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Abstract

The scaling of MOSFET dimensions and power supply voltage, in conjunction with an

increase in system- and circuit-level performance requirements, are the most important

factors driving the development of new technologies and design techniques for analog

and mixed-signal integrated circuits. Though scaling has been a fact of life for analog

circuit designers for many years, the approaching 1-V and sub-1-V power supplies,

combined with applications that have increasingly divergent technology requirements,

means that the analog and mixed-signal IC designs of the future will probably look quite

different from those of the past. Foremost among the challenges that analog designers

will face in highly scaled technologies are low power supply voltages, which limit

dynamic range and even circuit functionality, and ultra-thin gate oxides, which give rise to

significant levels of gate leakage current.

The goal of this research is to develop novel analog design techniques which are

commensurate with the challenges that designers will face in highly scaled CMOS

technologies. To that end, a new and unique body-driven design technique called

adaptive gate biasing has been developed. Adaptive gate biasing is a method for

guaranteeing that MOSFETs in a body-driven simple current mirror, cascode current

mirror, or regulated cascode current source are biased in saturation—independent of

operating region, temperature, or supply voltage—and is an enabling technology for

high-performance, low-voltage analog circuits. To prove the usefulness of the new design

technique, a body-driven operational amplifier that heavily leverages adaptive gate

biasing has been developed. Fabricated on a 3.3-V/0.35-µm partially depleted silicon-on-



v

insulator (PD-SOI) CMOS process, which has nMOS and pMOS threshold voltages of

0.65 V and 0.85 V, respectively, the body-driven amplifier displayed an open-loop gain of

88 dB, bandwidth of 9 MHz, and PSRR greater than 50 dB at 1-V power supply. 
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Chapter 1

Introduction

“Solutions in active threshold regulation, substrate biasing, and novel design architec-

ture will be required to extend the trend for lower supply voltages for mixed-signal appli-

cations.”

—International Technology Roadmap for Semiconductors: Process Integration, Devices,

and Structures Chapter, p. 25, 2001 edition; Radio Frequency and Analog/Mixed-Signal

Technologies for Wireless Communications Chapter, p. 30, 2003 edition

1.1 Trends in Analog and Mixed-Signal Integrated Circuit Design

The scaling of MOSFET dimensions and power supply voltage, in conjunction with an

increase in system- and circuit-level performance requirements, are the most important

factors driving the development of new technologies and design techniques for analog

and mixed-signal integrated circuits. Though scaling has been a fact of life for analog cir-

cuit designers for many years, the approaching 1-V and sub-1-V power supplies, com-

bined with applications that have increasingly divergent technology requirements, means

that the CMOS analog and mixed-signal IC designs of the future will probably look quite

different from those of the past. Foremost among the challenges that analog designers

will face in the highly scaled technologies of the future are very low supply voltages and

ultra-thin gate oxides. Very low power supply voltages (< 1 V) are a challenge because
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dynamic range and even circuit functionality are limited; whereas ultra-thin gate oxides

are a challenge because they give rise to significant levels of gate leakage current.

Commensurate with the changing landscape of CMOS technology, there has been an

explosion of interest in novel analog and mixed-signal design techniques that can deal

with these challenges. Foremost among these design techniques are (in alphabetical

order) body-driven MOSFETs, common-mode level shifting, floating-gate MOSFETs, and

switched op-amp. Of these, no single design technique has emerged as the best in all

situations; rather, each is useful in certain situations. For instance, switched-op-amp

design is useful for low-voltage switched-capacitor circuits; whereas common-mode level

shifting with resistors is useful for wide voltage dynamic range, continuous-time signal

processing. While no design technique has emerged as the best in all situations, it is the

opinion of this author that body driving is one of the least favored and yet one of the

potentially most useful of all the low-voltage analog design techniques [1]. 

Body driving refers to using the MOSFET body terminal as a signal and/or bias input,

and it is a useful low-voltage design technique because there is no threshold voltage

associated with the body terminal, thus dynamic range is increased. The potential of

body driving is illustrated by the fact that it can be used to implement a host of functions

important to both continuous-time and discrete-time analog circuits—including a single

polarity differential pair with rail-to-rail input common-mode range (ICMR) and simple

current mirrors with input and output voltages close to VDSAT. However, body driving also

has several drawbacks; two of which, the possibility of excessively forward biasing the

body–source junction and the roughly three times reduction in transconductance for a
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body-driven MOSFET compared to a gate-driven MOSFET, are the among most often

cited reasons for not using the body-driven design technique [2].

1.2 Research Goals

The goals of this research can be summarized as follows:

• to investigate the viability of body driving as a low-voltage analog circuit design

technique,

• to develop, as necessary, novel body-driven circuit primitives (e.g., current mirrors

and differential pairs) that will enable reliable, high-performance body-driven circuits,

and

• to prove the usefulness of the new circuit techniques by successfully prototyping a

high-performance body-driven operational amplifier.

To meet these ends, previous work in body-driven circuit design has been studied, and

the fundamental problems which plagued body driving have been isolated and under-

stood. In addition, a new design technique called adaptive gate biasing has been devel-

oped, which has led to the design of robust body-driven simple current mirrors, simple

cascode current mirrors, and regulated cascode current mirrors—all of which are capa-

ble of operating within a 1-V power supply system. To prove the viability of this design

technique an operational amplifier circuit has been designed that operates from a power

supply voltage ranging from 1 V to 3.3 V, but which is fabricated on a 3.3-V/0.35-µm par-

tially depleted silicon-on-insulator (PD-SOI) technology that has nMOS and pMOS
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threshold voltages of 0.65 V and 0.85 V, respectively. This is the first operational ampli-

fier to make almost exclusive use of body-driven analog primitives, including body-driven

simple current mirrors, body-driven simple cascode current mirrors, and body-driven reg-

ulated cascode current sources. Furthermore, in terms of power efficiency, open-loop

voltage gain, small-signal unity-gain bandwidth, slew rate, input common-mode range,

common-mode rejection ratio, and power supply rejection ratio, this body-driven opera-

tional amplifier is competitive with other 1-V operational amplifiers that use various other

design techniques—thus proving the viability of body driving as a low-voltage analog

technique.

1.3 Overview of the Dissertation

This dissertation presents a study in the design of low-voltage analog and mixed-signal

circuits using the body-driven circuit technique. Chapter 2 presents a review of scaling

trends for CMOS technology, explores how these trends will affect analog circuit design,

and then reviews the most promising design techniques for highly scaled CMOS. From

this review it is shown that body driving has great potential as a low-voltage analog

design technique. Chapter 3 presents a thorough introduction to the operation of body-

driven transistors, including technology considerations, small-signal models, frequency

performance, SPICE models, and temperature characteristics. In Chapter 4 a literature

review describing previous work in body-driven current mirrors, differential pairs, and

amplifiers is presented. Chapter 4 serves as both a review of the state of the art in body-

driven circuit design, and an introduction to body-driven design techniques. Chapter 5

presents the original contributions of this research, including a detailed development of

the adaptive gate bias technique, the design and characterization of two body-driven



5

operational amplifiers, and a comparison of the newly developed body-driven op-amp to

other published low-voltage amplifiers. Chapter 6 presents a general discussion about

the application of body-driven techniques in analog and mixed-signal systems. Finally,

Chapter 7 concludes this dissertation. The conclusion includes both a summary of the

contributions of this research, and a discussion of future directions for body-driven

research. 
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Chapter 2

CMOS Technology Trends and Implications for Analog Circuit 

Design

2.1 Introduction

In 1965, on the basis of scant evidence, Gordon Moore predicted that the density of inte-

grated circuits would double roughly every year for the next ten years [3]. In 1975, when

this prophetic prediction proved true, it was codified as Moore’s Law that the density of

integrated circuits would continue to increase exponentially for the forseeable future [4],

[5]. Quantitatively described by technology scaling or simply “scaling”, this irresistible

trend has defined the integrated circuit industry from its earliest times until today. While

Moore’s Law is a well-known quantity to circuit designers, its implications for modern

CMOS technology and modern CMOS analog circuit design are perhaps less well

known. Therefore at this time it is useful to present a brief review of the present and pre-

dicted future trends for CMOS technology, and to discuss the implications of these trends

for analog circuit design. From this discussion it will be shown that, due to the significant

challenges that highly scaled CMOS technologies pose for analog circuit design, novel

design techniques, including body driving, will be required in the future.

Section 2.2 discusses MOSFET scaling trends for CMOS technology, highlighting those

factors which have an impact on analog circuit design. In Section 2.3 the impact of scal-

ing on analog circuit design, specifically the impact of reduced power supply voltages

and gate leakage current, will be examined and the challenges facing analog circuit



7

designers will be highlighted. In Section 2.4 the most promising new analog design tech-

niques, including body-driven MOSFETs, common-mode level shifting, floating-gate

MOSFETs, and switched op-amp, will be introduced and compared. From this discus-

sion it will be shown that body driving is an extremely important design technique which

has great potential for low-voltage analog applications. Finally, Section 2.5 concludes

this chapter.

2.2 Scaling Trends for Digital and Analog CMOS Technologies

2.2.1 Introduction to Technology Scaling

Simply put, technology scaling refers to a reduction in MOSFET dimensions which allows

increased packing densities and higher performance in integrated circuits. More than any

other factor, it has been the ability to scale CMOS technology in a predictable and con-

sistent manner that has led to the proliferation of CMOS ICs we see today [6]. In this

section the fundamental trade-offs associated with technology scaling are reviewed,

using the approximation of a long-channel MOSFET. Figure 2.1 presents a simplified dia-

Figure 2.1:  Cross section of a n-type bulk-Si MOSFET showing process parameters 
and device dimensions which are scaled
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gram of a bulk Si nMOSFET and shows the key device dimensions, gate-oxide thick-

ness tox and minimum channel length Lmin, which will be considered in this discussion of

scaling. Not shown on the diagram are the important voltages related to MOSFET opera-

tion, power supply voltage VDD and threshold voltage VTH. 

As the primary goals of scaling are to increase the density and improve the performance

of digital integrated circuits, the main lever for achieving these improvements is the gate

length. The general approach in scaling is to introduce a new generation roughly every

three years, and for each generation to have a minimum gate length that is 30% smaller

than the previous generation. If the aspect ratios of the devices within a given circuit are

held constant, then a 30% reduction in gate length yields a roughly 50% reduction in

gate area, or a doubling of the packing density. To gauge the increase in performance

with scaling, a common figure of merit is the intrinsic MOSFET delay  [7], given by

where Ctot is the total gate capacitance of a MOSFET and IDSAT is the maximum satura-

tion current (that is, the saturation current at VGS = VDD). Using the MOSFET square-law

equation,  can be calculated as

where Cox is the gate oxide capacitance per unit area, µ is the MOSFET mobility, and W

τ

τ
CtotVDD
IDSAT
--------------------,= (2.1)

τ

τ
CoxWLVDD

µCox W L⁄( )
2

------------------------------ VDD VTH–( )2
---------------------------------------------------------------- 2L2

µ
---------

VDD
VDD VTH–( )2
----------------------------------,⋅= = (2.2)
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and L are the MOSFET gate width and length, respectively. Equation 2.2 shows that the

intrinsic MOSFET delay scales as L2, assuming that VDD and VTH are constant.

While it is straightforward to improve MOSFET speed by decreasing L, this solution also

creates the problem of increasing electric fields within the device. For instance, the maxi-

mum transverse (i.e., source–drain) electric field is given by

If the electric fields within the device get too large, device lifetime and reliability will be

compromised. Likewise, the dynamic power dissipation of a digital circuit is described by

where f is the operating frequency of the circuit. To limit both electric field intensity within

the device and dynamic power dissipation, it is typically necessary to scale the power

supply voltage along with the channel length.

The final two parameters that will be considered are oxide thickness tox and threshold

voltage. As VDD is scaled down, the maximum vertical electrical field (i.e., gate–channel)

will be reduced, which limits the transistor drive current. Therefore oxide thickness must

be scaled along with power supply and channel length, in order to maintain drive cur-

rent. Drive current is also dependent on gate-overdrive (VDD − VTH), which implies that

VTH should scale down with the other parameters. However, threshold voltage sets the

ET Max,
VDD
L
----------= (2.3).

PD fVDD
2 ,∝ (2.4)
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sub-threshold leakage current ISUB (the drain current at VGS = 0), which is given by [8]

where n is the sub-threshold slope factor and UT is the thermodynamic voltage (approxi-

mately 26 mV at room temperature). Sub-threshold current, which is exponentially

dependent on threshold voltage and independent of power supply voltage, is the key fac-

tor in determining static power dissipation in digital circuits (at least for processes with

gate lengths > 65 nm). In order to minimize static power dissipation, threshold voltage is

typically not scaled, or scaled only very weakly, from one CMOS process generation to

another.

Table 2.1 presents a summary of the negative and positive effects of scaling critical

MOSFET parameters. This table considers scaling from a digital circuit perspective.

ISUB 2nµCox W L⁄( )UT
2 VTH–

nUT
------------- 

  ,exp= (2.5)

Table 2.1:  Negative and positive effects of scaling critical MOSFET parameters

MOSFET Parameter
Scaled

Positive Effect Negative Effect

VDD reduces dynamic power 
dissipation, increases reli-
ability

reduces speed

VTH increases speed increases static power 
dissipation

tox increases drive current decreases reliability

L reduces area, increases 
speed

decreases reliability
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Each row in the table considers the effect of scaling one parameter, assuming that all

other parameters are held constant.

2.2.2 Scaling Trends for Digital CMOS Technologies

The purpose of the previous section was to provide the reader with an understanding of

the basic factors affecting technology scaling in digital circuits. In this section the scaling

trends most important for circuit design: VDD, VTH, tox, and Lmin, are presented. The data

presented here span the years 2001–2009, and therefore represent the recent past,

present, and predicted future trends for CMOS technology. The data comes from two

sources: the 2003 International Technology Roadmap for Semiconductors (ITRS), which

provided predictions about future trends, and a paper published in the Proceedings of

the IEEE, which provided information about historical trends [6], [7]. 

Figure 2.2 presents the scaling trends for CMOS power supply voltage for the years

2001–2009. Looking at this plot, one will immediately notice that there are three different

trends shown for power supply voltage. These three curves are labeled high perfor-

mance (HP), low operating power (LOP), and low standby power (LSP), and they each

represent a VDD scaling trend that has been optimized for a distinct, but broad category

of digital circuits. Thus, high performance refers to digital circuits whose primary concern

is speed and that operate from an effectively unlimited power source; desktop and server

computers are the best examples of HP applications. Low operating power refers to sys-

tems that still need to operate at high speeds, but also must operate within a limited

power budget; laptop computers are a good example of an LOP application. Finally low
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standby power refers to systems for which minimizing power dissipation, both static and

dynamic, is of paramount importance; the digital circuits within a cellular telephone are a

good example of an LSP application. Figure 2.3 presents the scaling trend over the

same period for MOSFET threshold voltage, and also uses the designations of high per-

formance, low operating power, and low standby power.

The main reason that CMOS technology is forced to offer multiple power supply and

threshold voltages within a given technology generation is that VDD and VTH are now so

low that it is not possible to meet the performance requirements of the wide range of dif-

fering applications with a single choice of operating voltages. As an example, note that in

2005 the VDD for HP and LSP is 1.2 V, while it is only 1 V for LOP. Conversely the VTH is

0.2 V for HP, 0.3 V for LOP, and 0.5 V for the LSP technology option. Thus we can see

Figure 2.2:  Scaling trend for digital CMOS power supply voltage
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that the HP CMOS option has the highest VDD and lowest VTH to maximize speed, at the

cost of increased power. LSP has a VDD equal to the HP VDD, but also has the highest

VTH, which allows it to minimize sub-threshold leakage at the cost of reduced speed.

Finally the LOP option has the lowest VDD and a VTH in between the other two, resulting

in moderate speed and moderate levels of leakage current. Considering the trends as a

whole, VDD is between 1.5 V and 1.2 V in 2001 and scales to values of 1.2 V and 0.8 V

in 2009. On the other hand, threshold voltage scales very little because it must generally

be chosen for leakage current minimization, which is independent of power supply volt-

age. From 2005 onwards the available threshold voltages will be close to 0.2 V, 0.26 V,

and 0.5 V. 

Figure 2.3:  Scaling trend for digital CMOS threshold voltage
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Figure 2.4 presents the scaling trends for both CMOS channel length and oxide thick-

ness. The channel length runs from 120 nm in 2001 to only 35 nm in 2009. Oxide thick-

ness starts at just above 3 nm in 2001, and then splits in 2003 to three different trends as

per the HP, LOP, LSP discussion above. The gate oxide thickness in 2009 will range

between 0.9 nm and 1.6 nm.

2.2.3 Scaling Trends for Analog CMOS Technologies

The previous discussions about the trade-offs inherent in technology scaling, and the

scaling trends predicted for the future, referred to what can be called digital CMOS tech-

nology; that is, a CMOS technology which has been optimized for digital applications.

This is an appropriate approach to the problem because CMOS technology is predomi-

nantly used for digital applications, and digital applications will always be the prime

Figure 2.4:  Digital CMOS scaling trend for channel length and oxide thickness
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mover for technology scaling. However, in recent years analog circuit applications,

including high-performance ADCs and RF power amplifiers, have become essential com-

ponents of mixed-signal systems and are increasingly being recognized as technology

drivers in their own right [9]. The problem with including analog applications in the calcu-

lus of technology scaling is that the technology needs of digital and analog circuits are

often at odds. Specifically, one of the major differences is that very low power supply

voltages represent a major hurdle for analog circuits, while low power supply voltage is

generally an advantage, or at least not a problem, for digital circuits. 

One popular strategy for factoring analog (i.e., higher VDD) considerations into the pro-

cess flow is to include a thicker oxide option that would allow devices to operate at the

higher VDD needed by some analog applications. This thick-oxide option has the added

purpose of allowing high-voltage I/O capability for interfacing off-chip with digital circuits

that use a higher operating voltage. Figure 2.5 presents the power supply trend that will

be required for proper operation of some analog circuits—specifically including higher

performance ADCs and RF power amplifiers [9]. The two curves in this plot represent the

upper and lower limits for analog power supply voltage, which are 2.5 V and 1.8 V,

respectively, for most of the decade. Certainly this is much more manageable than the

0.8 V to 1.2 V range predicted for the digital technology options. However, the power

supply data presented in Figure 2.2 and Figure 2.5 should not be considered equally

realistic. The trends presented for digital CMOS technology are much more detailed, and

since all CMOS technologies will be first optimized for digital applications, they will offer

options very close to what was presented in Figures 2.2 and 2.3. On the other hand, the
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predictions for analog power supply only describe what will be needed for some analog

design applications. There is no guarantee that an analog designer will have these

power supply options to work with. Frequently, analog circuit designers will have to

design within the power supply and threshold voltage constraints dictated by digital

CMOS scaling trends. These issues will be described in more detail in the next section.

Nonetheless, the fact that analog circuit needs are being factored into the technology

roadmap is significant, and must be considered when trying to understand what the com-

plete field of analog circuit design will look like in the future.

2.3 The Low-Voltage Challenge to Analog Circuit Design

In Section 2.2 the scaling trends that can be expected for CMOS technology were pre-

sented; in this section the implications of these scaling trends for analog circuit design

Figure 2.5:  Required CMOS scaling trend for highest-performance analog 
applications
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will be explored. Since analog circuit design is a broad field with many different applica-

tions that have different performance requirements and utilize different circuit topologies,

it is not possible to exhaustively consider the effects of technology scaling on every

aspect of analog circuit design. Instead, this section considers three of the most impor-

tant consequences of scaling: how reduced power supply voltage affects power dissipa-

tion, how reduced power supply voltage affects circuit functionality, and how gate

leakage current affects circuit functionality. In Section 2.3.1 an analysis of the relation-

ship between power supply voltage and power dissipation in analog circuits is pre-

sented, and it is shown that for high-performance (i.e., high-speed, high-resolution)

applications power dissipation is the limiting factor in determining power supply voltage.

In Section 2.3.2 the limitations on analog circuit functionality due to reduced power sup-

ply voltage are analyzed by considering the power supply and threshold voltage require-

ments for several benchmark circuits. In Section 2.3.3 the levels of gate leakage current

that will be present in highly scaled technologies, and the effects of gate leakage current

on analog circuits, will be studied. Finally, in Section 2.3.4 some predictions about the

future state of analog circuit design are made, based on the analysis presented in the

previous sections. 

2.3.1 Power Supply Voltage and Power Dissipation

Analog circuits can be differentiated from digital circuits by the fact that in analog circuits

the precise values of input and output voltages are important. The fundamental limitation

to the precision that an analog circuit can achieve is noise, which is present in all elec-

tronic systems due to the random thermal motion of electrons. A useful figure of merit for

the precision of analog systems is the signal-to-noise ratio (SNR), which is essentially
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the ratio of the maximum to minimum signal that an amplifier can resolve, and is quanti-

tatively described by

where PSIGNAL is the maximum signal power at the output of a circuit, and PNOISE is the

noise power at the output of a circuit. In this section the relationship between power sup-

ply voltage and power dissipation is studied for a standard analog circuit, under the

assumption that the SNR and bandwidth of the circuit are held constant. To proceed with

this analysis, one must compute SNR in terms of the critical circuit parameters. Because

of its generality, a single-pole operational transconductance amplifier (OTA) is used as

the benchmark analog circuit in this study.

Figure 2.6 presents the schematic of a simple analog circuit, consisting of an OTA con-

nected as a unity-gain follower and loaded by a capacitor, that will be used in this study.

Assuming a single-tone input, the maximum, mean-square signal power at the output of

SNR
PSIGNAL
PNOISE
--------------------,= (2.6)

Figure 2.6:  Simple analog circuit used to explore the relationship between SNR, 
power supply voltage, and power dissipation
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this circuit can be calculated as

The closed-loop frequency response of the circuit can be calculated as

where  is the small-signal unity-gain bandwidth given by

and  is the transconductance of the OTA’s input differential pair. The mean-square

noise power at the output of the circuit can be calculated as

where  represents the input-referred voltage noise density. Assuming that the input

noise is dominated by the thermal noise of the input pair, it can be calculated as

where k is Boltzmann’s constant, T is absolute temperature, and γ is a constant roughly

equal to 2/3. Finally, the output noise power can be calculated by evaluating the integral
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VPP

2

8
---------= (2.7).

H f( ) 1

1 j ffo
----+

----------------,=
(2.8)

fo

fo
gM

2πC
-----------,= (2.9)

gM

PNOISE eni
2 fd

1 f
fo
---- 

  2
+

----------------------,
0

∞

∫= (2.10)

eni
2

eni
2 8kTγ 1

gM
------,= (2.11)



20

in Equation 2.10

and the SNR can be expressed as

To understand how voltage scaling affects the power dissipation of an analog circuit,

assume that  and that  is scaled by a factor  . In this case

the scaled peak-to-peak output swing  will be

To maintain a constant SNR the load capacitance must scale as

and to maintain the bandwidth , the  must also scale as

If we assume that the transconductance efficiency  of the input pair devices in the

PNOISE
2γkT
C
------------,= (2.12)

SNR
VPP

2 C
16γkT
----------------= (2.13).

VPP VDD≈ VDD 1 α⁄ α 1>( )

VPPs

VPPs
VPP
α
---------⇒ (2.14).

Cs α2C,⇒ (2.15)

fo gM

gMs α2gM⇒ (2.16).
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transconductor remains constant, the bias current of the OTA must scale as

where  is the tail current for the OTA. Finally, if we assume that the OTA supply current

is in direct proportion to the tail current, we can see how the power dissipation of this

analog circuit will scale with power supply voltage, assuming SNR and bandwidth are

constant: 

Equation 2.18 shows that the power dissipation of an analog circuit is inversely propor-

tional to power supply voltage, assuming SNR and bandwidth are constant. This is a fun-

damental result of thermodynamics and is independent of circuit topology and device

technology. Furthermore, although a simple OTA was used in this analysis, this basic

relationship is true for all analog circuits [8]. The most significant conclusion that can be

drawn from this analysis is that for the highest performance analog circuits, such as

ADCs with resolution greater than 12 bits and operating speeds greater than 10 MHz,

the power dissipation will become prohibitively large if the power supply voltage is scaled

to one volt. It is for these applications that an analog power supply voltage in the range

of 1.8 to 2.5 V has been defined, as in Figure 2.5.

ITs α2IT,⇒ (2.17)

IT

PDs VDD α⁄( ) α2IT( ) αPD⇒= (2.18).
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2.3.2 Power Supply Voltage and Circuit Functionality

The previous section showed that for the highest performance analog circuits, power dis-

sipation and operating speed will be the limiting factors in determining the allowable

power supply voltage. However, there are many other analog circuits which perform at

low to moderate speeds (e.g., DC to 10 MHz) and have an SNR in the 10- to 12-bit

range. For these applications circuit functionality, instead of power dissipation, will often

be the limiting factor in determining power supply voltage. Furthermore, since these

applications can theoretically run at very low power supply voltages, it will be expected

that they operate at the standard digital power supply voltages discussed in Section

2.2.2, and use the digital CMOS threshold voltages also described in that section. In this

section the limitations of analog circuit functionality at low supply voltage will be studied

by analyzing the power supply voltage required for several benchmark analog circuits.

2.3.2.1 Minimum Analog Power Supply Voltage

Figure 2.7 presents a schematic of a simple analog circuit, which has only two transistors

connected in series between VDD and VSS and therefore shows the minimum required

power supply voltage for an analog circuit. The minimum VDD required for this circuit is 

where the 100 mV term is included to allow the internal high-impedance node adequate

dynamic range to respond to an input signal, and to account for any shifts in threshold

voltage over process. If we assume that all of the transistors are operating at the center

VDDmin VGS VDSAT 100mV,+ += (2.19)
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of moderate inversion, then the VGS is equal to VTH + 25 mV and VDSAT is equal to 150

mV, therefore the minimum power supply voltage can be calculated as

While it is true that a lower minimum power supply voltage would be allowed by operat-

ing one or more of the MOSFETs in weak inversion, the purpose of this analysis is simply

to study the power supply requirements for analog circuits without reference to a specific

application or design constraints. Moderate inversion is often a very wise choice for bias-

ing circuits because it provides good power efficiency and dynamic range, while allowing

much higher operating speeds and requiring less area than weak inversion operation

[10]. Since it is so widely used, it is a good way to generalize the biasing of an analog cir-

cuit. Furthermore, it would be very unsound design practice to assume a priori that all of

one’s circuits must operate in weak inversion.

Figure 2.7:  Circuit showing the minimum power supply voltage required for an analog 
circuit

VDDmin VTH 275mV+= (2.20).
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Table 2.2 presents VDD and VTH voltages which are predicted for the 45-nm node (that

is, the year transistors with a minimum gate length of 45 nm will be introduced), which

should be in use sometime around 2007. Using these numbers, we can consider how

power supply and threshold voltage will limit analog circuit operation. First, note that ana-

log circuit designers are not limited to choosing only one technology option (e.g., choos-

ing LOP VDD and LOP VTH). Instead analog designers can consider a mix of different

technology options (e.g., HP VDD and LOP VTH) that provides the best trade-offs for cir-

cuit functionality and performance. Figure 2.8 presents the VDD overhead (defined as

Table 2.2:  VDD and VTH for HP, LOP, and LSP Digital Technologies at the 45-nm node

VDD VTH

HP 1.1 V 0.20 V

LOP 0.9 V 0.27 V

LSP 1.2 V 0.51 V

LSP VDD HP VDD LOP VDD

HP VTH  0.725 V 0.625 V 0.425 V

LOP VTH 0.655 V 0.555 V 0.355 V

LSP VTH 0.415 V 0.315 V 0.115 V

Figure 2.8:  VDD overhead (VDD − VDDmin) for the circuit of Figure 2.7 at the 45-nm 
node for all possible technology combinations
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VDD − VDDmin) for all possible technology combinations at the 45-nm node. In this table

the columns represent VDD technology options and the rows represent VTH technology

options. Each element in the table describes the VDD overhead for the combination of

two technology options; for instance, the value of 0.655 V in the left column, middle row

is the VDD overhead for the circuit of Figure 2.7 when the LSP VDD (1.2 V) and the LOP

VTH (0.27 V) are used. Also note VDD decreases in moving to the right, and VTH

increases moving down. Therefore in moving to the right or moving down, one is choos-

ing technology combinations which result in reduced VDD overhead, and hence more dif-

ficult analog circuit designs. 

