781 research outputs found

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields

    Get PDF
    Innovations in Road, Railway and Airfield Bearing Capacity – Volume 2 comprises the second part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field

    The assessment of track deflection and rail joint performance

    Get PDF
    Track stiffness is the one of the most critical parameters of the track structure. Its evaluation is important to assess track quality, component performance, localised faults and optimise maintenance periods and activities. Keeping the track stiffness within acceptable range of values is connected with keeping the railway network in a satisfactorily performing condition, allowing thereby upgrade of its capacity (speed, load, intensity). Current railway standards are changing to define loading and stiffness requirements for improved ballasted and ballastless performance under high speed train traffic. In recent years various techniques have been used to measure track deflection which have been also used to validate numerical models to assess various problems within the railway network. Based on recent introduction of the Video Gauge for its application in the civil engineering industry this project provides the proof of effective applicability of this DIC (Digital image correlation) tool for the accurate assessment of track deflection and the calculation of track stiffness through its effective applicability in various track conditions for assessing the stiffness of various track forms including track irregularities where abrupt change in track stiffness occur such as transition zones and rail joints. Attention is given in validation of numerical modelling of the response of insulated rail joints under the passage of wheel load within the goal to improve track performance adjacent to rail joints and contribute to the sponsoring company s product offering. This project shows a means of improving the rail joint behaviour by using external structural reinforcement, and this is presented through numerical modelling validated by laboratory and field measurements. The structural response of insulated rail joints (IRJs) under the wheel vertical load passage is presented to enhance industry understanding of the effect of critical factors of IRJ response for various IRJ types that was served as a parametric FE model template for commercial studies for product optimisation

    EUSPEN : proceedings of the 3rd international conference, May 26-30, 2002, Eindhoven, The Netherlands

    Get PDF

    Quantifying the damage of in-service rolling stock wheelsets using remote condition monitoring

    Get PDF
    The global railway network is set to continue to expand in terms of size, passenger numbers and freight tonnage in the coming decades. The occurrence of derailments can lead to major network disruption, significant financial losses, damage to infrastructure and rolling stock assets, environmental damage, and possibly fatalities and injuries. Defects in rolling stock wheelsets can potentially result in severe derailments if left to grow to a critical level. Rolling stock wheelsets are maintained using preventative maintenance techniques. Predictive maintenance solutions prevent unexpected failure, boost operational efficiency, and lower costs. The railway industry has been looking into the development of advanced and effective condition monitoring with a low capital cost for the online and real-time assessment of the rolling stock wheels' structural integrity and subcomponents (wheels, bearings, brakes and suspension). Existing wayside measurement systems are based on different technologies, including hot boxes, acoustic arrays, wheel impact load detectors, etc. However, significant flaws, especially bearing failures, are challenging to identify. Hot boxes can only detect bad bearings after they overheat. This indicates that the bearing has failed and will be seized soon. The combination of acoustic emission (AE) and vibration analysis has been used in this study to identify wheelset defects, particularly in wheels and axle bearings. Based on the new approach and thanks to the capability of early fault detection, predictive maintenance methods can be effectively applied whilst minimising the risk of catastrophic failure and reducing the level of disruption to an absolute minimum. The present study looked into the quantitative evaluation of damage in axle bearings using an advanced customised vibroacoustic remote condition monitoring system developed at the University of Birmingham to improve the early fault detectability in in-service rolling stock wheelsets and improve maintenance planning. Laboratory tests using AE sensors and accelerometers were conducted to compare the sensitivity of each technique and evaluate the synergy in combining them. An experiment using the Amsler machine and bearing test rig proved that raw data and Fast Fourier transform (FFT) are inefficient for defect detection. More advanced signal processing techniques, including Kurtosis, were also applied to find the ideal core frequency and bandwidth for a band-pass filter. Cepstral analysis determines the complex natural logarithm of data's Fourier transform, and the power spectrum's inverse Fourier transform. It helps identify the bearing defect's harmonics from vibration measurement. High-frequency harmonics arising from wheel and axle bearing faults were proven to be detectable from the acquired AE signals. The trial at Bescot yard demonstrates wayside measurement using a compact data acquisition system. Kurtogram-based band-pass filters eliminate environmental and undesired vibrations. The filtered signal with a better signal-to-noise ratio has less noise than the original signal. Another real-world wayside measurement was conducted at the Cropredy site to demonstrate train and wheelset defect detection

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Cumulative index to NASA Tech Briefs, 1963-1967

    Get PDF
    Cumulative index to NASA survey on technology utilization of aerospace research outpu

    Dynamic response of cavitating turbomachines

    Get PDF
    Stimulated by the pogo instability encountered in many liquid propellant rockets, the dynamic behavior of cavitating inducers is discussed. An experimental facility where the upstream and downstream flows of a cavitating inducer could be perturbed was constructed and tested. The upstream and downstream pressure and mass flow fluctuations were measured. Matrices representing the transfer functions across the inducer pump were calculated from these measurements and from the hydraulic system characteristics for two impellers in various states of cavitation. The transfer matrices when plotted against the perturbing frequency showed significant departure from steady state or quasi-steady predictions especially at higher frequencies
    • …
    corecore