisation is aiming at increasing the security
level to 256-bit key length [3GP19]. Although there exist academic attacks [BKR11]
(attacks faster than exhaustive key search, but still beyond the practical capability or
regulations), this change is relatively straightforward for AES, as the 256-bit variant
has been known and used for a long time. For ZUC and SNOW 3G, the situation is

Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. SNOW-Vi: an extreme
performance variant of SNOW-V for lower grade CPUs. In Proceedings of the 14th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, pages 261-272, 2021.
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somewhat different: neither of the two ciphers was originally specified for 256-bit key
length. There are simple ways to increase the key length of both ZUC and SNOW 3G (in
fact a 256-bit version of ZUC was announced in 2018), but they also become susceptible
to some academic attacks [YJM19, YJM20].

Secondly, the changes in the radio and core network in the 5G system will also
introduce some challenges for the cryptographic algorithms. It is expected that many
network nodes in 5G will become virtualised and thus the ability to use special hardware
(e.g., IP cores) for cryptographic primitives is limited. This might not be a problem for
AES, as many processors from Intel, ARM and AMD have included special instructions
to accelerate AES, and it will be easy to reach encryption speeds of more than 20 Gbps,
which is the targeted speed of the downlink in 5G. Thus, one can expect that AES could
be kept in 5G. However, for SNOW 3G and ZUC, such high rates cannot be achieved in
a pure software environment.

In response to these challenges, a new member of the SNOW family of stream ciphers,
called SNOW-V [EJMY19], was developed, with the design goal to be fast in virtualised
environments and provide 256-bit security. It is proposed for consideration as a candidate
for inclusion in the 5G standard. The algorithm takes advantage of the AES instructions
in the CPU as well as vectorised SIMD (Single Instruction Multiple Data) instructions,
such as the AVX2 (Advanced Vector Extensions 2) set of instructions, and achieves rates
up to 58 Gbps for encryption.

However, SNOW-V may not perform as good on CPUs with limited vector reg-
ister widths or instruction sets. For example, there might be a transitional network
deployment scenario where the 5G encryption layer (PDCP) is not yet virtualised, but
processed in software on the base station, where typically there is a mixture of dedicated
hardware and general CPU resources. These CPUs are normally not server-grade but
something more suitable for embedding in a base station. By running the encryption
layer in software we are then forced to perform fast air encryption on CPUs with lim-
ited vector register widths and simpler SIMD instruction sets (but enough capability to
serve in a base station) as well. This possible use case was only partially covered by the
SNOW-V design goals, and in this work we present a way to speed up SNOW-V and
thus to extend its usage.

We propose SNOW-Vi1 – an extreme performance variant of SNOW-V, that reaches
much higher speeds on a wider variety of platforms. The basis for SNOW-Vi are not only
cloud hosting CPUs with SIMD registers of 256 bits or wider, but also platforms with
only 128-bit registers. With this new variant we can tackle the speed requirements also
in these lower-grade CPUs. The encryption speed of SNOW-Vi is increased by around
50% than that of SNOW-V, in average, while the security stands on the same level. The
minimum requirement for the CPU is that it supports the AES round function as an
instruction, and at least 128-bit SIMD registers.

This paper is organised as follows. Firstly, we briefly present the design of SNOW-V
in Section 2 and in Section 3 we show the modifications and design rationale to form
SNOW-Vi. Secondly, in Section 4 we evaluate the security of SNOW-Vi by revisiting
all known analyses for SNOW-V and applying them to this new design, making sure
that it still fulfils the security goals. Finally, in Section 5 we perform an extensive
software evaluation under different platforms. We end the paper with a short conclusion

1“Vi” stands for “Virtualisation, improved”.
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in Section 6.

2 The SNOW-V stream cipher

The algorithm SNOW-V follows the design principles of the SNOW-family. It consists of
two parts – the LFSR (Linear Feedback Shift Register) and FSM (Finite State Machine),
but both are redesigned in order to adapt to the higher performance demands in 5G.
The overall schematic of the algorithm is depicted in Figure 1.

C1

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

T2 128 bits

T1 128 bits

R1 AES Enc
Round R2 R3

128 bit keystream output
z

FSM

C2

AES Enc
Round

σ

LFSR-A

LFSR-B

Figure 1: Overall schematic of SNOW-V [EJMY19].

The LFSR is a new circular construction consisting of two 256-bit registers, namely
LFSR-A and LFSR-B. Each sub-LFSR consists of 16 16-bit cells, where each cell holds
an element of a finite field GF (216). These elements in LFSR-A and LFSR-B are re-
spectively generated according to the generating polynomials defined below:

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x+ 1 ∈ F2[x],

gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x+ 1 ∈ F2[x].

Denote the states of LFSR-A and LFSR-B at time clock t as (a
(t)
0 , . . . , a

(t)
15 ) and

(b
(t)
0 , . . . , b

(t)
15 ), respectively. Every time when clocking, a value in a cell is shifted to the

next cell with a smaller index and a
(t)
0 , b

(t)
0 exit the LFSRs. The new values in cells
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a15, b15 are derived as follows:

a(t+16) = b(t) + αa(t) + a(t+1) + α−1a(t+8) mod gA(α),

b(t+16) = a(t) + βb(t) + b(t+3) + β−1b(t+8) mod gB(β),

where α, β are roots of gA(x), gB(x), respectively, and α−1, β−1 are the corresponding
inverses. The multiplications are operated over the corresponding fields.

Every time when updating the LFSR part, the LFSRs are clocked eight times, such
that the two 128-bit values of the taps T1 and T2, which are formed by considering
(b15, · · · , b8), and (a7, · · · , a0) as two 128-bit words, are “fresh” to update the FSM and
generate a keystream word.

The FSM part is 128-bit oriented and consists of three 128-bit registers R1, R2, and
R3. It takes T1, T2 as inputs and produces a 128-bit keystream word as below:

z(t) = (R1(t) �32 T1(t))⊕R2(t).

The three registers in FSM are then updated as follows:

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t))),

R2(t+1) = AESR(R1(t), C1),

R3(t+1) = AESR(R2(t), C2),

where AESR() is one single AES round with the round key being set to zero, i.e.,
C1 = C2 = 0; �32 is four parallel 32-bit arithmetical additions; and σ is a byte-wise
permutation – the transposition of the mapped AES’s 4 × 4-byte matrix state, i.e.,
σ = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15].

We skip other details, e.g. the initialisation procedure, AEAD mode of operation,
and refer to the original paper [EJMY19] for the complete description.

The SNOW-V design has received internal and external evaluations [EJMY19,
CDM20, GZ21, JLH20], which show that there are no identified weaknesses in the
design resulting in attacks faster than exhaustive key search.

3 The design of SNOW-Vi

The design of SNOW-Vi, in the parts of keystream generation and initialisation proce-
dure, is exactly the same as in SNOW-V, with the only differences in the LFSR update
function and the tap position of T2, which is now moved to the higher half of LFSR-
A – these changes dramatically improve the speed in software implementations and
strengthen the security of the cipher. The new LFSR is depicted in Figure 2 and the
new updates are as follows:

a(t+16) = b(t) + αa(t) + a(t+7) mod gA(α),

b(t+16) = a(t) + βb(t) + b(t+8) mod gB(β),
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where α and β are respectively the roots of two new fields’ generating polynomials, which
are defined as follows:

gA(x) = x16 + x14 + x11 + x9 + x6 + x5 + x3 + x2 + 1 ∈ F2[x],

gB(x) = x16 + x15 + x14 + x11 + x10 + x7 + x2 + x+ 1 ∈ F2[x].

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

T2 128 bits

T1 128 bits

Figure 2: LFSR construction in SNOW-Vi.

3.1 Design rationale
In this section we discuss the design rationale for SNOW-Vi in brief, and some of the
arguments are also valid for SNOW-V.

128-bit based design. For modern ciphers with intent to run fast in software environ-
ments, implementation aspects are highly important in order to reach a high throughput.
SNOW 3G is a 32-bit oriented design that produces a 32-bit keystream word per clock.
In order to speed up SNOW 3G, one could imagine producing four such 32-bit keystream
words in parallel, using a 128-bit register – wide registers are supported by many CPUs.
This means that the FSM unit should also hold four parallel 32-bit words so that it can
produce 128 bits in its output. The LFSR can keep its size but should be redesigned
in order to update at least 128 bits at a time. This effectively leads to the 128-bit
based designs of original SNOW-V and current SNOW-Vi variant, in which the FSM
holds three 128-bit words, LFSR can be split into four 128-bit words, and the generated
keystream word is 128-bit.

Cycle length. In the SNOW family of stream ciphers, LFSR is a linear block of size 512
bits that serves as the source of pseudo-randomness. One important security property
is that the LFSR should not have short cycles and, ideally, has the maximum cycle
length of 2512 − 1, excluding the zero state. The proposed LFSR has such a maximum
cycle length which can be verified by the same methods as in [EJMY19, CDM20]. The
characteristic polynomial is primitive and has 209 terms, see Appendix 1 for details.

Note that the probability of at least one LFSR having a zero state after initialisation,
considering all possible (Key, IV ) pairs, is negligibly low (i.e., 2−128) for both SNOW-V
and SNOW-Vi.
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Circular LFSR. It is well-known that in order to prevent trivial linear attacks with
multiple short keystreams, the number of taps t to be used for the LFSR update function
should be at least three, and preferably even more (around 5-6) depending on how well
one can approximate the FSM. However, all the tap values must be extracted and then
processed in the LFSR update function, which means the code and time complexity
grows linearly with the number of taps.

In a circular LFSR construction we have two sub-LFSRs with ta and tb taps involved,
respectively. The total number of taps is ta + tb, but there is a multiplicative effect for
the number of taps for an equivalent LFSR that can be used in a linear attack. The
equivalent LFSR can have up to (1 + ta) · (1 + tb) taps. Thus we can reach the basic
security goals by having a smaller number of taps, and the time complexity to clock
the LFSR is therefore smaller. I.e., if a classical LFSR has t taps, a circular-LFSR may
have as low as 2 × (

√
t − 1) taps to reach the same security goals, thus reducing the

implementation and time complexity for the update function. For example, in SNOW-V
the total number of taps is 3 + 3, but an equivalent LFSR has 11 taps (see Section 4.1
for more details), so that instead of extracting and performing operations on 11 taps in
a classical LFSR, we only need to operate with six taps in the circular construction.

Size and type of the base fields. In SNOW 3G, the LFSR update function is built
over an extended 32-bit field GF ((28)4), where the ground element is an 8-bit subfield
GF (28). This particular choice made it possible to implement the multiplication by
α ∈ GF ((28)4) with a lookup table 28 → 232, two shifts and one XOR. Although the
LFSR in SNOW 3G can be parallelised to produce 128 bits of the tap values, it is still
hard to implement four multiplications in that 32-bit base field by using only 128-bit
registers, and without lookup tables. Moreover, it is not desirable to use lookup tables in
modern ciphers since it may become a vulnerability to cache-based side-channel attacks.

Considering the above, the extension field GF ((28)4) was abandoned and, instead,
a binary field GF (2n) for some smaller n is introduced in the design, which is more
suitable for parallelisation, i.e., we can perform a parallel multiplication of 128/n n-
bit elements by the primitive element α ∈ GF (2n) using 128-bit registers and only four
SIMD instructions. In order to shuffle as many bits as possible, n should be rather small,
and, ideally, the field size should be n = 8 bits – in this case there will be more “decisive”
bits to be involved in the update process. However, there is currently no widely spread
SIMD instruction, in lower grade CPUs, that can perform an arithmetical shift to the
right of 16 8-bit signed values, needed for the implementation of the multiplication by
α in GF (28). Instead, there is an instruction _mm_srai_epi16() for eight 16-bit signed
values that we can use for implementation. Therefore, the ground fields were selected
to be GF (216).

LFSR update rate. Since the two sub-LFSRs are also the source of 128-bit taps T1
and T2, to compute the keystream and update the FSM, we would like to make sure
that these tap values are “fresh” in each clock. Therefore, we need to update 128 bits in
both sub-LFSRs. For 16-bit base fields this implies 8 clocks for a single LFSR update
step.

Base fields. Let us take an extreme situation – if the base fields would flip only 1 bit
of data during the reduction, an attacker may, perhaps, use the fact that the bits of the
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LFSR elements are changed rarely. On the other hand, if the reduction would flip 15
bits out of 16, it is a similar situation since the attacker knows that almost all bits are
flipped in most of the reduction times.

Thus, the field generating polynomials proposed for SNOW-Vi both have weights
eight (excluding x16), so that if a reduction happens, exactly half of the 16 bits will
be flipped. Additionally, the base fields are selected such that they have exactly four
coinciding bits, four bits where flips are not happening, and two 4-bit sets where only
one of the two fields flips the bits.

Taps positions for the LFSR update function. With a reduced number of taps in
SNOW-Vi we should carefully select the update tap positions to meet both an efficient
implementation and a good mixing effect. If the content of the LFSRs are denoted
as four 128-bit registers (A0, A1, B0, B1), where A0, A1(B0, B1) are the low and high
128 bits of LFSR-A (LFSR-B), respectively, and we want to update 128 bits of each
sub-LFSR in a single step, there should be no taps taken from either (a9, . . . , a15) or
(b9, . . . , b15).

The first clear choice for tap positions is from A0 and B0 since these 128-bit values are
already in the state’s 128-bit registers, and we get them for free. Fields multiplications
by α and β should be placed “symmetrically” since then we can perform multiplications
in both fields in parallel, in case 256-bit registers are available: we simply represent the
LFSR state in a “butterfly” manner as lo = (A0, B0) and hi = (A1, B1), where we then
multiply lo by (α, β) with SIMD instructions in parallel, thus double the speed. Besides,
in such a 256-bit oriented data structure we only have to compute the new value for the
hi part, while the new value for lo part is just a single register copy lo(t+1) = hi(t).

The middle state values (A1, B1) would be good “free” taps (a8, b8) for the update
function, but then it becomes impossible to get a full-cycle LFSR. However, we can
take one middle tap as B1, and the second middle tap must be byte-unaligned, one of
{a1, . . . , a7}.

When analysing the mixing effect, one can compare the tap positions a1 vs. a7,
where the latter tap would involve more bytes in the update of the LFSR-A than the
former tap. Therefore, we conclude that the middle pair of tap positions (a7, b8) seems
the best possible choice for a good overall mixing effect.

The final choice of the base fields. So far we have put a lot of constrains and desired
properties on the tap positions, field size, placement of multiplications, full cycle length,
etc. We coded a search algorithm that first creates a list of 16-bit base field candidates
(primitive polynomials of degree 16 and weight 8+1), then tries to select a pair of the
base fields satisfying the other criteria (that the intersection of the base fields is also
statistically balanced), and finally verifies that the LFSR has a full cycle. In the end,
we still received a number of options to choose from. Since we were running out of more
criteria, we made our final selection choice intuitively, based on how well the bits of the
base fields are spread across the 16 bits.

3.2 The new tap position of T2
While we propose a simplified update function in the LFSR for better performance,
we also have to ensure the security of the new proposal. By moving the tap T2 to the
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higher half of LFSR-A, we believe that the security is strengthened. Below we give more
details on motivations for this particular design choice.

From linear analysis perspectives. Let us assume that the content of the LFSR is
(A1, A0) and (B1, B0), which are four 128-bit words. The three consecutive keystream
words at clock t− 1, t and t+ 1 can be expressed as follows:

z(t−1) = (AES−1
R (R̂2)�32 T1(t−1))⊕AES−1

R (R̂3),

z(t) = (R̂1�32 T1(t))⊕ R̂2,

z(t+1) = (σ(R̂2�32 (R̂3⊕ T2(t)))�32 T1(t+1))⊕AESR(R̂1),

where R̂1, R̂2, R̂3 are the values of the three registers in the FSM at time clock t. Any
choice of the LFSR update function, for the particular circular-LFSR construction, would
result in the following linear relations:

B1(t+1) = A0(t) ⊕ fβ(B0(t), B1(t)),

A1(t+1) = B0(t) ⊕ fα(A0(t), A1(t)),

B0(t+1) = B1(t),

A0(t+1) = A1(t),

where fα and fβ are two linear functions that correspond to the LFSR update procedure.
These expressions are generic for both SNOW-V and SNOW-Vi.

In SNOW-V, the taps are T1 = B1 and T2 = A0, which implies that in three
consecutive keystream expressions the contribution from the LFSR involves three out of
four 128-bit words:

T1(t) = B1(t),

T1(t−1) = B1(t−1) = B0(t),

T2(t) = A0(t),

T1(t+1) = B1(t+1) = A0(t) ⊕ fβ(B0(t), B1(t)).

Note that those three LFSR words, i.e., B0(t), B1(t) and A0(t), appear in the three
keystream expressions twice, thus there is a chance to explore a biased noise expression by
considering only these three consecutive 128-bit keystream words in linear cryptanalysis.

We, however, believe that there is no immediate security threat for SNOW-V as it
is most likely that up to 48 SBoxes and many arithmetical additions will be involved in
a hypothetical noise expression. The bias there is expected to be very small (e.g., 48
SBoxes would already give the bias ε(48 × [x ⊕ S(x)]) ≈ 2−286.4), and not enough for
mounting a linear attack on SNOW-V.

On the other hand, we have noticed that if we take the pair of taps (T1, T2) from
either (A0, B0) or (A1, B1), the three consecutive keystream expressions would involve
all four 128-bit words of the LFSR, and, moreover, at least 256 bits of them (values
from A1 and A0) will appear in the keystream expressions only once. For example, if
the taps are taken as T1 = B1 and T2 = A1, it implies: T1(t) = B1(t), T1(t−1) = B0(t),
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T2(t) = A1(t), T1(t+1) = A0(t)⊕fβ(B0(t), B1(t)). In this case, one has to collect at least
512 bits of the keystream in order to have some nonzero bias. That bias is expected
to be even smaller than that in SNOW-V since it would involve more SBoxes and
arithmetical additions.

From initialisation analysis perspectives. When we discovered that a new tap
position would suggest strengthened security from the linear analysis arguments, we
then started to look on what would be the most promising combination, by trying
all possible variants and performing a brief MDM (maximum degree monomial) test
[EJST07] for each of them. The MDM test can examine the non-random initialisation
rounds by checking the distribution of the coefficient of the maximum degree monomial
in the Boolean functions of the keystream bits.

Taps #non-random
T1 T2 rounds

A1 B1 5.69 - 6.21
B1 A1 5.43 - 5.75
A0 B0 6.25 - 7.24
B0 A0 9.16 - 10.8

Table 1: Number of nonrandom initialisation rounds (out of 16) when T1, T2 are
tapped at different positions under the worst cubes of size three.

In Table 1, for each variant of the tap positions, we get the ranges of non-random
initialisation rounds under the worst cubes of size three (the ranges also depend on
the key/IV-loading scheme). The smaller values indicate better mixing effect. A good
mixing effect also contributes to a better mixing during the keystream generation phase.
The obvious choice is to pick the variant (B1, A1) for SNOW-Vi, while keeping key/IV-
loading scheme unchanged.

From implementation perspectives. In addition to other implementation tricks,
the new tap position T2 = A1 makes it possible to first update the LFSR once, then
update the FSM twice, since then the two consecutive values of T1 and T2 become
directly available in the content of the LFSR.

4 Security analysis

In this section we perform a step-by-step security re-evaluation of SNOW-Vi based on
previously known analyses of SNOW-V, given in [EJMY19, CDM20, GZ21, JLH20].
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4.1 Linear attacks
Assume that α and β are 16 × 16 binary matrices that represent multiplication in cor-
responding fields. Then we can have the following expressions:

βa(t+16) = βb(t) + βαa(t) + βa(t+7),

a(t+24) = b(t+8) + αa(t+8) + a(t+15),

a(t+32) = b(t+16) + αa(t+16) + a(t+23).

Since b(t+16) = βb(t) + b(t+8) +a(t), adding the three expressions above, we could get the
recurrence for a-terms in SNOW-Vi as below:

0 = (x16 + x8 + β)(x16 + x7 + α) + 1

= x32 + x24 + x23 + (α+ β)x16 + x15 + αx8 + βx7 + (1 + βα),

to be compared with the feedback recurrence in SNOW-V:

0 = (x16 + α−1x8 + x1 + α)(x16 + β−1x8 + x3 + β) + 1.

I.e., we have an 8-weight recurrence in SNOW-Vi and a 12-weight one in SNOW-V.
For standard linear distinguishing and correlation attacks one has to find a multiple

of the above recurrence of weight 3 or 4. Thus, we believe that 8 is also good enough
to be resistant against linear cryptanalysis. In [EJMY19] the complexity of a linear
distinguishing attack is around 2645 based on a 3-weight multiple. In [GZ21], the authors
propose correlation attacks against three reduced variants of SNOW-V, and for the
closest variant SNOW-V�32,�8

the complexity is 2377. Since these linear cryptanalyses
focus on approximating the non-linear FSM, these results would also apply to SNOW-Vi.
However, both attacks are far more complex than exhaustive key search.

4.2 Attacks on the initialisation
As done for SNOW-V, we use the MDM test and cube attack based on division property
to check if the key and IV bits are fully mixed after the initialisation.