Considering the data presented in Figure 2.8, perhaps the most important result is that

VDD overhead is positive for all possible technology combinations. This is an important

result because the minimum required VDD described in Equation 2.20 can effectively be

considered the minimum required VDD for any analog circuit, independent of the design

technique used. Thus, Figure 2.8 indicates that analog circuit design will still be possible

in highly scaled digital CMOS technologies.

2.3.2.2 Differential Pair with Current Mirror Load

In the previous section the minimum power supply voltage required by an analog circuit

was studied and it was shown that analog circuit design, at least the design of very sim-

ple analog circuits, will be possible in highly scaled technologies. In this section a more

complex and useful circuit topology is analyzed. Figure 2.9 describes the power supply

voltage required for the second benchmark analog circuit—a differential-input, single-
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ended output amplifier. Again assuming all devices are operating at the center of the

moderate inversion region, the minimum required VDD can be calculated for this circuit

as 

Figure 2.10 presents the VDD overhead for the circuit of Figure 2.9, for all possible tech-

nology combinations at the 45-nm node. While the table shows that this circuit can still

operate with all technology combinations except for LOP VDD and LSP VTH, it is interest-

ing to note that the VDD overhead in this circuit is also equal to input common-mode

range (ICMR). Therefore, even though this circuit can still operate for all but one combi-

nation of VDD and VTH, it will have a very limited ICMR in most cases. 

Figure 2.9:  Power supply voltage required for a simple differential-input, single-
ended output amplifier

VDDmin VGS 2VDSAT 100mV+ + VTH 425mV+= = (2.21).
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2.3.2.3 Complementary Differential Pair

Figure 2.11 presents the schematic of a complementary differential pair, another impor-

tant benchmark analog circuit. This is the most common circuit used when designing op-

amps with rail-to-rail ICMR, and is also a very difficult circuit to operate at low voltages

because there are two threshold voltages in series between VDD and VSS. The voltage

sources in this circuit represent the low-input impedance that the differential pairs would

be driving in a folded-cascode topology, which is a common circuit architecture used in

low-voltage circuit designs. Since the voltage sources are equal to VDSAT, it is assumed

that the low-voltage cascodes are biased at their minimum operating voltage, which is

the typical condition for low-voltage circuit design. The minimum power supply voltage

required by this circuit is

Figure 2.12 lists the VDD overhead for the circuit presented in Figure 2.11, for all combi-

LSP VDD HP VDD LOP VDD

HP VTH 0.575 V 0.475 V 0.275 V

LOP VTH 0.505 V 0.405 V 0.205 V

LSP VTH 0.265 V 0.165 V −0.035 V

Figure 2.10:  VDD overhead (VDD − VDDmin) for the circuit of Figure 2.9 at the 45-nm 
node for all possible technology combinations
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VDDmin 2VGS 2VDSAT 100mV+ + 2VTH 450mV+= = (2.22).
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Figure 2.11:  Power supply voltage required for a complementary differential pair

HP VDD LSP VDD LOP VDD

HP VTH 0.350 V 0.150 V −0.060 V

LOP VTH 0.210 V 0.110 V −0.090 V

LSP VTH −0.270 V −0.370 V −0.570 V

Figure 2.12:  VDD overhead (VDD − VDDmin) for the circuit of Figure 2.11 at the 45-nm 
node for all possible technology combinations
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nations of technology options at the 45-nm node. Clearly the complementary differential

pair is the most limited, in terms of allowable technology options, of all the circuits stud-

ied in this section. However, Figure 2.12 shows that there are still several technology

options for which the complementary differential pair will still be fully functional at the 45-

nm node.

2.3.3 Gate Leakage Current

Up until this point in the discussion of the low-voltage challenge to analog circuit design,

issues relating to analog circuits operating at reduced power supply voltages have been

considered. It has been shown that power supply voltages greater than 1.8 V are

required for only the highest performance analog applications; whereas for lower-speed

applications power supply voltages of approximately 1 V should be sufficient, especially

if one has access to devices with a threshold voltage less than 0.3 V (i.e., HP and LOP

technology options). Indeed, from the discussion presented thus far, it might seem that

circuit design in highly scaled technologies will not be such a great challenge after all, or

at least not a greater challenge than designing in a technology with VDD > 1.8 V and a

0.5-V threshold. However, we will now consider the effects of gate leakage current in

highly scaled technologies, which in many cases will force the circuit designer to utilize

the highest threshold voltage option available—thus greatly complicating the circuit

design process. The purpose of this section is to qualitatively study MOSFET direct tun-

neling gate current. The aspects of gate current that will be considered are the relation-

ship between oxide thickness and gate current, the magnitudes of gate current one can

expect in highly scaled CMOS technologies, and the magnitude of gate current that will

be present under standard analog bias conditions.
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When a positive voltage is applied to the gate of an nMOSFET, quantum mechanics pre-

dicts that there is a non-zero probability that an electron from the channel will “tunnel” to

the gate [11]. This effect is called direct tunneling, and each electron that tunnels across

the oxide can (theoretically, at least) be measured at the gate as a current impulse.

Direct tunneling can be differentiated from Fowler-Nordheim tunneling by the fact that

direct tunneling occurs at low electric fields and is not damaging to the oxide [11]. Histori-

cally, direct tunneling has not been a problem in CMOS technologies because the oxides

are thick enough that the probability of tunneling is very low and no appreciable current

results. However, as gate oxides scale below 3 nm, the probability of an electron (or a

hole) tunneling through the oxide is greatly increased, with the net result that “leaky” or

“resistive” gates will be an important design concern for analog and digital circuits in the

near future. Figure 2.13 presents a cross-section of a bulk nMOSFET showing the key

Figure 2.13:  Cross section of a bulk CMOS MOSFET showing primary tunneling 
current components [12]
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tunneling current components. Specifically, the tunneling current consists of components

that tunnel from the gate through the overlap capacitances and directly to the source and

drain, and components that tunnel through the oxide capacitance to the body and then

are collected either by the source, drain, or body depending on whether the MOSFET is

inverted or accumulated.

In the BSIM4 SPICE model, the gate–channel current (which could flow either to the

source or drain), is shown to depend on oxide thickness in the following manner [12].

Equation 2.23 shows that gate current is highly sensitive to oxide thickness, but does not

show the magnitude of gate current that will be present. The complete BSIM4 equation

for gate current contains several empirical parameters used for curve fitting and there-

fore does not provide much intuition about the levels of gate current one should expect.

Therefore to study this problem further a generic BSIM4 model, which is distributed by

the BSIM group for the purpose of benchmarking the model, was obtained and evalu-

ated using the Eldo circuit simulator. Figure 2.14 presents the simulated gate current

magnitude for a 10/0.5 nMOSFET with the VGS swept from 0 to 1 volts, and the VDS

stepped from 0.1 V to 0.8 V in 0.1-V steps. The oxide thickness is equal to 1.8 nm, which

approximately corresponds to a device at the 65-nm node. From this plot one can

observe several important facts about gate current and MOSFET biasing. First, gate cur-

rent is present in all MOSFET operating regions (weak, moderate, and strong inversion).

In deep weak inversion and accumulation the gate current is highly sensitive to drain

IGC
e
tox–

tox
3
---------∝ (2.23).
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voltage, because there is a significant drain–gate current component in this region. As

the gate–source voltage is increased, with a constant drain–source voltage, the net cur-

rent flowing into the gate  will increase because IGD decreases while

IGS increases. At some value of VGS, which is dependent on the VDS, the gate current

will be approximately zero at the point where the drain–gate and gate–source currents

cancel. As the gate–source voltage is increased beyond this point, the gate current is

entirely dominated by the gate–source component and the gate current becomes rela-

tively insensitive to drain voltage.

As one might imagine, gate tunneling current will become a critical factor in determining

the off-state current in digital circuits in highly scaled technologies. Therefore, in keeping

with the HP, LOP, and LSP designations previously discussed, future CMOS technolo-

Figure 2.14:  Simulated gate current versus VGS and VDS for a 10/0.5 nMOSFET with 
tox = 1.8 nm

IG IGD– IGS+=( )
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gies must also provide several different oxide thicknesses to meet the static power dissi-

pation requirements for each technology option. Table 2.3 presents the oxide

thicknesses predicted for the HP, LOP, and LSP technology options at the 45-nm node,

which is the same technology node discussed in the previous section. As one would

expect, the oxide is thinnest for the HP option and thickest for the LSP option. It is also

interesting to note that the ratio of threshold voltage to oxide thickness is nearly constant

for all technology options at this node, which is a clear indication that the multiple thresh-

old voltages are achieved through the different oxide thicknesses. 

To better understand how the gate current will scale with oxide thickness, the parame-

ters TOXE and TOXP (electrical and physical oxide thickness) in the BSIM4 model were

set to 1.1, 1.4, and 2.1 nm and the gate current was again simulated. Of course this will

not give a precise measure of the gate current for each option because the empirical fit-

ting parameters should be chosen for each case based on measurement. However, the

fitting parameters will only shift the gate current by a small factor, probably less than two.

On the other hand, the different oxide thicknesses that were simulated shift the gate

Table 2.3:  Gate oxide thickness for HP, LOP, and LSP digital Technologies at the 45-
nm node

tox

HP 1.1 nm 0.18 V/nm

LOP 1.4 nm 0.19 V/nm

LSP 2.1 nm 0.24 V/nm

VTH tox⁄
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leakage current by several orders of magnitude. Therefore the following simulation

results can be taken as indicative of the gate current levels one can expect for analog

circuits at the 45-nm node. Figure 2.15 presents the simulated gate current magnitude

versus gate-overdrive voltage (VGS−VTH) for a 10/0.5 nMOSFET with a VDS of 0.5 V and

oxide thicknesses of 1.1, 1.4, and 2.1 nm. In this plot the gate-overdrive voltage is swept

from −200 mV to +300 mV, which represents roughly the maximum range of VGS values

that can be used for low-voltage circuit design. As a reference point, a line marking the

center of moderate inversion (VGS−VTH = 25 mV) is shown, which is also the bias condi-

tion considered in the previous section. For this bias condition one can see that the gate

current is 5.6 µA for the HP option, 0.24 µA for the LOP option, and 0.24 nA for the LSP

option. Thus within a single technology generation, at a standard analog bias condition

Figure 2.15:  Simulated gate current versus gate-overdrive voltage (VGS−VTH) and tox 
for a 10/0.5 nMOSFET with VDS = 0.5 V
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(VGS − VTH = 25 mV, VDS = 0.5 V) and a standard analog device size (10/0.5), one can

expect gate current to vary by four orders of magnitude, depending on the technology

option chosen.

Finally, it is important to consider how gate leakage current will affect analog circuit

design. Several important issues to consider are

• gate leakage current will induce mismatch in current mirrors;

• gate leakage current will significantly inhibit the performance of switched-capacitor

circuits;

• a “resistive gate” will cause accuracy problems for many CMOS circuits that require

high source and load impedances; and

• due the discrete and random nature of the current flow, tunneling current gives rise to

a shot noise component that will be extremely important in circuits that are driven from

a high impedance.

There will of course be other problems caused by gate current, many of which will not be

discovered until circuits are fabricated in highly scaled technologies and tested. Never-

theless, it is clear that gate tunneling current is an important problem that must be

avoided as much as possible. From the standpoint of gate leakage current we can see

that the LSP option is the best choice for analog circuit design in highly scaled technolo-

gies.
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2.3.4 The Future of Analog Circuit Design

The previous sections presented an overview of the challenges facing analog circuit

designers in highly scaled technologies, specifically including the relationship between

power supply voltage and power dissipation, power supply voltage and circuit functional-

ity, and gate leakage current. Regarding the nature of analog circuit design in the future,

several important conclusions can be drawn from this study. Analog circuit designs in the

future will probably be divided between those that require VDD > 1.8 V because of

dynamic range limitations, and those that can operate at voltages close to 1 V. For those

applications that require VDD > 1.8 V, design techniques will probably not have to change

much. For instance, high-performance switched-capacitor circuits operating at 1.8 V can

still use standard CMOS switches, folded cascode op-amps, and gate-driven differential

pairs. However, it should also be noted that just because 1.8-V VDD is available for some

analog applications, it will by no means be available for all applications in highly scaled

technologies. Though an effort will be made to include a 1.8-V analog VDD on chip with

1-V digital circuits, the ITRS cautions [9]: “The analog power supply reduction trend may

lag [the] digital backward compatibility trend for I/O such that a common thick gate oxide

solution is not possible.” Therefore it must be assumed that analog circuits that do not

intrinsically require a VDD > 1.8 V will be expected to operate within the available digital

power supply constraints. It is for these 1-V capable applications to which this research

is primarily addressed.

Next we must consider what technology options should be used for designing the cir-

cuits that will operate close to 1-V VDD. From the discussion of power supply voltage,
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threshold voltage, and circuit functionality, it is clear that the minimum threshold voltage

is the best choice. On the other hand, from the discussion of gate leakage current, it is

clear that the maximum threshold voltage option (since it corresponds to the thickest

oxide) is the best choice. The key question then is “Which issue is more important—cir-

cuit functionality limited by threshold voltage or circuit functionality limited by gate leak-

age current?” In many cases there will be an application specific answer to this question.

For instance, there will be applications where gate leakage current is not a problem, so

the HP threshold option will be chosen. Other times, gate leakage current will be an

overriding concern, and the LSP threshold must be chosen. However, it seems obvious

that gate leakage current will be a detriment (though in varying degrees) to any analog

circuit. Therefore, what is needed are new analog design techniques that allow full cir-

cuit functionality using the highest threshold option in a technology, but which can still

operate at the lowest VDD used by the technology. The application of the body-driven cir-

cuit technique to this low-voltage challenge is the focus of this research.

2.4 Low-Voltage Analog Design Techniques

In the previous section it was shown that important changes are forthcoming in CMOS

technology which, to a greater or lesser degree, will require novel analog design tech-

niques. To meet these requirements analog circuit designers have been working to

develop such new design techniques, and many important results have been reported in

the literature over the last five years. Generally speaking, all of the new design tech-

niques are trying to solve the same problem: How do we design analog circuits when the

threshold voltages becomes a significant fraction of the total power supply voltage
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. Of course, if all of the new design techniques are trying to solve the same

problem, it immediately begs the question of which one is best. In this section a review of

the most important new design techniques will be presented, and an answer to this ques-

tion will be put forth.

Though the following classifications have not, to the best of the author’s knowledge,

been described in the literature, it is helpful to divide the new design techniques into two

broad categories: circuit-level design techniques and transistor-level design techniques.

As the names imply, circuit-level design techniques are those that enable low-voltage cir-

cuit design by modifying a design at the circuit or “block” level, while transistor-level

design techniques are those that enable low-voltage circuit design at the transistor or

device level. Furthermore, circuit-level design techniques typically show the following

traits:

• application specific,

• use standard design techniques at the transistor level (e.g. current mirrors, gate-

driven differential pairs), but novel design techniques at the circuit (or primitive) level,

and

• low-voltage functionality typically enabled through novel method of coupling signals

into/out of circuit.

Whereas transistor-level design techniques typically exhibit these complementary traits:

VTH
VDD
------------ 0.5≥ 
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• application independent,

• use novel design techniques at the transistor level (e.g. body driving), but standard

design techniques and interfaces at the circuit (and primitive) level, and

• low-voltage functionality enabled by removing threshold voltage from signal path.

In this section two examples of circuit-level design techniques, common-mode level shift-

ing and switched op-amp, and two examples of transistor-level design techniques, float-

ing-gate MOSFETs and body-driven MOSFETs, will be introduced and compared. 

2.4.1 Circuit-Level Design Techniques

2.4.1.1 Common-Mode Level Shifting

Common-mode level shifting is a term that refers to a broad class of circuits that use

passive elements to couple a signal into a circuit in such a way that wide voltage

dynamic range is achieved. Common-mode level shifting is used in both continuous-time

systems, where resistors are used for level-shifting, and discrete-time systems, where

capacitors are used for level shifting. In this discussion only continuous-time level-shift-

ing with resistors will be considered. Figure 2.16 presents a schematic of one implemen-

tation of common-mode level shifting [13]. In this example an op-amp is biased at a fixed

common-mode voltage that is approximately one VDSAT above VSS. Next a fixed current

source is used to level shift the output to VMID, assuming the input is also at VMID. This

configuration allows the input and output voltage of this (closed-loop) amplifier to swing

nearly rail-to-rail, and so enables wide dynamic range signal processing—even though
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the ICMR of the op-amp may be very limited (e.g., see Figure 2.10). Of course, this form

of common-mode level shifting is only viable for systems that can drive a resistive load,

and so its use is relatively limited. 

Figure 2.17 presents a more elegant form of common-mode level shifting that is more

appropriate for monolithic circuit designs [14]. In Section 2.3.2.3 it was shown that the

required power supply voltage for a complementary differential pair was equal to approxi-

mately 2VTH + 450 mV. If the total power supply voltage is less than this value, then

there will be a “dead zone” in the middle of the ICMR where neither the nMOS or pMOS

input pairs are turned on [15]. The common-mode level shifting solution to this problem is

to separate the gates of the pMOS and nMOS transistors by an adaptively biased resis-

tive level shifter. In Figure 2.17 this is achieved by a set of four resistors and four voltage

dependent current sources, which are sensitive to the input common-mode voltage; the

graph in Figure 2.17 shows how the bias currents vary with common-mode voltage. Spe-

Figure 2.16:  Simplified schematic of an op-amp circuit with common-mode level 
shifting at the input
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Figure 2.17:  Common-mode level shifting for low-voltage complementary differential pairs



42

cifically, when VICM is approximately equal to VMID, the bias current is at a maximum and

the nMOS and pMOS input pairs are both active and tracking the input signal. If the com-

mon-mode voltage is increased or decreased, the bias current decreases such that at

some point the input is directly driving one of the input pairs.

2.4.1.2 Switched Op-Amp

While common-mode level shifting is a useful low-voltage design technique for continu-

ous-time, wide voltage dynamic range systems, switched op-amp design addresses the

challenge of implementing switched-capacitor circuits in low-voltage systems. The funda-

mental problem with implementing low-voltage switched capacitor circuits is the “dead-

zone” exhibited by CMOS switches, which are used to implement series switches in

switched capacitor circuits [16]. Figure 2.18 presents a plot of the on-conductance of a

CMOS switch versus input voltage that clearly displays the problem. In this plot the

power supply voltage is 1 V, the threshold for both devices is 0.5 V, and the aspect ratio

for both devices is 5/0.5. Note that while in future CMOS technologies there will be multi-

ple threshold voltages, with nominal values of 0.2, 0.3, and 0.5 V, for most switched

capacitor applications it will be necessary to use the 0.5 V option to minimize leakage

current—thus this is a realistic simulation. As one can see in Figure 2.18, the problem

with the low-voltage CMOS switch is that both MOSFETs are effectively turned off when

VIN is approximately equal to VMID. Of course, the MOSFETs do not completely turn off

in this case; however, the on conductance does decrease by more than two orders of

magnitude as compared to its values at VIN = 0 and VIN = VDD, which is a prohibitively
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large variation that would result in a significant degradation of settling time and a proba-

ble loss of circuit functionality. 

One promising technique being considered to solve this problem is known as the

switched op-amp design technique [16]. Switched op-amp is based on the observation

that at low voltages it is always possible to implement shunt switches, the challenge lies

in implementing series switches. To address this problem the switched-opamp technique

replaces series switches with op-amps that are turned on and off. Figure 2.19 presents

an example of a simple switched op-amp. In this case, when the digital signal VCLOCK is

high, the op-amp functions normally, but when VCLOCK is low, the output voltage of the

op-amp is floating. Figure 2.20 presents an example of a standard switched capacitor

Figure 2.18:  On conductance of a CMOS switch as a function of input voltage, VDD = 
1 V
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Figure 2.19:  An example of a switched op-amp

Figure 2.20:  Example of (a) a standard switched-capacitor multiply-by-two stage and 
(b) a switched-opamp multiply-by-two stage with no series switches 

(a)

(b)
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multiply by two stage and a functionally equivalent switched op-amp multiply by two

stage. Notice that the main difference between the two circuits is that in the sample

phase of the switched-opamp circuit, the feedback capacitor is reset by turning off the

op-amp and grounding (through nMOS switches) both sides of the feedback capacitor. It

should also be noted that one important challenge in switched op-amp circuits is how to

couple the input signal into the circuit. This issue has not been directly addressed in Fig-

ure 2.20, instead a dashed line is shown between the input voltage source and the

switched-opamp circuit. In practice there are several different ways of achieving the input

signal coupling, one example would be to use a resistor nominally equal to the on-resis-

tance of the CMOS switches in place of the dashed line. This would allow the input sig-

nal to be sampled when φH is low, but would isolate the input signal from the capacitor

when φH is high. Of course, it should be noted that this problem only applies to the very

first block in the signal chain. After the first switched op-amp circuit, it can be assumed

that all circuits in the signal path are switched op-amp, and there is no need for a serial

element to couple the input signal into other circuits in the chain. 

2.4.2 Transistor-Level Design Techniques

2.4.2.1 Floating-Gate MOSFETs

The first transistor level design technique that will be presented is floating-gate MOS-

FET design. Figure 2.21 presents a schematic representation and a schematic symbol of

a dual-input floating-gate MOSFET, which is a useful device for analog circuit design

[17]. The basic idea of this circuit is to capacitively couple two signals into the gate of a

single MOSFET; the first signal is static and is used to reduce the effective threshold volt-
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age of the MOSFET as seen at the second input terminal, which is the input used for

processing dynamic signals. It is standard in floating-gate design for the capacitors C1

and C2 to be an order of magnitude larger than the MOSFET gate capacitance (which is

an important drawback, as it results in poor area efficiency), in this case the effective

threshold at the input VI2 is given by [17]

where VTH is the threshold voltage of the MOSFET. Equation 2.24 shows that it is possi-

ble, with bias voltages less than VDD, to make the effective MOSFET threshold voltage

very small or even negative. This ability to cancel the MOSFET threshold voltage has

enabled a wide array of analog circuits and circuit primitives to be implemented at very

low voltages [18]. Figure 2.22 presents schematics of a floating-gate current mirror and a

floating-gate differential pair, circuit primitives that have been used to construct op-amps

that operate with power supply voltages close to or equal to 1 V, with a standard digital

Figure 2.21:  Floating gate MOSFET: (a) Schematic representation and (b) schematic 
symbol [17]

(a) (b)

VTH I2( ) VTH
C2
C1
------ VTH VI1–( ),+≈ (2.24)
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CMOS technology that has  [17]. It is interesting to note that by removing the

threshold voltage from the signal path, the floating-gate technique effectively enables the

use of standard circuit- and primitive-level design techniques within a high-VTH technol-

ogy option.

2.4.2.2 Body-Driven MOSFETs

The final low-voltage design technique that is considered here, which is also the primary

focus of this dissertation research, is the body-driven design technique [19]. Like floating-

gate design, the goal of body-driven design is to turn on the MOSFET with a static gate

bias, and then to input the dynamic signal at a terminal which has a nearly zero threshold

voltage. Unlike gate driving, a body-driven MOSFET requires no external capacitors for

coupling the signal into the MOSFET. Figure 2.23 presents a schematic of a single body-

driven MOSFET. In body driving the gate is typically biased at a static voltage, which is

Figure 2.22:  Schematics of (a) a floating-gate simple current mirror and (b) a floating-
gate differential pair [17]

(a) (b)

VTH 0.5V≥
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equal to or greater than the threshold voltage. This gate bias creates an inversion layer

beneath the gate; at the same time a depletion region is formed between the inversion

layer and the neutral body region. By varying the body voltage, one can vary the width of

this depletion region, in turn modulating the MOSFET drain current. Thus the MOSFET

body acts like an auxiliary gate, albeit a junction gate, and the body-driven MOSFET is

similar to a junction field-effect transistor (JFET). The transconductance of the MOSFET

body is typically 1/3 of the gate transconductance, which is important to consider when

designing body-driven circuits. Figure 2.24 presents schematics of a body-driven simple

current mirror and a body-driven differential pair. One will immediately notice that there

are many similarities between the body-driven and floating-gate circuit primitives. Specifi-

cally, in both design techniques the MOSFET gate is biased at a static voltage to “cancel”

the threshold voltage, and the dynamic signal is coupled to the MOSFET channel

through an auxiliary input. Also, both design techniques allow the use of standard ana-

log primitives by removing the threshold voltage from the dynamic signal path.

Figure 2.23:  Schematic of a body-driven MOSFET
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2.4.3 Comparison of the Low-Voltage Design Techniques

In this section the concepts of circuit-level and transistor-level design techniques have

been introduced, and two examples of each design technique have been presented. It is

now possible to consider the relative merits and demerits of each design technique. First,

the clear distinction between circuit- and transistor-level design techniques should be

reiterated. Perhaps the most important difference is that circuit-level design techniques

address specific problems, while transistor-level design techniques address the general

problem of removing the threshold voltage from the signal path. The difference between

these two categories has not been noted in the literature, and so may have led to some

conclusion about which design techniques are better. The specific problem with not cate-

gorizing the techniques is that a designer may think that he must choose one over the

other (e.g., common-mode level shifting or body driving). However, it is the opinion of this

author that this is the wrong way to look at the problem. Instead, it seems that circuit-

level and transistor-level design techniques should enjoy a complementary relationship,

Figure 2.24:  Schematics of (a) a body-driven simple current mirror and (b) a body-
driven differential pair [19]

(a) (b)



50

instead of a competitive one. Thus, common-mode level shifting looks at the specific

problem of wide dynamic range differential pairs, but it in no way considers how to

achieve low-voltage current mirrors, high-performance regulated cascode current

sources, or low-voltage bias cells. The same argument applies to switched op-amp

design. Switched op-amp is a very useful design technique, but at the same time it is

very limited, as it does not address how one designs high-gain, high-performance opera-

tional amplifiers at low-voltages. Therefore it seems that it is not useful to compare cir-

cuit-level and transistor-level design techniques in terms of their utility for low-voltage

circuit design, both are useful and important in their own way, and both should have an

important place in highly scaled CMOS analog circuit design. 

On the other hand, since both of the transistor-level design techniques purport to do the

same thing—that is, remove the threshold voltage from the dynamic signal path—it is

appropriate to compare these two design techniques. Without getting into too much

detail, it is clear that one of the major drawbacks of floating-gate design is that there is

an increase in circuit area of 10X as compared to gate driving. Conversely, body driving

has a power efficiency that is 1/3 that of a gate-driven MOSFET. Furthermore, for a

body-driven MOSFET to achieve the same transconductance as a gate-driven MOS-

FET, its bias current and aspect ratio must increase by a factor of 3. Thus a body-driven

MOSFET has 1/3 the power efficiency and area efficiency of a gate-driven MOSFET.

However, when compared to a floating-gate MOSFET, body-driving has 1/3 the power

efficiency but 3X the area efficiency. On balance, it is not apparent which is better. With

these considerations alone, there will typically be an application-dependent solution to

the problem. However, this neglects the fundamental problem with implementing floating-
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gate MOSFETs in highly scaled, standard digital CMOS technologies; namely, the pres-

ence of any gate leakage current in the MOS structure means that floating-gate design is

not possible. Indeed, one important tutorial paper on floating-gate MOSFETs states that

floating-gate design is predicated on “the long term retention characteristics of the

charge injected into the floating-gate of an MOS transistor [17] …” Looking at Figure

2.22, it is clear that gate leakage current, even the low levels present in the LSP option

described in Figure 2.15, make floating-gate design impossible in highly scaled technolo-

gies. Therefore, by default, body-driven circuit design becomes the most important tran-

sistor-level design technique for analog circuit design in highly scaled technologies. 

