438 research outputs found

    Low-Noise Micro-Power Amplifiers for Biosignal Acquisition

    Get PDF
    There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors. Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. For example, EEGs have amplitudes from 1 μV [microvolt] to 100 μV [microvolt] with much of the energy in the sub-Hz [hertz] to 100 Hz [hertz] band. APs have amplitudes up to 500 μV [microvolt] with much of the energy in the 100 Hz [hertz] to 7 kHz [hertz] band. In wearable/implantable systems, the low-power operation of the biopotential amplifier is critical to avoid thermal damage to surrounding tissues, preserve long battery life, and enable wirelessly-delivered or harvested energy supply. For an ideal thermal-noise-limited amplifier, the amplifier power is inversely proportional to the input-referred noise of the amplifier. Therefore, there is a noise-power trade-off which must be well-balanced by the designers. In this work I propose novel amplifier topologies, which are able to significantly improve the noise-power efficiency by increasing the effective transconductance at a given current. In order to reject the DC offsets generated at the tissue-electrode interface, energy-efficient techniques are employed to create a low-frequency high-pass cutoff. The noise contribution of the high-pass cutoff circuitry is minimized by using power-efficient configurations, and optimizing the biasing and dimension of the devices. Sufficient common-mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) are achieved to suppress common-mode interferences and power supply noises. Our design are fabricated in standard CMOS processes. The amplifiers’ performance are measured on the bench, and also demonstrated with biopotential recordings

    Low-Power Wireless Medical Systems and Circuits for Invasive and Non-Invasive Applications

    Get PDF
    Approximately 75% of the health care yearly budget of public health systems around the world is spent on the treatment of patients with chronic diseases. This, along with advances on the medical and technological fields has given rise to the use of preventive medicine, resulting on a high demand of wireless medical systems (WMS) for patient monitoring and drug safety research. In this dissertation, the main design challenges and solutions for designing a WMS are addressed from system-level, using off-the-shell components, to circuit implementation. Two low-power oriented WMS aiming to monitor blood pressure of small laboratory animals (implantable) and cardiac-activity (12-lead electrocardiogram) of patients with chronic diseases (wearable) are presented. A power consumption vs. lifetime analysis to estimate the monitoring unit lifetime for each application is included. For the invasive/non-invasive WMS, in-vitro test benches are used to verify their functionality showing successful communication up to 2.1 m/35 m with the monitoring unit consuming 0.572 mA/33 mA from a 3 V/4.5 V power supply, allowing a two-year/ 88-hour lifetime in periodic/continuous operation. This results in an improvement of more than 50% compared with the lifetime commercial products. Additionally, this dissertation proposes transistor-level implementations of an ultra-low-noise/low-power biopotential amplifier and the baseband section of a wireless receiver, consisting of a channel selection filter (CSF) and a variable gain amplifier (VGA). The proposed biopotential amplifier is intended for electrocardiogram (ECG)/ electroencephalogram (EEG)/ electromyogram (EMG) monitoring applications and its architecture was designed focused on improving its noise/power efficiency. It was implemented using the ON-SEMI 0.5 µm standard process with an effective area of 360 µm2. Experimental results show a pass-band gain of 40.2 dB (240 mHz - 170 Hz), input referred noise of 0.47 Vrms, minimum CMRR of 84.3 dBm, NEF of 1.88 and a power dissipation of 3.5 µW. The CSF was implemented using an active-RC 4th order inverse-chebyshev topology. The VGA provides 30 gain steps and includes a DC-cancellation loop to avoid saturation on the sub-sequent analog-to-digital converter block. Measurement results show a power consumption of 18.75 mW, IIP3 of 27.1 dBm, channel rejection better than 50 dB, gain variation of 0-60dB, cut-off frequency tuning of 1.1-2.29 MHz and noise figure of 33.25 dB. The circuit was implemented in the standard IBM 0.18 µm CMOS process with a total area of 1.45 x 1.4 mm^(2). The presented WMS can integrate the proposed biopotential amplifier and baseband section with small modifications depending on the target signal while using the low-power-oriented algorithm to obtain further power optimization