4.2.1 MDM tests

In a MDM test, each output keystream bit is regarded as a random Boolean function
of the key and IV bits, and the MDM coefficient in the algebraic normal form (ANF)
of the Boolean function should follow a random uniform distribution between {0, 1}.
However, in the initial few rounds of the initialisation, the mixing effect is not enough
and the MDMs of the corresponding Boolean functions are much more likely to be zero
than one, thus resulting into a zero sequence before they become random-like. The
MDM test checks how long this zero sequence persists throughout the full initialisation
rounds. As done for SNOW-V, we start with a relatively small set (size four) of Key/IV
bits under which the randomness result deviates the most from the expected value (i.e.,
the longest zero sequence) and greedily increase to a 24-bit set, i.e., in each step, we
add the bit to the existing set which results in the longest zero sequence among all the
remaining bits. We also tried adding two bits in each step.
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Figure 3: The number of rounds failing the MDM test.

Figure 3 shows the number of rounds failing the MDM test under different bit set
sizes compared to SNOW-V when greedily adding one and two bits in each step. From
the result, one can see that the randomness of the initialisation output of SNOW-Vi
is even better than SNOW-V. Specifically, for the worst set of size four, there are 6.06
rounds that are not random for SNOW-Vi, while 6.31 for SNOW-V. When adding two
bits in each step, the difference between SNOW-Vi and SNOW-V is smaller than that
when adding one bit. The difference might be larger if the worst bit set of a larger
size is explored, or more bits are considered during the greedy steps. However, this is
computationally demanding. Next, we use a more fine-grained way based on division
property to check the initialisation.

4.2.2 Cube attacks based on division property

Cube attacks based on division property evaluate the set of involved key bits J in the
superpoly given a certain cube I (the set of all the possible values of some chosen IV bits
while the values of other IV bits are fixed), and recover the superpoly if feasible. The
propagation rules of division property for different operations in a cipher can be modelled
by some (in)equalities of a MILP (Mixed Integer Linear Programming) problem. By
solving the MILP problem using some optimisation tools, one can get the involved key
bit set J and the upper bound of the algebraic degree d of the superpoly; the larger
|J | and d are, the better the mixing effect is. The time complexity for recovering the
superpoly is given as 2|I| ×

(|J|
≤d
)
[WHT+18].

The MILP model of SNOW-Vi is generally similar with that for SNOW-V, given
in Algorithm 5 in [EJMY19]; while only the modelling for the update of the LFSR
should be modified. We tried different cubes and tested the involved key bits and the
maximum degrees of the corresponding superpolies under different rounds. The results
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Rounds 3 4 ≥ 5
Versions -Vi -V -Vi -V -Vi -V

|I| 4 15 128 40 128 128
d 28 17 242 145 256 256
|J | 100 131 256 256 256 256
C 286.7 284.9 > 2256 > 2256 > 2256 > 2256

Table 2: Comparison of cube attacks on reduced-round SNOW-Vi and SNOW-V
(|I|, d, |J |, and C denote the cube size, the degree, the number of involved key bits,

and attacking complexity, respectively).

are presented in Table 2 and one can see that the mixing effect of SNOW-Vi is better
than SNOW-V. Specifically, after four rounds, for a cube size 40 in SNOW-V, all key
bits are involved and the maximum degree is 145. When the cube size goes larger, the
number of involved key bits and degree would both reduce. However, in SNOW-Vi, for
the cube of all IV bits, all key bits are involved, and the maximum degree is 242. This
can be expected since when T2 is moved to the higher part of LFSR-A, the new update
results of IV and key bits are immediately fed to the FSM, making the mixing faster.
After five rounds, all key bits and IV bits are fully mixed just like SNOW-V. These
results match well with the results from the MDM test.

4.3 Algebraic attacks
In algebraic attacks one expresses the cipher output as algebraic equations over the un-
known key (or state) bits, and tries to solve the resulting system of nonlinear equations.
The only source of non-linearity during a normal update iteration of SNOW-Vi is from
the FSM, and that is unchanged from SNOW-V. In the algebraic attack analysis of
SNOW-V in [CDM20], the authors make use of the fact that the tap values T1(t) and
T2(t) are linear combinations of the first values T1(−1), T1(0), T2(−1), T2(0) and each
iteration of the cipher can be written as

T1(t+1) = Linβ(T1(t−1), T1(t), T2(t−1), T2(t)),

T2(t+1) = Linα(T1(t−1), T1(t), T2(t−1), T2(t)),

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t)),

R2(t+1) = AESR(R1(t)),

R3(t+1) = AESR(R2(t)),

z(t+1) = (R1(t) �32 T1(t))⊕R2(t).

We can see that these equations are still valid in SNOW-Vi. Following the arguments
in [CDM20] we note that the linear parts of the cipher can be “effectively disregarded when
determining the number of nonlinear equations and the number of associated variables”.
Hence the proposed change in linear update functions for T1 and T2 does not affect the
complexity of mounting an algebraic attack using quadratic (or higher degree) equations.
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The conclusion is that both linearisation methods and Gröbner basis algorithms remain
unfeasible for algebraic attacks on SNOW-Vi.

4.4 Guess-and-determine attacks
In guess-and-determine attacks one guesses part of the state and from the keystream
equations determines the other parts. One aims to guess as few bits as possible and then
determines as many bits as possible through given equations. For the case of SNOW-Vi
the situation is very similar to SNOW-V. The equation z(t) = (R1(t) �32 T1(t))⊕R2(t)

involves three unknowns, each of size 128 bits. One has to guess two of them (256 bits)
in order to determine the remaining one. Looking at the equation for the next keystream
word, it requires guessing another 128 bits. This illustrates that a guess-and-determine
attack on SNOW-Vi is still of large complexity.

A straightforward guess-and-determine attack is given in [CDM20], which requires
guessing 512 bits within three consecutive keystream words to recover the full 896 state
bits. The attack there applies to SNOW-Vi exactly the same. Thus we could first get an
upper bound on the complexity of the guess-and-determine attack against SNOW-Vi,
which is 2512.

In January 2020, Jiao et al in [JLH20] gave a byte-based guess-and-determine attack
against SNOW-V with complexity 2406 using seven keystream words. In their attack,
the registers in LFSR and FSM are split into bytes and the update operations are
correspondingly transformed to byte-based, while with some carriers introduced. The
attack first presets an initial guessing set and runs some algorithm to explore guessing
paths and thus driving a guessing basis. This process is repeated several times to remove
possible redundant bytes. Though the details of the guess-and-determine attacks against
SNOW-V and SNOW-Vi under their attack would be different, the general guessing route
could be the same.

The final initial guessing set used in [JLH20] has 24 byte variables, and these variables
are all from the FSM registers or the higher halves of the LFSR registers, while the
variables which are tapped for update are not used. Thus we could use the same initial
guessing set and have a similar guessing path. During the guessing process, 12 more
bytes from the FSM registers and 13 more bytes from LFSR are guessed. Since there
are three taps for LFSR-A and LFSR-B in SNOW-V while two in SNOW-Vi, we make
the worst assumption that when 13 bytes in LFSR are required for guessing in SNOW-
V, only around eight bytes are needed in SNOW-Vi. In this case, one still needs to
guess 24 + 12 + 8 = 44 bytes, which are 352 bits. Besides these bytes, some additional
carriers must be guessed. Thus the complexity of the guess-and-determine attack against
SNOW-Vi is larger than 2352. We can make an even worse assumption that the guessed
variables in LFSR can be freely derived, resulting in guessing 24 + 12 = 36 bytes all
from FSM registers, i.e., 288 bits, for which the complexity is still larger than 2256.

Thus we conclude that the guess-and-determine attack would not be faster than
exhaustive key search against SNOW-Vi.

4.5 Other analyses
From studying [CDM20], we note that most of the results received for SNOW-V are not
affected by the new LFSR:
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• the transfer of key entropy (Section 2.1 in [CDM20]), the injectiveness of initiali-
sation (Section 2.4 in [CDM20]), and time-memory-data trade-off attacks (Section
6 in [CDM20]) are not affected since the grounds for these types of analyses are
the state size, the key and IV lengths, which are not changed in SNOW-Vi;

• related key-IV attacks (Section 7 in [CDM20]) is not affected since the Key/IV
loading scheme is the same as in SNOW-V, which does not create additional en-
tropy in the initial state that could be used to search for collisions in Key/IVs;

• side-channel attacks (Section 8 in [CDM20]) is not affected since modifications in
SNOW-Vi do not create any message-dependant routines, and the construction is
similar to SNOW-V;

• AEAD mode (Section 9 in [CDM20]) is not affected since it is exactly the same as
in SNOW-V;

• In fact, even derivations (Section 3.1 in [CDM20]) on correlation attacks remain
true for SNOW-Vi, since the FSM part is not changed in SNOW-Vi, and linear
derivations in [CDM20] were performed for a circular-LFSR construction without
consideration of the exact positions of T1 and T2.

Hardware evaluations. In [CBB20] the authors performed a thorough hard-
ware evaluation of SNOW-V, where they looked at three different implementations and
reached the throughput rate over 1 Tbps and the energy consumption as low as 12.7 pJ
per 128 bits of keystream. This can be compared with AES-256-CTR where the best
throughput received is only 80 Gbps and the energy consumption is 952.5 pJ per 128
bits of an encryption block.

For SNOW-Vi, we expect minor changes in hardware compared to SNOW-V. Our
assessment is that the throughput rate should not be affected at all, since the critical path
is actually in the FSM which is unchanged. The area size and the energy consumption
in SNOW-Vi should be slightly better (i.e., lower) than that in SNOW-V, since the new
LFSR has a reduced number of gates for its feedback update function, and therefore
consumes less power.

5 Software evaluation

Performance of SNOW-Vi heavily depends on the ability to reduce the number of instruc-
tions, as well as careful consideration of hardware peculiarities, such as CPU interleaving
capabilities, use of registers, instructions latency and throughput characteristics. In this
section we analyse SNOW-Vi from the software point of view, considering different im-
plementation techniques and various target platforms.

5.1 Implementations and notations
Algorithms. We have done a dozen of different implementations in C/C++ of SNOW-
V and SNOW-Vi, that we can use for relative comparison on various platforms. We also
used OpenSSL tools on test targets to measure the performance of AES-256-CTR for
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comparison. The notationAES-256-CTR/ver will refer to AES-256-CTR in OpenSSL
version ver.

Registers. In both SNOW-V and SNOW-Vi we have implementations that utilise:
only 128-bit registers (e.g., XMM on Intel platforms), and up to 256-bit registers (e.g.,
YMM). ARM NEON only supports 128-bit registers.

Instruction sets. We have implementation versions with different restrictions in
instruction sets. For Intel platforms, we start with the most restricted SSE4.1 set and
then add more capabilities as we try implementations utilising AVX2 and AVX-512.
For ARM platforms, we only have the NEON instruction set. All implementations and
platforms use the AES round function instruction. We present C/C++ versions using
Intel intrinsics below, but it is relatively straightforward to convert to NEON.

Code generation. In SSE-type of code generation, the CPU can only handle
instructions of the form x = x+y, i.e., the value of one input register is changed to hold
the result. In AVX-type of code generation, CPU instructions can have 3 arguments,
i.e. x = y + z, thus the values of the input registers are preserved.

Unrolled versions. By design, both SNOW algorithms would simply have bulk
encryption in a loop that process 16 bytes in each step (if we ignore unaligned bytes).
That is the same situation as with AES-256-CTR. We call these implementations as
1-unrolled versions. However, there might be a performance gain if each step of such an
encryption loop would process 4× 16 bytes instead, and the key/IV initialisation is also
partly or fully unrolled. We call these implementations 4-unrolled versions.

Notation. We adopt the following notation to indicate a specific case that we were
testing: [Alg/Unroll/Regs-Inst], where: Alg is the algorithm name – {SNOW-V,
SNOW-Vi, AES-256-CTR}; Unroll determines if the implementation is a plain one
or unrolls four 16-bytes blocks in the encryption loop – {1, 4}; Regs determines the
maximum size of the registers being used – {128, 256, 512}; Inst determines the type
of code generation and the maximum instruction sets being used – {SSE, AVX, AVX2,
AVX512, NEON}. For 128-SSE case we use up to SSE4.1 instructions.

Examples: SNOW-Vi/1/128-SSE, SNOW-V/4/256-AVX512.

5.2 New test environment
In order to perform a wide software evaluation on various platforms we decided to
make a simple, but generic test environment where we utilise the standard C function
time(NULL). The granularity of time() function is 1 second, so that before each test we
are waiting for the start of a “fresh” second, then in the loop we are waiting for the start
of the next second, while performing a lot of encryptions with a selected algorithm in a
loop and counting the number of encryptions processed. This, of course, has some impact
on the received performance numbers. We, however, tried to balance it by calling the
function time() only after 1024 encryptions. The total count is still magnitudes higher
so this approach should not affect the accuracy of the measurements, but partly reduces
the impact of the system calls of time() function.

In Figure 4 we present the bar chart comparing previous results from [EJMY19] and
the new results under the new benchmarking system. One can clearly see that SNOW-Vi
can achieve higher speeds than both AES-256 and SNOW-V, and the advantage is larger
for longer plaintexts. When the plaintext length is 16 Kbytes or larger, SNOW-Vi can
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Figure 4: Previous and new benchmarks (platform: work laptop, Win10, Intel
i7-8650U @ 4.2GHz / AVX2).

reach the speed of 77 Gbps on the given platform. The exact values of the speeds are
given in Appendix 4, Table 3.

5.3 Impact of unrolling and code generations
In Figure 5 we demonstrate the difference between a “usual” and “unrolled” implemen-
tations with basically the same 128-bit friendly core code for SNOW-Vi. We can see
a significant speedup when unrolling loops, especially in SSE-type of code generation.
The exact values of these speeds are given in Appendix 4, Table 4.
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5.4 Performance results
We also tested the performance of different algorithms on a number of other platforms
and for various use cases. Figure 6 provides an illustration of the performance compar-
ison under these platforms when the length of the plaintext is 16 Kbytes. We can see
that around +50% speed up in throughput of the fastest SNOW-Vi with respect to the
fastest SNOW-V is achieved, in average. The detailed information of the eight differ-
ent platforms P1∼P8 and more comprehensive performance benchmarks under different
plaintext lengths are given in Appendix 4, Table 5. We will see SNOW-Vi generally
achieves higher speeds on all the tested platforms.

5.5 Implementation optimisations
In Listing 1 we introduce a number of macros, in order to simplify our further C++
listings.

Listing 1: SIMD macros.
#define XOR(a, b) _mm_xor_si128(a, b)
#define AND(a, b) _mm_and_si128(a, b)
#define ADD(a, b) _mm_add_epi32(a, b)
#define SET(v) _mm_set1_epi16 (( short)v)
#define SLL(a) _mm_slli_epi16(a, 1)
#define SRA(a) _mm_srai_epi16(a, 15)
#define TAP7(Hi , Lo) _mm_alignr_epi8(Hi, Lo, 7 * 2)
#define SIGMA(a) \
_mm_shuffle_epi8(a, _mm_set_epi64x( \
0x0f0b07030e0a0602ULL , 0x0d0905010c080400ULL));
#define AESR(a, k) _mm_aesenc_si128(a, k)
#define ZERO() _mm_setzero_si128 ()
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#define LOAD(src) \
_mm_loadu_si128 ((const __m128i *)(src))
#define STORE(dst , x) \
_mm_storeu_si128 (( __m128i *)(dst), x)

In Appendix 2 we give an “easy-to-read” reference implementation of SNOW-Vi,
with test vectors given in Appendix 3. However, a faster implementation can employ
additional tricks, such as the call of the AES round function with T2 as the round key,
thus XORing T2 with R3 is “for free”. One can also optimise the order of instructions
for a better performance on a selected platform, see Listing 2 as an example of such
efforts for SSE-type of code generation.

Listing 2: Optimised implementation of SNOW-Vi utilising XMM registers for SSE
platforms.

#define SnowVi_XMM_ROUND(mode , offset)\
T1 = B1, T2 = A1;\
A1 = XOR(XOR(XOR(TAP7(A1,A0), B0), AND(SRA(A0),\
SET(0x4a6d))), SLL(A0));\
B1 = XOR(XOR(B1, AND(SRA(B0), SET(0 xcc87))),\
XOR(A0, SLL(B0)));\
A0 = T2; B0 = T1;\
if (mode == 0) A1 = XOR(A1, XOR(ADD(T1, R1), R2));\
else STORE(out + offset , XOR(ADD(T1, R1) ,\
XOR(LOAD(in + offset), R2)));\
T2 = ADD(R2, R3);\
R3 = AESR(R2, A1);\
R2 = AESR(R1, ZERO());\
R1 = SIGMA(T2);

// Note: here the length must be 16-bytes aligned
inline void SnowVi_encdec(int length , u8 * out ,
u8 * in, u8 * key , u8 * iv)
{ __m128i A0, A1, B0, B1, R1, R2, R3 , T1 , T2;

// key/IV loading
B0 = R1 = R2 = ZERO();
A0 = LOAD(iv);
R3 = A1 = LOAD(key);
B1 = LOAD(key + 16);

// Initialisation
for (int i = -14; i < 2; ++i)
{ SnowVi_XMM_ROUND (0, 0);

if (i < 0) continue;
R1 = XOR(R1, LOAD(key + i * 16));

}

// Bulk encryption
for (int i = 0; i <= length - 16; i += 16)
{ SnowVi_XMM_ROUND (1, i); }

}

A better optimisation may be achieved on the assembly level. At our best try, a single
encryption/decryption of a 16-byte block data may be done with as low as 15 assembly
instructions by utilising 12 XMM/YMM registers and up to AVX512 instruction sets.
In the initialisation loop the main code can be shrunk down to 13 assembly instructions,
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see Listing 3; however, there we omit 2-3 extra instructions that are usually also needed
to organise the loop itself.

Listing 3: Sketch for an assembly implementation.
;Note: for a 256-bit register the pair of two 128-bit values are (Hi|
Lo)
;Input State:
;ymm1 = hi = (B[128..255] | A[128..255])
;ymm2 = lo = (B[0..127] | A[0..127])
;xmm7 = R1
;xmm8 = R2
;xmm9 = R3 xor A[128..255]
;
;Constants & Derivatives:
;ymm5 = (A[0..127] | B[0..127])
; = _mm256_permute4x64_epi64(lo, 0x4e)
;ymm4 = _mm256_set_epi64x(
; 0xcc87cc87cc87cc87ULL , 0xcc87cc87cc87cc87ULL ,
; 0x4a6d4a6d4a6d4a6dULL , 0x4a6d4a6d4a6d4a6dULL);
;xmm10 = _mm_setzero_si128 ()
;xmm11 = _mm_set_epi64x(
; 0x0f0b07030e0a0602ULL , 0x0d0905010c080400ULL)
;Load the mask register k1 with 0x0000ffff , e.g.:
; mov eax , 65535
; kmovd k1, eax
;
;Encryption/Decryption Loop for one 16-byte block:
1. vmovdqu ymm3 , ymm1
2. vpsraw ymm6 , ymm2 , 15
3. vpternlogd ymm6 , ymm4 , ymm5 , 106
4. vpalignr ymm1 {k1}, ymm1 , ymm2 , 14
5. vpsllw ymm2 , ymm2 , 1
6. vpternlogd ymm1 , ymm2 , ymm6 , 150
7. vmovdqu xmm2 , XMMWORD PTR[r8+rdx]; load in[i*16]
8. vpermq ymm5 , ymm3 , 78
9. vpaddd xmm12 , xmm7 , xmm5
10. vpternlogd ymm2 , ymm8 , ymm12 , 150
11. vpaddd xmm12 , xmm8 , xmm9
12. vaesenc xmm9 , xmm8 , xmm1
13. vaesenc xmm8 , xmm7 , xmm10
14. vmovdqu XMMWORD PTR[rdx], xmm2; store out[i*16]
15. vpshufb xmm7 , xmm12 , xmm11

;Output State: same registers as inputs , except that the new ymm2 is
now actually ymm3. One solution could be to add vmovdqu ymm2 , ymm3;
but a better way is to call the above code with swapped registers xmm2
/ymm2 and xmm3/ymm3. I.e., a 2-unrolled loop would be more efficient.

;Initialisation Loop: remove steps 7 and 14, and in step 10 change
ymm2 to ymm1 (=hi). In the last 2 rounds one should XOR the key to the
register xmm7 (=R1).

Implementation tricks. The presented sketch of an assembly code has just a single
256-bit “swap” instruction vpermq (step 8) and no vextractf128 for extracting the taps,
thus saving CPU latency since these instructions are costly. There is only one register
copy vmovdqu (step 1), that we believe is the minimum and unavoidable. We use one of
the AES round calls (step 12) with the next clock’s value of the tap T2 as the “round
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key”, thus we can skip one XOR instruction (R3 xor T2) during the next clock. We
also efficiently utilise the fact that XMM/YMM registers are shared (steps 9 and 10
in the initialisation loop) and we use AVX512’s mask register k1 (step 4) to avoid an
extra vpblendd. 2 The above code adopts AVX512’s ternary logic vpternlogd (steps 3,
6, 10) that effectively removes three extra instructions if we would do these steps with
the AVX2 set, instead. We can avoid the ending register copy (vmovdqu ymm2, ymm3)
by implementing 2x-unrolled loops. The above 15 assembly steps demonstrate all these
tricks.

Nevertheless, we would like to note that the smallest number of assembly instructions
does not always mean the fastest speed in reality, since there are other things to take
care about such as instructions interleaving and stitching techniques. For example, one
could utilise more than 12 registers to convey a better instructions stitching and thus
achieve a higher performance.