2.5 Conclusion

This chapter has presented a very thorough discussion about the future of analog circuit

design, and the place of body-driven circuits within that future. In Section 2.2 it was

shown that within the current decade MOSFET scaling will force power supply voltage

and threshold voltage to their minimum allowable levels (approximately 1-V for VDD and

0.2 V–0.5 V for VTH). Additionally, a VDD in the range 1.8 V–2.5 V will be required for the

highest performance analog circuits, regardless of the technology generation. In Section

2.3 an analysis of the problems scaling poses for analog circuit design was presented,

and it was shown that for a large class of moderate-speed/moderate- to high-precision

analog circuits, it will be necessary to use the highest threshold voltage (~0.5 V) avail-

able in a given technology generation. Finally, Section 2.4 described several recent

design techniques, and made a distinction between those design techniques that oper-

ate at the transistor level, and those that operate at the circuit level. It was further shown

that body driving is the most viable transistor-level design technique for highly scaled
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technologies, and it should have a complementary relationship with the other circuit-level

design techniques. 

The most important conclusions that can be drawn from this chapter are

• CMOS technology scaling has forced VDD so low that for many analog applications,

standard design techniques will no longer be suitable.

• Body driving is the best transistor-level design technique and merits further attention

as a low-voltage design technique for highly scaled technologies.
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Chapter 3

Introduction to Body Driving

3.1 Introduction

Chapter 3 presents a thorough introduction to body driving by describing the characteris-

tics of body-driven MOSFETs. In Section 3.2 technology choices for body driving, includ-

ing standard bulk CMOS, twin-well bulk CMOS, and partially depleted SOI, are reviewed.

Section 3.3 presents the bias characteristics of a body-driven MOSFET, including a plot

that shows body driving is viable in the weak, moderate, and strong inversion regions.

Section 3.4 presents a detailed description of the DC and AC small-signal models for

body-driven MOSFETs. A comparison of the BSIM3V3 and EKV2.6 models for body-

driven applications is presented in Section 3.5, and temperature characteristics of body-

driven MOSFETs are explored in Section 3.6. Finally, Section 3.7 concludes this chapter.

3.2 Technology Choices for Body Driving

When first used as a low-voltage design technique, body driving was implemented on a

standard digital CMOS technology [20]. At the time, it was possible to body drive only

nMOS or only pMOS devices within a given technology (e.g., one could body drive

pMOS devices within an n-well CMOS technology), as it is only possible to body drive a

MOSFET if it has an isolated body. Historically, the lack of complementary body-driven

MOSFETs in bulk CMOS has been an important drawback to the use of body-driven cir-

cuits. In fact, this limitation alone has motivated work on body driving in partially depleted

silicon-on-insulator (PD-SOI) CMOS, which allows isolated body connections for both
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polarities of MOSFETs [21]. However, an important trend in highly scaled CMOS technol-

ogies is the deep n-well option, also called triple-well [22], but which will be referred to in

this dissertation as twin-well CMOS [23]. Twin-well CMOS is a technology option that

allows the formation of a junction isolated p-well within an n-well technology (or vice-

versa), and thus enables complementary body driving in a digital bulk CMOS technol-

ogy. In this section a detailed description of each of these technology options will be pre-

sented, along with a justification for choosing PD-SOI technology for this research.

3.2.1 Standard Bulk CMOS

Figure 3.1 presents the layout and cross section of a 10/0.5 body-driven pMOSFET in a

0.5-µm n-well bulk CMOS process. As one can see, this layout structure is identical to

that of a standard gate-driven MOSFET. Note that since the body is now a signal input, it

is important to use a large amount of contacts to reduce body resistance (since body

resistance contributes to noise and degrades the frequency response). From the cross

section, it is obvious that one drawback of body driving in bulk CMOS is the n-well–p-

substrate junction capacitance, which will limit frequency response in many applications.

3.2.2 Twin-Well Bulk CMOS

Figure 3.2 presents the layout and cross section of an isolated 10/0.5 nMOSFET and a

10/0.5 pMOSFET fabricated on a twin-well digital CMOS technology [23]. As seen in part

(b) of Figure 3.2, the “second well” or the isolated p-well is implemented by using a deep

n-well that allows isolation of the local p-well from the global p-substrate. Twin-well is a

relatively new option in CMOS technology that provides isolation of noise-sensitive
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Figure 3.1:  A 10/0.5 pMOS body-driven MOSFET on a 0.5-µm n-well bulk CMOS 
process: (a) layout and (b) cross section

(a)

(b)
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Figure 3.2:  10/0.5 nMOS and 10/0.5 pMOS body-driven MOSFETs on a 0.12-µm n-
well (twin-well) bulk CMOS process: (a) layout and (b) cross section

(a)

(b)
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nMOS transistors (e.g., analog and RF) from digital nMOS transistors that collectively

discharge significant current to the substrate and thus generate “substrate noise” [24].

The availability of the twin-well option is a clear indication of the increasing importance of

mixed-signal circuits in the technology roadmap. Further assuming the importance of

mixed-signal will only increase in highly scaled technologies as ever increasing integra-

tion densities facilitate more complex systems-on-a-chip, it is clear that we can count on

the availability of the twin-well option for the forseeable future. With regard to the

parisitics in triple-well CMOS, it seems that they are comparable to the parasitics in stan-

dard CMOS. The parasitic capacitance in the body-driven pMOSFET is still dominated

by the n-well–p-substrate capacitance. It can be assumed that the deep n-well structure

used in the body-driven nMOSFET is held at an AC ground, so that the parasitic capaci-

tance is dominated by the p-well–n-well junction capacitance.

3.2.3 Partially Depleted Silicon-on-Insulator

Before discussing PD-SOI body-driven MOSFETs in detail, it is useful to provide a brief

description of PD-SOI MOSFET technology. Figure 3.3 is a diagram that describes the

main steps in the Smart-Cut® process, which is the most popular methodology for fabri-

cating SOI wafers and ICs [25]. As shown in Figure 3.3 (a), the starting point for this pro-

cess is a silicon wafer with an oxide layer grown on top. From this, H+ ions are implanted

into the wafer, which forms micro-cavities in the silicon substrate. Next, the starting wafer

(wafer A) is turned upside down and bonded to another silicon wafer (wafer B), which is

called the handling wafer and which may or may not have a top oxide layer. After the two

wafers are bonded, wafer A is broken along the line where the micro-cavities were
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Figure 3.3:  Steps in the Smart-Cut® process: (a) hydrogen implant, (b) wafer bonding, (c) wafer splitting, (d) 
polishing, and wafer A becomes future wafer B [25]

(a)

(c)

(b)

(d)
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formed, and then the two resulting wafers are polished. The final results are a new han-

dling wafer and an SOI wafer. The SOI wafer has a bottom silicon substrate which is

used only for handling, and then a much thinner silicon substrate where transistors are

formed. In between these two silicon layers is an oxide layer known as the buried oxide

(BOX), which is typically 50 times thicker than the gate oxide. Using this SOI wafer,

nMOS and pMOS transistors can be fabricated in the silicon substrate using standard

bulk silicon processing techniques. The most important characteristics of SOI are that

each transistor (or a group of transistors with a common body connection) is fabricated in

their own local well and that this well is isolated on all sides by field oxide, on the top by

field oxide, and on the bottom by the BOX.

Figure 3.4 presents the layout and cross section of a 10/0.5 nMOSFET and 10/0.5

pMOSFET fabricated on a 0.35-µm PD-SOI CMOS process. In this process an H-gate

type layout structure must be used to allow for an explicit connection to the transistor

body. Note also that an important characteristic of all SOI processes is that the source/

drain implants go all the way down to the BOX. Generally speaking, the frequency

response of body driving should be much better in PD-SOI than in bulk CMOS. The key

difference between the two is that the body–substrate capacitance (i.e., body to han-

dling wafer) is only present directly below the transistor gate, and since the dielectric in

this case is an oxide layer 50X thicker than the gate oxide, this parasitic is practically

negligible. The only junction capacitance present in this structure is the drain/source–

body sidewall junction capacitance, which is an important parasitic, but is much less than

the parasitics present in bulk CMOS. In terms of frequency response, the main draw-



60

Figure 3.4:  10/0.5 nMOS and 10/0.5 pMOS body-driven MOSFETs on a 0.35-µm 
PD-SOI CMOS process: (a) layout and (b) cross section (Note that the body contact 

are at each end of the channel, but cannot be shown in the cross section.) 

(a)

(b)
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back of SOI as compared to bulk is that body resistance is much higher in SOI, since the

body is only present directly underneath gate, as opposed to bulk CMOS where the body

is the entire well. However, by keeping the gate width per finger small and using body

contacts liberally, it is possible to minimize this effect. 

3.2.4 Semiconductor Technology Chosen for This Work

Though complementary body driving is possible in both bulk CMOS (at the 0.18-µm node

and below) and PD-SOI, it was decided in this work to use a 3.3-V/0.35-µm PD-SOI

technology. This PD-SOI technology was chosen mainly because of its availability and

low cost (our group regularly submits ICs for fabrication in this process), but also

because PD-SOI technologies have significantly reduced junction capacitances when

compared to bulk CMOS, which allows for higher frequency operation and/or reduced

power dissipation. That being said, the body-driven design techniques developed in this

work deal mainly with DC biasing considerations, and are directly applicable to both bulk

and PD-SOI CMOS technologies.

3.3 DC Biasing Considerations

Figure 3.5, which presents the cross section of a MOSFET fabricated on a PD-SOI

CMOS process and biased in strong inversion saturation, is a good starting point for

studying body-driven analog circuit design. (Note also that in this figure the p-well body

contact has been explicitly shown to facilitate the discussion of body driving.) To utilize

the body terminal as a signal input, the gate must first be biased to create an inversion

channel between the source and drain. As shown in Figure 3.5, there will also be a
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depletion region in between the neutral body region and the inversion layer. By varying

the body voltage one can vary the width of the depletion region, in turn varying the drain

current. It is interesting to note that when biased in strong inversion, the operation of the

body-driven MOSFET is very similar to that of a JFET. Conversely, in moderate and

especially weak inversion, there is not a complete inversion layer formed under the gate,

and the JFET analogy is not as applicable. However, one can still vary the MOSFET

threshold voltage as a function of body bias in weak and moderate inversion, and body

driving is just as effective in these operating regions [11].

Figure 3.6 presents the measured drain current versus body–source voltage (ID–VBS)

with VGS swept from 0.4 V to 1.0 V in 0.2-V steps, for an (8/0.5) M=16 (total W/L = 128/

0.5) nMOSFET fabricated on the 3.3-V/0.35-µm PD-SOI process used in this work. The

nMOS threshold voltage for this process is nominally 0.65 V. Several important details

about body driving can be discerned from Figure 3.6. First, as the gate voltage is biased

Figure 3.5:  Cross section of a PD-SOI MOSFET biased in strong inversion, 
saturation [1]
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above, below, and nearly equal to the threshold voltage, this plot clearly shows that body

driving is viable in the strong, weak, and moderate inversion regions. Second, this plot

shows that the body current is insignificant even for relatively large forward bias volt-

ages. Specifically, for a VBS less than 0.5 V the body current is less than 1 nA. From this

we can define a “safe operating region” whose demarcation line is the VBS = 0.5-V point.

Third, note that within the safe operating region it is possible to control the drain current

over a four-decade range by manipulating both the gate and body voltages.

3.4 Small-Signal Models for Body-Driven MOSFETs

3.4.1 Complete Electrical Model

Small-signal modeling is the foundation of all analog circuit analysis. In this section the

DC and AC small-signal models for a body-driven PD-SOI MOSFET will be presented.

Figure 3.6:  Measured ID–VBS–VGS for a 8/0.5 M=16 (total W/L = 128/0.5) PD-SOI 
nMOSFET [1]
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Figure 3.7 presents the complete electrical model of a PD-SOI transistor, which is the

basis for all of the models described here. There is a single current generator shown in

the model which is controlled by both the gate–source and body–source voltages. Quan-

titatively, the drain current generator in strong inversion is described by

where β is the MOSFET transconductance factor given by

Figure 3.7:  Complete electrical model for a PD-SOI MOSFET

ID
β
2
--- VGS VTH VB′S( )–( )2,= (3.1)

β µCOX W L⁄( )= (3.2).
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 is the bias dependent threshold voltage given by

where VTH0 is the zero-bias threshold voltage, γ is the body-effect coefficient, and φF is

the Fermi potential [26]. Likewise, in weak inversion the relationship between body volt-

age and drain current is described by the bias dependent threshold voltage

Thus in all MOSFET operating regions the body effect is modeled as a shift in the thresh-

old voltage with body bias.

The device capacitances include CGS, CGD, and CBS, which are the primary intrinsic

components, CS–BOX and CD–BOX (the oxide capacitances between the source/drain and

the handling wafer), and the sidewall junction capacitances, which are the primary extrin-

sic capacitances. Also included in this model is a body resistance, RB. While body resis-

tance is present in bulk CMOS transistors, it is typically very small and can be ignored. In

contrast, the isolated nature of the SOI transistor body means body resistance could be

significant, and it should always be considered during the design and layout of SOI cir-

cuits.

VTH VB′S( )

VTH VB′S( ) VTH0 γ 2φF VB′S– γ 2φF,–+= (3.3)

ID 2nµCOX W L⁄( )UT
2 VGS VTH VB′S( )–

nUT
----------------------------------------- 

 exp= (3.4).
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3.4.2 DC Model

Figure 3.8 presents the DC small-signal model for a body-driven PD-SOI MOSFET,

which is identical to the standard small-signal model used in bulk MOSFET models. In

this model there are two current generators, one controlled by the gate voltage and one

controlled by the body voltage, allowing separate consideration of the two transconduct-

naces. Note also that since there is virtually zero DC body current, body resistance has

no impact for DC and low-frequency applications and can be ignored. The small-signal

body transconductance can be found by differentiating the drain current with respect to

the body voltage, assuming that the gate and drain voltages are held constant. Thus, in

strong inversion the body transconductance is calculated as 

where gm is the gate transconductance. Likewise in weak inversion the body transcon-

Figure 3.8:  Small-signal DC model for a MOSFET

gmb
ID∂
VBS∂
------------

VDS VGS, c=

β VGS VTH VBS( )–( )
VTHd
dVBS
------------– 

 = =

gmb gm
VTHd
VBSd
------------– 

  ,=
(3.5)
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ductance is given by

In both cases the body transconductance is equal to the gate transconductance multi-

plied by the derivative of the threshold voltage with respect to the body voltage. This

derivative is labeled η, the body-effect parameter, and is critically important in body-

driven circuit design as it describes the relationship between gate transconductance and

body transconductance in all operating regions

Differentiating VTH from Equation 3.3 with respect to VBS, η can be calculated as 

η is typically close to  at VBS = 0, and will of course increase as VBS is forward

biased. 

3.4.3 AC Model

It is of particular interest in the AC analysis of body-driven circuits to compare the fre-

quency response of body-driven MOSFETs to gate-driven MOSFETs. In this section the

gmb
ID∂
VBS∂
------------

VDS VGS, const

1
nUT
----------

VGS VTH VBS( )–
nUT

--------------------------------------- 
  dVTH

dVBS
-------------– 

 exp= =

gmb gm
VTH
VBS
---------– 

 =

(3.6)

.

η
dVTH
dVBS
-------------–

gmb
gm
--------= = (3.7).

η γ
2 2φF VBS–
--------------------------------= (3.8).

1 3⁄
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frequency response of body-driven and gate-driven transistors will be compared by ana-

lyzing the unity current gain frequency fT for each. Additionally, the role of body resis-

tance in determining the frequency response of a body-driven MOSFET will be studied

using the concept of the −3-dB frequency for the body transconductance. Figure 3.9 pre-

sents the small-signal AC model for a PD-SOI MOSFET, including the important intrinsic

and extrinsic device capacitances. It is of particular interest in the AC analysis of body-

driven circuits to compare their high-frequency capability to that of a gate-driven MOS-

FET of the same size. Generally speaking, a body-driven MOSFET will always have a

degraded frequency response when compared to a same size gate-driven MOSFET,

though the degree of degradation will depend on the device sizing and technology cho-

sen. Of course PD-SOI, with its low junction capacitance, will always be superior to a

same generation bulk CMOS technology. 

Figure 3.9:  Small-signal AC model for a PD-SOI MOSFET
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A common figure of merit for describing the high-frequency performance of a transistor is

the current transfer unity-gain frequency fT. For a gate-driven MOSFET, fT is given by

[26]

where CGD can generally be ignored because it is much smaller than CGS when the

MOSFET is saturated. For a body-driven MOSFET, the fT can be defined by analogy

where CBS + CB–BOX are the capacitances connected from the body to small-signal

ground and replace CGS in Equation 3.9, while CBD replaces CGD. Note however that in

Equation 3.10 CBD is a junction capacitance which could be large, and therefore cannot

be ignored. The capacitances in the body-driven MOSFET structure are given by

where CJSW1 is defined in Figure 3.9.  is the total intrinsic body–source capaci-

tance and is given by [28]

fT GD,
gm

2π CGS CGD+( )⋅
-------------------------------------------,= (3.9)

fT BD,
gmb

2π CBS CB BOX– CBD+ +( )
-----------------------------------------------------------------,= (3.10)

CBS CBSi CJSW1,+= (3.11)

CBSi

CBSi ηCGS= (3.12).
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CJSW1 is the junction capacitance of the body–source diode and is equal to

where  is the sidewall junction capacitance per unit area, W is the MOSFET width,

and XJ is the MOSFET source/drain junction depth. To compare the capacitances in the

body-driven MOSFET to capacitances in the gate-driven MOSFET, Equation 3.13 can be

re-written in terms of the MOSFET oxide-capacitance per-unit-area and channel length

as

where LMIN is the minimum channel length, or 0.35 µm for this technology. Using the val-

ues of XJ, , and COX presented in the vendor-supplied SPICE model, Equation

3.14 can be simplified to

CBD is dominated by the drain–body junction capacitance, which has the same physical

dimensions as the body–source junction capacitance, and is therefore given by

CJSW1 C′JSWWXJ,= (3.13)

C′JSW

CJSW1 C′OXWLMIN XJ LMIN⁄( ) C′JSW C′OX⁄( ),⋅ ⋅= (3.14)

C′JSW

CJSW1 1 3⁄( ) C′OXWLMIN⋅≈ (3.15).

CJSW2 1 3⁄( ) C′OXWLMIN⋅≈ (3.16).
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Finally, the body to handling-wafer capacitance, denoted CB–BOX, can be ignored since

the buried oxide layer is typically 50 times thicker than the gate oxide. 

The fT of a gate-driven and body-driven MOSFET can now be compared by first writing

the gate-driven fT as a function of channel length and gate-overdrive voltage (i.e., substi-

tute the expression for MOSFET strong inversion transconductance as function of gate-

overdrive voltage into Equation 3.9) [26]

Similarly, substituting Equations 3.12, 3.15, and 3.16 into Equation 3.10 and writing fT in

terms of channel length and gate overdrive voltage, yields

Equation 3.18 shows that the body-driven fT is identical to the gate-driven fT except for

an additional term in the denominator which scales as L1. This extra term represents the

junction capacitances and it does not scale as L2 because the junction capacitances

depend on W and XJ and not L. Figure 3.10 presents a plot of the normalized fT (fT,BD/

fT,GD) vs. normalized channel length (L/LMIN) for a 0.35-µm PD-SOI nMOSFET. This plot

shows that at minimum channel length the body-driven fT is roughly one-third of the gate-

driven fT, while the body-driven fT approaches the gate-driven fT as channel length

increases. The fT of the body-driven and gate-driven MOSFETs converge because the

fT GD,
3µ VGS VTH–( )

4πL2
-------------------------------------≈ (3.17).

fT BD,
3µ VGS VTH–( )

4π L2 2 3η( )⁄( ) L LMIN⋅( )+[ ]⋅
------------------------------------------------------------------------------≈ (3.18).
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parasitic junction capacitances, which account for the reduction in body-driven fT relative

to the gate-driven case, are independent of channel length. Therefore as channel length

increases the parasitic junction capacitances remain constant and become a progres-

sively smaller percentage of the total intrinsic body capacitance. Figure 3.11 presents the

calculated fT for body-driven and gate-driven MOSFETs as a function of channel length.

From this plot one can see that it is possible to achieve an fT of roughly 5 GHz for a

body-driven nMOSFET with L = 0.35 µm and a gate overdrive of 250 mV.

The final aspect of AC performance that will be considered is the effect of body resis-

tance. Since the body resistance is in series with the body, it will have no effect on cur-

rent gain. However, since MOSFETs are typically voltage driven, the body resistance will

Figure 3.10:  Normalized fT (fT,BD/fT,GD) vs. normalized channel length (L/LMIN) for a 
0.35-µm PD-SOI nMOSFET
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create a pole in the voltage transfer function, which can be denoted  where

Comparing Equations 3.10 and 3.19, it is clear that a body-driven MOSFET must be

biased/sized such that  to ensure that the body resistance does not limit

the frequency response. 

3.5 SPICE Model

When designing complex circuits and systems in highly scaled CMOS technologies, it is

essential to make use of a SPICE-based simulator to quickly predict how a circuit will

function. Of course, the accuracy of any simulation is limited by the models used, and

Figure 3.11:  Body-driven and gate-driven fT versus channel length for a 0.35-µm PD-
SOI nMOSFET

fTV

fTV
1 RB⁄( )

2π CBSi CJSW1 CJSW2 C+ B Box–+ +( )⋅
------------------------------------------------------------------------------------------------= (3.19).

1 RB⁄( ) gmb<
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since body driving is a non-standard operating mode for a MOS transistor, it is espe-

cially important to verify that one’s standard MOS models can accurately describe body-

driven transistors. In this section two aspects of MOS modeling will be considered—

intrinsic models and extrinsic models. Intrinsic models describe characteristics of the

core MOSFET, such as drain current, transconductance, threshold voltage, etc. Exam-

ples of intrinsic models are BSIM3V3 and EKV. On the other hand, extrinsic models

describe parasitic components of the MOSFET including source/drain resistance, junc-

tion capacitance, and junction leakage current. Unlike intrinsic models, extrinsic models

are typically provided by the simulator and shared in common among all MOSFET mod-

els [27].

3.5.1 Intrinsic Models—BSIM3V3 vs. EKV2.6

When beginning the design process for this research project, one of the first tasks under-

taken was to verify the accuracy of the vendor supplied BSIM3V3 model. To this end, DC

measurements were made for single body-driven transistors and compared to simula-

tion. From this study it was found that BSIM3V3 shows significant errors when modeling

the gmb and η of MOSFETs with a forward biased body–source voltage—which is, of

course, the standard operating region for body-driven transistors. The problem seems to

be that BSIM3V3 applies an absolute value function to VBS that causes an unrealistic

discontinuity in η–VBS at VBS = 0, and also causes η to decrease with increasing VBS

under forward bias conditions.

To solve this problem, the EKV2.6 MOSFET model was utilized for most of the design

process. Unlike the BSIM3V3 model, the EKV model guarantees that all primary vari-
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ables (e.g., terminal voltages and currents) and their first derivatives (e.g., conductances

and resistances) are continuous functions [28]. Therefore the EKV model does not show

any discontinuity in η–VBS. Since an EKV model was not available from the vendor, a

custom EKV model was generated using the following process [29]:

• Start with a generic EKV model (one is available from the EKV website) [30].

• For a given measurement (e.g., ID–VGS) run a sweep using the vendor-supplied BSIM

model and EKV model and compare the results. Modify the EKV parameter(s) which

affect the measurement under consideration until the two curves match [29].

• Repeat this process for all critical DC measurements, which are ID–VGS log (for

characterizing the weak-inversion region and sub-threshold slope), ID–VGS lin (for

characterizing the strong-inversion region), and ID–VDS (for characterizing output

impedance).

• Note that all fits are done with MOSFETs biased at VBS = 0, which is a region where

BSIM is accurate. 

Although it may seem to be a very tedious task to generate a custom SPICE model, in

fact it is straightforward to generate an EKV2.6 model because of the small number of

parameters, and the very small degree of correlation among parameters. The small

degree of correlation means that it is possible to optimize one characteristic of the

model’s performance by varying only one parameter. For example, the parameter

GAMMA is used to set the sub-threshold slope, threshold voltage is set by matching ID–
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VGS in weak inversion (i.e., log ID), and mobility is set by matching ID–VGS in strong

inversion. Figure 3.12 presents a comparison of the measured and simulated (BSIM3V3

and custom-generated EKV2.6) η–VBS for an 8/0.5 M=16 PD-SOI nMOSFET. This plot

clearly shows a discontinuity in the BSIM3V3 curve, and good agreement between the

EKV2.6 and measured curves. As a final note to the reader interested in designing body-

driven circuits, it should also be mentioned that the η–VBS discontinuity was observed in

a number of BSIM3V3 models taken from different foundries and different technology

generations. Therefore this result is a problem with the BSIM3V3 model and not the

extraction methodology. In addition, a similar characteristic was observed in a bench-

mark BSIM4 model which was downloaded from the BSIM website [31].

Figure 3.12:  Comparison of measured and simulated (BSIM3V3 and custom 
generated EKV2.6) η–VBS for an 8/0.5 M=16 PD-SOI nMOSFET
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3.5.2 Extrinsic Models

The second important aspect of SPICE models considered here is the extrinsic model, in

particular the characteristics of the parasitic MOSFET drain–body and source–body

diodes. Table 3.1 lists the key parameters which are used to describe the parasitic MOS-

FET diodes. These parameters can be divided into two broad groups. The first group,

consisting of ACM, HDIF, PD/PS, and AD/AS, can be called the geometric parameters

because they describe the dimensions of the diodes. The second group, consisting of

JS, JSW, CJ, and CJSW, can be called the physical parameters because they describe

the physical characteristics of the junctions, specifically they describe the junction leak-

age current and capacitance. In this section we will focus on how to determine the

parameters in the second group. 

First, it should be noted that in all SOI technologies, the source/drain implants extend all

the way down to the BOX; therefore there is no bottom-plate junction in SOI and the

parameters JS and CJ should be set to zero. CJSW, which is the primary parasitic junc-

tion capacitance for a body-driven MOSFET, is also important in gate-driven MOSFETs

and should be determined by the vendor and included with the vendor-supplied SPICE

model. The final parameter of interest is JSW, which models the leakage current of the

parasitic diodes. In almost all gate-driven circuit designs, the drain–body and source–

body diodes are reverse biased, and so the precise value of the diode saturation current

is not important. For this reason the parameter JSW is typically not set in SPICE mod-

els, and a default parameter is used instead. However, in body driving the source–body
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Table 3.1:  Key parameters for extrinsic MOSFET model [27]

Parameter Definition Usage

ACM area calculation method—
defines how diode area 

and periphery will be cal-
culated

set in model by vendor, 
set to 2 in this work

HDIF roughly defines the width 
of a source/drain contact

must set if not set by ven-
dor, set per standard tran-

sistor layout

PS, PD source/drain periphery set per a specific transis-
tor layout

AS, AD source/drain area set per a specific transis-
tor layout

JS saturation current density 
for bottom-plate source/

drain diode

set to zero for SOI

JSW saturation current density 
for side-wall source/drain 

diode

must set based on mea-
surement

CJ zero-bias junction capaci-
tance for bottom-plate 

source/drain diode

set to zero for SOI

CJSW zero-bias junction capaci-
tance for side-wall source/

drain diode

will be set in model by 
vendor
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diode is almost always forward biased which means that significant current levels could

be present (e.g., nA to µA, as in Figure 3.6). The problem with using the default JSW

parameter for body driving is that it always significantly overestimates the true levels of

leakage current, and so would result in overly conservative circuit designs. Therefore

when designing SOI body-driven circuits, it is critically important that one sets the JSW

parameter based on device measurements (i.e., measurements of IB–VBS). Figure 3.13

presents a comparison of the measured and simulated (using a fitted parameter for

JSW) leakage current of an 8/0.5 M=16 nMOSFET fabricated on the PD-SOI process

used in this work.

