556 research outputs found

    Biomechanical Morphing for Personalized Fitting of Scoliotic Torso Skeleton Models

    Get PDF
    The use of patient-specific biomechanical models offers many opportunities in the treatment of adolescent idiopathic scoliosis, such as the design of personalized braces. The first step in the development of these patient-specific models is to fit the geometry of the torso skeleton to the patient’s anatomy. However, existing methods rely on high-quality imaging data. The exposure to radiation of these methods limits their applicability for regular monitoring of patients. We present a method to fit personalized models of the torso skeleton that takes as input biplanar low-dose radiographs. The method morphs a template to fit annotated points on visible portions of the spine, and it relies on a default biomechanical model of the torso for regularization and robust fitting of hardly visible parts of the torso skeleton, such as the rib cage. The proposed method provides an accurate and robust solution to obtain personalized models of the torso skeleton, which can be adopted as part of regular management of scoliosis patients. We have evaluated the method on ten young patients who participated in our study. We have analyzed and compared clinical metrics on the spine and the full torso skeleton, and we have found that the accuracy of the method is at least comparable to other methods that require more demanding imaging methods, while it offers superior robustness to artifacts such as interpenetration of ribs. Normal-dose X-rays were available for one of the patients, and for the other nine we acquired low-dose X-rays, allowing us to validate that the accuracy of the method persisted under less invasive imaging modalities

    Development and application of methods for the biomechanical characterization of spine ligaments and intervertebral discs

    Get PDF
    The spine is one of the major organs subject to trauma or genetic problems. Today 30% of people suffer from back pain and every day a large number of surgical interventions on the spine are performed to treat those patients with severe spinal deformities (i.e. scoliosis or kyphosis). From a statistical analysis, the percentage of failures for this type of interventions is around 25-30%. The aim of my PhD thesis was the improvement of the knowledge of the strain distribution on biological tissues, in particular on ligaments and intervertebral discs of the human spine. The first part of this thesis aimed at improvement of the methodologies used to measure the strain distribution, simultaneously on hard (vertebrae) and soft tissues (ligaments and intervertebral discs), using Digital Image Correlation. The second part of my research studied the biomechanical behaviour of the intervertebral discs and of the different ligaments. The disc acts as a shock absorber for the spine, reducing shocks and impacts. The anterior longitudinal ligament (ALL), supraspinous and interspinous ligaments were studied analysing how they were deformed under different loading conditions. These ligaments limit the movement of the spine during flexion reducing the overload on the intervertebral disc. The ALL does not offer great mechanical strength during lateral bending and axial torsion. Summarizing, the study underlines the necessity of having a full-field strain analysis tool to enhance the knowledge of the biomechanics of the spine and the interaction between different types of tissue. Furthermore, the results reported in this thesis could be useful also to build better multibody spine models and to include more realistic properties in finite element models. These results could be a starting point for future works in which the effect of different surgical procedures and the use of new surgical devices could be investigated

    Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pelvic incidence, sacral slope and slip percentage have been shown to be important predicting factors for assessing the risk of progression of low- and high-grade spondylolisthesis. Biomechanical factors, which affect the stress distribution and the mechanisms involved in the vertebral slippage, may also influence the risk of progression, but they are still not well known. The objective was to biomechanically evaluate how geometric sacral parameters influence shear and normal stress at the lumbosacral junction in spondylolisthesis.</p> <p>Methods</p> <p>A finite element model of a low-grade L5-S1 spondylolisthesis was constructed, including the morphology of the spine, pelvis and rib cage based on measurements from biplanar radiographs of a patient. Variations provided on this model aimed to study the effects on low grade spondylolisthesis as well as reproduce high grade spondylolisthesis. Normal and shear stresses at the lumbosacral junction were analyzed under various pelvic incidences, sacral slopes and slip percentages. Their influence on progression risk was statistically analyzed using a one-way analysis of variance.</p> <p>Results</p> <p>Stresses were mainly concentrated on the growth plate of S1, on the intervertebral disc of L5-S1, and ahead the sacral dome for low grade spondylolisthesis. For high grade spondylolisthesis, more important compression and shear stresses were seen in the anterior part of the growth plate and disc as compared to the lateral and posterior areas. Stress magnitudes over this area increased with slip percentage, sacral slope and pelvic incidence. Strong correlations were found between pelvic incidence and the resulting compression and shear stresses in the growth plate and intervertebral disc at the L5-S1 junction.</p> <p>Conclusions</p> <p>Progression of the slippage is mostly affected by a movement and an increase of stresses at the lumbosacral junction in accordance with spino-pelvic parameters. The statistical results provide evidence that pelvic incidence is a predictive parameter to determine progression in isthmic spondylolisthesis.</p