6 Conclusions

In this paper we present a slightly modified version of the SNOW-V stream cipher called
SNOW-Vi. The purpose of this change is to better accommodate a fast implementation
in software on CPUs which only supports 128-bit wide SIMD registers or a limited
SIMD instruction set. The only change made, is a small modification to the linear
update function and the tap position for T2. We thoroughly investigate the security
implications of this change and go through all previously known analyses of SNOW-V,
applying the changes to these security results. The conclusion is that the high security
provided by SNOW-V is still intact, and in some cases even improved. Furthermore,
we provide a very detailed software evaluation, comparing SNOW-Vi to both SNOW-V
and AES-256-CTR on various CPU architectures. The results show that SNOW-Vi is
significantly faster than SNOW-V on all platforms.
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Appendices

1 Characteristic polynomial for the LFSR in SNOW-
Vi

The characteristic polynomial m(x) for the proposed LFSR is
m(x) =

∑|T |
i=1 x

Ti , where:

T = [512, 496, 488, 480, 472, 462, 455, 448, 444, 439, 438, 437, 430, 426,

422, 421, 420, 419, 414, 412, 408, 404, 403, 402, 401, 399, 398, 394, 392,

390, 387, 386, 385, 384, 382, 381, 380, 373, 371, 369, 367, 366, 359, 358,

353, 351, 350, 349, 347, 346, 341, 340, 339, 336, 335, 334, 333, 329, 319,

318, 317, 316, 314, 313, 312, 311, 310, 309, 305, 304, 303, 302, 301, 300,

298, 297, 296, 295, 291, 290, 289, 287, 281, 280, 278, 277, 276, 275, 273,

272, 270, 267, 266, 263, 262, 261, 258, 257, 254, 252, 246, 245, 243, 235,

233, 231, 229, 228, 226, 225, 224, 223, 222, 221, 220, 219, 218, 216, 215,

214, 212, 211, 210, 207, 201, 199, 198, 197, 196, 195, 194, 192, 191, 190,

189, 185, 184, 181, 179, 175, 173, 170, 169, 168, 166, 160, 158, 156, 155,

152, 147, 146, 145, 143, 140, 137, 136, 134, 133, 132, 131, 128, 127, 125,

116, 111, 109, 108, 105, 103, 101, 100, 99, 98, 95, 94, 90, 86, 84, 82, 80,

79, 75, 74, 73, 70, 69, 68, 67, 57, 55, 52, 51, 50, 49, 48, 45, 43, 42, 36, 32,

23, 22, 21, 16, 14, 8, 7, 0].

2 Reference implementation

A 128-SSE friendly C/C++ code of SNOW-Vi is given in Listing 4. It is not opti-
mised for performance benchmarking but rather serves as an “easy-to-read” reference
implementation.

Listing 4: Reference implementation of SNOW-Vi.
#include <intrin.h> // or <x86intrin.h> for gcc
#define XOR(a, b) _mm_xor_si128(a, b)
#define AND(a, b) _mm_and_si128(a, b)
#define ADD(a, b) _mm_add_epi32(a, b)
#define SET(v) _mm_set1_epi16 (( short)v)
#define SLL(a) _mm_slli_epi16(a, 1)
#define SRA(a) _mm_srai_epi16(a, 15)
#define TAP7(Hi, Lo) _mm_alignr_epi8(Hi, Lo, 7 * 2)
#define SIGMA(a) \
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_mm_shuffle_epi8(a, _mm_set_epi64x( \
0x0f0b07030e0a0602ULL , 0x0d0905010c080400ULL));
#define AESR(a, k) _mm_aesenc_si128(a, k)
#define ZERO() _mm_setzero_si128 ()
#define LOAD(src) \
_mm_loadu_si128 ((const __m128i *)(src))
#define STORE(dst , x) \
_mm_storeu_si128 (( __m128i *)(dst), x)

struct SnowVi
{ __m128i A0, A1, B0, B1; // LFSR

__m128i R1 , R2, R3; // FSM

inline __m128i keystream(void)
{ // Taps

__m128i T1 = B1, T2 = A1;
// LFSR -A/B
A1 = XOR(XOR(XOR(TAP7(A1, A0), B0),\
SLL(A0)), AND(SET(0 x4a6d), SRA(A0)));
B1 = XOR(XOR(SLL(B0), A0), XOR(B1 ,\
AND(SET(0xcc87), SRA(B0))));
A0 = T2;
B0 = T1;
// Keystream word
__m128i z = XOR(R2, ADD(R1, T1));
// FSM Update
T2 = ADD(XOR(T2, R3), R2);
R3 = AESR(R2, ZERO());
R2 = AESR(R1, ZERO());
R1 = SIGMA(T2);
return z;

}

template <int aead_mode = 0> inline void keyiv_setup(
const unsigned char * key , const unsigned char * iv)
{ B0 = R1 = R2 = R3 = ZERO();

A0 = LOAD(iv);
A1 = LOAD(key);
B1 = LOAD(key + 16);
if (aead_mode)
B0 = LOAD("AlexEkd JingThom");
for (int i = 0; i < 15; ++i)
A1 = XOR(A1, keystream ());
R1 = XOR(R1, LOAD(key));
A1 = XOR(A1, keystream ());
R1 = XOR(R1, LOAD(key + 16));

}
};

// ... some test program
#include <stdio.h>
int main()
{ SnowVi s;

unsigned char key [32] = { 0 }, iv[16] = { 0 };
s.keyiv_setup(key , iv);

for (int t = 0; t < 4; t++)
{ unsigned char ks[16];
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STORE(ks , s.keystream ());
for (int i = 0; i < 16; i++)
printf("%02x ", (unsigned int)ks[i]);
printf("\n");

}
return 0;

}

In a standard stream cipher, the encryption (and decryption) algorithm is an XOR
of the keystream with the plaintext (ciphertext). Unused bytes of the last keystream
word are simply discarded.

3 Test vectors

Listing 5: Test vectors for SNOW-Vi.
== SNOW -Vi test vectors #1:
key =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

iv =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Initialisation phase , z =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5
4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f
7a 5b 5a 5a 79 5b 5a 5a 5a 5a 5a 5a 5b 5a 5a 5a
4d 51 be 6e 19 0a 0a a9 a4 fe fe ae f4 d6 d6 d6
7a 97 fb 47 d2 57 62 46 8a ca df 1e d1 48 4d 3c
8c 97 87 3e 90 00 38 d5 2d f3 46 c3 2f f7 97 0c
10 89 37 a1 02 46 61 0a 67 07 b5 4e 94 1e 0e 3b
94 36 b9 e3 3b 0f 10 9a dc 89 b3 d5 a3 ae f8 2d
ba ea 9f d0 68 b9 a1 1e 43 62 67 f8 7f 4a 05 ac
0c 15 12 c2 38 80 09 46 5a 55 ef f8 89 81 6c 97
75 82 9e c8 a8 73 70 38 cd 5e c5 7e 21 9d 98 16
ed 45 92 3c 43 7a d7 b0 e5 22 61 72 85 47 dc be
e9 38 ac 0b 70 5c b9 85 2a 42 49 ba 0e 87 37 c3
65 28 2c ef ab 7c a9 57 ae f8 d9 4e 29 38 c8 cd

Keystream phase , z =
50 17 19 e1 75 e4 9f b7 41 ba bf 6b a5 de 60 fe
cd a8 b3 4d 7e c4 c6 42 97 55 c1 9d 2f 67 18 71
89 57 d3 26 cb 46 50 2c eb 81 4c cd 6e a5 3a ae
dd 6c 92 fb f3 92 1e 8b d7 31 7b e2 20 15 31 bb
09 3e e8 72 e9 eb 40 34 e9 b7 1a 4a c2 b5 4b d9
f0 0f 5a dc 06 d2 e6 b5 9f b7 5a 01 be f6 13 14
1c 8a b2 02 ee 38 e2 85 0c ca 60 6a b8 75 cd 12
41 03 b3 2f a5 14 5d df 54 e7 a0 7b 0f 3e b7 7a

== SNOW -Vi test vectors #2:
key =
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
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ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

iv =
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Initialisation phase , z =
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c
cf 09 cc 09 d6 10 d7 10 cc 36 cd 36 d6 10 d7 10
e5 31 72 b0 e8 91 53 dd 75 b0 3e 31 54 dd d2 91
22 b3 31 da e5 05 d7 91 66 7b 7d fb 3f 84 a3 ff
cd d6 c9 02 9e 24 76 3a 19 82 bc 3c 79 d1 9d 62
e1 a3 fb ac ea 2b 6d 68 a1 a7 51 04 3a 46 0b db
b2 30 52 68 82 4b 88 09 ac 92 d5 7d 00 7e ad 0c
79 74 7c eb 01 95 02 a7 1a 2f f5 07 7c 89 96 ad
a1 06 eb d4 c1 d8 5f 12 61 81 e1 a9 55 1b 3b df
aa 5d ff 5a 66 a3 67 16 f7 dc c2 ec 3f da 64 3d
ad 4d ee 83 27 29 15 0a 3e f3 3c 9e d5 79 d9 79
50 a4 a0 dd 21 a0 1c 40 68 31 e6 2e 9d 38 ef 0d
d3 3c c5 72 1b 4d fa 2f 2c cd c9 1f b1 73 fb f3
e8 d0 e3 f1 14 e3 2a 20 ff 56 df 09 7c ab f8 04
1e 24 ae 32 56 9f 7b 08 82 30 4d 80 37 cb 23 b2

Keystream phase , z =
18 71 53 c0 88 1d 00 e8 bf a0 e2 fa fe 71 5e a3
8d e7 fd 87 a6 76 17 1c a1 5e 47 5b 4d a7 b8 7d
ad 86 fc fd 9e 0f bb be ef 6a f4 5f 39 29 c1 23
9b f3 e5 ef b7 d6 90 e6 9d 60 7d c5 c0 4f f4 77
4c 9f 06 a2 b6 36 3e 52 fc b3 0b 8f d3 9f e7 6e
11 64 a6 bd a4 73 4a 76 ee 5f e9 ff 28 ff c1 39
f9 c6 f1 7d 48 43 0c 18 df 3c f4 5d 23 5e dc b3
f6 d4 d1 0b f6 75 f4 ac c4 fb b0 88 cc 5e c4 90

== SNOW -Vi test vectors #3:
key =
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa

iv =
01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

Initialisation phase , z =
0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
38 ee a4 da 77 24 62 90 a5 ff 09 e3 6c 85 50 29
c3 62 78 ce 97 43 29 97 7e b0 df 7c 2e 5b 9b a2
ea ba cd 10 4a 5f 1d dd 71 58 96 16 11 e9 59 6e
98 e8 c1 c4 30 18 9d f2 97 f0 0d ce 37 a1 69 bc
d9 82 ee 9c db 03 04 cc 23 22 5e d1 8b dc ae ab
30 00 67 12 44 dd 55 52 12 f4 ae 68 a0 da a3 d0
87 48 b7 ac f4 67 00 37 ce 67 a7 42 71 4e e1 18
91 27 9b f8 ca 8e a1 2d 82 6b 6c f7 b7 ef a9 ce
b4 f0 16 c9 9d d9 7a 3e 76 30 71 f0 99 24 01 a7
24 aa b3 0e d4 fc cf e8 41 8a c5 74 8f 53 c4 47
14 7b fa 54 f5 2f ad 01 ab 96 d6 cc da 01 ee 86
23 fd d5 4f 2b 8d d6 0d 6c d0 b3 de da 70 42 e1
0c 73 a0 0f e2 87 78 1f 5c 1b 92 0c 00 16 b8 0c
b1 49 b2 9c df da 0c 95 b9 d3 18 96 91 81 a2 ec
ea ba d3 84 90 c8 cf b6 a1 f5 80 e0 6f d7 74 33
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Keystream phase , z =
3a 40 f5 40 f5 47 f0 0f 2d 6f e3 d0 01 c1 40 3a
c7 05 9a 39 19 78 4f ab 41 4b be f7 59 25 e5 23
7e 12 45 4a ea 9e 01 1c e4 46 29 ad f3 f7 a8 bb
7e 26 bd 6c 42 95 ce 62 6a 70 b6 4b 41 48 f7 b3
b4 e2 33 57 5a f9 ba 7a 76 34 a6 bb 22 c7 40 77
3e be eb ed 5a 94 94 d5 3a 2b 95 86 03 0d 68 7d
28 f9 7e c9 83 fd 76 41 3e d6 55 1b df 89 f1 eb
30 c2 4d 1c 61 2d 5a 93 14 d7 64 d8 22 7e 4d bf

4 Performance Tables

The comprehensive performance benchmarks under different plaintext lengths on various
platforms are given in Table 3, Table 4 and Table 5.

Encryption speed Plaintext length
(Gbps) 16384 4096 1024 256 64

P1(a): Work laptop, Win10, Intel i7-8650U @ 4.2GHz / AVX2
Previous benchmarks from [EJMY19]

AES-256-CTR/1.1.1j 35.06 34.16 30.95 22.67 11.32
SNOW-V (C++) 58.25 54.60 45.28 26.37 9.85

New code and test environment
SNOW-V/1/256-AVX2 56.10 52.28 44.05 26.10 9.94
SNOW-Vi/1/256-AVX2 77.04 71.54 57.95 33.01 12.25

Table 3: New test environment, previous and new benchmarks.

Encryption speed Plaintext length
(Gbps) 16384 4096 1024 256 64

P1(b): Work laptop, Win10, Intel i7-8650U @ 4.2GHz / AVX2
SNOW-Vi/1/128-SSE 55.16 52.14 43.52 26.11 10.04
SNOW-Vi/4/128-SSE 68.85 65.93 55.42 33.60 13.12
SNOW-Vi/1/128-AVX 62.28 58.82 50.31 30.93 12.12
SNOW-Vi/4/128-AVX 70.33 66.71 56.59 34.36 13.31

Table 4: Impact of unrolling and SSE/AVX instruction encodings with 128-bit code.

Table 5: Performance measurements on various platforms.

Encryption speed Plaintext length
(Gbps) 16384 4096 1024 256 64

P1: Work laptop, Win10, Intel Core i7-8650U @ 4.2GHz / AVX2 (speed up +37%)
AES-256-CTR/OpenSSL 1.1.1j 35.06 34.16 30.95 22.67 11.32

SNOW-V/1/256-AVX2 56.10 52.28 44.05 26.10 9.94
SNOW-Vi/1/256-AVX2 77.04 71.54 57.95 33.01 12.25
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P2: Home laptop, Win10, Intel Core i7-1065 G7 @ 3.9GHz / AVX512 (+58%)
AES-256-CTR/OpenSSL 3.0.0 68.09 66.07 57.85 38.73 16.42

SNOW-V/4/256-AVX512 58.52 55.57 45.92 27.16 10.33
SNOW-Vi/1/256-AVX512 92.34 85.97 69.16 38.60 14.12

P3: Work Station, Ubuntu, AMD Ryzen 5 3600 @ 4.2GHz / AVX2 (+44%)
AES-256-CTR/OpenSSL 1.1.1f 68.84 67.03 58.35 33.69 18.89

SNOW-V/1/256-AVX2 55.16 51.77 42.45 24.05 8.81
SNOW-Vi/4/128-AVX 79.79 75.77 64.65 40.88 16.56

P4: Remote VM, Ubuntu, Intel Xeon E3-12xx / AVX (+45%)
AES-256-CTR/OpenSSL 1.1.1 21.57 20.93 19.89 15.81 7.84

SNOW-V/1/128-SSE 22.01 20.87 17.84 11.13 4.37
SNOW-V/4/128-AVX 30.20 28.69 23.71 14.28 5.50
SNOW-Vi/1/128-SSE 33.55 31.57 25.85 16.06 6.18
SNOW-Vi/4/128-AVX 43.75 41.91 35.63 22.25 8.86

P5: Intel NUC7JY, Ubuntu, Intel Pentium Silver J5005 @ 2.8GHz / SSE4.2 (+59%)
AES-256-CTR/OpenSSL 1.1.1 22.46 21.81 20.12 15.08 7.29

SNOW-V/1/128-SSE 13.56 12.92 10.91 7.14 2.94
SNOW-V/4/128-SSE 16.24 15.23 12.60 7.41 2.82
SNOW-Vi/1/128-SSE 19.06 18.15 15.49 10.57 4.35
SNOW-Vi/4/128-SSE 25.90 24.60 21.05 13.43 5.54

P6: Older laptop, Win7, Intel i7-3540M @ 3GHz / AVX (+40%)
AES-256-CTR/OpenSSL 1.1.1i 26.33 25.62 23.25 16.77 7.41

SNOW-V/4/128-SSE 33.96 32.01 26.44 15.33 5.73
SNOW-V/4/128-AVX 38.52 36.57 30.30 17.96 6.79
SNOW-Vi/4/128-SSE 51.54 48.96 41.19 25.18 9.87
SNOW-Vi/4/128-AVX 53.96 51.14 43.08 26.19 10.18

P7: Mobile phone, iPhone X, ARM-based A11 Bionic @ 2.39GHz / NEON (+58%)
AES-256-CTR/OpenSSL 1.1.1i 19.74 19.53 17.86 13.74 8.94

SNOW-V/1/128-NEON 22.25 21.39 18.51 11.72 4.80
SNOW-V/4/128-NEON 24.46 23.54 19.85 12.47 5.19
SNOW-Vi/1/128-NEON 35.42 34.07 29.79 19.18 8.11
SNOW-Vi/4/128-NEON 38.70 37.42 32.69 21.66 10.12

P8: Apple Mini, macOS, ARM-based Apple M1 @ 3.2GHz / NEON (+64%)
AES-256-CTR/OpenSSL 1.1.1i 58.61 57.44 55.13 45.73 24.97

SNOW-V/1/128-NEON 32.48 30.97 26.47 16.74 6.80
SNOW-V/4/128-NEON 39.06 37.31 31.68 19.78 7.95
SNOW-Vi/1/128-NEON 50.47 48.15 41.21 26.09 10.84
SNOW-Vi/4/128-NEON 64.16 61.10 51.39 31.46 12.78

249





Paper VI

Revisiting the Concrete Security of
Goldreich’s Pseudorandom Generator

Abstract

Local pseudorandom generators are a class of fundamental cryptographic primitives hav-
ing very broad applications in theoretical cryptography. Following Couteau et al.’s work
at ASIACRYPT 2018, this paper further studies the concrete security of one important
class of local pseudorandom generators, i.e., Goldreich’s pseudorandom generators. Our
first attack is of the guess-and-determine type. Our result significantly improves the
state-of-the-art algorithm proposed by Couteau et al., in terms of both asymptotic and
concrete complexity, and breaks all the challenge parameters they proposed. For in-
stance, for a parameter set suggested for 128 bits of security, we could solve the instance
faster by a factor of about 277, thereby destroying the claimed security completely. Our
second attack further exploits the extremely sparse structure of the predicate P5 and
combines ideas from iterative decoding. This novel attack, named guess-and-decode,
substantially improves the guess-and-determine approaches for cryptographic-relevant
parameters. All the challenge parameter sets proposed in Couteau et al.’s work in ASI-
ACRYPT 2018 aiming for 80-bit (128-bit) security levels can be solved in about 258

(278) operations. We suggest new parameters for achieving 80-bit (128-bit) security
with respect to our attacks. We also extend the attacks to other promising predicates
and investigate their resistance.

Keywords: Goldreich’s pseudorandom generators, guess-and-determine, guess-and-
decode, iterative decoding, P5.

1 Introduction

Pseudorandom generators (PRGs) are one fundamental construction in cryptography,
which derive a long pseudorandom output string from a short random string. One
particular interesting question about PRGs is the existence of constructions in complex-
ity class NC0, i.e., each output bit depends on a constant number of input bits. Such
constructions, named local pseudorandom generators, can be computed in parallel with

Jing Yang, Qian Guo, Thomas Johansson, and Michael Lentmaier. Revisiting the Concrete Security
of Goldreich’s Pseudorandom Generator. IEEE Transactions on Information Theory, accepted, 2021.
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constant-depth circuits, thus being highly efficient. Considerable research effort has been
devoted to this problem [Gol00, CM01, MST03, AIK06, AIK08, App13, ABR16, OW14].

In 2000, Goldreich suggested a simple candidate one-way function based on expander
graphs [Gol00], which has inspired a promising construction for PRGs in NC0. It is
constructed as below: given a secret seed x of length n and a well-chosen predicate P
with locality d(n): {0, 1}d(n) 7→ {0, 1}, choose m subsets (σ1, σ2, ..., σm), where each
subset contains d(n) disjoint indices of x which are chosen randomly and independently.
Let x[σ] denote the subset of the bits of x indexed by σ and by applying P on x[σ],
one output bit P (x[σ]) is obtained. The output string is generated by applying P to
all the subsets of bits of x indexed by the sets (σ1, σ2, ..., σm), i.e., the output string
is P (x[σ1]), P (x[σ2]), . . . , P (x[σm]). Goldreich advocates m = n and depth d(n) in
O(log n) orO(1), and conjectures that it should be infeasible to invert such a construction
for a well-chosen predicate P in polynomial time. The case of d(n) in O(1), which puts
the construction into the complexity class NC0, has received more attention due to the
high efficiency.