Figure 3.13:  Comparison of measured and simulated (using a fitted parameter for 
JSW) IB–VBS for an 8/0.5 M=16 PD-SOI nMOSFET
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3.6 Temperature Characteristics

Temperature performance is the final aspect of body-driven MOSFET performance that

will be considered in this chapter. Increased operating temperature primarily affects

body-driven circuits in two ways, one of which results in improved performance and the

other of which results in reduced performance. The first important effect associated with

temperature is that the body–channel depletion region thickness shrinks as temperature

increases, which means that the coupling of the body to the channel, and hence the

transconductance efficiency (gmb/ID), increases with increasing temperature. Figure 3.14

presents the measured η–VBS for an 8/0.5 M=16 PD-SOI nMOSFET with temperature

swept from 0°C to +125°C in 25°C steps. In this plot η is measured by taking the deriva-

tive of the MOSFET threshold voltage with respect to body–source voltage, as per Equa-

Figure 3.14:  Measured η–VBS for an 8/0.5 M=16 PD-SOI MOSFET; temperature is 
swept from 0°C to +125°C in 25°C steps
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tion 3.7, at several different body–source voltages. The threshold voltage was extracted

by measuring the ID–VGS and gm–VGS for an Ohmic MOSFET (VDS = 50 mV) and then

finding the x-intercept point defined by [32]

where gmax is the maximum transconductance achieved by the Ohmic MOSFET (which

typically occurs at a gate overdrive voltage of roughly 300 mV). The data presented in

Figure 3.14 show that η increases 10% in going from 0°C to +125°C at VBS = 0.1 V, and

15% in going from 0°C to +125°C at VBS = 0.2 V, which, as will be shown later, bounds

the standard VBS operating voltages for body-driven transistors. 

The second important aspect of body-driven circuit performance that is affected by tem-

perature is the junction leakage current. Figure 3.15 presents the measured IB–VBS for

an 8/0.5 M=16 PD-SOI nMOSFET with temperature swept from 0°C to +125°C in 25°C

steps. This plot shows that the 125°C temperature change results in a greater than four-

decade increase in leakage current for a given body–source voltage. However, if we take

10 nA as the maximum allowable junction leakage current, this plot also shows that it is

possible to operate with a VBS of 0.3 V at +125°C. It will be shown in Chapter 5 that

body-driven circuits will rarely ever need to operate with a VBS greater than 0.3 V; thus

body driving is possible even up to +125°C.

VTH VGS gmax( )

IDS gmax( )

gmax
-------------------– 50mV,–= (3.20)
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3.7 Conclusions

This chapter has presented a complete introduction to the operation and modeling of the

body-driven transistor. In Section 3.2 different technology options for body driving were

introduced, including triple-well bulk CMOS and partially depleted SOI CMOS, and it was

shown that PD-SOI is ideal for body-driven applications because of the reduced junction

area. Section 3.3 presented DC bias curves for a body-driven MOSFET and showed that

it is possible to operate a body-driven transistor in weak, moderate, and strong inver-

sion. In Section 3.4 the DC and AC small-signal models for the body-driven transistor

were presented, and it was shown that the fT of a body-driven transistor is typically one-

third the fT of a same-size gate-driven transistor, assuming L = LMIN. SPICE modeling

was discussed in Section 3.5, and it was shown that EKV2.6 is superior to BSIM3V3 for

body-driven applications because EKV accurately models η–VBS for positive VBS.

Figure 3.15:  Measured IB–VBS for an 8/0.5 M=16 PD-SOI MOSFET; temperature is 
swept from 0°C to +125°C in 25°C steps
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Finally, the temperature characteristics of body-driven transistors were examined in Sec-

tion 3.6, and it was shown body-driven transistors should be able to operate up to

+125°C. 
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Chapter 4

Literature Review

4.1 Introduction

Chapter 4, which presents a literature review of body-driven circuits and primitives,

serves two purposes. First, by reviewing the current state of the art in body-driven cir-

cuits and primitives, it is possible to explicitly show how this dissertation research

advances the state of the art. Second, presenting multiple examples of body-driven cir-

cuits and primitives is probably the best way explain both the potential of and the design

challenges associated with body-driven circuit design. In this chapter Section 4.2 pre-

sents a literature review of the current state of the art in body-driven current mirrors. Sec-

tion 4.3 presents a literature review of the current state of the art in body-driven

differential pairs, and Section 4.4 presents a literature review of the current state of the

art for body-driven op-amps. Finally, Section 4.5 concludes this chapter. 

4.2 Literature Review—Body-Driven Current Mirrors

Now that the structure and biasing characteristics for single body-driven MOSFETs have

been studied, we can consider the operation of body-driven analog primitives (that is,

body-driven sub-circuits such as current mirrors and differential pairs) and body-driven

op-amps. The first body-driven primitive that will be studied in this review is the current

mirror. The body-driven current mirror is one of the potentially most useful, but also one

of the most challenging to design, of all the body-driven circuit primitives. The utility of

the body-driven current mirror lies in the fact that, since there is no threshold voltage
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required for turn-on, it is possible to operate with input and output voltages of VDSAT. This

is in contrast to a gate-driven current mirror, which can have a minimum output voltage of

VDSAT, but requires an input voltage greater than VTH + VDSAT. Unfortunately, the advan-

tages of the body-driven current mirror come at a cost—primarily design difficulty. The

major challenge of designing body-driven current mirrors lies in the fact that the body-

driven MOSFET is a depletion-mode or normally-on device; thus it is difficult to ensure

that the reference MOSFET in a body-driven current mirror is biased in saturation. The

other important drawback is the possibility of excessively forward biasing the body–

source junctions, although this is generally much less of an issue than biasing the refer-

ence device in saturation. In this section several body-driven current mirrors will be pre-

sented to show how this circuit primitive works, and how others have dealt with the

inherent design challenges. The circuits described in this section represent the state of

the art for body-driven current mirrors.

4.2.1 Simple Current Mirror Ι 

Figure 4.1 (a) presents the schematic of the first implementation of a body-driven simple

current mirror [33]. As one can see, the MOSFETs are biased with VGS = VDD to create

an inversion channel between the source and drain. The reference MOSFET, M1, is con-

nected drain–body, and the body voltage is copied to the output device, M2, to create the

current mirror. It is clear that the body-driven current mirror is directly analogous to a

standard gate-driven current mirror, with the body terminals acting as gates. However,

while they may look similar, the DC performance of this simple body-driven current is

quite different from that of a gate-driven current mirror. 
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Figure 4.1:  Body-driven simple current mirror with static gate bias: (a) schematic [33] 
and (b) simulated transfer characteristic

(a)

(b)
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Figure 4.1 (b) presents the simulated IOUT–IIN transfer characteristic for this current mir-

ror. Unless otherwise noted, all simulations in this chapter are run with VDD = 1 V, and

use the custom generated EKV model that describes the PD-SOI CMOS process used in

this work (see Section 3.5.1). The zero-bias nMOS threshold voltage for this process is

nominally 0.65 V. For all current mirror simulations run in this section the input current is

swept over a four-decade range, from 100 nA to 1 mA. All of the current mirrors simu-

lated are sized 8/0.5 M = 4 (total W/L = 32/0.5), and the nMOS technology current for

this process is roughly 350 nA at room temperature, so the inversion coefficient (IC) is

swept from roughly 0.05 to 50—a range that includes the weak, moderate, and strong

inversion regions [10]. 

Looking at Figure 4.1 (b), one can immediately see the problem with this basic imple-

mentation of the body-driven current mirror. For most of the input range the output cur-

rent is fixed at roughly 200 µA, it is not until the input current rises above 200 µA that the

output current begins to track the input. The problem with this implementation of the cur-

rent mirror is that the saturation current for M1, which is set by the gate bias and device

sizing as

is less than the input current for most of the input range. Clearly, if the input current is

less than the saturation current the reference MOSFET will be operating in the Ohmic

region and the output current will not be a faithful replica of the input. The VIN–IIN curve

IDSAT
β
2
--- VDD VTH–( )2,= (4.1)
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in Figure 4.1 (b) confirms that the reference device is in the Ohmic region over most of

the input current range.

Due to its low input voltage requirements, the body-driven current mirror has the poten-

tial to be an important element in analog circuit designs. However, in its simplest imple-

mentation, which could be called a body-driven current mirror with static gate bias, the

depletion-mode characteristics of the body-driven MOSFET make this circuit unusable

for most analog designs. Of course, one could shrink the mirror devices (i.e., shrink β) so

that the current mirror enters saturation at a lower current level. While this would allow

the current mirror to operate at lower current levels, it does not address the fundamental

problem, namely that the current mirror will not enter the saturation region until VIN >

VDD − VTH. For a VTH of 650 mV, this means that a 350-mV input voltage is required at

1-V VDD. In a smaller feature size technology with a VTH of 500 mV, a 500-mV input volt-

age would be required. Thus, it seems that the real problem with this circuit is that it is

“voltage biased” as opposed to “current biased,” which is the technique used in almost all

robust analog circuits. 

Nevertheless, even the small range over which this current mirror did operate properly

highlights the potential of this circuit for low-voltage design. Additionally, it is important to

understand and study this basic current mirror, as it forms the foundation of all other

body-driven current mirrors. In fact, all of the prior-art current mirrors and the new current

mirror techniques developed in this research are merely presenting methods for improv-

ing the performance of this basic current mirror. Finally, it should be noted that this cur-

rent mirror was first implemented in a 2-µm CMOS process with a threshold voltage of



89

0.85 V, which is 200 mV higher than the 0.65-V threshold devices used in this work.

Thus, when originally implemented, the current mirror would have entered saturation at a

VIN of approximately 150 mV when operated with a VDD of 1 V, and would have been

much more useful as a low-voltage current mirror.

4.2.2 Simple Cascode Current Mirror

Figure 4.2 (a) presents a schematic of the first body-driven simple cascode current mirror

[34]. Like the body-driven simple current mirror just presented, this circuit is the body-

driven equivalent of the gate-driven simple cascode current mirror. The purpose of the

cascode devices is to improve output impedance, but also to improve linearity by allow-

ing the input mirror devices to operate in the Ohmic region while the cascode devices

operate in saturation. Since the top devices have less VGS than the bottom devices, they

will become saturated first and act to equalize the VDS on the bottom devices, thus

improving linearity. Figure 4.2 (b) presents the simulated IOUT–IIN transfer characteristic

for this circuit. Though the devices are sized the same as the MOSFETs in the simple

current mirror (8/0.5 M = 4), the saturation current is less and the current mirror enters

saturation earlier. The saturation current is less because when the bottom devices are in

the Ohmic region, the two series MOSFETs can effectively be considered as a single

MOSFET whose channel length is the sum of two channel lengths, thus β is reduced by

a factor of two with respect to the simple current mirror. The current mirror enters satura-

tion earlier because only the cascode devices, which have a lower VGS − VTH than the

bottom devices, have to saturate for the mirror to act linearly. 
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Figure 4.2:  Body-driven simple cascode current mirror with static gate bias: (a) 
schematic [34] and (b) simulated transfer characteristic

(a)

(b)
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On the other hand, it seems that a key problem with this circuit is the large input voltage

required for the MOSFETs to enter saturation, since there are now two VBS in series.

Thus, while this current mirror does seem to have some advantages over the simple cur-

rent mirror, in terms of linearity, the large input voltage requirement reduces the useful-

ness of this circuit as a low-voltage current mirror. However, it should again be noted that

this mirror was originally implemented in a 2-µm CMOS process with 0.85-V threshold

voltages. In this case the mirror saturated at a much lower input voltage and was useful

as a low-voltage circuit element (indeed, this mirror was used in the construction of a 1-V

cascode OTA [34]).

4.2.3 Simple Current Mirror ΙΙ 

One interesting solution to the problem of body-driven current mirrors is presented in Fig-

ure 4.3 (a) [35]. The core of this circuit is the standard body-driven simple current mirror,

but added to this is an nMOS level shifter biased at approximately VGS = VTH and con-

nected between gate and body terminals of the body-driven current mirror. By reducing

the gate voltage to VIN + VTH, the saturation current is greatly reduced at low input cur-

rents, and the linear input range of the current mirror is greatly increased. Furthermore,

since the level shift voltage is equal to VTH, and independent of VDD, this bias scheme

will have low sensitivity to process and VDD variations. 

The simulated IOUT–IIN transfer characteristic is presented in Figure 4.3 (b). In this plot

one can see that this mirror does have a much larger current range than body-driven cur-
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Figure 4.3:  Body-driven simple current mirror with level-shifted, dynamic gate bias: 
(a) schematic [35] and (b) simulated transfer characteristic (Bias current IB is 100 

nA.)

(a)

(b)
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rent mirrors that utilize static gate bias. However, it still cannot operate linearly over the

entire input range. Furthermore, though it is possible to achieve better low-end perfor-

mance by decreasing the VGS of the level-shift device, this would necessarily reduce the

high-end performance, and vice-versa. Another important drawback of this circuit is that

the minimum required VDD is roughly , which could be too high

for some low-voltage applications. In Chapter 5, an original body-driven current mirror is

presented that can operate over an even larger range and has a minimum required VDD

of only .

4.2.4 Regulated Cascode Current Mirror

Figure 4.4 (a) presents the schematic of a body-driven regulated cascode current mirror

which combines gate driving and body driving within the same circuit [36]. Like the body-

driven simple cascode current mirror, this circuit attempts to operate the bottom devices

in the Ohmic region, but achieves good linearity by using extra circuitry to match the VDS

for the mirror devices. In this case an active regulation amplifier is used to achieve VDS

matching and good linearity. Figure 4.4 (b) presents the simulated IOUT–IIN transfer char-

acteristic for this circuit. This circuit has a wider linear range than any of the previous cur-

rent mirrors; however, it still does not operate linearly over the entire input range.

However, the main problem with this current mirror is that the gates are biased at VDD for

all input current levels. Thus, even though a regulation amplifier is used to improve

matching, the input voltage will be too low at very low input currents to achieve good

matching. 

VIN VGS3 VDSAT+ +( )

VGS VDSAT 1 η–( )⋅+
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Figure 4.4:  Body-driven regulated cascode current mirror: (a) schematic [36] and (b) 
simulated transfer characteristic (IB is equal to 100 nA.)

(a)

(b)
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4.2.5 Comparison of the Body-Driven Current Mirrors

Finally, it is important to summarize the literature review of body-driven current mirrors to

explain where shortcomings exist and thus where opportunities for contributions to body-

driven circuit design exist. Generally speaking, the utility of any circuit primitive can be

expressed only insofar as it is able to meet the real needs of circuit designers. With

respect to current mirrors, it is therefore necessary to first consider what the needs of cir-

cuit designers are. Paradoxically, one of the shortcomings of the prior art current mirrors

presented is that the focus was always on developing a current mirror per se; that is, the

focus has been on developing a circuit element which takes an input current and pro-

duces a single scaled replica of the input current at its output. However, for high-perfor-

mance analog circuits, this is often not exactly what is needed. Instead, what is needed

is a method for building arrays of high-impedance current sources, which are then used

as tail current sources, loads for cascode gain stages, etc. In this respect, prior-art body-

driven current mirrors do not meet the needs of low-voltage analog circuit designers. 

To better understand the shortcomings of the prior-art current mirrors, first consider the

regulated cascode current mirror presented in Figure 4.4 (a). While this circuit is rela-

tively useful for taking an input current and producing one output current, it cannot be

used to take one input current and generate multiple replicas of the output current. The

reason for this is that the regulation amplifier is constructed such that for every output

branch, a regulation amplifier and input reference branch would be required. Using this

circuit, it is technically possible to generate several replicas of the output with unregu-

lated cascode current sources. To do this copies of M2 and M5 could be arrayed, with the

gate bias of M5 being used as the cascode bias, and the body bias of M1, M2 used as
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the body bias (the gate bias of all current source devices would be tied to VDD). The

problem with this is that the mirror devices would be in deep Ohmic and without a regula-

tion amplifier this current source would not be any better than a simple current mirror. In

considering the development of high-impedance current source arrays, the key problem

with the level-shifted current mirror of Figure 4.3 (a) is somewhat different. In this circuit,

the mirror device is saturated over a wide range; however, in using this bias technique it

is difficult to ensure that the mirror device is biased precisely at VDS = VDSAT. This condi-

tion is critical for biasing low-voltage cascode current mirrors because any excess drain

overdrive (VDS − VDSAT > 0) on the mirror devices is lost for dynamic signal swing on the

drains of cascode devices. On the other hand, if the VDS of the current source devices is

biased less than VDSAT, the output impedance of the cascode current sources would be

compromised. Therefore it is important in low-voltage design to have a bias technique

that guarantees the mirror devices are biased precisely at VDS = VDSAT. Finally, the cur-

rent mirrors using static gate bias are important to study because they represent the

foundation of body-driven current mirrors. However, since they use a gate bias that is

sensitive to VDD and process variations (i.e., VTH), they will not be useful as elements in

high-performance analog circuit designs. 

It should also be noted that none of the body-driven current mirrors presented allow the

designer to explicitly define the inversion coefficient of the transistors, while also guaran-

teeing that VDS = VDSAT. It is the opinion of this author that the inversion coefficient

based design technique presented by Binkley et al. [10] is essential for the design of

high-performance analog circuits, because it allows the designer to optimize the perfor-
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mance trade-offs provided by the different transistor operating regions. Thus any body-

driven design technique should also be applicable to all MOSFET operating regions and

allow the designer to explicitly consider the MOSFET inversion coefficient.

From this discussion, it is clear that many opportunities exist for developing body-driven

current mirror design techniques that will represent a contribution to the field of low-volt-

age, high-performance body-driven circuit design. Specifically, techniques are required

that allow the designer to bias a body-driven MOSFET precisely at VDS = VDSAT to opti-

mize the trade-off between output impedance and signal swing at low voltages, but that

also allow the designer to explicitly consider inversion coefficient as a design parameter.

4.3 Literature Review—Body-Driven Differential Pairs

In contrast to current mirrors, differential pairs constructed from depletion-mode devices

are straightforward to design and function quite well—indeed often better than their

enhancement-mode counterparts. In this section three different implementations of a

body-driven differential pair are presented. These circuits represent the state of the art

for body-driven differential pairs. 

4.3.1 Differential Pair with Static Gate Bias

Figure 4.5 presents a schematic of a body-driven differential pair, which was first utilized

in CMOS technology as a means of implementing very small transconductances for

active CMOS filters with very long time constants [37, 38], and was later independently

discovered as a means of implementing ultra-low-voltage analog circuits on standard
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CMOS technology [20]. The advantage of body driving in this application is that since

there is no threshold voltage associated with the body, it is possible to achieve wide

ICMR with a single-polarity differential pair. Figure 4.6 presents the simulated output cur-

rent for M1 and M2 versus differential input voltage, with a common-mode input voltage

of 0.5 V. In this plot we can see that the body-driven differential pair does indeed func-

tion just like a gate-driven pair, at least with respect to differential inputs. On the other

hand, the main drawback of the body-driven differential pair is that the body transcon-

ductance will change as a function of common-mode level. Figure 4.7 presents the simu-

lated body transconductance gmb versus common-mode input voltage VICM. Over the

common-mode range 0 to 1 V, the gmb varies from roughly 200 µmho to 300 µmho, or

250 µmho +/− 20%. Another drawback of the variation in gmb with VICM is that for a fixed

threshold voltage mismatch between M1 and M2, the offset will vary as a function of com-

Figure 4.5:  Body-driven differential pair with static gate bias [19]
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Figure 4.6:  Simulated IOUT–VID transfer characteristic for the body-driven differential 
pair with static gate bias (M1 and M2 are sized 8/0.5 M=4.) 

Figure 4.7:  Simulated gmb–VICM for the body-driven differential pair with static gate 
bias (M1 and M2 are sized 8/0.5 M=4.)



100

mon-mode level and thus degrade, and in fact often dominate, the CMRR. To alleviate

this effect one must be certain to size the input pair devices large so as to minimize mis-

match. Nevertheless, the low-voltage rail-to-rail ICMR capability of the body-driven differ-

ential pair outweighs the potential drawbacks for many applications. This is by far the

most widely used body-driven primitive reported in the literature, and it will continue to be

a useful element in low-voltage analog circuit designs. 

4.3.2 Complementary Body-Driven Differential Pairs

While the body transconductance increases with increasing common-mode level in the

n-type differential pair, the body transconductance of a p-type differential pair varies in a

complementary fashion; that is, it decreases with increasing common-mode level. There-

fore it is possible to compensate the variation of a single body-driven differential pair by

connecting a complementary pair in parallel, as in Figure 4.8 [19, 39]. The simulated

gmb–VICM characteristic for the complementary differential pairs is presented in Figure

4.9. In this simulation the nMOS transconductance is 152 µmho +/− 20% over the ICMR,

the pMOS transconductance is 86 µmho +/− 30% over the ICMR, while the aggregate

transconductance is 242 µmho +/− 4%. Therefore the complementary body-driven pair

can achieve constant bandwidth over a rail-to-rail ICMR. Additionally, since both pairs

are turned-on for all common-mode inputs, the slew rate will be constant. The only draw-

back of the complementary input pair is that it will not help improve CMRR. However, this

can be mitigated by using large input devices, common-centroid layout, etc. Also, since

both pairs are always on, the offset voltage will vary continuously over the entire ICMR.

This is in contrast to a standard complementary gate-driven differential pair, which will
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Figure 4.8:  Complementary body-driven differential pairs with static gate bias [19]
M1 and M2 are sized 8/0.5 M=4, M3 and M4 are sized 8/0.5 M=10, and IT = 100 µA.
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have a discontinuity in VOS–VICM when operating at low supply voltages because there

is only a very small range where both input pairs are turned on.

4.3.3 Differential Pair with “Floating Battery” Gate Bias

The final differential pair architecture that will be considered is the so-called “floating bat-

tery” gate bias [39], presented in Figure 4.10 (a). Instead of tying the MOSFET gates to

the appropriate power supply, in this design the gate is dynamically biased by an nMOS

VGS level shifter connected from the common-source node to the common-gate node. In

some ways this circuit is similar to the current mirror presented in Figure 4.3 (a), except

in this design the nMOS level-shifter M5 is matched to M1 and M2, and biased at the

same current density. The goal is to keep the VGS and ID of the input pair devices con-

stant, which also forces the VBS and gmb to be constant. One drawback of this structure

Figure 4.9:  Simulated gmb–VICM for complementary body-driven differential pairs
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Figure 4.10:  Body-driven differential pair with floating battery gate bias: (a) 
schematic [39] and (b) simulated gmb–VICM (M1 and M2 are sized 8/0.5 M=4, 

M3 is sized 8/0.5 M=2, IT is equal to 100 µA, and IB is equal to 25 µA.)

(a)

(b)
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is that the total power supply voltage must now be higher than . However,

this circuit is very useful for systems that must operate over a wide power supply range

(e.g., 1-V to 3.3-V VDD). Figure 4.10 (b) presents the simulated gmb–VICM for this circuit.

Notice that gmb increases rapidly when VICM is within 0.6 V of VDD. This is because the

gate of M5 becomes clamped at VDD for VICM > VDD − 0.6 V.

4.3.4 Comparison of the Body-Driven Differential Pairs

In contrast to the body-driven current mirror, the body-driven differential pair in its sim-

plest form is an extremely useful circuit element. While the complementary body-driven

pair and differential pair with dynamic gate bias present advantages over the basic imple-

mentation, any one of the three might be chosen for a circuit design, based on the

requirements of the application. Some new differential pairs can be quickly imagined,

such as a combination of the complementary and dynamic gate bias structures to pro-

vide rail-to-rail, constant gmb performance over a wide power supply range, and the use

of offset correction signals fed to the gate terminals to minimize both offset and CMRR.

Nevertheless it was not felt that the opportunities for advancing the state of the art in the

design of body-driven differential pairs were as significant as in body-driven current mir-

ror design, and the body-differential pair used in this work is directly based on prior-art

differential pairs.

4.4 Literature Review—Body-Driven Operational Amplifiers

Now that the most important body-driven analog primitives have been presented, we can

look at the application of the these cells to larger analog circuits. In this section three

VGS 2VDSAT+
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body-driven amplifiers, which represent the state of the art in body-driven analog design,

will be presented. 

4.4.1 Body-Driven OTA

Figure 4.11 presents one of the first examples of a body-driven operational transconduc-

tance amplifier (OTA) [34]. This circuit uses a standard folded cascode structure with

nMOS input pair. However, it replaces the standard gate-driven input pair with a body-

driven pair—thus achieving a wide ICMR. Likewise the nMOS current mirror in the out-

put stage was replaced with a body-driven simple cascode mirror. The body-driven cas-

code current mirror has the dual advantages of reduced input voltage requirements (with

respect to a gate-driven current mirror), and high output impedance. Note that as this cir-

cuit was implemented in a 2-µm CMOS technology with 0.85-V thresholds, it was much

easier to utilize this current mirror with a low-input voltage, since the gate overdrive for

Figure 4.11:  Early example of a body-driven OTA [34]
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the current source devices was only 150 mV at 1-V VDD. In fact, measurement results

presented in [34] show that the current mirror operates linearly with input currents from 5

µA to 20 µA, with a corresponding input voltage over this range of 104 mV to 544 mV.

Implemented in a p-well bulk CMOS technology, this OTA achieved a 1-MHz bandwidth

at 10-pF load, 45-dB open-loop gain, 0.7-V ICMR, +/− 1-V/µs slew rate, and draws 120

µA from a 1-V power supply.

This OTA represents an important contribution to the field of body-driven circuit design

because it clearly shows that body-driven primitives can be used to construct more com-

plex and useful analog circuits. To this day, it is still the only body-driven circuit reported

in the literature that makes use of two different types of body-driven primitives (i.e., body-

driven differential pair and body-driven current mirror). On the other hand, the relatively

low voltage gain shows that it is non-trivial to design body-driven circuits that approxi-

mate the performance of gate-driven circuits operating at higher power supply voltages.

4.4.2 Body-Driven Op-Amp Ι 

Figure 4.12 presents a schematic of the first two-stage operational amplifier that utilized

body-driven techniques. Fabricated in an n-well bulk CMOS technology, this amplifier

uses a body-driven differential pair for an input stage but otherwise uses gate-driven

transistors. In particular, note that the load for the differential pair is a gate-driven current

mirror that uses bulk-CMOS compatible lateral PNP transistors as level shifters. Since

the threshold voltage for this technology is roughly 0.85 V and the VEB of the BJTs is

roughly 0.7 V, it is straightforward to guarantee that M1 and M2 are biased in saturation.
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With a total supply current of 300 µA, this op-amp achieved a bandwidth of 1.3 MHz, was

capable of driving capacitive loads of 100 pF, and achieved an open-loop DC gain of 48

dB. One important limitation to the gain this amplifier could achieve is the necessity of

low VDS on devices M3 and M4, which would significantly compromise their output

impedance.

4.4.3 Body-Driven Op-Amp ΙΙ 

Figure 4.13 presents an interesting example of a wide-ICMR input stage that utilizes

depletion-mode, gate-driven nMOS transistors which are used as level shifters/buffers to

drive a standard body-driven pMOS differential pair [41]. Note that, unlike the first two

amplifiers, this circuit has been implemented in a CMOS technology that has special pro-

cess options—specifically a zero-VTH nMOS transistor. Generally speaking, it should be

possible to achieve rail-to-rail ICMR with only an nMOS depletion-mode pair. This could

Figure 4.12:  First two-stage body-driven op-amp [19]
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be done if the natural threshold voltage is more negative than −200 mV, thus allowing

adequate VDS on the tail current source at low VICM, while at high VICM body effect would

shift the threshold voltage positive enough to allow the input pair to remain in saturation

all the way up to VICM = VDD. The problem with that strategy in this application is that the

op-amp is specified to operate with a VDD as low as 0.9 V, thus there will not necessarily

be enough ICMR to sufficiently shift the threshold voltage of the nMOS pair at high VICM.

To address these problems the author in [41] decided to use the depletion-mode nMOS-

FETs as source followers to drive a pMOS body-driven differential pair. This approach

would not add any low-end ICMR, but it does increase the high-end ICMR by approxi-

mately one VDSAT. Of course, he could have simply dispensed with the nMOS input

Figure 4.13:  Wide-ICMR input stage utilizing depletion-mode, gate-driven 
nMOS and body-driven pMOS [41]
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devices altogether and used only the p-type body-driven differential pair. This strategy

would have provided rail-to-rail ICMR, and would also have immediately improved noise

performance by removing current sources I1 and I2 and MOSFETs MN1 and MN2. In the

paper he states that this path was not taken because of concerns about the input capaci-

tance and leakage current of the body-driven input pair. It would have been especially

interesting if he had fabricated both versions of the amplifier so that a comparison could

be made. Unfortunately he did not.