    Comportamiento biomecánico de la columna vertebral lumbopélvica deformada postquirúrgica

    Get PDF
    ilustracionesBased on literature, one of the common lumbar spine disorders reported is the isthmic high-grade spondylolisthesis (HGS), and there is no consensus on its surgical treatment selection. Thus, the present thesis aims to evaluate from an engineering point of view the influence of the fixation configuration for deformed or fractured spine surgery on the stabilization, biomechanical behavior, and stress state of the post-surgical lumbo-pelvic spine, providing a useful source of information for surgical planning and decision making. To evaluate the pathology as HGS (as literature-based selected case of study of deformed spine), a patient specific lumbosacral spine model was obtained with Scalismo and CAD modeling and used as a base to recreate a HGS condition. The diagnosis was made based on clinical literature and consisted of a lumbosacral spine with grade 3 isthmic spondylolisthesis, low dysplasia (L5 rectangular), an unbalanced spine (C7PL in front of FH), and a retroverted pelvis (low SS/high PT, vertical sacrum). Fusion In situ (FIS) with laminotomy and Lumbar interbody fusion (LIF) with reduction and laminotomy techniques were identified as suggested treatments, based on the Mac-Thiong classification scheme and clinical reports. Six variations of each fixation technique, involving adding or removing screws by spine level, were defined as possible instrument configurations, and compared. Based on the case of study and geometrical model, biomechanical Finite element models were developed to evaluate the mechanical response of HGS lumbosacral spine treated with FIS and LIF techniques, along with the proposed configurations. Thirteen models, divided into two groups (FIS and LIF models), were developed as variations of FIS and LIF base models. The spine mesh was built up in Abaqus from the vertebrae, supported by BCPD morphing process. To simulate the mechanical conditions of the surgical procedure in the two groups of FIS and LIF models, Swelling, Reduction/ Displacement, and Fixation standing steps were defined. A comparison between variations by level in the FIS and LIF instrumentation configurations for HGS was developed using FEM. The results obtained can be used to establish which levels are required to fix the system while ensuring the safety of both the biological systems and the instrumental. For model validation, a comparison of FIS and LIF models with experimental, numerical, and clinical outcomes reported in the literature is suggested as an alternative.Con base en la literatura, uno de los trastornos comunes de la columna lumbar reportados es la espondilolistesis ístmica de alto grado (HGS), y no existe un consenso sobre su selección de tratamiento quirúrgico. Por lo tanto, la presente tesis tiene como objetivo evaluar, desde una visión ingenieril, la incidencia de la configuración de fijación para cirugía de columna vertebral deformada o fracturada sobre la estabilización, comportamiento biomecánico y estado de esfuerzos de la columna vertebral lumbo-pélvica postquirúrgica, proporcionando una fuente útil de información en la planificación y toma de decisiones quirúrgicas. Para evaluar una patología como HGS (como un caso de estudio de columna deformada seleccionado basado en la literatura), se obtuvo un modelo de columna lumbosacra de paciente específico utilizando el software Scalismo y modelado CAD, y se utilizó como base para recrear una condición de HGS. El diagnóstico se basó en la literatura clínica y consistió en una columna lumbosacra con espondilolistesis ístmica de grado 3, displasia baja (L5 rectangular), una columna desbalanceada (Línea de gravedad delante de la cabeza del fémur) y una pelvis retroversa (Inclinación sacra baja, inclinación pélvica alta, sacro vertical). Las técnicas de fusión in situ (FIS) con laminotomía y fusión intervertebral lumbar (LIF) con reducción y laminotomía se identificaron como los tratamientos sugeridos, basados en el esquema de clasificación de Mac-Thiong y reportes clínicos. Se definieron seis variaciones de cada técnica de fijación, que implicaban agregar o quitar los tornillos de columna por nivel, como posibles configuraciones de instrumentación y se compararon entre sí. Basándose en el caso de estudio y el modelo geométrico, se desarrollaron modelos biomecánicos de elementos finitos para evaluar la respuesta mecánica de la columna lumbosacra HGS tratada con las técnicas FIS y LIF, junto con las configuraciones propuestas. Se desarrollaron trece modelos divididos en dos grupos (modelos FIS y LIF) como variaciones de los modelos FIS y LIF base. La malla de la columna se construyó en Abaqus a partir de las vértebras, apoyado por el proceso de transformación de malla BCPD. Para simular las condiciones mecánicas del procedimiento quirúrgico en los dos grupos de modelos FIS y LIF, se definieron las etapas de estabilización (estado de hinchamiento de discos intervertebrales), reducción/ desplazamiento y fijación. Se desarrolló un comparativo entre las variaciones por nivel en las configuraciones de instrumentación FIS y LIF para HGS mediante el uso del método de elementos finitos (MEF). Los resultados obtenidos pueden ser utilizados para establecer qué niveles son necesarios para fijar el sistema y, al mismo tiempo, asegurar la seguridad tanto de los sistemas biológicos como de la instrumentación. Como alternativa para la validación del modelo, se propone una comparación de los modelos FIS y LIF con resultados experimentales, numéricos y clínicos reportados en la literatura. (texto tomado de la fuente)MaestríaMagíster en Ingeniería MecánicaBiomecánicaÁrea Curricular de Ingeniería Mecánic