Cryan and Miltersen first considered the existence of PRGs in NC0 [CM01] and ob-
tained some results: they applied statistical linear tests on the output bits and ruled
out the existence of PRGs in NC0

3 (i.e., each output bit depends on three input bits)
for m ≥ 4n. Mossel et al. further extended this non-existence to NC0

4 for m ≥ 24n
with a polynomial-time distinguisher, but provided some positive results for PRGs in
NC0

5 [MST03]. Specifically, they gave a candidate PRG in NC0
5 instantiated on a degree-2

predicate, which is usually called P5 defined as:

P5(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4x5,

with superlinear stretch while exponentially small bias. Such local PRGs are now com-
monly known as Goldreich’s PRGs, and the ones instantiated on P5 achieve the best
possible locality and have received much attention. The existence of PRGs in NC0 (as low
as NC0

4) was essentially confirmed in [AIK06] by showing the possibility of constructing
low-stretch (m = O(n)) PRGs through compiling a moderately easy PRG using random-
ized encodings. Applebaum et al. in [AIK08] further gave the existence of PRGs with
linear stretches by showing that the existence can be related to some hardness problems
in, e.g., Max 3SAT (satisfiability problem).

Other than the initial motivation for the efficiency reasoning, i.e., realizing cryp-
tographic primitives that can be evaluated in constant time by using polynomially
many computing cores, PRGs in NC0 with polynomial stretches i.e., m = poly(n),
have numerous more emerging theoretical applications, such as secure computation
with constant computational overhead [IKOS08, ADI+17], indistinguishability obfusca-
tion (iO) [LT17, GJLS20], multiparty-computation (MPC)-friendly primitives [MJSC16,
GRR+16, ARS+15, CCF+18], and cryptographic capsules [BCG+17]. For example, a
two-party computation protocol with constant computational overhead was proposed
in [IKOS08], on the assumption of the existence of a PRG in NC0 with a polynomial
stretch, together with an arbitrary oblivious transfer protocol. Thus, the existence of
poly-stretch PRGs in NC0 is much attractive.

In [App13], Applebaum considered PRGs with long stretches and low localities and
provided the existence of PRGs with linear stretches and weak PRGs with polynomial
stretches, e.g., m = ns for some s > 1, with a distinguishing gap at most 1/ns. This
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work was later strengthened in [ABR16] by showing a dichotomy of different predicates:
all non-degenerate predicates yield small-bias generators with output length m = ns for
s < 1.25 while degenerate predicates are not secure against linear distinguishers for most
graphs. The stretch was later extended to s < 1.5 for the special case P5 in [OW14].

The mentioned works above all focus on checking the existence of potential PRGs
in NC0, establishing asymptotic security guarantees for them, and exploring appealing
theoretical applications based on them; one main obstacle, however, for these advanced
cryptographic primitives towards being practical comes from the lack of a stable under-
standing on the concrete security of these PRGs. In [CDM+18], Gouteau et al. first
studied the concrete security of Goldreich’s PRGs, especially the important instantiation
on the P5 predicate. Specifically, they developed a guess-and-determine-style attack and
gave more fine-grained security guarantees for them. In the last part of their presentation
at ASIACRYPT 2018, an open problem was raised:

“Can we improve the security bounds for P5?”
In this paper we focus on this open problem and give an affirmative answer.
Before stating our main cryptanalytic methods and results, we first review the com-

mon cryptanalysis techniques against local PRGs.

1.1 Related Work in Cryptanalysis
The main cryptanalysis tools for local PRGs include myopic backtracking algorithms,
linear cryptanalysis, and algebraic cryptanalysis.

1.1.1 Myopic Backtracking Algorithms

A Goldreich’s PRG can be viewed as a random constraint satisfaction problem (CSP),
thus the inversion of the PRG is equivalent to finding a planted solution for a CSP.
Thus, some techniques and results from solving CSPs, e.g., 3-SAT, can be adopted. The
so-called myopic backtracking method is such one commonly used algorithm. The basic
idea is to gradually assign values to some input variables in every step based on newly
read t constraints and previous observations until a contradiction is introduced. Every
time when the new partial assignments contradict with some constraints, the algorithm
backtracks to the latest assigned variable, flips the assigned value and continues the
process. After sufficiently many steps, the algorithm will surely recover the secret.

Goldreich considered the myopic backtracking method on the proposed one-way func-
tion [Gol00], by reading one output bit at each step and computing all possible values
of input bits which would produce the read output bits. The results show that the
expected size of the possible values is exponentially large. Alekhnovich et al. further
gave exponential lower bounds of the running time for myopic algorithms in [AHI06]. It
showed that Goldreich’s function is secure against the myopic backtracking algorithm
when it is instantiated on a 3-ary predicate P (x1, x2, x3) = x1 ⊕ x2 ⊕ x3. Since a
predicate should be non-linear (otherwise a system can be easily solved using Gaussian
elimination), the predicate is extended to a more general case involving a non-linear
term: Pd(x1, ..., xd) = x1 ⊕ x2 ⊕ · · · ⊕ xd−2 ⊕ xd−1xd. They showed that for most d-ary
predicates and some t, the expected success probability of the basic t-myopic algorithm
(i.e., reading t constraints at each step) in inverting is e−Ω(n). The results were verified
over small Goldreich’s PRGs using the SAT solver MiniSat.
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1.1.2 Linear Cryptanalysis

Each constraint of a local PRG can be viewed as a linear equation with a noise, i.e.,
yi =

∑
j∈σ̂i xj + ei, where σ̂i is the subset of linear terms of the i-th subset σi, while ei

is a biased noise, whose distribution is determined by the chosen predicate. For the P5

predicate, ei has the distribution P (ei = 1) = 1/4 and P (ei = 0) = 3/4.
One simple way of linear cryptanalysis could be to find equations sharing the same

linear variables and view the noises as independent and identically distributed variables.
A majority rule can be applied on the noises and a corresponding value can be assigned
to the linear part. Thus a linear equation is obtained and by exploring many such linear
equations, the secret could be recovered by solving the derived linear system.

An improved version is to build enough noisy equations with two linear terms of the
form xσi + xσj (+ei + ej) = yi + yj , by XORing a pair of equations sharing the other
linear variables, and then apply some known algorithms, e.g., semidefinite programming
[App16], to get a solution x̂ satisfying a large fraction of the equations. This solution
would be highly correlated with the true one and the system could be inverted with high
probability based on it [BQ09], or at least a distinguishing attack is achieved.

Linear tests can be viewed as one special type of linear cryptanalysis, in which the
adversary considers linear combinations of several output bits and investigates the bias of
these combinations. It can result into a distinguishing attack if the bias is nonnegligible,
which indicates that the local PRG is not fully random.

1.1.3 Algebraic Attacks

In an algebraic attack, the equation system is extended by, e.g., multiplying some equa-
tions with lower-degree terms until a solution is possible to be found by, e.g., lineariza-
tion, Gaussian elimination or by computing a Gröbner basis of the expanded system.
In [AL18], Applebaum and Lovett analyzed how the underlying predicate affects pseu-
dorandomness using algebraic attacks and proved that besides high resiliency and high
algebraic degree, the predicate must have high rational degree as well. The requirement
is relevant to the criterion of high algebraic immunity on Boolean functions in stream
ciphers to resist algebraic attacks. The paper also gave some advice on the choices of
predicates in terms of these properties. Algebraic attacks based on linearization and
Gröbner basis algorithms were further considered in [CDM+18], and some results on
concrete choices of parameters were given.

1.2 Contributions
In this paper, we present new attacks which significantly improve the complexity of
inverting the local PRGs instantiated on the P5 predicate.

– Our first result is a novel guess-and-determine-style attack with much lower com-
plexity than the results presented in [CDM+18]. We develop theoretical and
also numerical analysis about the number of required guesses for various (n, s)
parameters, where n and s denote the seed size and stretch, respectively, and
experimentally verify the analysis for some small parameters.
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This approach is basically a greedy method. We classify the equations occurring
during the guess-and-determine process into three different classes, by the number
of included monomials. The class of equations with two monomials are desired,
as guessing variables occurring in these equations could introduce some “free”
determined variables. We then design our guessing criterion over the equation
classes, to generate as many “free” variables as possible when assuming for a
limited number of guesses.

Our guess-and-determine attack reduces the asymptotic complexity from Õ(2
1
2n

2−s
)

in [CDM+18] to Õ(2
73
288n

2−s
), thereby achieving a slightly less than square-root

speed-up. Regarding the concrete complexity, we could solve all the challenge
parameters suggested in [CDM+18] with complexity much below their claimed
security levels. As shown in Table 1, our complexity gains (measured by the ratio
of the two complexity numbers) range from 223 to 247 for parameters aiming for
80 bits of security, and from 240 to 277 for those aiming for 128 bits.

– Based on the guessing strategies proposed in the first attack, we further exploit
the extremely sparse structure of P5 and combine ideas from iterative decoding
for solving a linear system. Our method differs from the classic iterative decoding
or belief propagation, since the system in our case is quadratic and no a-priori
information is available. We design new belief propagation rules for this specific
setting. This is a novel method for solving a system of non-linear equations and
we call it the guess-and-decode approach. The gain of it compared to the first
attack comes from: 1) the better information extraction from the equations with
a quadratic term (the guess-and-determine approach only exploits the generated
linear equations); and 2) the soft probabilities used in iterative decoding (invert-
ing a linear matrix in the guess-and-determine approach can be regarded as using
“hard” (binary) values).

Experimental results show that, with a smaller number of guesses, the result-
ing system has a good chance to be determined and then the secret could be fully
recovered. As shown in Table 1, the new guess-and-decode approach could further
significantly improve the guess-and-determine approach for all the challenge pa-
rameters proposed in [CDM+18]. For instance, the improvement factor is as large
as 222 for the parameter set (4096, 1.295), and could be even larger for a parame-
ter with a larger n value in our prediction. With this new method, the challenge
parameter sets proposed in [CDM+18] for 128-bit security are insufficient even for
providing security of 80 bits.

We also suggest new challenge parameters to achieve 80-bit and 128-bit secu-
rity levels for various seed sizes.

– Lastly, we extend the attacks to other promising predicates of the type of XOR-
AND and XOR-MAJ, which are the two main types of predicates suggested for
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Security Level (n, s) [CDM+18] Sec. 3 Sec. 4

Asymptotic complexity O(n22
1
2n

2−s
) O(n22

73
288n

2−s
) O(ns2

73
288n

2−s
)

80 bits (512, 1.120) 291 244 252

(1024, 1.215) 290 253 253

(2048, 1.296) 291 268 257

(4096, 1.361) 291 268 258

128 bits (512, 1.048) 2140 263 268

(1024, 1.135) 2140 275 272

(2048, 1.222) 2139 298 277

(4096, 1.295) 2140 2100 278

The column “Sec. 3’ shows the complexity of the guess-and-determine attack and the column
“Sec. 4” shows the complexity of the guess-and-decode attack.

Table 1: The Complexity Comparison of the Algorithms for Solving the Challenge
Parameters Proposed in [CDM+18].

constructing local PRGs. We investigate their resistance against our attacks and
give some initial sights into their possibly safe stretches.

Comparison of the Two Attacks. Both attacks follow a similar guessing phase which
targets to obtain as many “free” variables as possible, but with slightly different goals
and purposes: the first (guess-and-determine) attack targets to derive as many linear
equations as possible and further recovers the secret by solving a linear sub-system
of equations; while the second (guess-and-decode) aims to derive as many low-weight
equations, no matter linear or nonlinear, and as much a-priori information as possible
to be used for iterative decoding to recover the secret.

When applied to P5, though it might be uncertain to tell which attack applies better
for one specific system, the second attack is generally more powerful against stricter
systems, e.g., systems with larger secret sizes n and smaller stretches s, since it can
make use of more soft information. Thus, when choosing secure parameters for a local
PRG over P5, the second attack should always be considered. When applied to more
general predicates, the first attack has more advantages when deriving a linear equation
is easier, e.g., an XOR-AND predicate with a large locality; while the second attack
performs better when the predicate has more complex forms of non-linear terms but
with a relatively low weight, e.g., a low-weight XOR-MAJ predicate.

Discussions It is pointed out in [BCG+19] that “...it (building cryptographic capsule
upon the group-based homomorphic secret sharing together with Goldreich’s low-degree
PRG in [BCG+17]) is entirely impractical: Goldreich’s PRG requires very large seeds...”,
and the best-known instantiations of some recent attractive applications such as pseu-
dorandom correlation generators [BCG+19, BCG+20] are based on computational as-
sumptions such as LPN (learning parity with noise) and Ring-LPN, rather than on Gol-
dreich’s low-weight PRGs. Our novel attacks further diminish their practicality, though
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their significance in theoretical cryptography is unaffected. We strongly recommend
to instantiate a more complex local PRG with higher locality and/or more non-linear
terms, if relatively high stretches and high security are required. Then, the research on
the concrete security of the new PRGs should be renewed. However, in some special
applications where drastic limits on the number of output bits are not an issue, while
the significant advantages from the extremely low locality, multiplicative and overall
complexity for deriving output bits are more desired, local PRGs instantiated on P5

would probably still be considered. Our attacks provide better understanding of the
concrete security of Goldreich’s PRGs in a more fine-grained manner, and shed light
on producing better cryptanalytical works on the MPC-friendly primitives with similar
inherent structures.

1.3 Organization
The rest of this paper is organized as follows. We first give some preliminaries and briefly
describe the guess-and-determine attack in [CDM+18] in Section 2. We then present our
improved guess-and-determine attack in Section 3, describing how it works and providing
theoretical analysis and experimental verification. In Section 4, we thoroughly describe
the guess-and-decode attack and verify it by extensive experimental results. We extend
the attacks to other promising predicates in Section 5 and lastly conclude the paper in
Section 6.

2 Preliminaries

2.1 Notations
Let GF (2) denote the finite field with two elements. Thus, the operation of addition
“+” is equivalent to the XOR “⊕” operation. Our paper focuses on Goldreich’s PRGs
instantiated on the P5 predicate. Throughout the paper, we use x ∈ {0, 1}n to denote
the secret seed of size n and xi (1 ≤ i ≤ n) to denote the i-th bit of x. We use y ∈ {0, 1}m
to denote the output string of size m and m = ns, where s is the expansion stretch.
Each bit of y, denoted as yi for 1 ≤ i ≤ m, is derived by applying P5 on a 5-tuple
subset of the seed variables. These seed variables are indexed by a publicly known index
subset σi = [σi1, σ

i
2, σ

i
3, σ

i
4, σ

i
5], where indices are distinct and randomly chosen. Thus,

yi is generated as below:

xσi1 + xσi2 + xσi3 + xσi4xσi5 = yi.

We call such a relation an equation.
For a binary variable u, we use pyu or P (u = y) to denote the probabilities of u being

the value of y, where y ∈ {0, 1}. The Log-Likelihood Ratio (LLR) value of u is defined
as

Lu = log
P (u = 0)

P (u = 1)
, (1)

i.e., the logarithmic value of the ratio of probabilities of u being 0 and being 1. All the
secret bits are assumed to be uniformly random distributed, thus the initial LLR values
for them are all zero.
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2.2 The Guess-and-Determine Attack in [CDM+18]
In a guess-and-determine attack, some well-chosen variables of a secret are guessed
and more other variables could be correspondingly determined according to predefined
relationships connected to these guessed variables. If the partial guessed variables are
guessed correctly, the further determined variables would be correct as well. Thus, one
hopes that by guessing a smaller number than the expected security level of variables, all
the other variables can be determined directly or through some more complex method.

A guess-and-determine attack on Goldreich’s PRGs is given in [CDM+18]. The basic
idea is to guess enough secret variables and derive a system of linear equations involving
the remaining variables and by solving this linear system, the secret is expected to be
recovered.

When guessing a variable, those equations involving this guessed variable in the
quadratic terms would become linear. The guessing strategy in [CDM+18] is then to
always guess the variable which appears most often in the quadratic terms of the re-
maining quadratic equations, thus to obtain a locally optimal number of linear equations
for each guess. This process is iteratively performed until enough linear equations are
derived.

Besides, some “free” linear equations can be obtained before the guessing phase by
XORing two equations sharing a same quadratic term, which is called a “collision”.
The average number of linear equations c derived in this way has been computed in
[CDM+18] as below:

c = ns −
(
n

2

)
+

(
n

2

)((n
2

)
− 1(
n
2

) )ns
, (2)

where the symbol
(
n
i

)
, 0 ≤ i ≤ n, denotes the binomial coefficient. The guessing process

can be stopped once n − c linear equations are obtained (with the number of guesses
included). Suppose that after guessing ` variables, the stopping condition is satisfied.
The algorithm will enumerate over all 2` possible assignments for these guessed variables,
and for each assignment e, a distinct system of linear equations would be derived. Let
Ae denote the matrix of this linear system whose rank could be equal to or smaller than
n. The paper shows that when the rank of Ae is smaller than n, an invertible submatrix
with fewer variables involved can almost always be extracted and thus a fraction of
variables can always be recovered. The remaining variables can be easily obtained by
injecting those already recovered ones.

In [CDM+18], an upper bound of the expected number of guesses, denoted as `, is
given as ` ≤ b n

2

2m + 1c, and the asymptotic complexity is O(n22
1
2n

2−s
), where O(n2) is

the asymptotic complexity for inverting a sparse matrix. The attack is experimentally
verified and some challenge parameters under which the systems are resistant against
the attack are suggested.
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3 New Guess-and-Determine Cryptanalysis of Goldre-
ich’s PRGs with P5

In this section, we give a new guess-and-determine attack on Goldreich’s pseudoran-
dom generators. The fundamental difference with the guess-and-determine attack in
[CDM+18] is that the guessing process in our attack is “dynamic”, by which we mean
that the choice of a new variable to guess depends not only on previously guessed vari-
ables but also on their guessed values. The main observation for our attack is that some
variables could be determined for free after having guessed some variables, and the goal
of our attack is to exploit as many such “free” variables as possible. To achieve so, we
first define three different equation classes, Class I, II and III, which include different
forms of equations, and further design guessing strategies based on them.

3.1 Equation Classes and “Free” Variables
We categorize equations generated during the guessing process into three classes accord-
ing to the number of terms.

Class I includes equations having no less than four terms, either quadratic or
linear, with forms as below:

xσi1 + xσi2 + xσi3 + xσi4xσi5 = yi, (3)

xσj1
+ xσj2

+ xσj3
+ xσj4

= yj . (4)

Equations with more than four terms, which can be generated from, e.g., XORing
two equations sharing a same quadratic term, are also categorized into Class I. The
equations with the form in (3) are the initially generated equations. If one variable in
the quadratic term of such an equation, e.g., xσi4 or xσi5 , is guessed as 1, the equation
would be transformed to an equation in (4). While if the guessed value is 0 or a variable
in the linear terms is guessed, we would get a different equation which is categorized
into another class, Class II.

Class II includes those equations having three terms, either quadratic or linear,
with forms as below:

xσi1 + xσi2 + xσi3xσi4 = yi, (5)

xσj1
+ xσj2

+ xσj3
= yj . (6)

As mentioned before, an equation with the form in (6) could be obtained if one variable
in the quadratic term of an equation in (3) is guessed as 0. It can also be derived when
one arbitrary variable in an equation in (4) is guessed (either 1 or 0), or if one variable
in the quadratic term of an equation in (5) is guessed as 1. Equations with the form in
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(5) can be derived by guessing one linear variable of an equation in (3).

Class III includes those equations having only two terms, either quadratic or
linear, with forms as below:

xσi1 + xσi2xσi3 = yi, (7)

xσj1
+ xσj2

= yj . (8)

If one linear term of an equation in (5) is guessed, it will be transformed to an equation
with the form of (7). An equation with the form of (8) can be derived from: guessing
one variable in the quadratic term in (5) as 0; or guessing one variable in (6) (either 1
or 0); or guessing one variable in the quadratic term in (7) as 1.

If we guess a variable which is involved in an equation in Class III, some “free”
information could be obtained, which can happen in the following cases:

(1) For a linear equation xσi1 + xσi2 = yi, when one variable, e.g., xσi1 , is guessed, the
other variable, xσi2 in this case, can be directly derived as xσi2 = xσi1 + yi for free;

(2) For a quadratic equation xσi1 +xσi2xσi3 = yi, if the linear variable xσi1 is guessed to
be different from yi, xσi2 and xσi3 could be easily derived as xσi2 = 1, xσi3 = 1, thus
two “free” variables are obtained;

(3) If any of the variables in the quadratic term is guessed as 0 in the above quadratic
equation, the linear term is derived to be xσi1 = yi for free;

(4) If xσi1 is guessed as the value of yi in the above quadratic equation, an equation
with only one quadratic term would be obtained, i.e., xσi2xσi3 = 0. There are no
“free” variables obtained at the moment. If at a future stage any one of the two
variables, xσi2 or xσi3 , is guessed to be 1, the other one can be derived as 0 for free.

Thus, the criterion for the guessing is always guessing variables in equations from
Class III if it is not empty and thus obtaining “free” variables. Every time after guessing
one variable, some equations in Class I and Class II could be transformed to equations
in Class II or Class III. So it is highly likely that there always exist equations in Class
III to explore for “free” variables. Furthermore, after plugging in the “free” variables, it
could happen that more “free” variables would be derived. Thus, the required number
of guesses can be largely reduced. That is the motivation of categorizing equations into
three different classes and we next describe the new guess-and-determine attack designed
over the defined equation classes.