Meant for portable, battery-powered applications, this amplifier uses only 500 nA supply

current but has a corresponding bandwidth of only 5.6 kHz at CL = 12 pF. The measured

DC gain was between 70 and 79 dB, however the CMRR at 0.9-V VDD is only 25 dB.

4.4.4 Comparison of the Body-Driven Amplifiers

Table 4.1 presents a comparison of the measured performance for the three body-driven

amplifiers. While the data shows that it is certainly possible to design operational amplifi-

ers using the body-driven circuit technique, the performance parameters listed here may

not be sufficient for some applications. In particular, for the two Blalock amplifiers, rela-

tively high bandwidth is achieved but the DC gain is less than 50 dB. On the other hand,

the Stockstad amplifier achieves a voltage gain greater than 70 dB, but at a bandwidth of

only 5.6 kHz. It seems likely that the use of very low bias currents in the Stockstad ampli-

fier is an important component in achieving the high voltage gain. What has not been

reported in the literature thus far is a 1-V body-driven operational amplifier that can

achieve both wide bandwidth and high voltage gain. Moreover, what has also not been
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reported is an op-amp that utilizes high-impedance, body-driven cascode current

sources and regulated cascode current sources to achieve good performance. It seems

therefore that the construction of a 1-V body-driven amplifier that achieves high voltage

gain and wide bandwidth through the use of high performance body-driven current

sources would represent an important contribution to the field of low-voltage analog cir-

cuit design.

4.5 Conclusion

Chapter 4 has presented a review of the state of the art in body-driven analog circuit

design. In Section 4.2 the state of the art for body-driven current mirrors was reviewed,

and it was clearly shown that design techniques for body-driven current mirrors that are

Table 4.1:  Measured performance parameters for state-of-the-art body-driven 
operational amplifiers

Parameter Blalock OTA 
[34]

Blalock Op-
Amp [40]

Stockstad Op-
Amp [41]

DC Voltage 
Gain

45 dB 48 dB 70–79 dB

Small-Signal 
BW

1 MHz 1.3 MHz 5.6 kHz

SR+ 1 V/µs 0.7 V/µs NA

SR− 1 V/µs 1.6 V/µs NA

ISUPPLY 120 µA 287 µA 0. 5 µA

Power Supply 
Voltage

1 V 1 V 0.9–6 V

ICMR 0.7 V 966 mV R2R
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suitable for the design of high-performance analog circuits have not yet been developed.

In Section 4.3 the state of the art in body-driven differential pairs was reviewed. In this

section it was shown that body-driven differential pairs are an extremely useful element

for analog circuit design because they can achieve rail-to-rail ICMR with a single pair.

Finally, Section 4.4 reviewed the state of the art in body-driven amplifiers. The amplifier

review shows that body-driven op-amps have traditionally suffered from either poor

bandwidth or low gain. Furthermore, it can be reasonably surmised that the lack of per-

formance in body-driven amplifiers is due, at least in part, to the lack of high performance

body-driven current sources. 
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Chapter 5

Design and Measurement of a High-Performance Body-

Driven Operational Amplifier

5.1 Introduction

Chapter 5 presents the key contributions of this research, including the development of a

high-performance body-driven op-amp. However, we will first begin with a review of what

has been presented thus far. Chapter 2 presented a review of technology trends and

showed that novel design techniques, including body driving, will be required to design

high-performance analog circuits in highly scaled digital CMOS technologies. The pri-

mary purpose of Chapter 2 was to describe the current state of CMOS technology and to

show why body driving is an important design technique. In Chapter 3 a detailed descrip-

tion of the operation and modeling of the body-driven transistor was presented. Chapter

3 was intended primarily as a tutorial explaining body-driven MOSFETs. Chapter 4 pre-

sented a detailed introduction to the design of body-driven circuits by examining several

prior art current mirrors, differential pairs, and amplifiers. Besides being an introduction

to the design of body-driven circuits, one of the key conclusions that can be drawn from

Chapter 4 is that the development of high-performance body-driven current mirrors and

current sources is essential to enable the design of high-performance body-driven ana-

log circuits. Indeed, the poor voltage gain of the prior art body-driven amplifiers can be

traced directly to the lack of high-impedance, body-driven current sources. 
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In this chapter, Section 5.2 describes the adaptive gate bias technique, which is the most

important and fundamental contribution of this research. Adaptive gate biasing is a new

technique for biasing body-driven current mirrors in saturation, and its purpose is to solve

the problems shared by all of the prior art current mirrors discussed in Chapter 4. Section

5.3 describes the design and measurement of a body-driven operational amplifier. This

op-amp heavily leveraged the adaptive gate bias technique and simultaneously achieved

high open-loop gain and high bandwidth at 1-V power supply; however, this amplifier

also showed poor PSRR and CMRR. In Section 5.4 the PSRR/CMRR problem is ana-

lyzed through the use of Monte Carlo analysis, and simple modifications which greatly

improve the PSRR and CMRR are presented. The measurement results from a second

body-driven op-amp that incorporates the proposed improvements are then presented.

Section 5.5 presents a comparison of the body-driven amplifier developed in this

research to several prior art op-amps to show that body driving enables true high-perfor-

mance analog circuits. Finally, Section 5.6 concludes this chapter. 

5.2 Designing Body-Driven Current Mirrors with Adaptive Gate Bias

Adaptive gate biasing is a new and unique circuit technique whose intended purpose is

to enable the development of high-performance body-driven current mirrors and current

sources, which will in turn lead to the development of high-performance body-driven

amplifiers. The key characteristics of the adaptive gate bias technique can be summa-

rized as follows:
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• guarantees—independent of process, temperature, and power supply voltage—that

the reference device in a body-driven current mirror will be biased with a VDS equal to

or just above the saturation voltage VDSAT,

• valid in all MOSFET operating regions, and

• allows the designer to explicitly consider MOSFET inversion coefficient as a design

parameter.

In the rest of this section the development and application of the adaptive gate bias tech-

nique will be described.

5.2.1 A Universal MOSFET VDSAT Extractor

5.2.1.1 EKV Model Review

The first step in developing the adaptive gate bias circuit is to build a sub-circuit that can

extract the MOSFET saturation voltage in any MOS operating region. Such a circuit has

been presented in various forms [42, 43], though it was best elucidated by Minch [44]. To

understand this circuit we must first review some important concepts from the EKV

model [33]. Instead of defining a single MOSFET drain–source current that is controlled

by both the source and the drain, the EKV model defines two MOS currents—the forward

current IF, which is controlled by the source, and the reverse current IR, which is con-

trolled by the drain. The total drain current ID is given by [28]

ID IF IR–= (5.1).
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If IF >> IR, then the MOSFET is operating in saturation. EKV uses these definitions

because it allows the MOS structure to retains its inherent symmetry. For the circuit

designer these concepts are useful because they often simplify the analysis of MOSFETs

operating in the Ohmic region. 

The forward and reverse currents in the EKV model are defined in terms of the terminal

voltages in the following equations [28]

where if and ir are the normalized forward and reverse currents, respectively. Both cur-

rents are normalized by (W/L) and the so-called technology current I0, as follows [10]

Note that if a MOSFET is operating in saturation, then  and if will be equivalent to

the inversion coefficient (IC) defined by Vittoz [42] and later used by Binkley et al. [45].

vp, vd, and vs are the normalized pinch-off, drain, and source voltages, respectively. A

normalized voltage is defined simply as a terminal voltage (e.g., VD) divided by the ther-

if 1
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mal voltage UT

where i refers to any MOSFET terminal. Finally the pinch-off voltage VP is a term unique

to the EKV model, which is related to the gate overdrive voltage . However, the

precise value of the pinch-off voltage is not important in the following analysis, it is only

important to note that the pinch-off voltage is solely a function of the gate voltage. There-

fore if two devices have the same gate voltage, they also have the same pinch-off volt-

age, regardless of their respective current levels, aspect ratios, or source/drain voltages.

Note however that the EKV formulation uniformly assumes that all devices of the same

polarity also have the same body voltage, which is typically the appropriate supply volt-

age. Thus if two devices have the same gate voltage but different body voltages, they will

have different pinch-off voltages.

5.2.1.2 A Universal Definition for VDSAT

Now that the EKV equations have been presented, it is possible to derive an expression

for VDSAT which is valid for all inversion levels. For this derivation, first recall that if if >>

ir, a MOSFET is operating in saturation. Conversely, if if is just slightly greater than ir, the

MOSFET is operating in the Ohmic region. It stands to reason then that there should be

some minimum ratio  for which the MOSFET is operating just at the edge of sat-

uration. With this in mind, we can solve both of the equations in 5.2 for vp and set them

vi
Vi
UT
-------,= (5.4)

VG VTH–

if ir⁄ a>
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equal to one another.

where the un-normalized terminal voltages have been used. Equation 5.5 can now be

solved for VDS as [44]

Finally, by setting ir equal to if/a, a definition of VDSAT that is valid in all operating regions

is obtained [44]

Figure 5.1 presents a plot of Equation 5.7 with a = 17. It should be noted here that the

MOSFET operating regions are defined in terms of the inversion coefficient as follows: IC

< 0.1 defines the weak inversion region, 0.1 < IC < 10 defines the moderate inversion

region, and IC > 10 defines the strong inversion region [10]. Looking at Figure 5.1, one

can see that in weak inversion the VDSAT is constant and equal to roughly 104 mV, or

roughly four thermal voltages, in moderate inversion the VDSAT becomes sensitive to

inversion coefficient, while at the boundary between moderate and strong inversion

VDSAT is equal to roughly 216 mV. Note also that the saturation voltage in strong inver-

sion is proportional to the square root of IC, or has a slope of +1/2 on a log-log scale,

2nUT ir( ) 1–exp( ) VD+ln 2nUT if( ) 1–exp( ) VS,+ln= (5.5)

VDS 2nUT
if( ) 1–exp( )

ir( ) 1–exp( )
-------------------------------------ln= (5.6).

VDSAT 2nUT
if( ) 1–exp( )

if a⁄( ) 1–exp( )
--------------------------------------------ln= (5.7).
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which also agrees with theory. Therefore Figure 5.1 shows that the VDSAT definition pre-

sented in Equation 5.7 is valid in all operation regions. 

Finally, it is important to note that the parameter a should be chosen based on achieving

a certain output impedance and dynamic range trade-off. When VDSAT is defined as in

Equation 5.8, the boundary between the saturation and Ohmic regions becomes a

design parameter. If one chooses a large a, then transistors will be biased farther out on

the MOSFET saturation characteristic, resulting in higher output impedance but less out-

put swing. Conversely, if one chooses a lower value of a the transistor will be biased

closer to the “knee” region, and output impedance will be degraded while output swing

will be increased. Generally speaking, a designer must find the value of a which best

suits his design goals. In this work it was found that a = 17 provided a good trade-off

between output impedance and signal swing. 

Figure 5.1:  Plot of theoretical VDSAT–IC, a=17
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5.2.1.3 A Circuit for Defining if/ir

The final step in developing a VDSAT extractor is to build a circuit that can explicitly

define the if/ir ratio in a reference transistor. An example of such a circuit is presented in

Figure 5.2 [44]. To understand how this circuit extracts the saturation voltage, we must

calculate the if/ir ratio in device M2. Noting that if1=ir2 since both devices have the same

gate voltage (see Equation 5.2), we can write by inspection

Figure 5.2:  Circuit for extracting saturation voltage [44]

if1
IREF
nmI0
------------=

id2
IREF
I0
-----------=

if1 ir2=

(5.8)

.
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Next, Equation 5.1 can be applied to device M2, and solved for if2/ir2 producing

Lastly, substituting the equations of 5.8 into Equation 5.9 results in 

Equation 5.10 shows that the circuit of Figure 5.2 defines the if/ir ratio in a reference

MOSFET (M2), based only on the ratio of device sizes, and independent of temperature,

operating region, power supply voltage, etc. If one chooses n = 4 and m = 4, then if2/ir2

will be equal to 17. Comparing Equations 5.10 and 5.7, it is clear that the VDS of device

M2 must be equal to VDSAT for any input current level.

5.2.2 Body-Driven Simple Current Mirror with Adaptive Gate Bias

5.2.2.1 Theory 

As stated in the beginning of this section, the goal of adaptive gate biasing is to gener-

ate a gate bias that forces a MOSFET in a body-driven current mirror to operate at the

edge of saturation. Put another way, the purpose of adaptive gate biasing is to enable

the designer to explicitly define the saturation current in a body-driven MOSFET. One

implementation of adaptive gate biasing for a simple current mirror is presented in Fig-

ure 5.3. In this circuit the current source on the left is the input for the user-defined satu-

ration current, while the current source on the right is the input to the actual mirror. Note

if2
ir2
------ 1

id2
ir2
------+= (5.9).

if2
ir2
------ 1 nm+= (5.10).
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also that the relative device sizes are shown next to each transistor. The operation of this

circuit can be understood as follows: The IDSAT current source plus devices MB1, MB2,

MB3, MB5, and MB6 are used to generate a VDSAT voltage reference; the VDSAT voltage

reference is used to forward bias the body of device MB7, which is otherwise connected

as a MOS gate-driven diode (VGD = 0 V) and biased at the desired saturation current;

the gate voltage of device MB7 is used as the adaptive gate bias for the body-driven cur-

rent mirror M1, M2. Now, assuming that M1 is biased at the saturation current, and not-

ing that it is matched to MB7 and biased at the same VGS and ID as MB7, it must also

have the same VBS as MB7, but since the VBS of MB7 is equal to VDSAT, the VBS and VDS

of M1 must also be equal to VDSAT. Thus, the adaptive gate bias technique allows the

designer to guarantee that a body-driven current mirror is operating in saturation at any

current level. A functionally equivalent, but improved form of the adaptive gate bias tech-

nique is presented in Figure 5.4. The key improvements in the circuit of Figure 5.4 over

Figure 5.3:  One implementation of a body-driven current mirror with adaptive 
gate biasing [1]
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Figure 5.3 are that there is one less current branch, so power is saved, and more impor-

tantly the drain–source voltages of MB6 and M1 are now equal, so matching is improved.

Of course, in this circuit the bodies of the nMOS devices are not tied to the supply rail,

which might seem to violate the EKV formulation under which this circuit was derived.

However, it is not actually necessary for the body terminals of all nMOS devices to be

tied to VSS for Equation 5.10 to be valid. Instead, the only requirement is for all nMOS

devices have the same body voltage. While it is unusual in CMOS design to bias all

nMOS bodies at a voltage other than VSS, it is perfectly valid within the EKV formulation

and compatible with PD-SOI technology—thus Equation 5.10 does apply to the circuit of

Figure 5.4.

5.2.2.2 Simulation and Measurement Results

To verify that the adaptively biased current mirror functions as intended, the current mir-

ror presented in Figure 5.4 was fabricated on the 3.3-V/0.35-µm PD-SOI process used in

Figure 5.4:  An improved implementation of a body-driven current mirror with 
adaptive gate biasing
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this work. The current mirror devices were sized 8/0.5 M = 4 (total W/L = 32/0.5), and the

m and n factors were both four. Figure 5.5 presents the measured and simulated IOUT–

IIN for the adaptive gate bias current mirror. In addition, the simulated IOUT–IIN for the

simple current mirror with static gate bias (SCM w/SGB, i.e., Figure 4.1 (a)), cascode

current mirror with static gate bias (CCM w/SGB, i.e., Figure 4.2 (a)), simple current mir-

ror with level shift (SCM w/LS, i.e., Figure 4.3 (a)), and the regulated cascode current

mirror (RCCM, i.e., Figure 4.4 (a)) are presented. In this test the saturation current and

input current were equal to another over the entire sweep for the adaptively biased cur-

rent mirror. Therefore this plot shows the wide range of bias currents over which the

adaptively biased current mirror can operate. When comparing to the other bias

schemes, it is clear that adaptive gate biasing provides the optimum wide current

dynamic range performance. 

However, for high-performance, low-voltage analog design, the linearity of the current

transfer characteristic only tells half the story. Equally important is the VIN–IIN character-

istic for the current mirror. Figure 5.6 presents the measured and simulated VIN–IIN for

the adaptive gate bias current mirror described in Figure 5.4, and also presents the simu-

lated VIN–IIN for the current mirrors already discussed. This plot even more clearly high-

lights the shortcomings of the prior-art current mirror designs for high-performance

analog. Note that while the input device is in saturation (i.e., ) over the

entire current range for the adaptively biased mirror, the other current mirrors do not

enter the saturation region until IIN > 10 µA. For high-performance analog, this is critical

because we are typically not interested in building current mirrors per se. Instead we are

VDS 90mV≥
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Figure 5.5:  Simulated and measured IOUT–IIN for the adaptive gate bias current 
mirror and comparison to prior-art current mirrors

Figure 5.6:  Simulated and measured VIN–IIN for the adaptive gate bias current mirror 
and comparison to prior-art current mirrors
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interested in building arrays of high-impedance current sources, which are then used

throughout op-amps as tail current sources, high-impedance loads, etc. Thus, the sim-

ple current mirror is the building block upon which we build cascode and regulated cas-

code current sources. However, if one cannot guarantee that the bottom current source

device is in saturation, then cascoding will not result in high-impedance current sources.

5.2.3 Body-Driven Cascode Current Mirrors with Adaptive Gate Bias

Now that the adaptive gate bias technique has been presented and shown to be useful

for designing wide current dynamic range simple current mirrors, it is straightforward to

present the design of higher order current mirrors and current sources. Figure 5.7 pre-

sents a schematic of the adaptive gate bias technique applied to a body-driven cascode

Figure 5.7:  Schematic of a body-driven cascode current mirror utilizing adaptive gate 
biasing



126

current mirror. In this circuit devices MB2, MB3, MB6, and MB7 are used to generate the

gate bias for the mirror devices M1, M2, while devices MB4, MB5, MB9, and MB10 are sim-

ply a copy of the VDSAT extractor used to bias the gates of cascode devices M3 and M4.

Also included is diode connected device MB8 which is used as a level shifter so that

devices MB9, M3 and M4 all operate from the same source voltage. 

Figure 5.8 presents a schematic of a body-driven regulated cascode current source that

uses the adaptive gate bias technique. This circuit uses the same transistors for generat-

ing the mirror and cascode gate biases, the only differences between this circuit and the

simple cascode are in the mirror and output branches. In this case the regulated cas-

code, consisting of devices M1, M2 and M3, is based directly on the original implementa-

Figure 5.8:  Schematic of a body-driven regulated cascode current source utilizing 
adaptive gate biasing
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tion of the gate-driven regulated cascode [46]. The major difference between gate-driven

and body-driven regulated cascode is the loop-gain (and therefore the impedance boost)

of the body-driven circuit is reduced by a factor η2 with respect to the gate-driven circuit.

Figure 5.9 presents the simulated IOUT–VOUT at IDSAT = IIN = 25 µA for the adaptively

biased simple current mirror, cascode current mirror, and regulated cascode current mir-

ror. The simulated output resistance for the three current mirrors is 0.5 MΩ for the sim-

ple current mirror, 6.5 MΩ for the cascode current mirror, and 65 MΩ for the regulated

cascode current mirror. Note also that there is a systematic offset for the regulated cas-

code current mirror. This is due to the VDS mismatch between devices M1 and MB7 in

Figure 5.8. Unfortunately, the circuit performs much better if device M1 is not cascoded

(this effect will be described in detail in Section 5.4), so the systematic offset is some-

thing that must be tolerated.

Figure 5.9:  Simulated IOUT–VOUT for adaptively biased simple current mirror, 
cascode current mirror, and regulated current mirror biased at 25 µA
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5.3 Design and Measurement of Op-Amp Ι

5.3.1 Design Goals

While the fundamental contribution of this research is the development of the adaptive

gate bias technique, it is necessary to apply adaptive gate biasing to the design of a

complete op-amp to prove that it is a valid and useful design technique. However, since

there were no target specifications and no intended applications for this body-driven

amplifier, one must choose a somewhat arbitrary set of design goals. Therefore the goals

set for this op-amp are as follows:

• to develop a body-driven op-amp whose performance far exceeds that of previously

reported body-driven amplifiers, and in particular to achieve a high open-loop DC gain

and wide unity-gain bandwidth,

• use to as high a degree as possible body-driven circuit primitives, including differential

pair(s), current mirror(s), and regulated cascode current source(s),

• develop an op-amp that is useful for a wide array of applications by meeting

performance goals over a wide input common-mode range and power supply range,

and

• to use body-driven design techniques in a way that improves upon what can be

achieved using standard gate-driven techniques at low voltages. 

The first step then in this design process was to examine previously reported low-volt-

age circuit designs that use standard design techniques and see how they can be
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improved with body-driven transistors. Figure 5.10 presents a schematic of a 1-V op-amp

intended for use in a switched-capacitor circuit which was designed using standard gate-

driven techniques [47]. Looking at this schematic, one can see at least two places where

gate-driven transistors could be replaced with body-driven transistors to improve perfor-

mance.

• The differential pair (M1, M2) cannot sense VMID. Instead the op-amp is operated with

a common-mode level of VSS, and the feedback capacitors are pre-charged to shift

the output common mode level to VMID. Replacing M1 and M2 with a body-driven

differential pair would improve performance by allowing the op-amp to operate with an

input and output common-mode level of VMID, thus simplifying the system-level

design. 

Figure 5.10:  Example of a 1-V gate-driven op-amp [47]
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• The pMOS devices (M10, M12) limit the impedance at the output of the first gain stage,

and therefore limit the gain of the op-amp. Replacing these devices with pMOS body-

driven regulated cascode current sources would significantly improve the open-loop

voltage gain.

The next step is, of course, to design a body-driven op-amp which makes use of the new

design techniques. Towards this end, a body-driven operational amplifier was designed,

laid out, and submitted for fabrication in January of 2004. The process used was the

Honeywell 3.3-V/0.35-µm PD-SOI process which has been previously discussed. The

name of the test chip was Macedonia.

5.3.2 Op-Amp Design

5.3.2.1 Op-Amp Schematics

For the circuit designer, one of the greatest advantages of body driving with adaptive

gate biasing is that it enables the construction of standard circuit primitives (e.g., cas-

code current mirrors and regulated cascode current sources) that are low-voltage com-

patible. This means that low-voltage circuit designs can use standard design techniques,

the only difference is that body-driven circuit primitives will replace gate-driven circuit

primitives. Figure 5.11 presents the schematic of the core Macedonia amplifier. The lines

shown on the top and bottom of the schematic represent the voltage-bias lines for the

amplifier, which are generated using a second circuit called the bias voltage generator.

The bias generator sets all the important gate and body bias voltages, as per the adap-

tive gate bias technique previously discussed. The schematic of the voltage bias genera-



131

Figure 5.11:  Schematic of the core amplifier from the Macedonia chip
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tor is presented in Figure 5.12, it requires only one 25-µA input bias current to generate

all of the necessary bias voltages.

Within the core amplifier, there are several things to note

• nMOS body-driven differential pair uses a tracking gate bias (not shown), similar to

Figure 4.10 (a),

• op-amp uses a standard folded cascode architecture for wide ICMR,

• pMOS regulated cascode current sources comprised of devices M16–M19 and M20–

M23 are used for high-gain,

Figure 5.12:  Schematic of the voltage bias generator from the Macedonia chip



133

• body-driven cascode current mirror comprised of devices M4, M5, M8, and M9 is used

to perform differential to singled-ended conversion, and

• devices M1 and M15 form a class-A output stage.

5.3.2.2 Unity-Gain Bandwidth and DC Open-Loop Gain

Two of the most important specifications for an op-amp are the unity-gain bandwidth and

low-frequency open-loop voltage gain. Achieving a given bandwidth using a body-driven

op-amp is straightforward (assuming the devices have adequate fT), as it is determined

by only two parameters, the transconductance of the input pair and the Miller capaci-

tance 

In this design the Miller capacitor was 10 pF, the tail current was 200 µA, and the gmb of

the input pair was approximately 600 µmho, for a unity-gain bandwidth of 10 MHz. 

On the other hand, achieving high open-loop voltage gain at low supply voltages is very

challenging for reasons that are entirely unrelated to body driving. The open-loop volt-

age gain of this amplifier is approximately given by

In Equation 5.12 the first bracketed term describes the gain of the first stage, that is, the

gain from the body terminals of the input devices to the gate terminal of device M1. The

UGBW
gmb 13 14,( )

2πCm
-------------------------= (5.11).

AOL gmb 13 14,( ) ro19gm19ro18 1 η2gm16ro17ro16+( )⋅ ⋅{ } ⋅≈

gm1 ro1 ro15||⋅{ }
(5.12)

.
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first-stage gain is roughly equal to the transconductance of the input devices multiplied

by the impedance seen looking back from the gate of M1, while this impedance is equal

to the output impedance of the regulated pMOS current source (M18, M19 plus regula-

tion amplifier) in parallel with the output impedance of the nMOS non-regulated cascode

current source (M4, M5). However, in Equation 5.12 only the output impedance terms of

the pMOS current sources are listed because the output impedance of the pMOS cur-

rent sources is so much lower than the nMOS that they always dominate the output

impedance seen looking back from the gate of M1. 

The low output impedance of the pMOS current sources is actually not due to the fact

that they are pMOS devices, but is instead due to the available headroom on the pMOS

current sources. To understand this problem, it is helpful to recall the concept of open-cir-

cuit voltage for a generalized current source. Open-circuit voltage is the theoretical volt-

age that one would measure at the output of a current source, if its output terminal could

be open circuited but the current source still remain in the small-signal regime. For a sin-

gle MOSFET, the open-circuit voltage is equal to the Early voltage, while for a general

current source the open-circuit voltage is equal to 

where IOUT is the large-signal bias current and ROUT is the small-signal output resis-

tance. Using the open-circuit voltage, we can re-write the gain equation for a standard

VOC IOUTROUT,= (5.13)
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transistor amplifier as (considering only magnitude)

Thus, one reason that open-circuit voltage is a useful concept is that it allows gain equa-

tions to be written in a way that is independent of the bias current level. Second, open-

circuit voltage is a useful way of graphically illustrating the effect of power supply voltage

on voltage gain. Figure 5.13 presents the IOUT–VOUT transfer function of a generalized

current source, along with superimposed tangent lines showing the approximate open-

circuit voltage as a function output voltage. Considering Equation 5.14 in light of Figure

5.13, it is clear that maximizing the output voltage across a current source (or at least

biasing a current source well into the saturation region) is critical for achieving high-volt-

age gains. With this thought in mind, one can now see why the pMOS current sources

AV gmROUT
gm
ID
------ IDROUT⋅

gm
ID
------ VOC⋅= = = (5.14).

Figure 5.13:  IOUT–VOUT transfer function for a generalized current source, and 
tangent lines showing the approximate open-circuit voltage
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limit the voltage gain in the body-driven amplifier. Looking again at the schematic of the

body-driven amplifier, Figure 5.11, note that the total voltage across the pMOS regulated

cascode current source (M18, M19 plus regulation amplifier) is given by 

which could be less than 300 mV assuming a power supply voltage of 1 V and an nMOS

threshold voltage of 0.65 V. On the other hand, the nMOS current source consisting of

devices M4 and M5 will be biased with a total output voltage of VGS1, which is probably

close to 700 mV—well into the saturation region.

From the above discussion, it is clear why low-voltage amplifiers have such poor voltage

gain. This also explains why it is critical to be able to construct regulated cascode current

sources at low voltages. In addition, it was found that there are other ways to use body

driving to improve voltage gain. One simple but extremely effective technique that was

discovered was to forward bias the body–source voltage of device M1. With a positive

VBS for device M1, the total voltage across the pMOS current source is given by

Based on Equation 5.16, it was decided to forward bias the body voltage of device M1 by

approximately 300 mV, which it has already been shown is within the safe operating area

over all temperatures. The 300-mV bias voltage was conveniently available as the body

bias voltage used for the cascode nMOS transistors, which is equal to 2VDSAT, or

VTOT VDD VGS1,–= (5.15)

VTOT VDD VGSN1 VBS1 0=
– ηVBS1+= (5.16).
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approximately 300 mV for transistors biased at the middle of moderate inversion. Using

this technique simulations showed that it was possible to increase the gain by more than

20 dB.