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Advanced CT bone imaging in osteoporosis

    Get PDF
    Non-invasive and/or non-destructive techniques can provide structural information about bone, beyond simple bone densitometry. While the latter provides important information about osteoporotic fracture risk, many studies indicate that BMD only partly explains bone strength. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. Methods for quantitatively assessing macrostructure include (besides conventional radiographs) DXA and CT, particularly volumetric quantitative CT (vQCT). Methods for assessing microstructure of trabecular bone non-invasively and/or non-destructively include high-resolution CT (hrCT), microCT (μCT), high-resolution magnetic resonance (hrMR) and microMR (μMR). vQCT, hrCT and hrMR are generally applicable in vivo; μCT and μMR are principally applicable in vitro. Despite recent progress made with these advanced imaging techniques, certain issues remain. The important balances between spatial resolution and sampling size, or between signal-to-noise and radiation dose or acquisition time, need further consideration, as do the complexity and expense of the methods vs their availability and accessibility. Clinically, the challenges for bone imaging include balancing the advantages of simple bone densitometry vs the more complex architectural features of bone or the deeper research requirements vs the broader clinical needs. The biological differences between the peripheral appendicular skeleton and the central axial skeleton must be further addressed. Finally, the relative merits of these sophisticated imaging techniques must be weighed with respect to their applications as diagnostic procedures, requiring high accuracy or reliability, compared with their monitoring applications, requiring high precision or reproducibility

    Advanced Computational Methods in Bio-Mechanics

    Get PDF
    A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons’ ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering.Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems.Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era

    Development and application of a non invasive image matching method to study spine biomechanics

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (p. 83-92).Research on spine biomechanics is critical to understand pathology such as degenerative changes and low back pain. However, current study on in-vivo spine biomechanics is limited by the complex anatomy and invasive methodology. Modem clinical imaging techniques such as magnetic resonance and fluoroscope images, which are widely accessible nowadays, have the potential to study in-vivo spine biomechanics accurately and non-invasively. This research presents a new combined magnetic resonance and fluoroscope imaging matching method to study human lumbar vertebral kinematics and disc deformation during various physiologic functional activities. Validation and application of this method as well as discussion of its performance and applicability are detailed herein.by Shaobai Wang.S.M