3.2 Algorithm for the New Guess-and-Determine Attack
Algorithm 1 presents the general process of the proposed guess-and-determine attack.
For convenience of description, we use the term equation reduction to denote the process
of plugging in the value of a variable, either guessed or freely derived, and transforming
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Algorithm 1 The new guess-and-determine attack
Input m quadratic equations derived from a length-n secret according to the P5 predi-
cate
Output the secret
1: Explore linear equations obtained through collisions
2: Set t = 0, back up the current system, mark all variables as “non-reversed”
3: Guess a variable and perform equation reduction following Algorithm 2, t = t + 1,

back up the derived system
4: if no less than n linear equations are derived then
5: solve the linear system
6: if the recovered secret is correct then return the recovered secret
7: else
8: t = backtracking() following Algorithm 3
9: go to step 4

10: else
11: go to step 3

the equations with the variable involved to ones with lower localities. Below we give the
details of the attack.

Before guessing, as done in [CDM+18], we first explore linear equations obtained
through XORing two equations sharing a same quadratic term. The quadratic terms
would be canceled out and only the linear terms of the two equations remain. If these
two equations further share one or two linear terms, the shared variables should be
canceled out as well. Thus, linear equations derived in this way could have two, four,
or six variables, which are put into Class III, Class I and Class I, respectively. Note
that when any two equations share the same variables in the linear and quadratic part,
respectively, it already leads to a distinguishing attack. The expected number of linear
equations derived in this way has been given in [CDM+18].

After finding out the linear equations derived from collisions in the quadratic terms,
we back up the current system and start the guessing process. We follow the rules in
Algorithm 2 to choose variables for guessing. Specifically, we always choose a variable
in an equation in Class III, since it is more likely to obtain “free” variables. Here we set
the rule that when guessing a quadratic equation in Class II, we always guess the linear
term as it can introduce more “free” variables on average. If Class III is empty, we guess
a variable in an equation from a less attractive class, Class II, or Class I if Class II is
also empty. As for choosing which variable to guess, we use the following criterion: we
always choose the variable appearing the most number of times in the local class, e.g.,
Class III if a variable in an equation in Class III is guessed, since it could introduce more
“free” variables or transform more equations; if all variables have the same occurrences
locally, choose the variable which appears most often in the global system of equations,
thus more equations would be transformed.

Every time when one variable is guessed, an equation involving this guessed variable
would be transformed to either a linear equation in the same class or an equation (could
be quadratic or linear) in the next class. The goal is to transform as many equations as
possible to Class III such that when guessing one variable in Class III, it is more likely
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Algorithm 2 Algorithm for guessing a variable
Input A system of equations
1: if Class III is not empty then
2: guess the variable appearing most often in Class III
3: plug in the guessed variable and perform equation reduction
4: continually plug in “free” variables and perform equation reduction, if there are

any, until there are no more “free” variables
5: else if Class II is not empty then
6: guess the variable appearing most often in Class II
7: plug in the guessed variable and perform equation reduction
8: else
9: guess the variable appearing most often in Class I

10: plug in the guessed variable and perform equation reduction

Algorithm 3 Algorithm for backtracking
Input The whole systems of equations, an index t
Output an updated index t
1: delete the t-th back-up system
2: if the t-th guessed variable has been marked as “reversed” then
3: recover the variable as “non-reversed”
4: t = t− 1, go to step 1
5: else
6: reverse the guessed value of the t-th guess and mark the variable as “reversed”
7: perform equation reduction over the (t− 1)-th back-up system with the reversed
t-th guess, back up the derived system

8: return t

to get some “free” variables. After each guess and corresponding equation reduction, we
should also plug in the “free” variables, if there are any, and perform equation reduction.
This step might introduce more “free” variables and we continue this process until there
are no further “free” variables.

Every time after performing equation reduction for a guessed and corresponding
freely determined variables, we always back up the derived system, in case the guesses
are not correct and at some future stage, tracing back is needed. If there are enough
linear equations derived after some guesses, we would stop guessing and solve the linear
system. By “enough” we use the condition in [CDM+18] for key recovery, i.e., the
number of linear equations (including the guessed and freely determined variables and
linear equations derived by finding collisions in quadratic terms) is not smaller than
n. The rank of the matrix for the linear system does not have to be n, as it shows
in [CDM+18] that an invertible subsystem with fewer variables involved can almost
always be extracted and solved. The remaining small fraction of variables can be easily
recovered by injecting those already recovered ones.

If the recovered secret is correct, which can be verified by checking if it can produce
the same output sequence, the attack succeeds and stops. While if not, we need to trace
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back following the backtracking algorithm given in Algorithm 3: either 1) reversing the
guessed value of the last guessed variable if it has not been reversed before and perform
equation reduction based on the last back-up system; or 2) tracing back more steps
until to a guessed variable which is not reversed before. Since we have backed up in each
stage, we can retrieve the desired system of equations, perform equation reduction over
that system, and delete all subsequent back-ups when we trace back. If some conflicts
happen during the reduction, for example, we have guessed a variable as 1 while some
other equations give the information that this variable should be 0, we stop going into
deeper and immediately trace back.

x1

x2 x5

x3 x6

1
x4

2 3

4

5 6

Figure 1: A simple illustration of the guessing process.

The path of the guessing is a binary tree while the tree is highly likely to be irregular,
i.e., the depths for different paths could be different, but with small gaps. Figure 1
shows a simple illustration of the guessing process. The leaf nodes, which are color-
filled, represent the process to solve a system of linear equations when enough linear
equations are derived. The gray-filled ones indicate the wrong paths, i.e., some guesses
are not correct, while the green-filled one is the correct one and the guessing stops at
this node. Black arrows indicate normal guessing steps, while blue arrows indicate the
processes of reversing the guessed values of the last guessed variables and orange arrows
indicate the processes of tracing back. At the leaf node with index 4, some conflicts
happened during the equation reduction, which indicates that some previous guessed
values are not correct, e.g., x1 is not correctly guessed in this case. So we need to
reverse the guessed value of it and continue guessing. In this simple example, we have
visited six nodes, meaning that we have guessed six variables, and solved four systems of
linear equations until we find the correct path. We could then get the correct values of
the variables x1, x5, x6 as (1, 0, 1) (we denote the left direction as guessing 0 and right
direction as guessing 1), and other variables can be recovered by solving the derived
linear system at the leaf node with index 6.

In practice, guessing 0 or 1 has a negligible impact on the attack complexity for
the wrong paths, as both values would be tried. However, for the correct path, for an
equation in Class III, e.g., xσi1 + xσi2xσi3 = yi, xσi1 is more likely to equal yi than the
complement. Thus in practice when guessing the linear term in a quadratic equation in
Class III, one can first guess it to be equal to the value of the equation.

Avalanche Effect. After guessing a certain large number of variables, an avalanche
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effect will happen, namely that “free” variables recursively introduce more “free” vari-
ables and all variables are immediately determined. It happens at different stages, i.e.,
different numbers of variables are guessed, for different systems, but generally earlier for
systems with smaller n while relatively larger s.
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Figure 2: The number of fixed variables under different numbers of guesses.

Figure 2 illustrates the experimental results for the number of variables that will be
known under different numbers of guesses for four different (n, s) pairs, each with 20
independent instances. One can see that for each system, the avalanche effect happens
at some certain point and all variables are immediately determined. In this case, solving
a linear system of equations is not needed and the complexity is denoted as 2`A , where
`A is the number of guesses under which the avalanche effect appears.

We will not consider the avalanche effect when deriving the asymptotic complexity,
as for relatively safer systems, guessing and solving linear systems has more advantages,
i.e., lower complexity. However, when experimentally breaking the challenging systems
suggested in [CDM+18] in Section 3.4, the avalanche effect is also considered.

3.3 Theoretical analysis
In this subsection, we perform theoretical analysis of the attack. We will first present
some propositions which help to gradually derive the required number of guesses and
attack complexity. Note that we are considering the stretch regime 1 < s < 1.5.

For convenience, we further categorize the intermediate equations into smaller sub-
classes and denote them with some notations. Specifically, we use C11, C12 to denote the
quadratic (i.e., equations in (3)) and linear equations (i.e., equations in (4)) in Class I,
and similarly use C21, C22 (and C31, C32) to denote the quadratic and linear equations
in Class II (and Class III), respectively. Besides, we use C33 to denote the class of equa-
tions of the form xσi1xσi2 = 0 and Cnull to denote the equations which become empty,
i.e., in which all terms are known (either guessed, determined or canceled).

Suppose that γ out of the n secret variables have been known, either from guessing or
determining, which indicates that γ times of equation reduction have been performed.
The equations are transformed into other classes with certain probabilities indepen-
dently, which can be approximated as Bernoulli processes. Denote ξ = n − γ. We first
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present some propositions about how the equation reduction develops.

Proposition 1. For an intermediate equation E generated in the proposed attack with
k ∈ {0, 1, 2, 3} linear variables and q ∈ {0, 2} quadratic variables sampled from ξ secret
variables, the number of different possible forms is

(
ξ

k+q

)
·
(
k+q
k

)
.

Proof. We can first choose k+q variables from the ξ variables, which has
(
ξ

k+q

)
different

combinations. From the k + q chosen variables we select k of them for the linear terms
and the rest for the quadratic term. As the order of the linear variables (and similarly
of the quadratic variables) does not matter, we have

(
k+q
k

)
possible combinations. Thus,

in total we will have
(
ξ

k+q

)
·
(
k+q
k

)
different possible combinations for E.

Proposition 2. After γ variables have been fixed, the average numbers of equations in
C11, C21, C31, C33 can be approximated as (n−γ)5

n5−s ,
3γ(n−γ)4

n5−s , 3γ2(n−γ)3

n5−s , γ
3(n−γ)2

2n5−s , respec-
tively.

Proof. We take the number of equations in C21 as an example. An equation is trans-
formed into C21 only when (any) one linear variable in this equation is fixed, i.e., among
the γ known variables, and the remaining four are not fixed, i.e., among the n − γ un-
known variables. According to Proposition 1, the probability of such event, denoted pγ21,
can be computed as:

pγ21 =

(
γ
1

)
·
(
n−γ

4

)
·
(

4
2

)(
n
5

)
·
(

5
3

)
=

3γ(n− γ)(n− γ − 1)(n− γ − 2)(n− γ − 3)

n(n− 1)(n− 2)(n− 3)(n− 4)

≈ 3γ(n− γ)4

n5
.

The approximation has a small error in o( 1
n ), e.g., when n = 2048, γ = 100, the

approximation error is 0.0002. When n goes larger, the approximation error will be
even smaller. The average number of equations that will be transformed into C21 is
then computed as pγ21 ·m = 3γ(n−γ)4

n5−s . Similarly, the probabilities of an equation staying

in C11 and being transformed into C31 are computed as pγ11 =
(n−γ5 )
(n5)

≈ (n−γ)5

n5 and

pγ31 =
(γ2)·(

n−γ
3 )·(3

1)
(n5)·(

5
3)

≈ 3γ2(n−γ)3

n5 with approximation errors in o(1) and o( 1
n2 ), respectively.

For pγ33, we should additionally multiply with 0.5, since the XOR sum of the three guessed
linear variables should be constrained to be equal to the value of the equation, thus the

probability is computed as pγ33 =
0.5·(γ3)·(

n−γ
2 )

(n5)·(
5
3)

≈ γ3(n−γ)2

2n5 with an approximation error

in o( 1
n3 ).

Actually, we should multiply the probabilities with m −Nγ
null to derive the average

numbers of equations in Proposition 2. However, Nγ
null is small, which we will show

below, and the results of these probabilities multiplying Nγ
null will be much smaller than

1 thus can be ignored.
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Every time when guessing a variable and deriving a “free” variable in Class III, the
equation will become empty. On the other hand, an arbitrary equation turns empty
with a very small probability, similarly to pγ33. Thus we have the following conjecture.

Conjecture 1. The number of empty equations before the avalanche effect happens is
close to, maybe slightly more than, the number of guessed variables.
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Figure 3: The number of different types of equations corresponding to different
numbers of fixed variables (n = 2048, s = 1.296).

Figure 3 illustrates some experimental results of the numbers of different types of
equations under different numbers of fixed variables. One can see that the theoreti-
cal analysis matches well with the experimental results. Figure 4 presents a clearer
illustration for C31, C33, and Cnull.
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Figure 4: A clearer illustration of C31, C33, and Cnull (n = 2048, s = 1.296).

Actually, we can also use the similar method as in Proposition 2 to derive the average
number of linear equations in each class. For example, an equation will be transformed
into a linear equation in Class III if: 1) one variable in the quadratic term is fixed
as 0, and one more linear variable is fixed; 2) two variables in the quadratic and one
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more linear variable are fixed; and 3) one variable in the quadratic term is fixed as 1
and two more linear variables are fixed. Thus the probability that an equation will be
transformed into a linear equation in Class III is computed as:

pγ32 =
3γ2(n− γ)2(n+ γ)

n5
. (9)

One can see that one more assumption is needed when computing the numbers of linear
equations: a variable in a quadratic term is guessed as 0 or 1 with probability 0.5. This
requires more data in experiments to get the same statistical results. Besides, as we
always first guess a linear equation in Class III, the number of linear equation in Class
III gets more complex. Thus we will use the numbers of quadratic equations to derive
the average number of linear equations and the attack complexity.

Proposition 3. After γ (γ � n) variables have been fixed, fixing one more variable
(either from guessing or determining) will introduce roughly 2ns

n−γ more linear equations.

Proof. We useNγ
class to denote the average number of equations in class ∈ {null, 11, 12, 21,

22, 31, 32, 33} after knowing γ variables. One can easily get that
∑

classN
γ
class = ns al-

ways holds for any γ. We also use Nγ
linear to denote the total number of linear equations

after knowing γ variables, then Nγ
linear = Nγ

12 +Nγ
22 +Nγ

32 + γ.
Now suppose a (γ + 1)-th variable, say xσ, will be fixed, either by guessing or deter-

mining. We assume that xσ is fixed as 0 or 1 with probability 0.5. We below consider
different cases that may happen to equations in each class, and Proposition 1 will be
frequently used.

Let us first consider equations in C11. For an equation E11 in C11, the variables
in this equation can choose from n − γ = ξ variables. Then the number of possible
combinations of E11 is computed as

(
ξ
5

)
·
(

5
3

)
. There are several different cases that may

happen to E11 as below.

• xσ does not appear in E11 and E11 will still stay in C11. E11 could have
(
ξ−1

5

)
·
(

5
3

)
different possible forms as the five variables are chosen from the remaining ξ − 1

variables. Thus, the probability of such case is computed as (ξ−1
5 )·(5

3)
(ξ5)·(

5
3)

= ξ−5
ξ .

• xσ appears as one linear term in E11 and E11 will be transformed into C21. The
other four variables are chosen from the remaining ξ−1 variables and have

(
ξ−1

4

)
·
(

4
2

)
different possible combinations. Thus the probability of such case is computed as
(ξ−1

4 )·(4
2)

(ξ5)·(
5
3)

= 3
ξ

• xσ appears as one quadratic term and two further cases can happen.

– xσ is fixed as 0 and E11 will be transformed into C22. The number of possible
combinations of E11 is 0.5 ·

(
ξ−1

4

)
·
(

4
3

)
. The probability of such case is then

computed as
0.5·(ξ−1

4 )·(4
3)

(ξ5)·(
5
3)

= 1
ξ ;

– xσ is fixed as 1 and E11 will be transformed into C12. The probability can
be similarly computed as 1

ξ as the previous case.
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One can see that the probabilities of these cases sum to be one. Similarly, we can de-
rive the possible transforms of an equation in other classes when xσ is fixed. Figure 5
illustrates how the equations can be transformed and the corresponding occurring prob-
abilities. We mention that when a “free” variable is derived from an equation in class
C31, C32 or C33, this equation will become empty and be categorized into Cnull.

Thus we can get the average number of equations in each subclass after fixing γ + 1
variables as below:

Nγ+1
11 = Nγ

11 ·
(ξ − 5)

ξ
,

Nγ+1
12 = Nγ

11 ·
1

ξ
+Nγ

12 ·
(ξ − 4)

ξ
,

Nγ+1
21 = Nγ

11 ·
3

ξ
+Nγ

21 ·
(ξ − 4)

ξ
,

Nγ+1
22 = Nγ

11 ·
1

ξ
+Nγ

12 ·
4

ξ
+Nγ

21 ·
1

ξ
+Nγ

22 ·
(ξ − 3)

ξ
,

Nγ+1
31 = Nγ

21 ·
2

ξ
+Nγ

31 ·
(ξ − 3)

ξ
,

Nγ+1
32 = Nγ

21 ·
1

ξ
+Nγ

22 ·
3

ξ
+Nγ

31 ·
1

ξ
+Nγ

32 ·
ξ − 2

ξ
,

Nγ+1
33 = Nγ

31 ·
1

2ξ
+Nγ

33 ·
ξ − 2

ξ
,

Nγ+1
null = Nγ

null +Nγ
31 ·

3

2ξ
+Nγ

32 ·
2

ξ
+Nγ

33 ·
2

ξ
,

Nγ+1
free = Nγ

31 ·
2

ξ
+Nγ

32 ·
2

ξ
+Nγ

33 ·
1

ξ
,

where Nγ+1
free is the number of additional “free” variables we can get when fixing a (γ + 1)-

th variable (not the total number of all “free” variables). These “free” variables should
be recursively plugged into the system for equation reduction, but here we leave them as
they are, since our focus is to derive the increased number of linear equations when one
more variable is fixed. Thus after fixing γ + 1 variables, the number of linear equations
can be derived as below:

Nγ+1
linear = Nγ+1

12 +Nγ+1
22 +Nγ+1

32 +Nγ+1
free + γ + 1

= Nγ
11 ·

2

ξ
+Nγ

21 ·
2

ξ
+Nγ

31 ·
3

ξ
+Nγ

33 ·
1

ξ
+Nγ

12 +Nγ
22 +Nγ

32 + γ + 1.

Since
∑

classN
γ
class = ns, we can get Nγ

11 +Nγ
21 +Nγ

31 +Nγ
33 = ns+γ−Nγ

linear−N
γ
null.

Then,

Nγ+1
linear =

2

ξ
· (ns + γ −Nγ

linear −N
γ
null) +

1

ξ
· (Nγ

31 −N
γ
33) +Nγ

linear + 1

=
2ns

ξ
+Nγ

linear +
2γ

ξ
− 2

ξ
Nγ

linear −
2

ξ
Nγ

null −
1

ξ
Nγ

33 +
1

ξ
Nγ

31 + 1.
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C11: x1 + x2 + x3 +  x4x5 = y 
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Figure 5: The equation reduction and occurring probabilities when fixing one variable.

Since γ is much smaller than n, we have 1 ≥ b1 + 2γ
ξ −

2
ξ ·N

γ
linearc ≥ −1. Besides, the

last parts of Nγ+1
linear, i.e., −

2
ξN

γ
null−

1
ξN

γ
33 + 1

ξN
γ
31, is in O( 1

n ) according to Proposition 2
and Conjecture 1 and can be neglected. Thus we have:

Nγ+1
linear ≈

2ns

n− γ
+Nγ

linear,

and 2ns

n−γ more linear equations are introduced.

Actually, Figure 5 represents a Markov chain and one can also use its transition
matrix to derive the same results.

Proposition 4. After γ variables have been fixed, the average number of linear equa-
tions is around 2m · ln n

n−γ .

Proof. According to Proposition 3, we know that the number of linear equations after γ
variables having been fixed can be computed as

Nγ
linear =

2m

n− γ + 1
+Nγ−1

linear

=
2m

n− γ + 1
+

2m

n− γ + 2
+ · · ·+ 2m

n− 1
+

2m

n

= 2m · ( 1

n− γ + 1
+

1

n− γ + 2
+ · · ·+ 1

n− 1
+

1

n
).

We can use the approximation of harmonic series to help derive the result. The
harmonic series Hz = 1 + 1

2 + 1
3 + · · · + 1

z can be approximated using the following
expression:

Hz ≈ ln(z) + γ +
1

2z
− 1

12z2
,
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where γ = 0.5772156649 is known as the Euler-Mascheroni constant. The approximation
error is small, e.g., when z = 15, the approximation error is 0.00000018, and when z is
larger, the error is even smaller.

Thus Nγ
linear can be further derived as:

Nγ
linear = 2m · (Hn −Hn−γ)

= 2m ·
(

ln
n

n− γ
− γ

2n(n− γ)
− γ(2n− γ)

12n2(n− γ)2

)
.

We can approximate Nγ
linear as below with an error in O( 1

n2−s ):

Nγ
linear ≈ 2m · ln n

n− γ
. (10)

However, we cannot get a closed form of the required number of guesses to achieve n
linear equations according to (10), thus we further approximate 2ns

n−γ in Proposition 4 as
2ns

n = 2ns−1 with an approximation error in O( 1
n2−s ) and use it to derive the average re-

quired number of guesses and asymptotic complexity. The approximation will introduce
a larger error, however, when n is large, the error can still be ignored. For example, when
n = 2048, γ = 100, s = 1.296, the difference of the two approximations | 2ns

n−γ − 2ns−1|
is 0.9, less than one equation. We call this approximation as Approximation 2 and the
approximation in Proposition 3 as Approximation 1.

Figure 6 and Figure 7 present the number of linear equations one can get for each
fixed variable and in total, respectively. Our two theoretical approximations match well
with the experimental results. When the number of fixed variables goes larger, the total
number of linear equations under Approximation 1 becomes slightly higher than the
experimental results, since each guess in C32 will eliminate one linear equation in the
experiments. Next we will use Approximation 2 to derive the average number of required
guesses.
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Figure 6: The number of linear equations derived for each fixed variable
(n = 2048, s = 1.296).
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Figure 7: The number of accumulated linear equations under different number of fixed
variables (n = 2048, s = 1.296).