5.3.2.3 Op-Amp Layout

Another important difference between gate-driven and body-driven circuits is the layout

style. When designing low-voltage circuits that must simultaneously exhibit high operat-

ing speeds and low power dissipation, it is generally necessary bias one’s transistors in

moderate inversion with large bias currents. Of course, this means that the transistors

must be very wide, in order to be moderately inverted at the high bias current level. As

an example, consider an nMOS transistor biased at ID = 100 µA and IC = 1 with a chan-

nel length of 0.5 µm (this is in fact the bias condition used for the differential pair devices

M13, M14). For the 3.3-V/0.35-µm process used in this work, this bias condition would

necessitate a transistor with a gate width of [10]

In bulk CMOS, a transistor with a total gate width of 143 µm could be fabricated using

four parallel fingers of approximately 36 µm each. However, for the 0.35-µm PD-SOI pro-

cess used in this work, the maximum gate width is limited by body resistance to less than

10 µm for nMOS transistors. Thus in SOI this transistor would have to be drawn with 14

gate fingers!

W L
ID

IC I0⋅
---------------⋅ 0.5µm 100µA

1 350nA⋅
-------------------------⋅ 143µm≈= = (5.17).
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If one wanted to match an array of several transistors, the width of this array would be

much larger than its height. As an example, assume that one wants to match an array of

four such transistors and that the source/drain contact width is 1.5 µm. In this case the

height of the array would be 10 µm (i.e., the “height” of the array is gate width of one

transistor), while the width of the array would be

or an aspect ratio of 1:11.2. This is in contrast to the four-finger bulk CMOS case, where

a four transistor array would have a height of 36 µm and a width of 

or an aspect ratio of 1:0.88—nearly a perfect square. 

When trying to match an array of transistors, it is standard practice to use a common-

centroid structure to minimize the effect of process gradients. However, common cen-

troid only cancels linear process gradients, while gradients will only be linear over finite

distances. Generally speaking, it is a good rule to layout a set of matching transistors

such that the complete set has an aspect ratio very close to unity. This minimizes the dis-

tance of any transistor to the common centroid, and thus maximizes the likelihood of

true, linear process gradients. Therefore using a standard one-dimensional layout struc-

ture, it seems that SOI body-driven transistors will have much worse matching than their

bulk CMOS counterparts. To solve this problem, a two-dimensional, single-body PD-SOI

Width 4( ) 14( ) 0.5µm 1.5µm+( )⋅ ⋅ 112µm,= = (5.18)

Width 4( ) 4( ) 0.5µm 1.5µm+( )⋅ ⋅ 32µm,= = (5.19)



139

layout structure was developed. An example of this layout structure applied to a body-

driven cascode current mirror is presented in Figure 5.14. In this structure H-gate fingers

are arrayed both vertically and horizontally. In the layout shown in Figure 5.14 the group

of transistors in the middle are the mirror devices M4, M8. Horizontally, these transistors

are laid out in a standard common-centroid ; vertically, each transistor is

continuous, with its body “tapped” every 10 µm. Having a body contact every 10 µm lim-

its the body resistance and improves performance, while arraying the transistors verti-

cally and horizontally helps optimize the aspect ratio of a given group of transistors and

thus improves matching. The layout of the complete Macedonia amplifier is shown in Fig-

ure 5.15 and measures 800 µm X 350 µm.

Figure 5.14:  Layout and schematic of a body-driven cascode current mirror

AABB BBAA
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5.3.3 Measurement Results

The Macedonia op-amp was received in May 2004 and was tested during the summer of

2004. The test results from the Macedonia op-amp were mixed. While the primary goals

of achieving a high open-loop voltage gain and wide bandwidth were achieved, the

amplifier displayed poor power supply and common-mode rejection, which calls into

question its usefulness as a general purpose op-amp. Though a range of tests were run

on the op-amp, only four will be presented in this section—open-loop gain, bandwidth,

power-supply rejection ratio (PSRR), and common-mode rejection ratio (CMRR)—which

together highlight the most important aspects of the amplifier’s performance. The test

setups used for these measurements are described in Appendix A.

Figure 5.15:  Layout of the complete Macedonia amplifier (dimensions are 800 µm X 
350 µm)
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5.3.3.1 Open-Loop Gain

Figure 5.16 presents the measured open-loop voltage gain as a function of frequency for

the Macedonia amplifier at VDD values of 0.8 V, 0.9 V, 1.0 V, 2.0 V, and 3.0 V. The fre-

quency sweep in this measurement starts at 125 Hz, which is well below the corner fre-

quency, and goes to almost 100 kHz. The high-frequency limitation is imposed by the

SR770 FFT network analyzer used for this measurement. However, this measurement is

useful because it clearly shows the low-frequency gain and corner frequency of the

amplifier, while step response measurements will show the unity-gain bandwidth. 

The data presented in Figure 5.16 shows at least two important points about the ampli-

fier’s performance. First, note that the gain increases significantly in going from 0.8-V to

Figure 5.16:  Measured open-loop gain (typical) versus frequency at several different 
operating voltages for the Macedonia amplifier
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1.0-V VDD, while in going from 1.0 V to 3.0 V the gain increases by only a few dB. This

shows that the amplifier achieves near constant gain over the VDD range 1–3 V, and so

the amplifier is working well at 1-V VDD. Second, this plot shows that the amplifier

achieves a roughly 75-dB open-loop voltage gain at 1-V VDD. Therefore the amplifier

meets the goal of high open-loop voltage gain.

5.3.3.2 Bandwidth

Figure 5.17 presents the measured unity-gain bandwidth versus common-mode input at

VDD = 1 V, 2 V, and 3 V for the Macedonia amplifier. Again there are several important

aspects of the amplifier’s performance that can be understood from this plot. First, notice

that at low VICM the unity-gain bandwidth is close to 10 MHz, which is the target value.

Figure 5.17:  Measured unity-gain bandwidth (typical) versus common-mode input at 
VDD = 1 V, 2 V, and 3 V for the Macedonia amplifier
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Second, notice that for each curve the bandwidth is roughly constant with VICM until the

common-mode input voltage gets within 0.5 V of the upper supply rail. Once VICM is

within 0.5 V of VDD the bandwidth becomes highly sensitive to common-mode level and

in fact doubles over the input range VDD − 0.5 < VICM < VDD. This bandwidth increase is

due to the action of the tracking gate bias used for the differential pair. Specifically, the

gates of the differential pair devices track the common-source of the differential pair via a

pMOS source follower. However, once the common-mode input gets within 0.5 V of VDD,

the gate terminals of the differential pair devices reach VDD and can no longer track the

common-mode input. When this happens the VBS of the input pair devices increases with

common-mode level, which causes the increase in gmb with common-mode input. Note

that this same effect was described in Section 4.3.3 and Figure 4.10.

5.3.3.3 PSRR

Unlike open-loop gain and bandwidth, which are universally considered op-amp parame-

ters of first-order importance, PSRR is considered a second-order parameter for many

applications. It is questionable then how important it is to characterize PSRR in this

research, since the op-amp is not intended for a specific application. However, the mea-

sured PSRR for the Macedonia amplifier was extremely low, between 20 and 40 dB

depending on the VDD level, and so it must be considered. Furthermore, the reasons for

the very low PSRR highlight an important aspect of body-driven circuit design, which

makes PSRR an important parameter to study. Figure 5.18 presents the measured off-

set voltage versus power supply voltage for a typical Macedonia amplifier. Noting that it

is shown in Appendix A.2 that PSRR is the inverse derivative of offset voltage with
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respect to power supply voltage, Figure 5.18 shows that the Macedonia amplifier has a

very low power supply rejection. Specifically, the PSRR is roughly 20 dB over the VDD

range 1–1.2 V, while it is close to 40 dB over the VDD range 1.2–3.2 V. While there is no

specification for PSRR in this project, it is hoped that this amplifier will be useful for a

broad range of analog applications. Unfortunately, the very low PSRR makes the ampli-

fier unusable for many applications, especially at 1-V VDD. The causes of the low PSRR,

and solutions for improving it, will be studied in detail in Section 5.4.

5.3.3.4 CMRR

Like PSRR, low-frequency CMRR is determined primarily by random mismatches among

groups of transistors (e.g., differential pair or current mirror) in an amplifier. Therefore

considering that the PSRR for this amplifier is low, it seems logical that the CMRR will

Figure 5.18:  Measured offset voltage versus power supply voltage for the Macedonia 
amplifier
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also be low. Figure 5.19 presents the measured offset voltage versus common-mode

voltage for a typical Macedonia amplifier. As expected, this amplifier shows a high sensi-

tivity to common-mode input. At 1-V VDD the CMRR is only 36 dB, while at 2- and 3-V

VDD the CMRR is roughly 40 dB. Typically one would like to have at least 60 dB CMRR,

so again something needs to be done to improve this problem. Fortunately, it is likely that

the poor PSRR and CMRR have a common progenitor, and so fixing one should fix the

other. 

5.3.4 Conclusion

It was stated at the beginning of this section that a primary goal for this design was to

develop a body-driven amplifier whose performance far exceeds that of previously

reported body-driven amplifiers. Comparing the bandwidth and open-loop gain of the

Figure 5.19:  Measured offset voltage versus common-mode voltage with VDD = 1 V, 
2 V, and 3 V for the Macedonia amplifier
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Macedonia amplifier (75 dB/10 MHz) to the Blalock amplifier (48 dB/1.3 MHz) [40] and

the Stockstad amplifier (70–79 dB/5.6 kHz) [41], it is clear that this amplifier does out-

perform the others in terms of gain and bandwidth. However, it is also important that this

research develop a body-driven amplifier that is useful for a wide variety of applications.

On this point it seems that the Macedonia amplifier has failed. The extremely low PSRR

and CMRR will preclude this amplifier from being used in a number of applications. It is

therefore a necessary component of this research to investigate the problems exhibited

by the Macedonia amplifier, and if possible to solve them. 

5.4 Design and Measurement of Op-Amp ΙΙ

Regarding the PSRR and CMRR of the Macedonia amplifier, the key question that must

be answered is, “Is the effect due to a problem in the design, or is it a fundamental con-

sequence of designing circuits with body-driven transistors?” To answer this question a

detailed study of the PSRR and CMRR of the Macedonia amplifier, including the use of

Monte Carlo analysis techniques, was undertaken. From this analysis it was determined

that the problem was in fact a consequence of the circuit topology chosen, and could be

significantly improved with design modifications. To prove this hypothesis a second body-

driven op-amp called Mysia was sent for fabrication in July 2004.

5.4.1 Op-Amp Design

5.4.1.1 Monte Carlo Analysis of PSRR

After observing the poor PSRR of the Macedonia amplifier, the first step taken was to

simulate the PSRR to see if the root cause of the problem could be uncovered. Figure
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5.20 presents the simulated offset voltage versus power supply voltage for the Mace-

donia amplifier. This simulation does not include random mismatch effects and also

shows that Macedonia should have a very high PSRR. Since this simulation obviously

sheds no light on the PSRR problem, it was decided to re-simulate the PSRR, but this

time to include random threshold mismatch effects through the use of a Monte Carlo sim-

ulation. Monte Carlo analysis in this case simply means a circuit is simulated a certain

number of times (say 200), and that in each simulation a parameter or set of parameters

is chosen randomly, though over the entire set of simulations the random variation of this

parameter will conform to a user-defined distribution (e.g., Gaussian). For the PSRR sim-

ulation the random parameter was transistor threshold voltage. Though all SPICE simu-

lators can perform Monte Carlo analysis, it should be noted that proper modeling of

MOSFET threshold mismatch is model dependent. EKV uses a physically realistic model

Figure 5.20:  Simulated offset voltage versus power supply voltage for the Macedonia 
amplifier (does not include device mismatch)
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which describes the standard deviation of threshold mismatch as a user-defined parame-

ter divided by the square root of the gate area of the transistor, or 

where  is a user-defined, technology-dependent mismatch parameter. This is in

contrast to BSIM3V3, which cannot model area-dependent mismatch without the addi-

tion of a sub-circuit for each transistor. 

A value of  was chosen for , which is the same value used in the

generic 0.5-µm EKV model available on the web [30]. Since, at the time of the Mace-

donia testing and Mysia design, only one Macedonia amplifier was available for charac-

terization, it was not possible to choose a value for  based on measurement.

Therefore the typical PSRR value for the Mysia amplifier could not be precisely pre-

dicted using Monte Carlo analysis. However, by using the same  to analyze the

Macedonia amplifier and throughout Mysia design process, it was possible to show that

the Mysia amplifier should have much better PSRR than the Macedonia amplifier, which

was proven by subsequent measurement results. 

Figure 5.21 presents the results of 200 runs from a Monte Carlo simulation of the Mace-

diona amplifier PSRR at VDD = 1 V and 1.5 V. At 1-V VDD this simulation shows an aver-

age PSRR of 27 dB, which is close to the measured value of 20 dB. Likewise at 1.5-V

σVTH
AVTH
M W L⋅ ⋅
--------------------------,= (5.20)
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Figure 5.21:  Monte Carlo simulation (200 permutations) of the Macedonia op-amp 
predicting PSRR at VDD = 1 V and VDD = 1.5 V
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VDD the simulation shows an average PSRR of 44 dB, which is very close to the mea-

sured value of 46 dB. This Monte Carlo simulation clearly shows that the PSRR problem

is due to random mismatch effects. Once the problem was found, the next step was to

try and isolate the devices or sets of devices which had the biggest impact on PSRR.

The basic method for isolating the problem devices was to apply mismatch effects to

only a few devices at a time, and then see which devices caused the greatest reduction

in PSRR. The results of this study will be discussed in the following sections.

5.4.1.2 pMOS Regulated Cascode Current Sources

Figure 5.22 (a) presents one of the key problems that was discovered during the Monte

Carlo simulations. The schematic on the left is an example of a pMOS regulated cascode

current source used in the Macedonia amplifier. Note that in this configuration the total

voltage across devices M16 and M17 is 2VDSAT, or each of these devices is biased just at

Figure 5.22:  Schematic showing (a) the problem and (b) the solution for the body-
driven regulated cascode current mirror

(a) (b)
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the edge of saturation. Now consider what would happen if device M19 had a threshold

voltage that was 10 mV larger than it should be; that is, assume that the gate voltage of

device M19 was 10 mV lower than it should be. To maintain the proper VDS on device

M18, the body of M19 would have to move towards VDD by a voltage equal to 10 mV/η, or

about 30 mV. However, since M16 and M17 were biased just at the edge of saturation, at

least one or perhaps both of these devices will be forced into the Ohmic region. Assum-

ing that the complementary pMOS regulated cascode current source, consisting of

devices M20–23, has an error in the opposite direction, it becomes clear that a significant

circuit imbalance could develop from this problem. Fortunately, the solution to this prob-

lem is relatively simple. Shown in Figure 5.22 (b), the body-driven regulated cascode

current source can be made much more robust by removing device M17. Doing this adds

drain overdrive voltage (VDS − VDSAT > 0) to M16, which allows the body of M19 to swing

by +/− 50 mV without adversely affecting the performance of the circuit. Unfortunately,

this solution does create a small error (e.g., see Figure 5.9) in the output current of the

M18 and M20 current sources. However, this is a common-mode error and will not affect

the amplifier’s offset voltage. 

5.4.1.3 Shut-down of Voltage Bias Generator

A second important problem that was found, which also relates to only the pMOS

devices, affects the PSRR at power supply voltages close to 1 V. If one compares the

measured Macedonia VOS–VDD presented in Figure 5.18 to the simulated (without mis-

match) VOS–VDD presented in Figure 5.20, one will notice an important similarity

between the two curves. Specifically, at power supply voltages close to 1 V there is a
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change in sign in the VOS–VDD curve which will result in a discontinuity in the PSRR–

VDD curve. Since this discontinuity occurs in both measurement and ideal simulations, it

is clear that this must be a systematic effect. To understand this problem, first consider

the pMOS adaptive gate bias generator shown in Figure 5.23 (a). Noting that the pMOS

threshold voltage for this process is 0.85 V, one can see that if the pMOS devices MB6

and MB7 are biased close to IC = 1 (i.e., a gate overdrive voltage of approximately 25

mV) the VDS of MB2 will be just over 100 mV. However, the bias generator (Figure 5.12)

must also generate a gate bias for the pMOS cascodes, which will be at least 100 mV

lower than the gate of MB6. Of course, the problem with this is that the gate voltage of

the pMOS cascode device will be nearly equal to VSS, and once this happens the bias

current will become extremely sensitive to VDD. It seems that this is what is causing the

low PSRR in the Macedonia amplifier close to 1-V VDD. A simple solution to this prob-

Figure 5.23:  Schematic showing a pMOS adaptive gate bias generator (a) without 
and (b) with an nMOS level shifter

(a) (b)
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lem is to add an nMOS level shifter (MB5) to bias the pMOS devices MB6 and MB7, as

shown in Figure 5.23 (b). With the level shifter added, the current source device MB3 will

remain in saturation, even when the gate voltage of the pMOS devices gets within a few

milli-volts of VSS. Simulations show that the addition of nMOS level shifters on all diode

connected (VGD = 0 V) pMOSFETs significantly improve PSRR in the region where VDD

was close to 1 V. 

5.4.1.4 Op-Amp Schematics

The schematics for the core amplifier and voltage bias generator for the Mysia chip are

shown in Figures 5.24 and 5.25, respectively. The key changes made to the core ampli-

fier were to remove the cascode devices M17 and M23, as described previously, and to

convert the body-driven simple cascode current mirror composed of M4, M5, M8, and M9

to a gate-driven low-voltage cascode current mirror. This change was made to improve

the VDS matching on devices M19 and M21. The key change made to the bias generator

was the addition of three nMOS level shifters to the pMOS gate-driven diodes. Figure

5.26 presents the results of the Monte Carlo simulation of the Mysia amplifier’s PSRR at

VDD = 1 V and 1.5 V. This simulation shows that the PSRR at 1 V has increased from 27

dB to 42 dB, while the PSRR at 1.5 V has increased from 44 dB to 62 dB, a significant

improvement for both.

5.4.2 Op-Amp Measurement Results

The Mysia amplifier was received in January 2005 and tested during the Spring of 2005.

Measurement results showed that while the amplifier still maintained high gain (in fact,
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Figure 5.24:  Schematic of the core amplifier from the Mysia chip

Figure 5.25:  Schematic of the voltage bias generator from the Mysia chip
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Figure 5.26:  Monte Carlo simulation (200 permutations) of the Mysia op-amp PSRR 
at VDD = 1 V and VDD = 1.5 V
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the gain increased) and wide bandwidth, the PSRR and CMRR were significantly

improved. In this section a complete set of characterization results for the amplifier will

be presented, including open-loop gain, bandwidth, slew rate, PSRR, and CMRR.

5.4.2.1 Open-Loop Gain

Figure 5.27 presents a comparison of the measured open-loop gain for the Macedonia

and Mysia amplifiers. Looking at this plot, one will immediately notice that the DC gain of

the Mysia amplifier at 1-V VDD is close to 90 dB, which is almost 15 dB higher than the

measured gain of the Macedonia amplifier. The key reason for this improvement is the

removal of the cascode devices M17 and M23, which improved the loop-gain of the

pMOS regulated cascode current sources, and thus directly improved the open-loop gain

of the amplifier. In addition, this plot shows that the gain increases by about 5 dB in going

Figure 5.27:  Comparison of the measured open-loop voltage gain for the Mysia and 
Macedonia amplifiers
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from VDD = 1 V to VDD = 1. 5 V. The gain boost is caused primarily by an increase in the

voltage across the pMOS regulated cascode current source as VDD is increased, and is

an unavoidable consequence of low-voltage circuit design. As VDD is increased beyond

1.5 V the gain stabilizes because all of the current sources are biased well into the satu-

ration region. It is also important to note that beyond the corner frequency all three gain

curves converge. This shows that the bandwidth of all three are the same (i.e., if one

extrapolates these lines at 20 dB/decade to the 0-dB line they will all cross at the same

point) and therefore the design changes made in going from the Macedonia amplifier to

the Mysia amplifier did not adversely affect the bandwidth. 

Figure 5.28 presents an interesting comparison of the measured and simulated (both

BSIM3V3 and EKV) open-loop gain for the Mysia amplifier. This plot shows that EKV

Figure 5.28:  Comparison of simulated and measured open-loop gain for the Mysia 
amplifier
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overestimates the gain by roughly 8 dB, while the BSIM3V3 model underestimates the

gain by almost 25 dB! It seems that the primary source of error in the BSIM3V3 simula-

tion is that it underestimates the η of the pMOS devices in the regulated cascode cur-

rent sources, which leads directly to a low value for the open-loop gain. It is also

interesting to note that beyond the corner frequency the EKV simulated and measured

gain match almost perfectly, which means that EKV is accurately calculating the

transconductance of the body-driven input pair. 

5.4.2.2 Step Response

Figure 5.29 presents the measured small-signal step response of the Macedonia ampli-

fier as a function of common-mode level. In this measurement complementary power

supplies of +/− 0.5 V were used, and the DC level of the input pulse was adjusted with

each common-mode step so that the output offset was always close to zero. This plot

Figure 5.29:  Measured small-signal step response of the Mysia amplifier as a 
function of common-mode level
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shows that the op-amp functions over the full rail-to-rail common-mode input range.

Therefore, in some sense it can be said that this amplifier has a rail-to-rail input com-

mon-mode range (ICMR). On the other hand, there is a significant drop-off in bandwidth

when VICM is below (VSS + 0.2 V), which calls into question how one can objectively

define ICMR. One useful definition is to say that ICMR is the VICM range over which

some minimum level of performance is maintained, which is typically quoted as a mini-

mum CMRR (e.g., CMRR > 50 dB) but could also be quoted as minimum unity-gain

bandwidth. Figure 5.30 presents a plot of the small-signal bandwidth as a function of

common-mode level for the Mysia amplifier. For this plot the bandwidth was calculated

from the risetime as [48]

Figure 5.30:  Measured unity-gain bandwidth versus common-mode level for the 
Mysia amplifier

BW 0.35
trise 10 90–( )
---------------------------,= (5.21)
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which is a valid expression because the amplifier exhibited roughly 90° phase margin

with the capacitive load used during this measurement. In Figure 5.30 we can see that

the bandwidth at VICM = VMID is roughly 9 MHz, which is close to our target value, while

at VICM = (VSS + 0.2 V) the bandwidth is roughly 7.3 MHz, which represents a 20%

reduction. It seems therefore that one can objectively say the amplifier has a nominal

bandwidth of 9 MHz and an ICMR which extends from  to VDD. This analy-

sis of ICMR will be further bolstered by the CMRR measurements, which are presented

in Section 5.4.2.4. 

Another important aspect of transient performance is stability, and in particular the ampli-

fier’s stability as a function of capacitive load. Figure 5.31 presents the measured step

response for the Mysia amplifier as a function of capacitive load. Since this amplifier

VSS 0.2V+( )

Figure 5.31:  Measured small-signal step response as a function of capacitive load for 
the Mysia amplifier
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uses a two-stage, Miller compensated architecture, the phase margin is a direct function

of CL. A useful figure of merit that can be used when characterizing the stability of a

Miller compensated amplifier is the stability number S, which is defined as the ratio of the

non-dominant pole to the unity-gain bandwidth

Here gm1 is the transconductance of the input pair, gm2 is the transconductance of the

second-stage amplifier, CM is the Miller capacitance, CL is the load capacitance, and it is

assumed that the right-half plane zero has been cancelled. Noting that the phase margin

of a two-pole system is approximately 45° when the non-dominant pole frequency is

equal to the unity-gain bandwidth, and noting that the only variable (once the amplifier

has been fabricated) in Equation 5.22 is load capacitance, we can see that a useful char-

acterization of the stability of a Miller compensated amplifier is the CL for which phase

margin equals 45°. Since a phase margin of 45° corresponds to an overshoot of 25% for

a two-pole system, Figure 5.31 shows that a CL of approximately 120 pF produces a

phase margin of 45°. 

The final aspect of transient performance that will be considered in this section is slew

rate. Figure 5.32 presents a comparison of the measured and simulated large-signal step

response for the Mysia amplifier. In this measurement the amplifier is biased with com-

plementary power supply voltages of +/− 0.5 V, connected as a unity-gain follower, the

capacitive load is approximately 20 pF, and the input is an 800-mV peak-to-peak pulse

S
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with zero offset. The measurement shows that the falling edge slew rate is 20 V/µs, while

the rising edge slew rate is 10 V/µs. The rising edge slew rate is less because it is out-

put stage limited by the pMOS current source M15. In this design the output stage bias

current (i.e., the drain current of M15 and M1) is twice the tail current, and the Miller

capacitance is 10 pF, so if the load capacitance is greater than 10 pF the rising edge

slew rate will be output stage limited. Also, the large overshoot occurs on the rising-edge

response because during a positive slewing event M1 is turned off, so once the output

reaches its correct value, a recovery time is required for M1 to turn back on and bring the

amplifier into small-signal operation.

5.4.2.3 PSRR

Up until this point in the discussion of the Mysia characterization results, we can see that

the key performance parameters—open-loop gain and bandwidth—have been either

Figure 5.32:  Measured and simulated large-signal step response for the Mysia 
amplifier
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improved or at least not degraded by the design changes made in going from the Mace-

donia to Mysia amplifier. However, the main purpose in re-designing the body-driven

amplifier was to improve the PSRR and CMRR; therefore these parameters are of a first-

order importance for the Mysia amplifier. Figure 5.33 presents the measured VOS–VDD

for the Mysia amplifier, along with the measured VOS–VDD for a typical Macedonia ampli-

fier for comparison. Looking at Figure 5.33 one can clearly see that the PSRR is signifi-

cantly improved. Whereas in the Macedonia amplifier the PSRR was close to 20 dB at 1-

V VDD, the Mysia PSRR at 1-V VDD is between 45 and 65 dB; and whereas the Mace-

donia amplifier displayed a PSRR of roughly 45 dB at 1.5-V VDD, the Mysia PSRR at 1.5-

V VDD is greater than 70 dB. Also, if one defines the allowable power supply voltage as

the range of VDD values for which a minimum (say 45 dB) PSRR is achieved, then it can

Figure 5.33:  Measured VOS–VDD for five Mysia chips and comparison to a typical 
Macedonia amplifier
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be stated with certainty that this amplifier can operate over the full power supply range of

1 V to 3.3 V. 

After the Monte Carlo simulation study of PSRR that was previously presented, it is also

interesting to consider whether or not it is meaningful to simulate PSRR without random

mismatch effects. Figure 5.34, which is a plot of the measured and simulated (without

mismatch effects) AC PSRR for the Mysia amplifier at 1-V and 1.5-V VDD, provides an

answer to this question. In looking at this plot, first consider the PSRR at low frequen-

cies. For the 1-V case the low-frequency simulated PSRR is 80 dB, while the measured

PSRR is 55 dB, a difference of 25 dB, or just over one order of magnitude. For the 1.5-V

case the low-frequency simulated PSRR is 110 dB, while the measured PSRR is 75 dB,

Figure 5.34:  Comparison of measured and simulated (without mismatch effects) AC 
PSRR for the Mysia amplifier at VDD = 1 V and 1.5 V
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a difference of 35 dB or almost two orders of magnitude. From the low-frequency results

it is clear that the PSRR for this amplifier is dominated by random mismatch effects,

which cannot be characterized without Monte Carlo analysis techniques. However, as

frequency increases the measured and simulated curves eventually converge; for

instance, all four curves show a PSRR of roughly 60 dB at 100 kHz. The reason that all

of the curves converge at high frequencies is that at these frequencies the PSRR is dom-

inated by parasitic capacitances and transconductances (i.e., AC voltage gains), both of

which are always modeled, instead of DC offsets, which are only modeled in Monte

Carlo analysis. Therefore it seems that if one wants to simulate PSRR at low frequen-

cies Monte Carlo analysis is essential. On the other hand, if one is mainly interested in

the high-frequency PSRR, say in an application where a circuit must reject high-fre-

quency power supply noise from a switching regulator, then a standard AC SPICE simu-

lation should suffice. Of course, these conclusions are drawn from the study of only one

amplifier. However, it seems reasonable to assume that other amplifiers will follow these

same basic trends. 