    Biomechanical study of intervertebral disc degeneration

    Get PDF
    Degeneration and age affect the biomechanics of the intervertebral disc, by reducing its stiffness, flexibility and shock absorption capacities against daily movement and spinal load. The biomechanical characterization of intervertebral discs is achieved by conducting mechanical testing to vertebra-disc-vertebra segments and applying axial, shear, bend and torsion loads, statically or dynamically, with load magnitudes corresponding to the physiological range. However, traditional testing does not give a view of the load and deformation states of the disc components: nucleus pulposus, annulus fibrosus and endplate. Thus, the internal state of stress and strains of the disc can only be predicted by numerical methods, one of which is the finite element method. The objective of this thesis was, to study the biomechanics of degenerated intervertebral discs to load conditions in compression, bending and torsion, by using mechanical testing and a finite element model of disc degeneration, based on magnetic resonance imaging (MRI). Therefore, lumbar discs obtained from cadavers corresponding to spinal levels L2-L3 and L4-L5 with mild to severe degeneration were used. Intervertebral osteochondrosis and spondylosis deformans were identified, being the disc space collapse, the most striking feature. Next, all discs were tested to static and dynamic load conditions, the results gained corresponded to the disc stiffness (in compression, bending and torsion), stress relaxation and dynamic response. Of these, the stiffness response was used to validate the disc model. The testing results suggest that discs with advanced degeneration over discs with mild degeneration are, less rigid in compression, less stiffer under bending and torsion, showed less radial bulge, and reduce their viscoelastic and damping properties. This study shows that degeneration has an impact on the disc biomechanical properties which can jeopardize normal functionality. Development of one finite element model of disc degeneration started by choosing a MRI of a L2-L3 disc. Segmentation of vertebra bone and disc materials followed, and were based on pixel brightness and radiology fundamentals, then a finite element mesh was created to account for the disc irregular shape. The disc materials were modeled as hyperelastic and the bone materials were modeled as orthotropic and isotropic. Adjustment of material properties was based on integrity of the annulus fibrosus, giving a stiffness value matching that of a mild degeneration disc. Then, validation of the model was performed, and included a study of the distributions of stress and strain under loads of compression, bending and torsion. The results from all load simulations show that the disc undergoes large deformations. In contrast, the vertebrae are subjected to higher stress but with negligible deformations. In compression, the model predicted formation of symmetrical disc bulge which agree with the testing behavior. The nucleus pulposus showed to be the principal load carrier with negative principal stresses and strains. In bending and torsion, the annulus fibrosus showed to be the principal load carrier with large symmetrical principal strains and stresses for the former loading and large shearing for the latter. The study showed the importance of soft tissue deformation, mostly noticed in advanced degeneration. In contrast, the higher stresses in the vertebra over those of the intervertebral disc showed the relevance of bone predisposition to fracture. Such kind of studies, should contribute to the understanding of the biomechanics of the intervertebral disc.La degeneración y edad afectan la biomecánica del disco intervertebral, reduciendo la capacidad de rigidez, flexibilidad y atenuación de impactos, contra el movimiento y carga del raquis. La caracterización biomecánica del disco se realiza con ensayos mecánicos a segmentos de vértebra-disco-vértebra y aplicando cargas axiales, cortantes, flexión y torsión, estáticas ó dinámicas, con magnitudes de carga según el intervalo fisiológico. Sin embargo, las pruebas tradicionales no dan una visión de los estados de carga y deformación de los componentes del disco: núcleo pulposo, anillo fibroso y placa terminal. Por lo tanto, el estado interno de esfuerzos y deformaciones del disco, solo puede ser predicho con métodos numéricos, uno de los cuales es el método de elemento finito. El objetivo de esta tesis fue, estudiar la biomecánica de discos intervertebrales degenerados a las condiciones de carga en compresión, flexión y torsión, mediante el uso de ensayos mecánicos y de un modelo de elementos finitos de la degeneración de disco, basado en imágenes con resonancia magnética (MRI). Por lo tanto, se usaron discos lumbares L2-L3 y L4-L5 obtenidos de cadáveres, con degeneración leve a severa. Se identificó osteocondrosis intervertebral y espondilosis deformante, siendo el colapso del espacio intervertebral el aspecto más relevante. Luego, todos los discos fueron ensayados a condiciones de carga estática y dinámica, y los resultados correspondieron a la rigidez del disco (a compresión, flexión y torsión), a la relajación de tensiones y a la respuesta dinámica. De éstos, la rigidez fue usada para validar el modelo de disco. Los resultados de los ensayos sugieren que los discos con degeneración avanzada sobre aquellos con degeneración leve son, menos rigidos a compresión, menos rigidos a flexión y torsión, presentan menor protuberancia radial, y reducen sus propiedades viscoelásticas y de amortiguamiento. El estudio muestra que la degeneración impacta las propiedades biomecánicas del disco, poniendo en riesgo la funcionalidad normal. El desarollo de un modelo de elementos finitos de la degeneración de disco inició eligiendo una secuencia de resonancia magnética de un disco L2-L3. La segmentación de los materiales del disco y de las vértebras se realizó basado en intensidad de brillo del pixel y en fundamentos de radiología, y se creó una malla de elementos finitos correspondiente a la forma irregular del disco. Los materiales del disco se modelaron como hiperelásticos y los tejidos óseos se modelaron como materiales ortotrópicos e isotrópicos. El ajuste de propiedades de los materiales fue basado en la integridad del anillo fibroso, y dio una rigidez correspondiente a la de un disco con degeneración leve. Luego, se realizó la validación del modelo, e incluyó un estudio de las distribuciones de esfuerzo y deformación a las condiciones de carga en compresión, flexión y torsión. Los resultados de todas las simulaciones de carga mostraron que el disco es sometido a grandes deformaciones. En contraste, las vértebras fueron sometidas a mayores esfuerzos pero con deformaciones insignificantes. En compresión, el modelo predijo la formación de una protuberancia radial simétrica, en concordancia con la experimentación. El núcleo pulposo mostró ser el portador principal de carga, con tensiones y deformaciones principales negativas. En flexión y torsión, el anillo fibroso mostró ser el portador principal de carga, con grandes deformaciones y tensiones principales simétricas para la primera carga, y con grandes tensiones cortantes para la segunda carga. El estudio mostró la importancia de las deformaciones de los tejidos blandos, principalmente notados en la degeneración avanzada. Por el contrario, las tensiones mayores en los cuerpos vertebrales sobre aquellas del disco intervertebral mostraron la relevancia de la predisposición a las fracturas óseas. Este tipo de estudio debe contribuir a la comprensión de la biomecánica del disco intervertebral