    Design of an Active Harmonic Rejection N-Path Filter for Highly Tunable RF Channel Selection

    Get PDF
    As the number of wireless devices in the world increases, so does the demand for flexible radio receiver architectures capable of operating over a wide range of frequencies and communication protocols. The resonance-based channel-select filters used in traditional radio architectures have a fixed frequency response, making them poorly suited for such a receiver. The N-path filter is based on 1960s technology that has received renewed interest in recent years for its application as a linear high Q filter at radio frequencies. N-path filters use passive mixers to apply a frequency transformation to a baseband low-pass filter in order to achieve a high-Q band-pass response at high frequencies. The clock frequency determines the center frequency of the band-pass filter, which makes the filter highly tunable over a broad frequency range. Issues with harmonic transfer and poor attenuation limit the feasibility of using N-path filters in practice. The goal of this thesis is to design an integrated active N-path filter that improves upon the passive N-path filter’s poor harmonic rejection and limited outof- band attenuation. The integrated circuit (IC) is implemented using the CMRF8SF 130nm CMOS process. The design uses a multi-phase clock generation circuit to implement a harmonic rejection mixer in order to suppress the 3rd and 5th harmonic. The completed active N-path filter has a tuning range of 200MHz to 1GHz and the out-ofband attenuation exceeds 60dB throughout this range. The frequency response exhibits a 14.7dB gain at the center frequency and a -3dB bandwidth of 6.8MHz

    Trade-off and Design optimization of the Notch filter for ultralow power ECG application

    Get PDF
    ECG acquisition, several leads combined with signals from different body parts (i.e., from the right wrist and the left ankle) are utilized to trace the electric activity of the heart. ECG acquisition board translates the body signal to six leads and processes the signal using a low-pass filter (LPF) and SAR ADC. The acquisition board is composed of: an instrumentation amplifier, a high-pass filter, a 60-Hz notch filter, and a common-level adjuster. But miniaturization or need of portable devices for measuring Bio-Potential parameters has led to design of IC’s for biomedical application with ultra-low power Because of miniaturization i.e. use of lower technology nodes has led to non-idealities which reduces the attenuation of Common Mode to differential component i.e. not CMRR. Because of this demerit the power line interference signal can’t be assumed as a common mode signal. Hence we need to design a power line interference filter to avoid the contamination of the signal

    Low Voltage Low Power Analogue Circuits Design

    Get PDF
    Disertační práce je zaměřena na výzkum nejběžnějších metod, které se využívají při návrhu analogových obvodů s využití nízkonapěťových (LV) a nízkopříkonových (LP) struktur. Tyto LV LP obvody mohou být vytvořeny díky vyspělým technologiím nebo také využitím pokročilých technik návrhu. Disertační práce se zabývá právě pokročilými technikami návrhu, především pak nekonvenčními. Mezi tyto techniky patří využití prvků s řízeným substrátem (bulk-driven - BD), s plovoucím hradlem (floating-gate - FG), s kvazi plovoucím hradlem (quasi-floating-gate - QFG), s řízeným substrátem s plovoucím hradlem (bulk-driven floating-gate - BD-FG) a s řízeným substrátem s kvazi plovoucím hradlem (quasi-floating-gate - BD-QFG). Práce je také orientována na možné způsoby implementace známých a moderních aktivních prvků pracujících v napěťovém, proudovém nebo mix-módu. Mezi tyto prvky lze začlenit zesilovače typu OTA (operational transconductance amplifier), CCII (second generation current conveyor), FB-CCII (fully-differential second generation current conveyor), FB-DDA (fully-balanced differential difference amplifier), VDTA (voltage differencing transconductance amplifier), CC-CDBA (current-controlled current differencing buffered amplifier) a CFOA (current feedback operational amplifier). Za účelem potvrzení funkčnosti a chování výše zmíněných struktur a prvků byly vytvořeny příklady aplikací, které simulují usměrňovací a induktanční vlastnosti diody, dále pak filtry dolní propusti, pásmové propusti a také univerzální filtry. Všechny aktivní prvky a příklady aplikací byly ověřeny pomocí PSpice simulací s využitím parametrů technologie 0,18 m TSMC CMOS. Pro ilustraci přesného a účinného chování struktur je v disertační práci zahrnuto velké množství simulačních výsledků.The dissertation thesis is aiming at examining the most common methods adopted by analog circuits' designers in order to achieve low voltage (LV) low power (LP) configurations. The capability of LV LP operation could be achieved either by developed technologies or by design techniques. The thesis is concentrating upon design techniques, especially the non–conventional ones which are bulk–driven (BD), floating–gate (FG), quasi–floating–gate (QFG), bulk–driven floating–gate (BD–FG) and bulk–driven quasi–floating–gate (BD–QFG) techniques. The thesis also looks at ways of implementing structures of well–known and modern active elements operating in voltage–, current–, and mixed–mode such as operational transconductance amplifier (OTA), second generation current conveyor (CCII), fully–differential second generation current conveyor (FB–CCII), fully–balanced differential difference amplifier (FB–DDA), voltage differencing transconductance amplifier (VDTA), current–controlled current differencing buffered amplifier (CC–CDBA) and current feedback operational amplifier (CFOA). In order to confirm the functionality and behavior of these configurations and elements, they have been utilized in application examples such as diode–less rectifier and inductance simulations, as well as low–pass, band–pass and universal filters. All active elements and application examples have been verified by PSpice simulator using the 0.18 m TSMC CMOS parameters. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of structures.