5.4.2.4 CMRR

In Section 5.3.4 it was stated that the problems of poor PSRR and poor CMRR in the

Macedonia amplifier have a common progenitor, and so fixing one should fix the other. It

is now possible to test this hypothesis. Figure 5.35 presents the measured VOS–VICM for

five Mysia chips and a comparison to a typical Macedonia chip. Since the CMRR is

dependent on random mismatch effects, it seems reasonable that a range of CMRR val-

ues will be observed, which is, in fact, the case. The best four Macedonia amplifiers dis-
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played a CMRR at VICM = VMID of 50 dB, 61 dB, 63 dB, and 66 dB, while the fifth

amplifier displayed a CMRR of 43 dB. In comparison, the typical Macedonia amplifier

displayed a CMRR of 36 dB at 1-V VDD and VICM = VMID. Therefore we can see that

CMRR has indeed increased along with the PSRR. In addition, one can also see a sharp

change in VOS and a commensurate reduction in CMRR below VICM = 0.2 V (this test

was run with a single supply), which underscores the fact that the low-end ICMR for this

amplifier is approximately .

While it is true that the design changes meant to improve the PSRR also improved the

CMRR, it is also true that the improvements in CMRR were not as significant as those in

PSRR. The reason for this is that there is another important limitation to CMRR that does

not affect PSRR, and studying this limitation sheds light on another important aspect of

Figure 5.35:  Measured VOS–VICM for five Mysia chips and comparison to a typical 
Macedonia amplifier

VSS 0.2V+
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body-driven circuit design. Figure 5.36 presents the measured VOS–VICM for Mysia chip

2 at VDD values of 1 V, 2 V, and 3 V, and Figure 5.37 presents the measured CMRR–

VICM (that is, the inverse derivative of Figure 5.36) for Mysia chip 2, also at VDD values of

1 V, 2 V and 3 V. When looking at these plots, first consider the 3-V VDD VOS–VICM curve

from Figure 5.36. In looking at this curve, one can see three distinct regions. The first

region occurs from 0 < VICM < 0.2 V, where the CMRR is extremely low. The second

region occurs from approximately 0.2 V < VICM < 2.5 V. In this region the CMRR is

extremely high (> 60 dB) over the whole range. Finally, the third region occurs from 2.5 V

< VICM < 3 V, where the CMRR is nearly constant at roughly 45 dB. In each of these

regions the CMRR is set by the threshold mismatch of the input pair reflected through

gmb in the following way:

• Region 1 (0 V < VICM < 0.2 V): tail current source is shutting down, which causes a

drop in gmb with VICM and also causes the magnitude of the threshold voltage

mismatch to increase significantly with reducing VICM.

• Region 2 (0.2 V < VICM < 2.5 V): In this region the tracking gate bias for the differential

pair is active and holding the VBS for the differential pair constant. This means that the

gmb is also constant, and so the offset changes little with VICM, resulting in high

CMRR.

• Region 3 (2.5 V < VICM < 3 V): In this region the tracking gate bias for the differential

pair reaches VDD, and is no longer active. As VICM is increased the VBS of the input
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Figure 5.36:  Measured VOS–VICM for Mysia chip 2 at VDD = 1 V, 2 V, and 3 V

Figure 5.37:  Measured CMRR–VICM for Mysia chip 2 at VDD = 1 V, 2 V, and 3 V
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pair becomes increasingly forward biased and the gmb of the input pair increases with

increasing common-mode level. The increasing gmb decreases the magnitude of the

offset voltage and thus affects the CMRR. 

In looking at the VDD = 1 V and 2 V curves in Figures 5.36 and 5.37, it is clear that all

three regions are still present; however, in each case the size of region 2 is reduced by

the amount that VDD has been reduced. 

Of course, if the CMRR is set by threshold mismatch in the input pair, then if one Mysia

chip showed a very low offset voltage, it should have a correspondingly high CMRR. An

example of such a case is presented in Figures 5.38 and 5.39, which present the mea-

sured VOS–VICM and CMRR–VICM at VDD values of 1 V, 2 V, and 3 V, for Mysia chip 4.

Chip 4 displayed an offset voltage of roughly 1 mV, which is 6 times smaller than the 6

mV offset voltage displayed by chip 2. Moreover, the CMRR in region 3 is roughly 60 dB,

or 15 dB higher (i.e., ) than chip 2. Note also that in both cases the region 2

CMRR is greater than 60 dB, for reasons already discussed.

5.4.2.5 Summary of the Measurement Results

Section 5.4.2 has presented a thorough characterization of the Mysia amplifier. Table 5.1

presents a summary of these measured results. When looking at Table 5.1, it is helpful to

recall the design goals set for this amplifier at the beginning of Section 5.3:

20 6( )log⋅



170

Figure 5.38:  Measured VOS–VICM for Mysia chip 4 at VDD = 1 V, 2 V, and 3 V

Figure 5.39:  Measured CMRR–VICM for Mysia chip 4 at VDD = 1 V, 2 V, and 3 V
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• to develop a body-driven op-amp whose performance far exceeds that of previously

reported body-driven amplifiers, and in particular to achieve a high open-loop DC gain

and wide unity-gain bandwidth,

• to use to as high a degree as possible body-driven circuit primitives, including

differential pair(s), current mirror(s), and regulated cascode current source(s),

• to develop an op-amp that is useful for a wide array of applications by meeting

performance goals over a wide input common-mode range and power supply range,

and

• to use body-driven design techniques in a way that improves upon what can be

achieved using standard gate-driven techniques at low voltages.

Table 5.1:  Summary of key measured parameters for the Mysia amplifier

Parameter Measured Value

Power Supply Range 1–3.3 V

Supply Current 1.14 mA

ICMR (VSS + 0.2) < VICM < VDD

Gain 88 dB

Unity-Gain Bandwidth 9 MHz

CL (P.M. = 45°) 120 pF

Slew Rate (CL < 10 pF) +/− 20 V/µs

CMRR 45–65 dB

PSRR 55–75 dB
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In light of these objectives, it seems clear that the op-amp development project has been

successful.

Although, in addition to being simply a review of the op-amp performance characteristics,

Sections 5.3 and 5.4 have highlighted many important aspects of body-driven and low-

voltage circuit design. These include the following:

• In low-voltage circuit design it is essential to maximize the output voltage across

current source loads in order to maximize gain.

• In designing body-driven circuits where MOSFETs are biased at the edge of

saturation, it is essential to use Monte Carlo analysis to ensure that performance is

maintained in the presence of random process variations.

• Minimizing op-amp offset voltage is essential to maximizing CMRR in a body-driven

operational amplifier.

5.5 Comparison of the Body-Driven Op-Amp to Other Low-Voltage Op-Amps

As a final step in proving that body driving is a viable design technique, this section will

present a comparison of the body-driven amplifier developed in this research to several

other op-amps designed using various circuit techniques. The parameters that will be

compared include operating power supply voltage, open-loop gain, bandwidth, slew rate,

and PSRR. An additional figure of merit (FOM) that will be used to compare the op-amps

is power efficiency, which is especially important for a body-driven amplifier since a com-

monly noted drawback of body driving is that body-driven transistors have one-third the
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power efficiency of gate-driven transistors. Unfortunately, there is no commonly accepted

definition of op-amp power efficiency that can be used for comparison, therefore this sec-

tion will first begin by defining a power efficiency FOM. Then a table will be presented

comparing the op-amps, along with some discussion.

5.5.1 Defining Op-Amp Power Efficiency

When attempting to define a power efficiency FOM for an amplifier, one must first ask the

question, “What is the purpose, or key performance parameter, of the amplifier?” The

FOM must then describe how efficiently the amplifier serves its purpose. For example,

the classical definition of efficiency in a power amplifier is 

where PLOAD is the power delivered to the load and PDC is the power drawn from the DC

supply. This is a useful FOM for characterizing power amplifiers, since the goal is to

deliver power to a load as efficiently as possible. However, in many op-amp applications

one is not interested in delivering power to a load, but is instead interested in meeting a

bandwidth and/or capacitive load specification. In this case one must define a small-sig-

nal power efficiency FOM, which typically involves some form of a bandwidth-to-power

efficiency ratio. Since the amplifier developed in this work is not intended to drive resis-

tive loads, a measure of the small-signal power efficiency will be the most meaningful

FOM. An additional consideration in using an FOM to compare small-signal amplifiers is

that it is only meaningful to compare op-amps that have similar functionality. For

instance, it is not a fair comparison to judge an op-amp with a limited ICMR against an

η
PLOAD
PDC
----------------,= (5.23)
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op-amp that has a rail-to-rail ICMR. The reason for this is that it takes an additional

amount of power and circuitry, neither of which contribute to bandwidth, to take an op-

amp from a limited ICMR to a rail-to-rail ICMR. Likewise it is not a fair comparison to

judge a single-stage OTA against a two-stage operational amplifier. In this work the

body-driven op-amp will be compared to other two-stage op-amps with rail-to-rail ICMR.

The rest of this section will detail the development of a small-signal power efficiency

FOM.

In trying to define a small-signal power efficiency FOM, one early low-voltage op-amp

paper used the following bandwidth-to-power efficiency ratio [49]

where BW is the op-amp’s unity-gain bandwidth and ISUP is the DC supply current. In the

context in which it was presented, Equation 5.24 was a useful FOM because a compari-

son was made between several amplifiers that were driving the same capacitive load.

However, if one wants to compare amplifiers driving different capacitive loads, a modi-

fied FOM is required. In [50], a modified small-signal FOM was defined as

where VDD has been replaced by the term VDD,Min, which is the minimum VDD at which

the amplifier can operate. Additionally, the FOM is multiplied by the ratio (CL/CREF),

where CREF is described as an “arbitrary” capacitive load. 

FOM BW
PDC
---------- BW

ISUPVDD
----------------------,= = (5.24)

FOM BW
ISUPVDD Min,
--------------------------------

CL
CREF
-------------,⋅= (5.25)
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The purpose of including the CL/CREF term was so that a comparison could be made

between a reference amplifier, characterized at CL = 10 pF, and another amplifier char-

acterized at a different CL. While it is a step forward to include CL in the FOM definition,

the value of the reference capacitance is anything but arbitrary. To understand why this

is, consider the example of a two-stage Miller compensated op-amp (which is the archi-

tecture used by all of the op-amps in the comparison). Assuming that the right-half plane

zero is cancelled, the unity-gain bandwidth and non-dominant pole frequency of the

amplifier are defined as [26]

where gm1 is the transconductance of the first stage, gm2 is the transconductance of the

second stage, and CM is the Miller capacitance. From the location of the unity-gain band-

width and non-dominant pole, the phase margin of a second-order system can be calcu-

lated as [51]

Equation 5.27 shows that in a Miller compensated op-amp, phase margin is first-order

dependent on load capacitance, this is why CL in Equation 5.25 cannot be arbitrary. For

instance, using Equation 5.25 it would be possible to show that the same op-amp has

different power efficiency ratings when operated with a CL that gives 60° PM as opposed

to operating with a CL that gives 45° PM. Clearly it is necessary to modify Equation 5.25

BW
gm1

2πCM
--------------- and,= f2

gm2
2πCL
--------------,≅ (5.26)

PM° 90° BW
f2
--------- 

 atan–=

PM° 90°
gm1
gm2
---------

CL
CM
-------⋅ 

 atan–=

(5.27)

.
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such that CL is rated for a specific phase margin. Therefore, the small-signal power effi-

ciency FOM that will be used in this work is defined as follows

where PM = 45° is used as the reference point for characterizing load capacitance.

5.5.2 Op-Amp Comparisons

Table 5.2 presents a comparison of the 1-V body-driven amplifier developed in this work

to seven other 1-V operational amplifiers reported in the literature over a time period of

more than a decade. Of the amplifiers listed, all utilize a two-stage Miller architecture and

achieve a rail-to-rail input common-mode range; three of the amplifiers utilize common-

mode level shifting to achieve rail-to-rail ICMR, while two of the amplifiers use body-

driven input pairs, one of the amplifiers uses depletion-mode nMOSFETS, and one uses

a combination of depletion-mode nMOSFETs and a body-driven input pair. In comparing

the power efficiency of the amplifiers, one will notice that this amplifier achieves the high-

est power efficiency of any of the amplifiers reported. While it may seem surprising that a

body-driven op-amp should achieve the highest power efficiency, there are at least two

reasons for this:

• The amplifier developed in this work can be considered a “buffer.” In this context

buffer means that the amplifier has been designed to drive a large capacitive load. In

this situation the output stage dominates the amplifier’s power dissipation, so the

reduced transconductance efficiency of the body-driven input pair would not

FOMSCT
2πBWCL PM, 45°=
VDD Min, ISUP

---------------------------------------------,= (5.28)
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*CMLS is common-mode level shifting (e.g., see Section 2.4.1.1)

Table 5.2:  Comparison of low-voltage amplifiers reported in the literature

Refer-
ence

VDD 
range (V)

IDD (mA) BW 
(MHz)

CL,PM=45° 
(pF)

FOMSCT 
(V−2)

Gain (dB) SR (V/µs) ICMR PSRR 
(dB)

Comments

[14] 1–6 0.75 0.45 133 0.501 100 0.17 R2R + 38–100 Si BJT, uses 
CMLS*

[52] 1–7.5 1.2 4.5 35 0.825 110 4 R2R 80 uses depletion-
mode nMOS input, 

BiCMOS

[40] 1 0.287 1.3 34 0.968 49 1.6 R2R NA BD input, uses cur-
rent mirror with LS

[15] 1 0.41 1.9 27 0.786 87 1 R2R 62 CMOS, uses CMLS

[15] 1 0.208 2.1 49 3.11 70.5 1.7 R2R 58 CMOS, uses CMLS

[53] 1 0.005 0.19 12 2.87 70 0.15 R2R NA BD input pair, simi-
lar to 

[41] 0.9–6 0.0005 0.0056 22.6 1.59 70–79 NA R2R 25–59 depletion-mode 
nMOS plus BD 

input pair

This work 1–3.3 1.1 9 120 6.17 88 20 0.2–VDD 45–65 BD input pair and 
BD reg. cas. cur-

rent source
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significantly affect the overall amplifier power efficiency (at least when the power

efficiency is defined as in Equation 5.28). The power efficiency of body-driven versus

gate-driven amplifiers is studied in more detail in Section 6.2. 

• In several of the op-amps a class-AB output stage is used, whereas a class-A output

stage is used in the body-driven amplifier. Therefore one source of the extra power

dissipation could be the more complex output stages. Note that while it is normally

assumed that Class-AB output stages are more efficient than Class-A, this is actually

only the case for a slew-rate limited output stage. If one considers an amplifier in

terms of small-signal stability and capacitive load driving capability, as in Equation

5.28, then a Class-A driver does not represent a power penalty.

In comparing the rest of the parameters one will notice that the body-driven amplifier

achieves a high-voltage gain and wide bandwidth, which have already been stated as

important goals for this work. In addition, the PSRR of the body-driven amplifier is com-

mensurate with other amplifiers. From this comparison, it seems clear that this body-

driven amplifier has outperformed previously reported body-driven amplifiers, and also

that body driving is competitive with other low-voltage design techniques. In Chapter 6 a

discussion will be presented describing when body driving is preferred over other low-

voltage design techniques.

5.6 Conclusions

Chapter 5 has presented a complete review of the adaptive gate bias technique and its

application in the design of a high-performance body-driven operational amplifier. Sec-

tion 5.2 described the new adaptive gate bias technique for body-driven current mirrors,
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and presented design details for simple current mirrors, simple cascode current mirrors,

and regulated cascode current mirrors. A comparison of this technique to other prior art

body-driven current mirror techniques showed that it had superior dynamic range and

enabled the designer to guarantee that MOSFETs in a body-driven current mirror were

biased in saturation. In Section 5.3 the adaptive gate bias technique was applied to the

design of a complete body-driven amplifier which was fabricated and tested. Measure-

ment results from this first body-driven amplifier, named Macedonia, showed that it

achieved high open-loop gain and wide bandwidth, but that is also had poor PSRR and

CMRR. In Section 5.4 a study of the Macedonia amplifier’s PSRR using Monte Carlo

analysis was described. Based on the Monte Carlo analysis several design changes

were made and a second amplifier, named Mysia, was sent for fabrication. Measure-

ment results of the Mysia amplifier showed that it also achieved high open-loop gain and

wide bandwidth, and exhibited significant improvement in CMRR and PSRR. Finally, in

Section 5.5 it was shown that the body-driven amplifier developed in this research com-

pares favorably to other 1-V amplifiers reported in the literature. 
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Chapter 6

The Application of Body-Driven Circuits to Analog and Mixed-

Signal Systems

6.1 Introduction

It is the opinion of this author that this research has conclusively proven the proposition

that high-performance analog circuits can be designed with body-driven techniques.

What is less clear, however, is how body-driven circuits can best be applied in complex

analog and mixed-signal systems. A good place to start in answering this question is to

look at the drawbacks of body-driven circuits to see what applications are not amenable

to body driving. The three most frequently listed drawbacks of body driving are

• the possibility of forward biasing the body–source junction,

• a reduced fT with respect to a gate-driven transistor, and

• reduced power efficiency with respect to a gate-driven circuit. 

As to the first point, it seems that this problem is not really much of a concern. Through-

out this research numerous body-driven circuits have been simulated and tested without

damaging any devices by forward biasing the body–source junction. It has already been

shown how the adaptive gate bias technique sets the device VBS close to VDSAT, which

is well within the safe operating range. In addition, within an amplifier all of the device

bodies are driven by circuits that are current limited (i.e., current sources) so no damage
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would result if a body did become forward biased briefly (e.g., in a large-signal transient

condition).

The second point is entirely valid, a minimum-L body-driven nMOSFET in SOI technol-

ogy will have roughly one-third the fT of a same-size gate-driven nMOSFET. Of course, a

body-driven nMOSFET will have nearly the same fT as a gate-driven pMOSFET, so the

problem is perhaps not as significant as it might seem. As in any circuit design, the gen-

eral rule should be that if the advantages of using a body-driven circuit in a certain situa-

tion outweigh the drawbacks, then it should be used. While body-driven MOSFETs are

not optimum devices for high-speed operation, they do have advantages for low-voltage

operation that might warrant their use in a high-speed, low-voltage design. The key point

is that a designer should not rule out, a priori, the use of body-driven transistors in a

high-speed design. In fact, a recently reported mixer that operates at 2.2 GHz utilized

body-driven MOSFETs in the RF signal path [54]. 

The final point, that body-driven circuits have lower power efficiency than gate-driven cir-

cuits, is perhaps the most difficult to address. In Section 5.5 it was shown that the body-

driven amplifier developed in this research had a higher power efficiency than several

other low-voltage op-amps reported in the literature, many of which used only gate-

driven transistors. It would be incorrect, however, to assume from this one example that

body-driven circuits will always achieve the same power efficiency as gate-driven cir-

cuits. Instead, power efficiency is application dependent; in some applications body-

driven transistors will not represent a power penalty, while in others they will. However,

reduced power efficiency is probably the single most important drawback for body-driven
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circuits and should be considered in more detail. Therefore in the next section a detailed

analysis of the power efficiency of a two-stage body-driven amplifier will be presented. 

6.2 Power Efficiency of a Two-Stage Body-Driven Amplifier

Figure 6.1 presents the schematic of a two-stage, Miller compensated amplifier that will

be used in this study of power efficiency. In Section 6.2.1 power efficiency will be ana-

lyzed assuming the amplifier is used as a buffer, where a buffer in this case is taken to

mean an amplifier that must drive a large capacitive load. On the other hand, Section

6.2.2 analyzes the power efficiency of the amplifier when it is used in a high-resolution

circuit—the specific example studied is the application of the amplifier to a pipeline ana-

log-to-digital converter (ADC). 

Figure 6.1:  Schematic of a two-stage, Miller-compensated op-amp
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6.2.1 Power Efficiency of a “Buffer” Circuit

To analyze the power efficiency of a body-driven amplifier used as a buffer, we can first

try to re-write the power efficiency FOM, defined in Equation 5.28, in terms of the

transconductance efficiency of the body-driven input pair. First, note that when PM = 45°,

the non-dominant pole location is the same as the unity-gain bandwidth. Therefore we

can write

which can be solved for CL as

and substituted into Equation 5.28 to give

Next, assuming that I2 = 2I1 (a standard bias condition for a buffer) the total supply cur-

rent for the amplifier is given by 

f2 BW
gm5

2πCL PM, 45°=
-----------------------------------,= = (6.1)

CL PM, 45°=
gm5

2πBW
----------------,= (6.2)

FOMSCT
gm5

ISUP VDD⋅
--------------------------= (6.3).

ISUP I2 2⁄ I+ 2 I2⇒ 2 3⁄( )ISUP,= = (6.4)
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and gm5 can be written as

Finally, the FOM can simplified to

Equation 6.6 provides the somewhat surprising result that the power efficiency of the

two-stage amplifier in no way depends on the transconductance efficiency of the input

pair. Though this result may at first seem counterintuitive, in fact upon further consider-

ation this result does make sense for the case of the buffer. For example, consider the

following design problem for a two-stage op-amp

• Design a two-stage op-amp with 10-MHz bandwidth and 60° PM at CL = 20 pF.

Assume that the output stage bias current is twice the tail current. In addition, assume

that the gm/ID of device M5 is 19, while the gm/ID of devices M1 and M2 is either 19

(i.e., a gate-driven MOSFET operating at IC = 1) or 6.3 (i.e., a body-driven MOSFET

operating at IC = 1). Compare the total supply current in each case. 

gm5
gm
ID
------ 

 
5

2 3⁄( )ISUP⋅= (6.5).

FOMSCT
2
3
---

gm
ID
------ 

 
5

1
VDD
---------- 

 ⋅ ⋅= (6.6).
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The key calculations for the amplifier are as follows

Using the equations presented in 6.7, the solutions presented in Table 6.1 are obtained.

What this problem shows is that the transconductance efficiency of the input pair is not

important because one can simply scale the Miller capacitor to achieve a desired band-

f2
10MHz
90° 60°–( )tan

--------------------------------------- 17.3MHz= =

gm5 2π 17.3MHz 20pF⋅⋅ 2.17mmho= =

I2 2.17mmho 19⁄ 114µA= =

gm1 2,
gm
ID
------ 

 
1 2,

28.5µA⋅=

CM
gm1 2,

2π 10MHz⋅
------------------------------=

(6.7)

.

Table 6.1:  Comparison of the two buffer op-amp designs

Parameter Gate-Driven Input Pair Body-Driven Input Pair

I2 114 µA 114 µA

(gm/ID)5 19 19

gm5 2.17 mmho 2.17 mmho

f2 (CL = 20pF) 17.3 MHz 17.3 MHz

(gm/ID)1,2 19 6.3

gm1,2 541.5 µmho 178.7 µmho

CM 8.62 pF 2.84 pF

BW 10 MHz 10 MHz

PM (CL = 20 pF) 60° 60°

ISUP 171 µA 171 µA
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width, while the second-stage transconductance is important because load capacitance

is typically a design specification in a buffer amplifier and therefore is fixed. 

6.2.2 Power Efficiency of a High-Resolution Circuit

The previous example showed that if load capacitance is the key specification, then the

power efficiency of the input pair is unimportant because the Miller capacitance can be

scaled to achieve a certain bandwidth. However, in high-resolution applications the Miller

capacitance cannot be chosen arbitrarily, because it defines the total thermal noise

power at the output of the amplifier. To see why this is, assume that the input-referred

noise of an op-amp is dominated by the input differential pair, which is the optimum case.

The input referred noise voltage density for this case is given by

which was previously presented in Chapter 2 in the context of an OTA. Assuming that

the amplifier is connected as a unity-gain follower, the closed-loop transfer function is 

where fo is the unity-gain bandwidth previously defined in Equation 5.26. Finally, noting

that Equations 6.8 and 6.9 are the same as those presented in the OTA noise analysis in

Section 2.3.1, the total noise power at the output of the amplifier will be given by 

eni
2 8kTγ 1

gM
------,= (6.8)

H f( ) 1

1 j ffo
----+

----------------,=
(6.9)

vo
2 2γkT

CM
------------= (6.10).
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Equation 6.10 shows that the Miller capacitance represents a fundamental limitation to

the noise performance that a circuit can achieve. For high-resolution circuits, this repre-

sents a limit for how small the Miller capacitance can scale, and in many high resolution

circuits the input stage power dissipation will actually be larger than the output stage. In

this case the transconductance efficiency of the body-driven input pair will affect the

power efficiency of the complete amplifier, and the use of body-driven transistors will, to

a greater or lesser degree depending on the application, cause a reduction in the ampli-

fier’s power efficiency.

Figure 6.2 presents the schematic of a flip-around multiply-by-two switched-capacitor

stage that is commonly used in pipeline ADCs [55]. An op-amp design example highlight-

ing the power efficiency of a high-resolution system will be presented using this circuit.

The design problem is as follows:

• Using the circuit of Figure 6.1, design an op-amp to be used as part of a pipeline

ADC, as shown in Figure 6.2. The ADC should have a clock rate of 10 MS/s, 10-bit

resolution, and a full-scale voltage of 1 V. Assume that the gm/ID of device M5 is 19,

while the gm/ID of devices M1 and M2 is either 19 (i.e., a gate-driven MOSFET

operating at IC = 1) or 6.3 (i.e., a body-driven MOSFET operating at IC = 1). However,

note that the ADC must have adequate small-signal settling time and slew rate, the

latter of which might necessitate reducing the gm/ID of the input pair and/or the output

driver. Compare the total supply current in each case.
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Figure 6.2:  Flip-around multiply- by-two stage: (a) complete circuit, (b) in sample 
phase, and (c) in hold phase

(a)

(b)

(c)
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6.2.2.1 Calculation of the Miller Capacitance and Sampling Capacitance

The first step in this problem is to calculate the required value of Miller capacitance and

sampling capacitance by completing a noise analysis. Like all switched-capacitor cir-

cuits, this circuit operates in a sample phase and a hold phase, and the noise generated

during each phase must be computed to complete the analysis. The noise generated

during the sample phase is given by the well-known kT/C relationship

During the hold phase there are two noise components to consider—the noise from the

sampling capacitors and the noise due to the op-amp. We will first consider the noise

due to the sampling capacitors. When the top capacitor in Figure 6.2 flips around to the

hold mode, the noise stored on it is reflected directly to the output with a gain of 1, while

the noise stored on the second capacitor is transferred to the feedback capacitor, also

with a gain of 1. The net result is that the total output noise due to the sampling capaci-

tors is equal to the sum of the noise stored on each. The mean-square value of this

noise can be calculated using the expectation operator [56]

where ρ is the correlation coefficient between the two samples. However, since the two

samples are identical, they have a correlation coefficient of 1, and the total output noise

due to the sampling capacitors is

vs
2 kT

2C
-------= (6.11).

v2
o s, E vs vs+( )2[ ] 2vs

2 2ρ vs
2 vs

2,+= = (6.12)

v2
o s,

2kT
C
----------= (6.13).
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On the other hand, the total output noise due to the op-amp is the mean-square noise

given in Equation 6.10 multiplied by the square of the closed-loop non-inverting gain, and

also multiplied by the β bandwidth reduction factor (1/2). Therefore the output noise due

to the op-amp is

where 2/3 has been substituted for γ. Finally, the total op-amp output noise at the end of

the hold phase can be calculated as

where there is no cross product because the two noise terms are uncorrelated.