Proposition 5. When guessing one variable from an equation in Class III, one can get
one “free” variable on average.

Proof. There are two different cases in terms of guessing and obtaining “free” variables
in Class III:

(1) Guessing a variable in a linear equation. For a linear equation, if one variable
is guessed, the other variable could be immediately determined for free. Thus one
“free” variable can always be obtained.

(2) Guessing the linear variable in a quadratic equation. For a quadratic
equation xσi1 + xσi2xσi3 = yi, if xσi1 is guessed as xσi1 = yi ⊕ 1, we could get two
“free” variables, i.e., xσi2 = 1, xσi3 = 1; while if it is guessed as yi, no “free” variables
could be obtained from the quadratic equation xσi2xσi3 = 0 for the moment. If we
assume xσi1 is guessed randomly, one “free” variable on average can be obtained.

We mention that in the second case, xσi1 is more likely to equal yi for the correct
path: with probability of 0.75, instead of 0.5, and we would get less than one “free”
variable. However, the correct path only happens once and it does not affect the average
complexity. Thus we can get one “free” variable on average for guessing one variable in
Class III.

Proposition 6. When guessing ` variables, where ` is relatively large but below the
number of guesses under which the avalanche effect happens, 2` − δ(n, s) variables on
average will be known, where δ(n, s) is a function of n and s expressed as δ(n, s) =
n2−s

144 + 4
3 .

Proof. We assume that Class II and Class III are empty when guessing the first variable
and if they are not, we have more advantages. There are three cases of the guess-and-
determine process:

• Case I: for the first guess, it is impossible to get any free variable, since one
equation can be at most transformed into Class II with only one guess;
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• Case II: Class III is empty and one has to guess one variable from an equation in
Class II, and gets one equation in Class III. One “free” variable will be introduced
on average if one more variable in this equation is guessed according to Proposition
5. Thus, in this case, by guessing two variables, three variables will be fixed on
average.

• Case III: there exist equations in Class III and one gets one “free” variable on
average for each guess according to Proposition 5.

After a certain number of guesses, there will always exist equations in Class III such
that one can keep guessing variables from this class. Suppose that Case II happened
t times before such situation happens, then l0 = 2t variables were guessed and around
γ0 = 1.5l0 variables would be fixed from Case II. Case III will then happen l − l0 − 1
times and 2(l − l0 − 1) variables will be fixed on average. Thus, the total number of
variables that will be fixed is computed as 2(l − l0 − 1) + γ0 + 1 = 2`− 1

3γ0 − 1.
Next, we will show when there will always exist equations in Class III. The average

number of equations in Class III after γ variables are fixed can be computed according
to Proposition 2 and (9) as below:

Nγ
3 = (pγ31 + pγ32) ·m =

6γ2(n− γ)2

n4−s . (11)

To be more accurate, Nγ
3 = (pγ31 + pγ32) · (m−Nγ

null). At this early stage, the empty
equations are mainly from guessing and determining variables in Class III, while the
probability that an arbitrary equation turns empty can be neglected. Thus Nγ

null will be
smaller than γ

2 , and (pγ31 + pγ32) ·Nγ
null is much smaller than 1 and can be ignored. We

define a function as below,

f(γ) = Nγ
3 −

γ − γ0 − 1

2
− 1

=
6γ2(n− γ)2

n4−s − γ − γ0 − 1

2
− 1.

We hope that the function keeps being non-negative for γ, γ + 2, γ + 4..., so that in
Class III, the generated equations are always at least one more than the disappeared
equations. Then there will always exist equations in Class III. First we note that when
about γ ≥ n2−s

24 , f(γ) would be monotone increasing based on its derivative. If f(γ) ≥ 0

when γ = n2−s

24 , the function will keep being non-negative for γ > n2−s

24 . Thus, we plug
γ = n2−s

24 into f(γ) and keep it be non-negative, and we will get:

γ0 ≥
n2−s

48
+ 1. (12)

If we set γ0 = n2−s

48 +1, the total variables that can be fixed is 2`− 1
3γ0−1 ≈ 2l− n2−s

144 −
4
3 .

Figure 8 illustrates the number of variables that will be known under different num-
bers of guesses before the avalanche effect happens. We can see that despite some small
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Figure 8: The number of fixed variables corresponding to different number of guesses
before the avalanche effect happens.

deviations, the theoretical analysis matches well with the experimental results, espe-
cially in the initial phase of the guessing. When guessing slightly more variables, the
experimental results get better than the theoretical analysis, since more than one “free”
variable can be introduced when there are many equations in Class III.

Proposition 7. (Number of guesses). For a local PRG instance with n variables,
ns equations and c collisions, the average number of guesses required to build n linear
equations can be approximated as:

` =

⌈
n− c

4ns−1 + 2
+
n2−s

288
+

2

3

⌉
. (13)

Proof. If ` variables are guessed, 2`− δ(n, s) variables will be fixed according to Propo-
sition 6. Thus the number of linear equations that can be derived is computed as:(

2`− δ(n, s)
)
· 2ns−1 + c+ 2`− δ(n, s). (14)

We use the same stop condition as that in [CDM+18], i.e., the number of linear
equations is not smaller than n. Suppose that the condition is satisfied for the first time
after guessing ` variables, we will then get the value of ` =

⌈
n−c

4ns−1+2 + n2−s

288 + 2
3

⌉
.

The required number of guesses would actually be smaller than what is given in
Proposition 7, as more than one “free” variable on average can be introduced in the later
phase of the guessing. Now we can derive the complexity as below.

Storage Complexity. We need to back up several intermediate systems generated
during the guessing process. The number of nodes with back-up is the depth of a
guessing path, i.e., the number of guesses `. Thus the storage complexity is O(` ·m).
As ` =

⌈
n−c

4ns−1+2 + n2−s

288 + 2
3

⌉
according to Proposition 7, and c � n, the storage com-

plexity is further derived as O(n2).
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Time Complexity. When selecting a variable to guess, we need to go through
all the equations in a local class, e.g., Class III, or Class II if Class III is empty, and
choose the variable which appears most often. If these variables have the same occur-
rences in the local classes, we choose the one among them which appears most often in
the global system. We at most need to go through all the equations and the complexity
is upper bounded by O(m). We could further reduce the complexity by keeping a global
list recording the occurrence of each variable and updating it when performing equation
reduction. Thus, the global maximum value can be found in complexity O(n). The total
number of selections is O(2`) and thus the complexity for selecting variables is O(2`n),

i.e., O(n2

⌈
n−c

4ns−1+2
+n2−s

288 + 2
3

⌉
) according to Proposition 7. The asymptotic complexity of

selection can be further expressed as O(n2
73
288n

2−s
).

The largest computation overhead lies in solving linear systems, for which the cost
is dominated by inverting a matrix. We use the same estimation of time complexity as
that in [CDM+18] for inverting a sparse matrix, which is O(n2). Thus the total time
complexity is dominated by O(2` · n2), i.e., O(n22

73
288n

2−s
) according to (13), which is

much improved than the time complexity O(n22
1
2n

2−s
) in [CDM+18].

We mention that we have computed the complexity using the average number of
required guesses, i.e., O(n2 · 2E(`)) where E() denotes the average operation, and 50%
of the cases have complexities smaller than that. The complexity in average of the full
algorithm, i.e., O(E(n2 · 2`)), could be a more relevant metric on the security argument.
Actually, we have verified these two metrics with our experimental results and observed
very small gaps, but the theoretical result of it can still be interesting. We leave that
for future work.

Lemma 1. The asymptotic complexity of the proposed guess-and-determine attack is

O(n22
73
288n

2−s
).

3.4 Experimental Verification
In this section, we first experimentally verify the attack and the theoretical analysis,
then break the candidate non-vulnerable parameters suggested in [CDM+18]. We first
use a simpler way with much less complexity to verify the attack and later show that the
results derived in this way match well with those for practically recovering the secret. In
this simple verification, we test the required number of guesses to collect enough linear
equations, i.e., the number of linear equations is not smaller than n. We iteratively
select a variable using the criterion described above and guess it randomly until the
condition is satisfied. We run 1040 instances for each (n, s) pair and get the average
number of guesses, whose distribution shows a low variance. The theoretical results
computed according to Proposition 7 and experimental results of the average required
number of guesses are shown in Table 2. The experimental results are better than the
theoretical ones, just as happened in [CDM+18]. Compared to the experimental results
in [CDM+18], the proposed attack requires fewer guesses.

We further implement the proposed attack to actually recover the secret as described
in Algorithm 1. The algorithm will not terminate until the guessing values for the guessed
variables are correct when enough linear equations are derived. We record the number

274



n 256 512 1024 2048 4096
theo. exp. [CDM+18] theo. exp. [CDM+18] theo. exp. [CDM+18] theo. exp. [CDM+18] theo. exp. [CDM+18]

s = 1.45 3 3.6 4 5 4.9 6 7 7.0 9 10 10.1 14 15 14.9 21
s = 1.4 6 5.7 6 9 8.4 11 13 12.7 17 20 19.3 27 31 30.0 44
s = 1.3 11 10.4 20 18 16.7 23 30 27.1 39 49 44.3 65 81 72.6 110

Columns of theo. and exp. denote the theoretical and experimental results, respectively.

Table 2: The Average Number of Guesses Required to Achieve n Linear Equations.

of guesses for the correct path, the number of nodes we have visited, and the number of
times of solving linear systems. Table 3 shows the results under some (n, s) pairs, each
with 40 instances.

(n, s) The Proposed Attack [CDM+18]
#1 #2 #3

(256, 1.45) 3.7 7.4 8.1 4
(256, 1.4) 6.0 29.0 31.0 6
(256, 1.3) 11.1 1038.0 1051.0 13
(512, 1.45) 5.1 18.5 20.0 6
(512, 1.4) 8.8 191.3 195.0 11
(512, 1.3) 17.3 81562.5 81887.3 23

(1024, 1.45) 6.9 70.9 73.1 9
(1024, 1.4) 13.5 4366.3 4373.0 17
(2048, 1.45) 10.4 663.9 668.3 14
(4096, 1.45) 15.4 19357.1 19364.7 21

The column #1 and the last column denote the required num-
ber of guesses, columns #2 and #3 denote the number of times
of solving linear systems, and the number of visited nodes, re-
spectively.

Table 3: The Results for Practical Key Recovery.

One can see that the number of visited nodes is slightly larger than the number
of times the algorithm is solving linear equation systems, which makes sense since we
always immediately trace back whenever a conflict occurs without going into solving a
linear system. The available results match well with the simplified verification results
in Table 2, from which we could estimate the required numbers of guesses for larger
parameters.

The results are better than those in [CDM+18], particularly when more guesses are
required. For example, when n = 4096, s = 1.3, 110 guesses are required in [CDM+18],
while our attack only needs around 73. This is because when more guesses are needed,
we perform more guesses in Class III and get more “free” variables, thus the advantage
from exploiting “free” variables is more obvious.
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If a system is expected to achieve a security level of r bits, the complexity for in-
verting the system should be larger than 2r. We use the same estimation of time
complexity1 as that in [CDM+18], which is 2` · n2, where ` and n denote the number of
guesses and seed size, respectively. Actually, there should be some constant factor for
2` · n2 when deriving the actual complexity from the asymptotic complexity O(2` · n2).
However, for a fair comparison, we take the constant factor as 1 as done in [CDM+18].
Thus, to achieve the r-bit security, ` should satisfy 2`n2 > 2r, i.e., ` > r − 2 log2 n. Let
us set ` = r−2 log2 n and try to derive the limit of stretch s above which the parameters
are susceptible to our attack. We can substitute ` in (14) with r− 2 log2 n and get the
number of linear equations. For an unsecure stretch s, the number is not less than n,
i.e., (

2(r − 2 log2 n)− δ(n, s)
)
· 2ns−1 + c+

(
2(r − 2 log2 n)− δ(n, s)

)
≥ n. (15)

It is difficult to get a closed-form expression for the stretch limit s as the average
value of c involves a complicated expression in s as shown in (2). Thus, we derive the
theoretical limits by starting from a relatively large value of s and gradually decreasing
it with a small interval, until we find the maximal s that does not satisfy (15), for given
n and r. We can use the same way to derive the theoretical limits for the guess-and-
determine attack in [CDM+18], which were not given there. It is proved in [CDM+18]
that the number of linear equations for guessing one variable is larger than 2mn , thus
after guessing ` variables, the number of linear equations is larger than 2`mn + c+ `. The
unsecure stretch s in [CDM+18] would satisfy the condition below:

2(r − 2 log2 n)ns−1 + c+ r − 2 log2 n ≥ n. (16)

Note that the stretch limits in [CDM+18] would be looser than ours, as the theoretical
analysis there is based on the worst case, while we consider the average case.

We also get experimental limits by running extensive instances. For a given seed
size n, we start with a high enough s value and decrease it by a 0.001 interval each
time. For each (n, s) pair, we implement 400 independent instances2, and check whether
the complexity is larger than 280 or 2128 under our guess-and-determine attack. We
have shown in Table 2 and Table 3 that the required numbers of guesses to obtain
enough linear equations match well with those to actually recover the secret, and we
use the former to represent the latter, since actually solving the linear equation systems
consumes large computation overhead.

Figure 9 shows the stretch limits for different seed sizes under the 80-bit and 128-bit
security levels. The dashed lines denote the theoretical limits for our attack and the
attack in [CDM+18], which are computed according to (15) and (16), respectively. The
solid lines denote the experimental results (the experimental stretch limit for 128-bit
security is not given in [CDM+18]). The zone above the lines represent the insecure
choices of (n, s) parameters. From the results, one can easily see that the stretch limits
under our attack are stricter than the ones in [CDM+18]. Thus, some systems which are
secure under the attack in [CDM+18] cannot resist against our attack given a security

1The accurate estimation formula can be found in the proof of concept implementation of [CDM+18].
See https://github.com/LuMopY/SecurityGoldreichPRG.

2We tested a relatively smaller number of instances here, since the cases for n = 8192 require much
more computation overhead. We found in the experiment that the results averaged on 400 instances
and 1000 instances are almost the same, due to the small variances.
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Figure 9: The limits of stretchs for vulnerable instances (theo. and exp. denote the
theoretical and experimental results, respectively). The zones above the lines denote

the insecure choices of parameters.

Security Level (n, s) New [CDM+18]

80 bits (512, 1.120) 244∗ 291

(1024, 1.215) 253∗ 290

(2048, 1.296) 268 291

(4096, 1.361) 268 291

128 bits (512, 1.048) 263∗ 2140

(1024, 1.135) 275∗ 2140

(2048, 1.222) 298 2139

(4096, 1.295) 2100 2140

∗
Complexities are from the avalanche effect.

Table 4: Complexity for Solving the Challenge Parameters Proposed in [CDM+18].

level. Particularly, our stretch limits for 80-bit security are even stricter than the theo-
retical limit for 128-bit in [CDM+18], thought the comparison to the experimental limit
is unclear. We will later show that we can attack some parameter sets suggested for
128-bit security in [CDM+18] with complexity lower than 280. Besides, our theoretical
and experimental limits have smaller gaps than the ones in [CDM+18], especially when
n goes larger, which indicate that with our theoretical analysis, one can have better
predication of the security for a system when the parameters go larger.

Breaking Challenge Parameters. The authors in [CDM+18] suggested some chal-
lenge parameters for achieving 80 bits and 128 bits of security. Table 4 compares the
time complexities for attacking systems under these parameters. For a fair comparison,
we again use the same estimation as that in [CDM+18] where the time complexity
is estimated as 2` · n2, with ` being the required number of guesses under which the
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number of linear equations is not less than n. We also considered the avalanche effect
for each system and the complexity is computed as 2`A , where `A is the number of
guesses under which the avalanche effect appears. We choose the smaller one between
the two complexities. Note that the authors of [CDM+18] took a margin of 10% when
selecting these security parameters. For each (n, s) parameter, we implemented 1040
instances. We found that the number of required guesses shows a small variance (but
larger than the ones in [CDM+18]). Figure 10 presents the distribution of required
number of guesses for the systems targeting 80-bit and 128-bit security levels when
n = 4096.

We see that all the proposed challenge parameters fail to achieve the claimed security
levels and the improvement factor becomes larger when n is smaller. When the seed size
is smaller, the system is more susceptible to the avalanche effect, e.g., when n = 512
and 1024. For (n, s) = (512, 1.048), the time complexity of the improved algorithm is
smaller by a factor of about 277; this parameter set is even insufficient for providing 80
bits of security, though it is originally suggested for 128 bits.
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Figure 10: The distribution of required number of guesses (n = 4096).

4 Guess-and-Decode: A New Iterative Decoding Ap-
proach for Cryptanalysis on Goldreich’s PRGs

In this section, we present a new attack on Goldreich’s PRGs with even lower complexi-
ties. We combine the guessing strategies described in Section 3 and iterative decoding to
invert a quadratic system and recover the secret, which we call guess-and-decode attack.
Specifically, we first guess some variables using similar strategies described in our guess-
and-determine attack; then instead of inverting a linear system, we apply probabilistic
iterative decoding on the derived quadratic system to recover the secret, for which the
complexity is smaller. Besides this gain in reducing the complexity, we also expect that
fewer guesses are required before a system can be correctly inverted.

We first give a recap on the classical iterative decoding showing how it works on linear
checks; then describe how we modify it to invert a quadratic system. We experimentally
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verify the attack, showing that with soft decoding we can further reduce the complexities
for attacking the challenge parameters given in [CDM+18], and finally suggest some new
challenge parameters which appear to resist against our attacks for further investigation.

4.1 Recap on Iterative Decoding
Iterative decoding has been commonly used in information theory, e.g., most notably
used for decoding LDPC (low-density parity-check) codes. The basic idea of iterative
decoding is to break up the decoding problem into a sequence of iterations of information
exchange, and after some iterations the system is expected to converge and give a result
(or the process is halted). It can provide sub-optimal performance with a much reduced
complexity compared to a maximum likelihood decoder. Below we give a short intro-
duction to LDPC codes and describe how iterative decoding works. For more details
about iterative decoding, we refer to [RL09, HOP96].

A binary (n, k) LDPC code, where k and n respectively denote the lengths of the
information block and the codeword, is a linear block code which is usually defined as
the null space of a parity-check matrix H of size (n − k) × n whose entries are either 1
or 0. For every valid codeword v, vHT = 0 is always satisfied. Each row of H denotes
one parity check and the number of rows indicates the number of checks every codeword
should satisfy, while each column denotes one code symbol. If the code symbol j is
involved in a check i, the entry (i, j) of H, denoted hij , would be 1; otherwise 0. As
follows from the constraint vHT = 0, the symbols involved in one same parity check
must sum to zero (modulo 2). Usually, the density of 1’s in H should be sufficiently low
to allow for iterative decoding, thus getting the name LDPC.

A Tanner graph is usually used to represent a code and help to describe iterative
decoding. It is a bipartite graph with one group of nodes being the variable nodes (VNs),
i.e., the code symbols, and the other group being the check nodes (CNs). If the variable
j is involved in the check i, an edge between CN i and VN j is established.

Example. The following parity-check matrix H expresses a (6, 2) linear block code.
The code has six symbols, say {x1, x2, . . . , x6}, each involved in two parity checks, and
four parity checks, say {c1, c2, c3, c4}, each involving three symbols. For example, the
first parity check c1, i.e., the first row of H, can be expressed as x1 + x2 + x3 = 0.

H =


1 1 1 0 0 0
1 0 1 1 0 0
0 1 0 0 1 1
0 0 0 1 1 1

 . (17)

The Tanner graph corresponding to H in (17) is depicted in Figure 11. The edges
connecting variable nodes and check nodes correspond to the 1’s in H. For example,
VNs x1, x2, x3 are connected to CN c1 in accordance with the fact that in the first row
of H, h00 = h01 = h02 = 1, while all others in this row are zero.

The Tanner graph of a code acts as a blueprint for an iterative decoder. The VNs
and CNs exchange information along the edges, and the process is referred to as message
passing. Each node (either a variable node or a check node) acts as a local computing
processor, having access only to the messages over the edges connected to it. Based on
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Figure 11: An illustration of a simple Tanner graph.

the incoming messages over the connected edges, a node would compute new messages
and send them out. In some algorithms, e.g., bit-flipping decoding, the exchanged mes-
sages are binary (hard) values, while in others, such as belief-propagation or sum-product
decoding, the messages are soft probabilities, which represent a level of belief about the
values of the code symbols. The probabilities can be implemented in the logarithm do-
main, i.e., log-likelihood ratios (LLRs), which makes the iterative decoding more stable.
We use the sum-product decoding based on LLRs in our attack.

The sum-product algorithm accepts a-priori probabilities for the information sym-
bols, which are usually received from the channel and known in advance before the
decoding, and outputs a posteriori values for all symbols after some iterations of mes-
sage passing. Below we give the general steps of the sum-product algorithm.