    Ultrasound imaging of cervical spine motion for extreme acceleration environments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011.Cataloged from PDF version of thesis. Vita.Includes bibliographical references (p. 52-55).Neck and back pain is one of the most common musculoskeletal complaints in personnel in variable acceleration environments such as astronauts and military pilots. Ultrasound is known for dynamic imaging and diagnostic workup of the axial and appendicular skeleton, but is not currently used to image the cervical spine, the injury of which may change the biomechanics of the cervical vertebrae, which CT and MRI (the current gold standard in cervical spine imaging) are poor at capturing. To validate ultrasound as a modality for imaging dynamic motion of the cervical spine several experiments were performed in static and dynamic human and animal (ovine) models: 1. Static analysis of ex-vivo ovine cervical spines imaged by ultrasound, MRI, and CT demonstrated that the imaging modality affected the measured intervertebral disc height (p<0.01); similar evaluation was done in-vivo in Emergency Department patients who received a CT scan as part of their clinical course that showed that ultrasound could fit into existing clinical workflows. 2. Dynamic analysis of isolated ex-vivo ovine cervical spinal segments intervertebral disc displacement with a mounted ultrasound probe demonstrated a measurement uncertainty of ± 0.2 mm and no bias at low frequency sinusoidal spinal displacement. A similar evaluation in-vivo with humans with an ultrasound probe mounted on a cervical-collar found a 0.8-1.3 mm amount of cervical spine distraction from the C4-5 Functional Spinal Unit. In human cadavers subjected to passive flexion and extension of the cervical spine, ultrasound measurements of the relative flexion/extension angles between consecutive cervical vertebrae were similar to fluoroscopy. 3. Ultrasound was able to record dynamic motion of the cervical spine in-vivo in running on a treadmill, during parabolic flight, and traveling over a rough road in a military vehicle. The ultrasound methods developed and tested in this thesis could provide an inexpensive, portable and safe technique that can identify and characterize cervical spine anatomy and pathology.Funding Acknowledgment: National Space Biomedical Research Institute, Army Research Office, Children's Hospital Orthopedic Surgery Foundationby Daniel Miller Buckland.Ph.D
    corecore