The mean-square noise “generated” by an ideal ADC, which is referred to as quantiza-

tion noise, is generally approximated as [57]

When designing an ADC a typical goal is that the errors due to device non-idealities

(e.g., noise, finite settling time) should be less than 1/2 LSB. Using the 1/2 LSB criterion,

the total op-amp output noise is given by

Note that the design goal for the noise is not actually 1/2-LSB total RMS noise, but

instead that the noise level is equivalent to the noise generated by an ideal ADC whose

v2
o amp,

2.67kT
CM

------------------,= (6.14)

v2
o tot,

2.67kT
CM

------------------ 2kT
C
----------,+= (6.15)

q2 LSB2

12
-------------= (6.16).

2.67kT
CM

------------------ 2kT
C
---------- LSB( ) 2⁄( )2

12
------------------------------≤+ (6.17).
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LSB is one half the size of our LSB. Next, we can define that the op-amp and sampling

switches/capacitors have equal noise contributions, which allows us to calculate the

value of the Miller capacitance

which gives a Miller capacitor value of 1.1 pF. Likewise, the sampling capacitor value can

be calculated as 0.83 pF.

6.2.2.2 Calculation of the Unity-Gain Bandwidth and Non-Dominant Pole Location

The next step in the problem is to calculate required unity-gain bandwidth and the loca-

tion of the non-dominant pole. The bandwidth and phase margin in this application must

be chosen on the basis of settling to within a 1/2-LSB error within 1/2 clock cycle. For

high-resolution applications, the optimum phase margin is that which limits the over-

shoot in the transient to less than 1/2-LSB, which is given by [51]

where n is resolution in bits. For this 10-bit ADC design, the optimum phase margin is

approximately 74°. The bandwidth for the amplifier is chosen based on the time to the

peak. At 74° phase margin, the relationship between the unity-gain bandwidth of the

amplifier’s loop transmission and the peaking time is given by [51]

where fCLOCK is the ADC clock frequency. Using Equation 5.27, the non-dominant pole

2.67kT
CM

------------------ 1
2
--- 

  LSB2

48
------------- 

 ⋅ 1
2
--- 

  2 20–

48
---------- 

  ,⋅= = (6.18)

φM Opt, 90° 1 π 2 n 1+( )–ln( )⁄( )
2

+
4

------------------------------------------------------ 
  ,atan–= (6.19)

GBWT
0.6
tp
--------≅ 0.6

TCLOCK 2⁄
-------------------------- 1.2fCLOCK,= = (6.20)
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location can be calculated as

Finally, it should be noted that the amplifier is connected with a closed-loop gain of −1,

so the unity-gain bandwidth of the amplifier should be twice the unity-gain bandwidth of

the loop transmission. Therefore the amplifier unity-gain bandwidth and non-dominant

pole location can be calculated as follows:

6.2.2.3 Final Calculations

Now that the capacitor values and critical frequencies have been calculated, it is straight-

forward to find the power dissipation of the op-amp. The first step is to calculate the total

load capacitance, which has three components: first, the output will be driving 2C, which

represents the sampling capacitance of the next stage; second, the output will be driving

0.5C which accounts for the feedback network; third, the op-amp will be driving another

0.5C that accounts for the common-mode feedback network that would be present in an

actual implementation of a pipeline ADC [55]. Therefore the second-stage bias current

can be calculated as

f2
GBWT
90 PM–( )tan

----------------------------------- 4.2fCLOCK≅= (6.21).

GBW 2.4fCLOCK 24MHz= =

f2 4.2fCLOCK 42MHz= = (6.22)
.

I2
2πf2 3C⋅
gm ID⁄( )5
-----------------------,= (6.23)
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while the first-stage bias current is calculated as

Here (gm/ID)1,2 is 19 or 6.3 depending on whether or not a gate-driven or body-driven

input pair is used. However, the analysis up to this point has only considered small-signal

performance. Equally important in an ADC is that the amplifier is able to slew the full-

scale output range in 1/2-clock cycle, which for this case equates to a 20V/µs slew rate

(i.e., 1-V full scale in 50 ns). Therefore the first- and second-stage bias currents must

actually be chosen as

Table 6.2 presents the final comparison of the two amplifier designs. The data in Table

6.2 actually present the solution to the pipeline ADC problem for two different cases,

although the two different cases only affect the data listed in the supply current and

transconductance efficiency rows. The first case assumes that the amplifier uses a fixed

tail current and a class-A output driver, as shown Figure 6.1, this data is not in parenthe-

ses. The second case assumes that a class-AB output stage (i.e., both sourcing and

sinking output stage drive currents can be much larger than the static bias current, e.g.,

see [58]) and a high slew rate input stage (i.e., the current charging the Miller capacitor

I1
2πGBW CM⋅

0.5 gm ID⁄( )⋅ 1 2,
-----------------------------------------= (6.24).

I1 max
2πGBW CM⋅

0.5 gm ID⁄( )⋅ 1 2,
----------------------------------------- CM 20 V

µs
------⋅, 

 =

I2 max
2πf2 3C⋅
gm ID⁄( )5
----------------------- 3C CM+( ) 20 V

µs
------⋅, 

 =
(6.25)

.
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can be much larger than the tail current, e.g., see [59]) are used, this data is enclosed

within parentheses. 

First considering the data not in parentheses, this table shows that the body-driven

amplifier requires only 33% more supply current than the gate-driven amplifier. Again,

this might seem surprising considering that the gate-driven input pair can achieve a

transconductance efficiency that is fully three times higher than the body-driven pair.

However, the key reason that the two solutions are so close is that the bias currents for

Table 6.2:  Comparison of the two pipeline ADC op-amp designs 
(design parameters based on only small-signal settling time shown in parentheses)

Parameter Gate-Driven Input Pair Body-Driven Input Pair

CM 1.1 pF 1.1 pF

C 0.83 pF 0.83 pF

I2 71.8 µA (34.6 µA) 71.8 µA (34.6 µA)

(gm/ID)5 9.2 (19.3) 9.2 (19.3)

gm5 657 µmho 657 µmho

f2 42 MHz 42 MHz

I1 22 µA (17.5 µA) 52.7 µA

(gm/ID)1,2 15.1 (19) 6.3

gm1,2 166 µmho 166 µmho

BW 24 MHz 24 MHz

PM (ACL = −1) 74° 74°

ISUP 93.8 µA (52.1 µA) 124.5 µA (87.3 µA)

Power Penalty 1 33% (68%)
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the gate-driven transistors had to be chosen based on slew rate considerations, which

are independent of device transconductance efficiency. On the other hand, if one

assumes that a class-AB output stage and a high slew rate input stage are used, then

the body-driven amplifier requires 68% more current than the gate-driven amplifier. In the

second case the bias currents are determined entirely by small-signal considerations,

which is the theoretical minimum.

What then can be said, in general, about the power efficiency of a body-driven amplifier

used in a high-resolution application? Clearly, determining the system-level power effi-

ciency of a body-driven amplifier is a complex task. However, it seems clear that at least

two general conclusions can be drawn. First, a body-driven amplifier used in a high-reso-

lution application will have a lower power efficiency than a gate-driven amplifier. Second,

the degree to which the body-driven amplifier will be less efficient is highly application

dependent. However, perhaps the most important lesson that can be taken from this

study is that using a body-driven amplifier in a high-resolution application, such as an

ADC, will in many cases not require significantly more power dissipation than a gate-

driven amplifier. Considering that a body-driven amplifier has never been applied in a

pipeline or sigma-delta ADC (as of August 2005, based on the author’s literature search),

it is clear that more work needs to be done investigating how body-driven amplifiers can

be applied to high-performance systems. Finally, it is also important to note that while the

power efficiency of the body-driven amplifier is less than the gate-driven, body driving

does provide at least two important advantages over gate driving for switched capacitor

circuits.
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• The use of the body-driven input pair allows the circuit to operate with input and

output common-mode voltages of VDD/2. Ultra-low voltage gate-driven switched-

capacitor circuits must typically operate with an input common-mode level at VSS or

VDD and then use common-mode level shifting to achieve an output common-mode

level of VDD/2. 

• In highly scaled technologies gate-driven transistors may have much higher levels of

input (i.e., gate) current than body-driven transistors. 

6.2.3 Conclusion

Of all the drawbacks reported for body-driven transistors, that of reduced power effi-

ciency is the most important to address. Generally speaking, there are so many different

ways that an operational amplifier can be applied that it is impossible to always say that

a body-driven amplifier will be a good or a bad choice in terms of power efficiency. How-

ever, as these two examples have shown, body-driven circuits can often achieve power

efficiencies very close to that of gate-driven amplifiers. When this is coupled with the

inherent advantages of body-driven circuit design, including the ability to operate at very

low power supply voltages, it is clear that more research is warranted to study the appli-

cation of body-driven circuits to high-performance analog systems of all kinds.

6.3 Body Driving with Absolute Minimum Circuits

While this chapter began by considering the most important drawbacks of body driving, it

is equally important to consider the advantages. The overriding advantage of body driv-

ing is not only that it enables circuits to operate at the minimum supply voltage allowed
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by a technology, it also enables significant functionality, including rail-to-rail input stages

and regulated cascode current sources, at very low power supply voltages. As an exam-

ple, the amplifier developed in this research implemented pMOS regulated cascode cur-

rent sources at 1 V, while the threshold voltage was 0.85 V. Since all of the devices were

operated with an IC of approximately 1, this means that the amplifier was operating at a

power supply voltage of |VTP| + VDSAT. Since |VT| + VDSAT is probably the minimum

power supply voltage that any design technique will achieve, while still maintaining good

performance, this shows that the body-driven techniques developed in this research

enabled the design of a high-performance amplifier operating at the minimum supply

voltage allowed by the technology. In considering the application of these design tech-

niques to other circuit designs and especially other semiconductor technologies, it is

important to answer the question, “what aspects of this research are technology indepen-

dent and which are dependent on the specific technology used in this work.” In the rest

of this section this topic will be addressed.

Adaptive gate biasing, examples of which are presented in Figures 5.4, 5.7, and 5.8, is

the key low-voltage enabling design technique developed in this work, and it is applica-

ble to any bulk CMOS or PD-SOI technology. However, there are at least two other low-

voltage enabling design techniques used in this work: forward biasing the body of the

nMOS output driver to increase the bias voltage on the pMOS load and thus increase the

open-loop gain (described in Section 5.3.2.2), and the use of nMOS level-shifters in the

pMOS bias circuitry (described in Section 5.4.1.3 and Figure 5.23). Of these two, the

former is technology independent while the latter is not. The nMOS level shifters are

technology dependent because they require a difference in nMOS and pMOS threshold
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voltages (0.65 V versus 0.85 V) to maintain the pMOS devices in saturation. However, in

many CMOS technologies the threshold voltages for the nMOS and pMOS devices will

be nearly equal. In this case the design techniques presented thus far would only allow a

circuit to operate at approximately VT + 2VDSAT. For the situation of a technology with

nearly equal threshold voltages, new techniques will be required to enable fully functional

circuits at operating voltages of VT + VDSAT.

To solve the problems just described, a modified form of adaptive gate biasing called

absolute minimum biasing has been developed. The purpose of absolute minimum bias-

ing is to enable body-driven circuits to operate at the absolute minimum power supply

voltage possible within a given technology, assuming that the nMOS and pMOS thresh-

old voltages are nearly equal. Unfortunately, this design technique was developed after

the two amplifiers were submitted for fabrication, so no measurement results can be pre-

sented. However, simulation results will be presented, and considering the accuracy of

the EKV model used in this work, the simulation results can be taken as very indicative

of how the real circuit will perform. Figure 6.3 (a) presents a schematic of the standard

bias circuitry for an nMOS cascode current source array and (b) presents the absolute

minimum bias circuitry for the same current source array. In (a) one will notice that this

circuit uses the same adaptive gate bias setup described in Figure 5.8. In part (b) all of

the circuitry is the same except that body-driven diodes MB12 and MB13, which are

biased at the full saturation current IDSAT, have been added. To understand the purpose

of devices MB12 and MB13, consider how the two circuits will perform as the power sup-

ply voltage is reduced close to VT + VDSAT. For the circuit of part (a) the pMOS current
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Figure 6.3:  Bias circuitry for nMOS cascode current source array using (a) standard 
adaptive gate bias technique and (b) absolute minimum bias circuit

(a)

(b)
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source MB5 will enter the Ohmic region, which will disturb the bias point of the circuit. On

the other hand, in the circuit shown in part (b), the bias device MB5 will still enter the

Ohmic region, and the gate bias for the nMOS cascode transistors will reach VDD and

saturate. However, the bias current will not be disturbed because the actual mirror

branch is comprised of devices MB11–MB13. Since device MB11 is not driving a gate, it

will remain in saturation even at very low power supply voltages and the bias point of the

circuit will not be disturbed. Of course, the gate will no longer be biased at the optimum

point which sets VBS = VDSAT. Instead the VBS will now be larger than VDSAT. However,

this technique will allow the circuit to operate with a VDD roughly one VDSAT (probably a

little more than 100 mV) lower than it otherwise could operate, which is significant at very

low power supply voltages.

A second exciting application of the absolute minimum bias technique is in maintaining

high open-loop voltage gain at low power supply voltages. Figure 6.4 presents a simpli-

fied schematic of the first and second gain stages for the Mysia amplifier, where the

nMOS device on the left represents one half of the input differential pair, and the nMOS

device on the right is the output driver M1. As discussed in Section 5.3.2.2, one of the

keys to achieving high open-loop gain is maximizing the output voltage VP-SOURCE on

the pMOS current source. Upon first considering this circuit it seems that when operat-

ing at VDD = VT + VDSAT it will not be possible to achieve high open-loop gain because

both of the pMOSFETs cannot remain in saturation. However, recall that to boost the

gain the body of device M1 was forward biased by approximately 300 mV, which

increased the bias voltage across the pMOS current source by roughly 100 mV. In addi-
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tion, the reference voltage generator for the 300-mV bias was simply the body bias for

the nMOS cascode devices, which is labeled VBNC in Figure 6.3. 

With this in mind, now consider what the gain of the amplifier will do at very low volt-

ages, say within the range

which is the key power supply region where it is especially difficult to build high-gain cir-

cuits. At VDD = VT + 2VDSAT, the total voltage on the pMOS current source is given by

Figure 6.4:  Simplified schematic of first and second amplifier gain stages

VT VDSAT VDD VT 2VDSAT,+< <+ (6.26)

VP Source– VDD VT 2VDSAT+=
VDD VT– ηVBNC+ 2.67VDSAT,= = (6.27)
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which is more than the minimum of 2VDSAT, and so is sufficient for achieving high open-

loop gain. As VDD is reduced below this level, the absolute minimum bias technique will

maintain the bias currents at their correct level at least down to VDD = VT + VDSAT, so the

bias cell will not be disturbed in the VDD region defined by Equation 6.26. Therefore it

would seem that the key low-voltage problem is the voltage overhead on the current

source will be reduced and the gain will be compromised. However, the absolute mini-

mum bias circuit will actually compensate for the VDD reduction and maintain a nearly

constant VP-Source in the VDD range defined by Equation 6.26. To understand how this

works, refer to Figure 6.3 (b) and consider what the body bias for the nMOS cascode

devices, labeled VBNC, will do as VDD is reduced. When VDD is above VT + 2VDSAT, all

devices in the bias cell are in saturation, and gate and body bias voltages for the nMOS

cascode devices are equal to roughly VT + 2VDSAT and 2VDSAT, respectively. As VDD is

reduced below VT + 2VDSAT, device MB5 will enter the Ohmic region and the gate bias

for the nMOS cascode devices will clamp at roughly VDD. In order to maintain the same

bias current, the body bias for the nMOS cascode devices must increase to compensate

for the reduced gate bias. For example, assume that VDD has dropped by 50 mV, so that

the gate bias on the nMOS cascodes is 50 mV lower than it should be. To maintain the

same bias current the body of device MB12 must forward bias by roughly 150 mV (50

mV/η) to compensate. However, VBNC is also the body bias for the nMOS output driver.

This means that when VDD drops by 50 mV the body bias of M1 in Figure 6.4 will

increase by 150 mV, and the threshold of M1 will decrease by η times 150 mV, or 50 mV.

Thus with the absolute minimum bias technique, the VGS of M1 will track VDD in a way
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that maintains a nearly constant VP-Source voltage, and hence maintains high gain at low

power supply voltages.

To test the absolute minimum bias technique the custom generated 0.35-µm EKV model

developed in this research was scaled to 0.18-µm, and the threshold voltages for both

nMOS and pMOS devices was set to 0.5 V, which is meant to mimic the TSCM 0.18-µm

process. In addition, the bias cell for the Macedonia amplifier, presented in Figure 5.25,

was redesigned as per the absolute minimum bias technique. Figure 6.5 presents the

schematic of the new bias cell. The new voltage bias generator was then used to bias

the core Mysia amplifier shown in Figure 5.24, which was in no way changed for this sim-

ulation. Figure 6.6 presents the simulation results for the open-loop gain versus fre-

quency and VDD for this new amplifier. In this simulation the VDD is stepped from 0.5 V to

1.0 V in 0.1-V steps. At VDD values of 0.8 V, 0.9 V, and 1.0 V, the open-loop gain of the

amplifier is close to 100 dB, while at 0.7 V (i.e., VT + 1.3VDSAT) the gain drops to 91 dB,

and at 0.6 V (i.e., VT + 0.67VDSAT) the gain is 71 dB. In addition, the bandwidth is

unchanged over the VDD range 0.6–1.0 V, which attests to the fact that the absolute mini-

mum bias technique is maintaining constant bias current over a wide VDD range. Finally,

the PSRR for this circuit was simulated using Monte Carlo techniques, and it was found

that the PSRR at 0.6 V should be greater than 60 dB, while the PSRR above 0.8 V

should be greater than 80 dB. These simulation results clearly show that body driving

does enable high-performance circuits at the lowest power supply voltage supported by

a given technology.
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Figure 6.5:  Amplifier bias cell developed using absolute minimum bias techniques

Figure 6.6:  Simulated open-loop gain vs. frequency and VDD for the core Mysia 
amplifier plus absolute minimum bias voltage generator



205

6.4 Body Driving and the Future of Analog Circuit Design

As a concluding note in this dissertation, this chapter has sought to address the ques-

tion of where body driving can be applied to analog circuit designs and complex analog

systems. Generally speaking, body driving is best applied in situations where it is of par-

amount important to achieve high-performance at very low power supply voltages. How-

ever, as shown by the amplifier developed in this research, body driving is versatile

enough to enable high-performance circuits at the highest power supply voltages allowed

by a given technology. Therefore body driving can also used to great effect in situations

where an amplifier must operate over a wide range of power supply voltages, specifi-

cally including the minimum and maximum power supply voltages allowed by a given

technology. 

Another important question addressed in this chapter is the effect of body-driven transis-

tors on amplifier power efficiency. To analyze the problem two specific cases were stud-

ied: the first was a two stage op-amp optimized to drive a large capacitive load, and the

second was a two-stage op-amp optimized for high resolution and meant to be used in a

pipeline ADC. In the first example it was shown that the use of a body-driven input pair

has no effect on the power efficiency of the buffer, because the output stage, which must

drive the large capacitive load, determines the power dissipation. In the second example

it was shown that the body-driven amplifier required between 33% and 67% more sup-

ply current than the gate-driven amplifier, depending on the exact circuit configuration

chosen. Therefore, it is not possible to conclusively say that body driving is a good

choice or bad choice for all applications. However, what is perfectly clear is that body

driving has great potential for a wide range of low-voltage applications. What is neces-
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sary in the future is for designers to apply body-driven circuit techniques in different sys-

tems and find where they can be used to the greatest effect. 
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Chapter 7

Conclusion

7.1 Conclusion

CMOS technology scaling, which has continued in a consistent trend for the past thirty

years, will soon force power supply and threshold voltages to their minimum allowable

values. In addition, gate oxides will be so thin that in many cases the MOSFET gate will

not represent a high input impedance. While several different design techniques have

been developed to deal with these challenges, body driving is probably the least mature,

but potentially most useful of all the available low-voltage design techniques. Therefore

the goal of this dissertation was to develop new body-driven design techniques that

would enable the construction of high-performance, low-voltage analog circuits.

The key design technique developed in this research is called adaptive gate biasing,

which is a novel method for ensuring that the reference devices in a body-driven current

mirror are biased in saturation, independent of current level, inversion level, temperature,

or power supply voltage. The new adaptive gate bias technique was used to design a

high-performance 1-V body-driven operational amplifier, which was fabricated on a 3.3-

V/0.35-µm PD-SOI CMOS process that has nMOS and pMOS threshold voltages of 0.65

V and 0.85 V, respectively. The fabricated amplifier displayed an open-loop gain of 75 dB

and a bandwidth of 9 MHz, but it also had a PSRR of only 20 dB at 1-V VDD. To address

the PSRR problem the amplifier was analyzed using Monte Carlo simulation techniques,

and from this analysis several design changes were made. Next, a second body-driven
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amplifier was fabricated, and this amplifier displayed an open-loop gain greater than 85

dB and a bandwidth of 9 MHz at 1-V VDD. The new design achieved a PSRR at 1-V VDD

that was typically greater than 50 dB.

In addition to this work, the power efficiency of a body-driven amplifier was analyzed and

it was shown that in many cases the use of a body-driven input pair would not result in a

significant power penalty for analog circuits. Finally, a modified version of the adaptive

gate bias technique, which is called absolute minimum biasing, has been proposed as an

ultra-low-voltage enabling design technique for CMOS technologies whose nMOS and

pMOS threshold voltages are nearly equal. Simulation results of an op-amp that uses the

absolute minimum bias technique show that it is possible to achieve 90-dB open-loop

voltage gain at 0.7-V VDD using a technology that has 0.5-V thresholds. Taken together,

the design techniques developed in this work represent an important contribution to the

field of low-voltage analog circuit design, and they should pave they way for a host of

new low-voltage, high-performance analog circuit applications. 

7.2 Original Contributions of This Research

The original contributions of this research can be summarized as follows:

• a comparative study of the EKV and BSIM3V3 models for use in body-driven circuit

design,

• the development of the adaptive gate bias technique for body-driven simple current

mirrors,
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• the application of the adaptive gate bias technique to body-driven cascode and

regulated cascode current mirrors and current sources,

• the development of a high-performance body-driven operational amplifier that heavily

leverages adaptive gate bias design techniques,

• Monte Carlo analysis of the PSRR of a body-driven op-amp, and

• the development of the absolute minimum bias technique and its application to an

ultra-low voltage (< 0.8-V) operational amplifier.

7.3 Future Research Directions

In going forward with body-driven research there are a multitude of new directions which

can be taken. Considering the op-amp alone, there are several opportunities:

• porting the op-amp to other semiconductor technologies using the absolute minimum

bias technique,

• development of a low-voltage compatible class-AB output stage,

• use of complementary input pairs to maintain constant bandwidth over the input

common-mode range,

• development of a technique for cancelling offset voltage by feeding correction signals

to the MOSFET gates, and
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• development of an offset correction technique that uses a charge pump approach that

allows the gates of the input-pair MOSFETs to go above VDD, which will allow a single

pair to maintain constant gmb over the entire input common-mode range.

In addition to the op-amp applications, there are many exciting system-level applica-

tions, including

• the use of body-driven amplifiers in ultra-low voltage (< 0.8 V) pipeline and sigma-

delta ADCs,

• the use of body-driven transistors in developing very high-speed (> 1 GHz), low-

voltage analog circuits,

• the use of body-driven transistors in extreme environments, including radiation and

wide temperature range applications, and

• the use of body-driven transistors to create novel, ultra-low-voltage reference circuits. 
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Appendix A:  Op-Amp Measurement Set-Ups

In this section the measurement setups for key op-amp tests will be described.

Specifically, a description of those tests which the author feels will be the most helpful to

the reader will be described.

A.1: Open-Loop Voltage Gain

The open-loop voltage gain of an op-amp is defined by the following equation

where VOUT is the amplifier’s output voltage, which is assumed to be zero when no input

is present, and Vε is the error voltage, which is also the amplifier’s differential input

voltage. Theoretically, open-loop gain is a straightforward measurement if one follows

Equation A.1; practically, however, one is often limited by the resolution of the available

test equipment. The fundamental difficulty in measuring open-loop gain is that one is

trying to characterize the open-loop performance of the amplifier, while the amplifier must

be kept in closed-loop configuration for reliable results to be obtained. Fortunately for this

research project an SR770 network analyzer was available to the author, which enabled

direct measurement of an amplifier’s output voltage and error voltage. 

The SR770 is an FFT network analyzer that has many important features that enable

accurate measurement of the open-loop gain of amplifiers. First, the analyzer’s data

acquisition system consists of an 18-bit ADC, of which 16 bits are used, and provides a

AOL
VOUT
Vε
-------------,= A.1
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very high resolution voltage measurement. Second, the SR770 contains its own highly

accurate sine-wave synthesizer which can be used as the op-amp input. Also, since the

analyzer generates its own input, the generated sine wave is perfectly synchronized with

the timing window of the FFT analyzer. This means that no window function is required for

the FFT, and likewise no spectral leakage will occur from the FFT—this results in a very

precise measurement of the op-amp’s output.

Figure A.1 presents a schematic of the circuit used to measure open-loop voltage gain.

Note that the op-amp is connected with an inverting closed-loop gain so that the

common-mode level of the amplifier can be fixed, and therefore the finite open-loop gain

can be differentiated from the finite CMRR. In addition, 250-kΩ feedback and input

resistors are used so as not to load the op-amp’s output. One problem with using such

large resistors to achieve a closed-loop gain is that a low-frequency pole will be

Figure A.1:  Circuit for measuring open-loop gain
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generated between the input resistance and the op-amp’s input capacitance, which could

compromise stability. To cancel this effect, 47-pF input and feedback capacitors are

included to provide a wideband closed-loop gain of −1. Since at high frequencies the

feedback network is essentially capacitive, the input capacitance the op-amp’s input

capacitance will not affect stability. During a typical measurement, a 200-mV peak-to-

peak sine was input to the amplifier, while the measured error signal could be as small as

6-µV peak-to-peak (given by 200 mV divided by the low-frequency open-loop gain of 90

dB). 

A.2: Power Supply Rejection Ratio (PSRR)

PSRR is defined as the ratio of an op-amp’s differential-mode gain to power supply gain,

and can be written as

Equation A.2 states that DC PSRR is the inverse derivative of an amplifier’s offset voltage

versus power supply voltage characteristic. AC PSRR can be found by superimposing a

small-signal sine wave on top of the power supply voltage, and then finding the ratio

between the peak-to-peak power supply voltage and peak-to-peak amplifier offset

voltage. In both cases it is assumed that the amplifier is connected in closed-loop

configuration. Note also that what is important is the change in amplifier’s offset voltage

with power supply voltage, not the magnitude of the offset voltage. Figure A.2 presents a

schematic of a circuit that can be used to characterize the DC PSRR. In this circuit the

PSRR
ADIFF
APS
--------------≡

dVOUT
dVID
----------------

dVOUT
dVPS
----------------
-----------------

dVPS
dVID
------------= = A.2.
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amplifier is connected as a unity-gain follower and the common-mode level is set VDD/2.

To measure PSRR the VDD is swept and the amplifier’s offset voltage is measured at

each point. The PSRR can then be calculated as the inverse derivative of the VOS–VDD

curve. 

A.3: Common-Mode Rejection Ratio (CMRR)

The final measurement that will be described is CMRR, which is very similar to PSRR.

CMRR is defined as 

Similar to PSRR, DC CMRR can be measured by taking the inverse derivative of an

amplifier’s offset voltage versus common-mode voltage. A circuit for measuring DC

CMRR is shown in Figure A.3. This circuit is useful because it allows one to arbitrarily set

Figure A.2:  Circuit for measuring PSRR

CMRR
ADIFF
ACM
--------------≡

dVOUT
dVID
----------------

dVOUT
dVCM
----------------
-----------------

dVCM
dVID
--------------= = A.3.
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an op-amp’s power supply and common-mode voltage, and have the output of the DUT

be fixed at VDD/2. Since the output is fixed for all common-mode levels, one can be

certain to measure the change in offset due only to a change in common-mode level, and

not to a change in the output voltage (i.e., a change in offset due to finite open-loop gain).

Figure A.3:  Circuit for measuring CMRR (node voltages shown)
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