Step 1 Initialization. For every variable v, initialize its LLR value according to
its a-priori LLR value La(v), i.e., L(0)

v = La(v). For every edge connected to v, initialize
the conveyed LLR values as L(0)

v .
After the initialization, the algorithm starts iterations for belief propagation, in which

Step 2 - Step 4 below are iteratively performed until the recovered secret is correct
or reaching the maximum allowed number of iterations. In each iteration, every node
(either variable node or check node) updates the outgoing LLR value over every edge
based on the incoming LLR values over all the other edges, which are called “extrinsic”
information; while ignoring the incoming LLR value over this specific edge, which is
called “intrinsic” information. It is always the “extrinsic” information that should be
only used to update the LLR values.
Step 2 Check node update. In each iteration i, every check node c computes an
outgoing LLR value over each of its edges ek, based on the incoming LLR values updated
in the (i− 1)-th iteration from every other edge e′k connected to c. The computation is
as below, and we refer to [RL09, HOP96] for more detailed derivation:

L(i)
c (ek) = �

k′ 6=k
L(i−1)
v (ek′)

= 2 tanh−1

∏
k′ 6=k

tanh
(

1/2L(i−1)
v (e′k)

) , (18)

where the “box-plus” operator � is used to denote the computation of the LLR value of
the XOR sum of two variables, i.e., for a = a1⊕a2, L(a) = La1�La1 = log( 1+eLa1+La2

eLa1 +eLa2
);
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tanh() corresponds to the hyperbolic tangent function, and appears in the expression
due to an easily proven relation tanh(u/2) = (eu − 1)/(eu + 1).
Step 3 Variable node update. In each iteration i, every variable node v computes
an outgoing LLR value over each of its edges ej , based on the a-priori information, and
LLR values updated in the i-th iteration from every other edge e′j connected to v, as
below:

L(i)
v (ej) = La(v) +

∑
j′ 6=j

L(i)
c (ej′). (19)

Step 4 Distribution update. After each iteration, update the LLR value of every
variable v using (19), but with every edge included, i.e.,

L(i)
v = La(v) +

∑
j∈N(v)

L(i)
c (ej), (20)

where N(v) is the set of edges connected to v. Set

v̂ =

{
1, if L(i)

v < 0,

0, otherwise,
(21)

to recover an intermediate value for every variable v. The algorithm immediately stops
whenever v̂HT = 0 is satisfied or the number of iterations reaches the maximum limit;
otherwise, it continues with a new iteration.

4.2 Algorithm for the Guess-and-Decode Attack
In this subsection, we show how we combine guessing and iterative decoding to invert a
Goldreich’s PRG and recover the secret. We modify the classical iterative decoding to
accommodate our use case, and the differences are listed below:

1. The most important difference lies in that the system in classical iterative decod-
ing is linear, while quadratic in our application. We have designed special belief
propagation techniques for quadratic equations.

2. In classical iterative decoding, a-priori information, either from a non-uniform
source or from the channel output, is required and plays an important role for the
convergence of the belief propagation. However, in our case, there is no available
a-priori information and all the variables are assumed to be uniformly random
distributed. The system is expected to achieve self-convergence.

3. In classical iterative decoding, the check values are always zero; while in our case,
a check value could be one, and special belief propagation techniques are designed
for it.

Algorithm 4 shows the general process of the guess-and-decode attack. It basically
consists of two phases: guessing phase, during which guessing strategies similar to what
have been described in Section 3 are applied to guess and derive “free” variables; and
decoding phase, during which the modified iterative decoding is applied on the resulting
quadratic system to recover the remaining secret bits.
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Algorithm 4 The guess-and-decode attack
Input A Goldreich’s PRG system instantiated on P5, the maximum allowed number of
iterations iterMax
Output A recovered secret x̂
1: Guess some variables using strategies similar to what have been described in Section

3
2: if the secret can already be correctly recovered then
3: return the recovered secret
4: else
5: Build an iterative decoding model for the resulting system of equations, initial-

ization, set it = 0
6: while it < iterMax do
7: it = it+ 1
8: Update check nodes
9: Update variable nodes

10: Update the distributions of variables and get an intermediate recovered secret
x̂, return x̂ if it is correct.

11: If it == iterMax, trace back following Algorithm 3 and go to step 2

4.2.1 Guessing Phase

The guessing process generally follows the strategies in the guess-and-determine attack
described in Section 3, but with some modifications. Specifically, in Class III, we only
guess variables from the linear equations, and if there are no linear equations, we guess
a variable in equations in Class II (or further Class I if Class II is empty), instead of
guessing a variable in a quadratic equation in Class III. This is because we want to keep
the quadratic equations and get biased information for some involved variables. For
example, for an equation xσ1 +xσ2xσ3 = y, after the first iteration of belief propagation,
we would get a biased distribution of xσ1

, i.e., P (xσ1
= 1) = 0.25 and P (xσ1

= 0) =
0.75. Such biased information could propagate through the graph and help to make the
system converge. This is how the system achieves self-convergence without any a-priori
information.

Similarly, after guessing a relatively large number of variables, it could happen that all
the remaining variables can be directly recovered without going into iterative decoding.
This happens in two cases:

(1) all other variables are determined for free because of the avalanche effect;

(2) besides the guessed and freely determined variables, every remaining variable is
involved as the linear term in a quadratic equation in Class III and can be recovered
correctly with high probability. For example, for an equation xσ1 + xσ2xσ3 = y,
we can recover xσ1

as xσ1
= y. This happens more often when more variables are

guessed. The experimental results would verify this later.

Thus, after the guessing phase, we always check if all the variables can already be
correctly recovered; and if so, the iterative decoding can be omitted.
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4.2.2 Decoding Phase

When the guessing phase is done, we build an iterative decoding model for the derived
system of equations and start the belief propagation.

Iterative decoding model. The remaining unknown secret variables (neither guessed
nor freely determined) are modeled as the variable nodes, while all the remaining valid
equations, either quadratic or linear, serve as the checks. Recall that we could have six
different forms of equations in the derived system which we have categorized into three
classes in Section 3.1, along with one more form of those which only have a quadratic
term, e.g., xσi1xσi2 = 0. A check node and the variable nodes which are involved in
this given check would be connected through edges in the Tanner graph. We define
two different types of edges: type 1 edge, which connects a check node and a variable
node that is involved as a linear term of this check; and type 2 edge, which connects a
check and a variable that is involved in the quadratic term of this check. For these two
different types of edges, different belief propagation techniques are applied, which we
would elaborate below. Besides, the check value of a check could be either 1 or 0, which
does not happen in the classical iterative decoding, and we would describe how we deal
with it.

x1
 .

c1 cj cm .

 .

x3 + xi + x1x2 = 0

c2

x2 x3 xi xnxk  .

x1 + xk= 0

VNs

CNs  .

x2 +xi+ xk+xn = 1 x3 +  xkxn = 1

cl  .

x3xi = 0

Figure 12: Illustration of an example of the iterative decoding model.

Figure 12 shows a simple illustration of our iterative decoding model, where circles
denote the variable nodes while rectangles denote the check nodes. The gray-filled checks
have quadratic terms where the solid lines denote type 1 edges while the dashed lines
denote type 2 edges. The blue-bordered checks are those with check values being one.

The decoding phase generally follows the routine of classical iterative decoding
described in Section 4.1, but we have some novel modifications for, e.g., dealing with
checks with quadratic terms or with check values being one. We next describe these
details in each step.

Step 1 Initialization. Since there is no a-priori information for the variables, the LLR
values of all the variables are initialized to be zero. All the outgoing messages, i.e., LLR
values, over the edges of variables or checks are set to be zero as well.

After the initialization, the algorithm starts iterations for belief propagation. The
update of variable nodes follows the classical iterative decoding, while for updating
the check nodes, we have special belief propagation techniques, which are described in
details below.
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Step 2 Check node update. The update of a linear check just follows the clas-
sical way, with a small modification when the check value is one. We below give a
simple example to show how it affects the belief propagation.

Example. Given a weight-2 check xσ1
+ xσ2

= y, assume the incoming LLR value
in a certain iteration for xσ2 is Lxσ2 .

– If y = 0, the combinations of (xσ1
, xσ2

) to validate the check is (0, 0), (1, 1). Thus,

P (xσ1
= 0)

= P (xσ1
= 0, xσ2

= 0) + P (xσ1
= 0, xσ2

= 1)

= P (xσ1
= 0|xσ2

= 0)P (xσ2
= 0) + 0

= P (xσ2
= 0).

Similarly, we can get P (xσ1 = 1) = P (xσ2 = 1). Thus, the outgoing LLR value of
xσ1

value is computed as Lxσ1 = log
P (xσ2=0)

P (xσ2=1) = Lxσ2 .

– While if y = 1, the combinations of (xσ1
, xσ2

) to validate the check is (0, 1), (1, 0).
Similarly we would get P (xσ1

= 0) = P (xσ2
= 1) and P (xσ1

= 1) = P (xσ2
= 0).

The outgoing LLR value of xσ1 is then computed as Lxσ1 = log
P (xσ2=1)

P (xσ2=0) = −Lxσ2 .

Thus, for a linear check, when the check value is zero, the outgoing LLR values are
computed with the standard way in (18); while when it is one, the negative versions of
values computed using (18) are sent.

When updating the quadratic check nodes, different belief propagation techniques
are applied for type 1 and type 2 edges. The update for type 1 edges follows the classical
way using (18), while including the equivalent incoming LLR value from the quadratic
term as well. For type 2 edges, we should deal with them carefully by distinguishing
“intrinsic” and “extrinsic” information. Below we show how to update a quadratic check
node.

For a quadratic check, e.g., xσ1
+ xσ2

+ xσ3
+ xσ4

xσ5
= y, assume the incoming

LLR values over the edges are Lxσ1 , Lxσ2 , Lxσ3 , Lxσ4 , Lxσ5 , respectively, and we want
to compute the outgoing LLR value over each edge. We denote the linear part and
quadratic part as xl and xq, respectively, i.e., xl = xσ1

+ xσ2
+ xσ3

, xq = xσ4
xσ5

.
We could compute the equivalent LLR values for xl and xq, denoted as Lxl and Lxq ,
respectively. For xl, we could easily get Lxl = Lxσ1 � Lxσ2 � Lxσ3 . While for xq, we
first get

p1
xq = p1

xσ4
p1
xσ5

=
1

(eLxσ4 + 1)(eLxσ5 + 1)
,

p0
xq = 1− p1

xσ4
p1
xσ5

=
(eLxσ4 + 1)(eLxσ5 + 1)− 1

(eLxσ4 + 1)(eLxσ5 + 1)
. (22)

Thus the equivalent incoming LLR value for xq can be computed as:

Lxq = log
p0
xq

p1
xq

= log
(

(eLxσ4 + 1)(eLxσ5 + 1)− 1
)
.
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If y = 0, the outgoing LLR value of a linear variable, say xσ1 , can be computed as:

Lxσ1 = Lxσ2 � Lxσ3 � Lxq . (23)

While if y = 1, the negative version, i.e., −Lxσ1 , should be sent, just like the update of
a linear check when its check value is one. The outgoing LLR values for xσ2

and xσ3

can be computed in the same way.
Next we show how to compute the outgoing LLR values for the variables in the

quadratic term, e.g., xσ5
. For combinations of (xl, xσ4

, xσ5
), when y = 0, the possible

values to validate the check are (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1). Thus the updated
LLR value for xσ5

is

Lxσ5 = log
p0
xl
p0
xσ4

p0
xσ5

+ p0
xl
p1
xσ4

p0
xσ5

p0
xl
p0
xσ4

p1
xσ5

+ p1
xl
p1
xσ4

p1
xσ5

(24)

= log
p0
xσ5

p1
xσ5

+ log
p0
xl

p0
xl
p0
xσ4

+ p1
xl
p1
xσ4

. (25)

In (25), the first term is regarded as the “intrinsic” information while the second term is
the “extrinsic” information which should be propagated. Thus the outgoing LLR value
for xσ5

is

Lxσ5 = log
p0
xl

p0
xl
p0
xσ4

+ p1
xl
p1
xσ4

. (26)

While if y = 1, the possible values of (xl, xσ4
, xσ5

) to validate the check are (1, 0, 0),
(1, 0, 1), (1, 1, 0), (0, 1, 1). Lxσ5 can still be computed using (26), but with the values of
p0
xl

and p1
xl

being exchanged. We could understand it as that Lxl now has the negative
version. The outgoing LLR value for xσ4 can be derived in the same way.

The update techniques apply to all types of checks: a linear check and a check
with only a quadratic term can be regarded as special cases without xq and xl, respec-
tively. For the latter case, e.g., xσ1

xσ2
= 0, the possible combinations of (xσ1

, xσ2
) to

validate the check is (0, 0), (0, 1), (1, 0), thus the LLR value of xσ1
can be updated as

Lxσ1 = log(1/p0
xσ2

) = log(1 + e−Lxσ2 ). The LLR value of xσ2
can be updated in the

same way.

Important Notes. We mentioned above that no a-priori information is required
for the convergence in our iterative decoding model. Instead, after the first iteration
of updating the check nodes, some biased information for some variables would be
obtained. The biased information mainly comes from quadratic checks in Class III and
quadratic checks without any linear terms. As we mentioned, for a quadratic check in
Class III xσ1 + xσ2xσ3 = 0, xσ1 can become highly biased soon: i.e., P (xσ1 = 0) = 0.75
and P (xσ1

= 1) = 0.25, and the outgoing LLR value over the edge would become log 3
instead of zero. Similarly, for a check xσ1

xσ2
= 0, the outgoing LLR values for xσ1

and
xσ2

would become log 2. Such biased information can then be propagated and spread to
other nodes during the iterations, which plays an important role for the convergence and
correctness of the iterative decoding. Obviously, the more accurate biased information
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is obtained, the more likely the system would be to correctly converge, which explains
why we try to avoid guessing a variable in a quadratic equation in Class III during the
guessing phase.

Steps 3, 4 just follow the details described in Steps 3, 4 in Section 4.1.

4.3 Theoretical Analysis
A deeper theoretical investigation into the complexity is hard, as we have much more
complicated model compared to classical iterative decoding: we have irregular checks
which can be linear or quadratic, and have different localities; besides, there is no avail-
able external a-priori information. Instead, we derive a very rough estimation for the
asymptotic complexity. Under the same amount of guesses as that in the guess-and-
determine attack, the guess-and-decode attack would succeed with a large probability.
For example, we experimentally checked which attack succeeds first when guessing from
a very small and gradually increasing number of guesses. We tested 5000 independent
instances for each parameter set, and the table below shows some probabilities of the
systems being solved first by the guess-and-decode attack.

Seed Size 2048 4096
Stretch 1.296 1.222 1.361 1.295

Probability 77.8% 80.7% 90.8% 96.4%

Table 5: Probability of systems being solved first by the guess-and-decode attack.

When one guessing path results in a failure, several other paths can be tried and it
is highly likely that one would succeed. We allow for a constant number of iterations,
and in each iteration, we need to go through O(ns) nodes. Thus a rough asymptotic
complexity can be expressed as O(ns2

73
288n

2−s
).

4.4 Experimental Verification
We have done extensive experiments to verify the attack. We first test the success
probabilities of correctly recovering a secret under different numbers of guesses ` for the
challenge parameters suggested in [CDM+18], averaged over 5000 independent instances
for each (n, s, `) parameter set.

Figure 13 illustrates the results of success probabilities when maximally 100 iterations
are allowed, where the left and right sub-figures are for the parameters suggested for
80-bit and 128-bit security levels in [CDM+18], respectively. One can see that the
success probabilities increase with the number of guesses, though sometimes with very
small fluctuations. We found in the results that under different numbers of guesses, the
required numbers of iterations for the convergence of a system vary: basically, when
more variables are guessed, fewer iterations are required. Particularly, when guessing
more than some certain number of variables, a secret could be recovered without going
into iterations of belief propagation in some instances, which could happen with two
cases as we mentioned before.
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Figure 13: Success probabilities under different number of guesses.
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Figure 14: Distributions of number of iterations for successful instances
(n = 1024, s = 1.215).

Figure 14 shows the distributions of the required numbers of iterations for conver-
gence when guessing 40, 45, 50 and 55 variables, respectively, when n = 1024, s = 1.215.
The instances with zero iterations denote those which can be solved without iterative
decoding. We can see that with the increase in the number of guesses, the proportion
of these instances is increasing: when guessing 40 variables, all the successful recoveries
are solved through iterative decoding; while when guessing 55 variables, 71.0% of the
successful instances can be solved without going into iterative decoding.

We also see from Figure 14 that the required numbers of iterations for the vast
majority of instances are below 100, and mostly below 40, and the average required
number of iterations decreases when the number of guesses increases. This applies to
all instances under different parameter sets. In Figure 15 we give an example to further
illustrate this observation. The left sub-figure shows the distribution of the required
number of iterations for 97259 independent successfully inverted instances when guessing
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26 to 51 variables for n = 1024, s = 1.215 and 44 to 69 variables for n = 1024, s = 1.2153.
The right sub-figure shows the average required number of iterations under different
numbers of guesses. Basically, the required number of iterations decreases when the
number of guesses increases (with some exceptions in the beginning due to the small
number of samples), which is because more equations with lower localities could be
obtained when more variables are guessed, enabling faster convergence of the iterative
decoding. Specifically, when guessing more than 53 and 75 variables when s = 1.215
and s = 1.135, respectively, the required numbers of iterations for most instances are
zero, meaning that we can recover the secret directly without iterative decoding.
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Figure 15: More results about the required number of iterations.

We also tested the distribution of number of guesses required to correctly recover
a secret. We ran 5000 independent instances for parameter sets n = 1024, s = 1.215,
and n = 1024, s = 1.135, which respectively aim for 80-bit and 128-bit security levels
in [CDM+18]. We start from guessing a small number of variables, and continue with
guessing one more variable if the recovery fails, until the secret is correctly recovered.
The results are shown in Figure 16. We can obviously see from the figure that instances
aiming for 80-bit security level require fewer guesses than those for 128-bit security level,
for which the peak values are respectively achieved around 36 and 59 guesses.

4.5 Complexity
In our guessing strategies, we always prefer to guess the variable which appears most
often in a local class or in the global system, which is a greedy method. Actually,
if we choose to guess the sub-optimal ones, the success probabilities do not have big
differences, as the main gain comes from exploiting “free” variables. This enables us to
explore other guessing paths if the current one fails for iterative decoding.

If the success probability of the guess-and-decode attack when guessing ` variables
for a given (n, s) parameter set is p, the required number of times to perform iterative
decoding could be derived by multiplying a factor of 1/p. This can be linked to two

3We did not consider the required numbers of iterations when guessing more variables since most
would be zero and here we only want to show that the required numbers of iterations are mostly below
100.
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Figure 16: Distribution of number of guesses for n = 1024.

practical attacking scenarios: 1) 1/p many independent systems generated by different
secrets are collected and there should be one system that can be recovered; 2) or given
a specific system, it is possible to recover it if we try 1/p independent guessing paths.
We have experimentally verified this, and will be shown later.

We have shown in Figure 15 that the vast majority of instances require less than
40 iterations for convergence, thus we set the maximum allowed number of iterations
as 40. For each iteration, we need to update each variable node and check node, which
requires complexity O(ns). The update of each variable node is simple, which only
costs several additions, as can be seen from (19). For a check node, let us consider a
worst case of complexity for updating, i.e., considering a check with most edges, e.g.,
xσ1 + xσ2 + xσ3 + xσ4xσ5 = y. For updating such a check, it requires 3 exponentiation,
5 division, 4 logarithm, 13 multiplication, 4 tangent and 4 inverse tangent functions.
These functions roughly take 1300 clock cycles if we refer to the instruction manuals
for mainstream CPUs. The actual cost would be less, as there are many simpler checks
which require fewer clock cycles. For example, the update of an equation check of
the form xσ1 + xσ2 = y is almost for free. We have experimentally verified the cost
with our non-optimized code. For example, one iteration for a system of parameters
n = 512, s = 1.120 consumes 0.46 milliseconds4, running on a CPU with maximum
supported clock speed 3000 MHz, corresponding to 1275 clock cycles for updating one
node. There are many optimization techniques both for the iterative decoding algorithm
and for the implementation details (e.g., using parallelization and look-up tables), which
would largely reduce the required number of clock cycles. We believe that the constant
factor is not larger than that in O(n2) for inverting a sparse matrix. Thus, the total
complexity for inverting an instance of parameter set (n, s, `) can be derived as below,
up to some constant factor:

C =
1

p
2` · 40 · ns. (27)

Having made this clear, we could get the complexities for attacking the systems
under the challenge parameters suggested in [CDM+18]. As ` and p vary with the given

4This includes all the clock cycles for one iteration, i.e., updating the check nodes and variable nodes,
updating the distributions of variables, recovering an intermediate secret, etc.
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systems, we experimentally derive them for each parameter set based on a large number
of independent instances. For every (n, s) parameter set, we generate 5000 independent
instances5 and run the attack with maximally 40 iterations allowed when guessing `
variables for different ` values. We compute the complexities using (27) according to
the experimental success probabilities for different `, and choose the smallest one as the
complexity for breaking the given (n, s) pair. For n = 512, we have some additional
results: we see from Figure 13 that the success probabilities are consistently increasing
and when we guess a large enough number of guesses `′, most instances can be recovered
without iterative decoding. If we denote the success probability of such case as p′, the
complexity would be 1/p′ · 2`′ · n (with n included since we need to go through every
secret variable)6 .

Security Level (n, s) Number of Guesses ` Success (probabilities p) Complexity C

80 bits (512, 1.120)∗ 40 718 (0.1446) 252

(1024, 1.215) 32 613 (0.1226) 253

(2048, 1.296) 32 210 (0.042) 257

(4096, 1.361) 32 285 (0.057) 258

128 bits (512, 1.048)∗ 53 86 (0.0172) 268

(1024, 1.135) 50 209 (0.0418) 272

(2048, 1.222) 52 82 (0.0164) 277

(4096, 1.295) 51 85 (0.0166) 278

The complexities for parameters with ∗ are derived based on the instances for which iterative
decoding is not needed.