    Design of a Low Power External Capacitor-Less Low-Dropout Regulator with Gain-Compensated Error Amplifier

    Get PDF
    This thesis introduces a gain-compensated external capacitor-less low-dropout voltage regulator with total 5.7 uA quiescent current at all load conditions. The two-stage gain-compensated error amplifier is implemented with a cross-couple pair negative resistor to make the LDO achieve higher gain (> 50 dB) with very low bias current (< 1.3 uA). The LDO can achieve 52 dB loop gain at no load condition, 64 dB at 1 mA and 54 dB at 100 mA load. During transients (0 A to 100 mA) the undershoot is optimized to 98.6 mV with 100 ns rising and falling time through a differentiator circuit to boost the LDO’s transient response. The phase margin of the proposed LDO is 55◦ at 1 mA and 79.27◦ at max load (100 mA). Figure of merit (FOM) of this work is 2.79 fs which is very small

    Low-Voltage Analog Circuit Design Using the Adaptively Biased Body-Driven Circuit Technique

    Get PDF
    The scaling of MOSFET dimensions and power supply voltage, in conjunction with an increase in system- and circuit-level performance requirements, are the most important factors driving the development of new technologies and design techniques for analog and mixed-signal integrated circuits. Though scaling has been a fact of life for analog circuit designers for many years, the approaching 1-V and sub-1-V power supplies, combined with applications that have increasingly divergent technology requirements, means that the analog and mixed-signal IC designs of the future will probably look quite different from those of the past. Foremost among the challenges that analog designers will face in highly scaled technologies are low power supply voltages, which limit dynamic range and even circuit functionality, and ultra-thin gate oxides, which give rise to significant levels of gate leakage current. The goal of this research is to develop novel analog design techniques which are commensurate with the challenges that designers will face in highly scaled CMOS technologies. To that end, a new and unique body-driven design technique called adaptive gate biasing has been developed. Adaptive gate biasing is a method for guaranteeing that MOSFETs in a body-driven simple current mirror, cascode current mirror, or regulated cascode current source are biased in saturation—independent of operating region, temperature, or supply voltage—and is an enabling technology for high-performance, low-voltage analog circuits. To prove the usefulness of the new design technique, a body-driven operational amplifier that heavily leverages adaptive gate biasing has been developed. Fabricated on a 3.3-V/0.35-μm partially depleted silicon-onv-insulator (PD-SOI) CMOS process, which has nMOS and pMOS threshold voltages of 0.65 V and 0.85 V, respectively, the body-driven amplifier displayed an open-loop gain of 88 dB, bandwidth of 9 MHz, and PSRR greater than 50 dB at 1-V power supply
    corecore