Table 6: The Simulated Complexities for the Challenge Parameters Proposed in
[CDM+18].

Table 6 shows the experimental results in terms of the optimum choices of the number
of guesses and corresponding success probabilities, from which we compute the complex-
ities according to (27). By “optimum” we mean that the complexity is the lowest by
guessing the chosen number of variables, and the complexity can be different if we guess
a different number of variables. However, we found from the experimental results that
the complexities vary slowly with `, and there are several ` values under which the
complexities are the same to the best ones shown in the table. We can see that the
complexities are much lower than the claimed ones in [CDM+18]. Particularly, the pa-
rameter sets suggested for 128 bits of security in [CDM+18] cannot even provide 80 bits
of security under our attack.

As we mentioned, the attack can be applied to one specific system, with roughly 1/p
attempts, and we have experimentally verified this. In our implementation, we guess the
numbers presented in Table 6 of variables and check how many different guessing paths
that we need to try before we finally recover the secret. Specifically, for each system,

5We generate 10 times more instances when n = 512 and 1024, and the success probabilities do not
have big differences as those computed from 5000 instances. Thus we conjecture that 5000 instances
are large enough for computing a stable success probability.

6We also checked the complexities using this way for other parameter sets, but they are all higher
than the ones derived through iterative decoding.
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we first follow the steps described above and perform iterative decoding, and if it fails,
we try different paths: in the i-th attempt, we choose the i-th most often appeared
variable as the first guess and the subsequent steps are just the same as before, i.e.,
roughly following Algorithm 2. We allow for maximally 250 attempts for each system.
It is tricky to prove that these guessing paths are independent, but we observed that
a different starting guess can affect the whole system a lot. Table 7 shows the average
number of guessing paths that we need to try and the success probabilities, where ` and
p are from Table 6. For each parameter set, we generated 5000 independent instances.

From the table, one can see that a specific system can be attacked in around 1/p
attempts with a high success probability. When allowing for more attempts, the success
probabilities will be even higher.

Security Level (n, s) ` 1
p #attempts success

80 bits (1024, 1.215) 32 8.2 9.2 100%
(2048, 1.296) 32 23.8 24.6 94.8%

128 bits (1024, 1.135) 50 23.9 32.8 87.0%
(2048, 1.222) 52 61.0 68.9 88.2%

Table 7: Results for multiple attempts.

4.6 New Challenge Parameters
We also suggest some practical range of parameter sets which appear to be resistant
against both the proposed guess-and-determine attack and the guess-and-decode attack
for 80 and 128 bits of security. As done in [CDM+18], we take a 10% margin to select
the security parameters. Under a certain seed size n, we vary s from a high enough
value to lower ones with a relatively larger interval 0.01 (for instances of n = 512,
we take a smaller interval 0.001), since we need to run the iterative decoding process
and recover the secret in our implementation, which requires more running time. We
choose the maximum s value for which the system is not vulnerable to our attacks as
the conjectured stretch limit.

Given each (n, s) pair, we vary the number of guesses ` from a low enough value to a
high enough value and run 5000 instances for each (n, s, `) parameter set. We record the
success probability for each ` and further compute the corresponding complexity using
(27). For n = 512, we further compute the complexity for recovering the secret without
using iterative decoding. We then chose the minimum one as the complexity for the
(n, s) pair and check if it is larger than 280 or 2128. We chose the maximum s for which
the condition is satisfied as the conjectured stretch limit for challenge parameters.

Table 8 shows the experimental results under different seed sizes. Further study is
required to guarantee confidence in the security levels given by these parameters. One
can see that the stretch limits are further narrowed down with a large gap from the
ones in [CDM+18]. For example, when n = 1024, the results in [CDM+18] suggest that
the systems with stretches smaller than 1.215 and 1.135 can provide 80 and 128 bits of
security, respectively, while our results show that the stretches should be smaller than
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1.08 and 1.02, respectively. Besides, our results show that systems with seed sizes of
512 are not suitable for constructing local PRGs: they cannot even provide 80 bits of
security.

security level 512 1024 2048 4096
80 - 1.08 1.18 1.26
128 - 1.02 1.10 1.19

Table 8: Challenge Parameters for Seed Recovery Attack.

5 Extension to Other Predicates

It is interesting and of importance to know if the proposed attacks apply to other pred-
icates and which ones are susceptible to or resistant against them. In this section, we
investigate this question and focus on the two main types of predicates suggested for
constructing local PRGs, i.e., XOR-AND and XOR-THR (threshold) predicates, which
are defined as below:

XORk −ANDq : x1 + · · ·+ xk + xk+1xk+2 · · ·xk+q,

XORk − THRd,q : x1 + · · ·+ xk + THRd,q(xk+1, . . . , xk+q),

where THRd,q(xk+1, . . . , xk+q) is a threshold function of which the value would be one
only when the number of one’s in (xk+1, . . . , xk+q) is not less than d; otherwise, the value
is zero. P5 can be regarded as a special case of XOR-AND and XOR-THR predicates.
These predicates have been investigated in [CDM+18, App16, AL18, MCJS19].

We applied both attacks against these predicates under some suggested challenge
parameters, and observed different resistance of these predicates generalized as below.

- The considered XOR-AND predicates are more vulnerable to the guess-and-
determine attack, especially when the locality gets larger. The reason is that
the iterative decoding has worse performance when the parity checks have higher
weights, while obtaining a linear equation could be cheaper: as long as one variable
in the AND term is fixed as zero, or all variables inside are known.

- For the considered XOR-MAJ predicates, the guess-and-decode attack applies bet-
ter, mainly due to the high overhead to obtain a linear equation: only when more
than half of the variables in the MAJ term are known to be the same, the non-
linear term can be eliminated. On the other hand, the guess-and-decode attack
can still exploit some soft information useful for iterative decoding from the MAJ
term even if its value is unknown. For example, if one variable in the MAJ term
is fixed as 1 (0), its value will be more likely to be 1 (0) than 0 (1).

We mention here that the asymptotic complexities against these predicates are more
difficult to get, due to the much more diversified intermediate equations and complicated
equation reduction. For example, for an XORk-ANDq predicate, there are (k + 1)q − 1
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different types of intermediate equations, e.g., when k = 6, q = 3, the number is 20. This
not only makes it difficult to derive the numbers of “free” variables and linear equations,
but also makes the performance of iterative decoding (if it is used) much more obscure.
Actually, the performance of iterative decoding for linear checks of various different
weights, e.g., in irregular LDPC code, is not so easy to analyze, let alone a system of
equations with non-linear terms of various degrees. However, knowing the asymptotic
complexity will be definitely very helpful for understanding the security of local PRGs
built on these predicates, and we leave that for future work.

5.1 Extensions to Other XOR-AND Predicates
In the survey paper [App16], the authors asked the question “Is it possible to efficiently
invert the collection FP,n,m for every predicate P and some m = n

1
2 b2d/3c−ε for some

ε > 0? ” and gave “a more concrete challenge”: XORk-ANDq predicates with k = 2q.
We consider these challenging predicates and investigate their resistance against our
attacks.

The guessing phase generally follows the strategies described in Subsection 3.2, but
involves more classes of equations and more complex equation reduction. The equations
that can possibly introduce “free” variables are of the forms: xi0 + xi1xi2 · · ·xih =
yi (2 ≤ h ≤ q), xj1 + xj2 = yj and xu1

xu2
= 0. One can see that more times of equation

reduction are required to derive such equations. The way to derive the “free” variables
are the same, with a small difference when xi0 = yi+ 1 in the first case: all the variables
in the high-degree term are determined as 1. However, such equations do not always
exist during the guessing phase, thus making the number of “free” variables not so clear.

For the guess-and-decode attack, we keep the equations xi0 +xi1xi2 · · ·xih = yi (2 ≤
h ≤ q) as they are the source of biased information. The quality of such biased infor-
mation is better than that in P5, as the value of xi0 is more biased: equals to yi with
probability 1 − 0.5h. However, the large weights of the equations lead to bad perfor-
mance of iterative decoding. Actually, the guess-and-decode attack does not apply as
good as the guess-and-determine attack. We below still provide the belief propagation
techniques for a general XORk-ANDq predicate, as the techniques may apply to some
other predicates which involve a higher-degree AND term.

For an XORk-ANDq equation x1 + x2 + · · · + xk + xk+1xk+2 · · ·xk+q = y, suppose
the incoming LLR values for x1, x2, ..., xk+q are Lx1

, Lx2
, . . . , Lxk+q , respectively. Let

xh denote the AND term, i.e., xh = xk+1xk+2 · · ·xk+q, such that we get P (x1
h) =

p1
xk+1

p1
xk+2
· · · p1

xk+q
, P (x0

h) = 1 − P (x1
h). The equivalent incoming LLR value of xh,

denoted as Lxh , can be computed as:

Lxh = log
1− p1

xk+1
p1
xk+2
· · · p1

xk+q

p1
xk+1

p1
xk+2
· · · p1

xk+q

= log
(

(1 + eLxk+1 )(1 + eLxk+2 ) · · · (1 + eLxk+q )− 1
)
. (28)

The outgoing LLR value of a linear term, say x1, can thus be computed as:

Lx1 = Lx2 � Lx3 � · · ·� Lxh . (29)
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Similarly, if y = 1, Lx1 should be the negative value. The outgoing LLR values for other
linear terms can be derived in the same way. We next show how to update the LLR
value of a variable involved in the AND term, say xk+1 without loss of generality. We
denote the LLR value of the linear part xl = x1 + x2 + · · · + xk as Lxl , which can be
computed as Lxl = Lx1

� Lx2
� · · ·� Lxk .

Denote the product of other variables in the AND term excluding xk+1 as x′h, i.e.,
x′h = xk+2xk+3 · · ·xk+q. For the combinations (xl, xk+1, x

′
h), the possible values to

validate the check are (y, 0, 0), (y, 0, 1), (y, 1, 0), (y + 1, 1, 1). The updated LLR value
for xk+1 can then be computed as:

Lxk+1
= log

pyxlp
0
xk+1

p0
x′h

+ pyxlp
0
xk+1

p1
x′h

pyxlp
1
xk+1

p0
x′h

+ py+1
xl p1

xk+1
p1
x′h

= log
p0
xk+1

p1
xk+1

+ log
pyxl

pyxlp
0
x′h

+ py+1
xl p1

x′h

. (30)

With the “intrinsic” part excluded, i.e., the first term in the second line of (30), the
outgoing LLR value of xk+1 can be computed as

Lxk+1
= log

pyxl
pyxlp

0
x′h

+ py+1
xl p1

x′h

, (31)

where p1
xh′

= p1
xk+2

p1
xk+3

...p1
xk+q

and p0
xh′

= 1 − p1
xh′

. For an equation having only the
higher-degree term, e.g., xk+1xk+2 . . . xk+q = 0, we get Lxk+1

= log 1
p0
x′
h

.

Experimental resultsWe investigate several challenging XORk-ANDq predicates with
k = 2q, but for relatively small localities, since iterative decoding typically applies to
sparse systems. Specifically, we investigate the following three concrete predicates:

XOR4 −AND2 : x1 + x2 + x3 + x4 + x5x6, (32)
XOR6 −AND3 : x1 + x2 + · · ·+ x6 + x7x8x9, (33)
XOR8 −AND4 : x1 + x2 + · · ·+ x8 + x9x10x11x12. (34)

Figure 17 shows the success probabilities of the guess-and-decode attack applied on these
three predicates under certain stretches. Basically, the attack works better when the
locality is lower. For example, the attack applies to XOR4-AND2 well, while not so good
to XOR6-AND3 and XOR8-AND4 predicates. We could get the attacking complexities
for these parameters using (27), and results show that XOR4-AND2 under parameter
sets (512, 1.3) and (1024, 1.3) cannot provide security levels of 80 bits and 128 bits,
respectively; while XOR6-AND3 under (512, 1.4), and XOR8-AND4 under (512, 1.45)
cannot achieve 128 bits of security.

Challenge Parameters. We further give some challenge parameters for providing 128-
bit security following the way in Section 4.6. We tried both attacks and the guess-and-
determine attack requires stricter limits as expected. For example, when n = 1024, the
challenge limit for XOR6-AND3 is 1.17, while 1.51 under the guess-and-decode attack.
Table 9 presents more results and all of them are from applying the guess-and-determine
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Figure 17: Success probabilities for XOR-AND predicates under different parameters.

attack, over 5000 independent instances for each (n, s, `) set. The possibly safe stretches
are higher than those for P5, which indicate that these predicates have better resis-
tance against our attacks, especially against the guess-and-decode one. Further study is
encouraged to gain more confidence in these parameters.

predicate 512 1024 2048 4096
XOR4-AND2 - 1.10 1.20 1.28
XOR6-AND3 1.04 1.17 1.27 1.34
XOR8-AND4 1.05 1.16 1.25 1.32

Table 9: Challenge Parameters for XOR-AND Predicates

5.2 Extensions to XOR-THR Predicates
In [AL18], the authors show that predicates with high resiliency and high degrees are
not sufficient for constructing local PRGs. They proposed a new criterion called rational
degree against algebraic attacks and suggested XOR-MAJ (majority) predicates, which
can be generalized to the XOR-THR predicates. In [MCJS19], the properties of XOR-
THR predicates are investigated and the special case XOR-MAJ predicates are used
to build the new version of FLIP, called FiLIP, which is a construction designed for
homomorphic encryption. It is mentioned in the paper that “no attack is known relatively
to the functions XORk-THRd,2d or XORk-THRd,2d−1 since k ≥ 2s and d ≥ s”. These
predicates are actually XORk-MAJd predicates.

For the guessing phase, the cases how free variables are obtained differs a bit com-
pared to the XOR-AND predicates. Specifically, there are two cases a free variable could
be obtained:

(1) For an equation with one linear term and a THR term, if the value of the THR
term is known, for example, there are already not less than d one’s or more than
q − d zero’s in the THR term, the linear term can be freely derived;
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(2) For an equation which only has a THR term, if there already exist d− 1 one’s in
the THR term while the value for the equation is zero, every other variable could
be derived as zero for free; on the other hand, if there are q − d zero’s while the
value of the equation is one, all the other variables could be derived as one for free.

Obviously, it gets more complex for both deriving a “free” variable and linear equation
for an XOR-THR predicate, as eliminating a THR term involves more steps. We tested
the guess-and-determine attack against XOR-MAJ predicates, but the performance is
not satisfying as expected. Thus we focus on the guess-and-decode attack against XOR-
MAJ predicates below.

After the guessing phase, the iterative decoding is performed. For an equation
x1 + · · · + xk + THR(xk+1, . . . , xk+q) = y, suppose the incoming LLR values of the
variables are Lx1

, Lx2
, . . . , Lxk+q , respectively. When computing the outgoing LLR val-

ues for the linear terms, say x1 without loss of generality, we need to first compute the
equivalent incoming LLR value of the THR term. We denote the THR term as xt and
its LLR value as Lxt . The number of the combinations of (xk+1, . . . , xx+q) that make
THR(xk+1, . . . , xx+q) one is

∑q
w=d

(
q
w

)
. If we denote the set of these combinations as

S, we can get

P (x1
t ) =

∑
(ck+1,...,cx+q)∈S

q∏
i=1

pck+ixk+i
, (35)

where (ck+1, . . . , cx+q) are the possible values in S and every value is either one or zero.
P (x0

t ) = 1− P (x1
t ) and thus Lxt = log

P (x0
t )

P (x1
t )
. The LLR value of x1 can be computed as

Lx1 = Lx2 � · · ·� Lxk � Lxt .
If there are some variables in the THR(xk+1, . . . , xx+q) term being fixed, e.g., guessed

or determined during the guessing phase, we can just fix its probability of being the fixed
value as one, while zero for the complement value.

We next show how to compute the outgoing LLR value of a variable in the
THR(xk+1, . . . , xx+q) term, say xk+1 without loss of generality. Let xl denote the
linear part, i.e., xl = x1 + · · ·+ xk, then the LLR value of it, denoted Lxl , is derived as
Lxl = Lx1

� · · · � Lxk . Denote the set of combinations of (xk+2, xk+3, . . . , xx+q) that
have no less than d − 1 one’s as W, and W̄ for the complement set. P (W ), P (W̄ ) can
be computed using the same way as in (35). Then we would get:

P (xk+1 = 1)

= p(xk+1 = 1, xl = y + 1,W) + p(xk+1 = 1, xl = y, W̄)

= p1
xk+1

· py+1
xl
· P (W) + p1

xk+1
· pyxl · P (W̄) (36)

Denote the set of combinations of (xk+2, xk+3, . . . , xx+q) that have no less than d
one’s as V, and V̄ for the complement set. We can get the probability of p(xk+1 = 0)
using the same way as below:

P (xk+1 = 0)

= p(xk+1 = 0, xl = y + 1,V) + p(xk+1 = 0, xl = y, V̄)

= p0
xk+1

· py+1
xl
· P (V) + p0

xk+1
· pyxl · P (V̄) (37)
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With the “intrinsic” part being excluded, the outgoing LLR value of xk+1 can be
computed as

Lxk+1
=
py+1
xl
· P (V) + pyxl · P (V̄)

py+1
xl · P (S) + pyxl · P (S̄)

. (38)

The LLR values of other variables in the THR term can be derived using the same
way. One can see that when q is large, computing the combinations would require large
overhead, introducing better resistance against our attack. Thus we only consider four
concrete XOR-THR predicates, which are actually XOR-MAJ predicates: XOR3-MAJ3,
XOR3-MAJ4, XOR4-MAJ3, and XOR4-MAJ4.
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Figure 18: Success probabilities for XOR-MAJ predicates when n = 1024, s = 1.3.

Figure 18 shows the success probabilities under different numbers of guesses when
n = 1024, s = 1.3. We can see that our guess-and-decode attack applies to these predi-
cates well. Using (27), we can get that when n = 1024, s = 1.3, local PRGs instantiated
on XOR4-MAJ3, XOR4-MAJ4 predicates cannot achieve 128 bits of security, while
XOR3-MAJ3, XOR3-MAJ4 cannot even achieve 80 bits of security.

Discussion. One important observation from Figure 18 is that the number of lin-
ear terms matters more than the number of variables in the MAJ term. For example,
the differences of success probabilities between predicates with a same number of lin-
ear terms, e.g., XOR4-MAJ3 and XOR4-MAJ4, are much smaller than those between
predicates with a same number of variables in the MAJ term, e.g., XOR3-MAJ3 and
XOR4-MAJ3. This makes sense since iterative decoding applies well to sparse systems,
and it is more sensitive to the number of terms in a check: the MAJ term can be regarded
as one special term. Another interesting observation is that predicates XORi-MAJ3 are
more resistant against our attack compared to XORi-MAJ4, i ∈ [3, 4]. This could be
because that the predicates are balanced when q = 2d− 1, while not so when q = 2d. It
is pointed out in [MCJS19] that the resiliency of a XORk-THRd,q is k if q = 2d−1, while
k− 1, otherwise. The predicates used in the suggested FiLIP instances in [MCJS19] are
all of the type XORk-THRd,2d−1. Our results match well with the analysis in [MCJS19]
and serve as a direct illustration of how the resiliency of a predicate would affect its
security.
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Challenge Parameters. We also ran extensive experiments to get some challenge
parameters following the way in Section 4.6 for providing 128-bit security. Table 10
shows the results and all of them are from applying the guess-and-decode attack. Size
512 is not suitable for constructing efficient local PRGs instantiated on these given
predicates, as the safe stretches would be smaller than 1. For each (n, s, `) set, we only
run 2000 instances as the iterative decoding takes some time, and more cryptanalysis
are encouraged.

n XOR3-MAJ3 XOR3-MAJ4 XOR4-MAJ3 XOR4-MAJ4

1024 1.07 1.04 1.25 1.22
2048 1.23 1.16 1.48 1.42

Table 10: Challenge Parameters for Different XOR-MAJ Predicates.

6 Concluding Remarks

We have presented a novel guess-and-determine attack and a guess-and-decode attack
on Goldreich’s pseudorandom generators instantiated on the P5 predicate, greatly im-
proving the attack proposed in [CDM+18]. Both attacks work based on similar guessing
strategies: we try to explore as many variables which can be determined for free as pos-
sible. In the guess-and-decode attack, we use a modified iterative decoding method to
solve the resulting system after guessing a certain number of variables, which provides
a new idea to solve a sparse quadratic system. We broke the candidate non-vulnerable
parameters given in [CDM+18] with a large gap and suggested some new challenge
parameters which could be targets for future investigation.

The attacks further narrow the concrete stretch regime of Goldreich’s pseudorandom
generators instantiated on the P5 predicate and largely shake the confidence in their
efficiency when the seed sizes are small.

We further extend the attacks to investigate some other predicates of the XOR-AND
and XOR-MAJ type, which are suggested as research target for constructing local PRGs.
Generally, local PRGs instantiated over predicates with low localities show susceptibility
to our attacks. It is safer to have more terms if large stretches are desired. For the non-
linear part of a predicate, it is better to be balanced than being unbalanced to resist
against our attacks. If in some extreme cases local PRGs instantiated on predicates with
low localities are required, our attacks could be helpful for choosing a safe stretch. The
attacks might apply to other predicates with similar structures as well.
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