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ABSTRACT 

 

Neck and back pain is one of the most common musculoskeletal complaints in personnel in 

variable acceleration environments such as astronauts and military pilots. Ultrasound is known 

for dynamic imaging and diagnostic workup of the axial and appendicular skeleton, but is not 

currently used to image the cervical spine, the injury of which may change the biomechanics of 

the cervical vertebrae, which CT and MRI (the current gold standard in cervical spine imaging) 

are poor at capturing. To validate ultrasound as a modality for imaging dynamic motion of the 

cervical spine several experiments were performed in static and dynamic human and animal 

(ovine) models: 

1. Static analysis of ex-vivo ovine cervical spines imaged by ultrasound, MRI, and CT 

demonstrated that the imaging modality affected the measured intervertebral disc height 

(p<0.01); similar evaluation was done in-vivo in Emergency Department patients who 

received a CT scan as part of their clinical course that showed that ultrasound could fit 

into existing clinical workflows.  

2. Dynamic analysis of isolated ex-vivo ovine cervical spinal segments intervertebral disc 

displacement with a mounted ultrasound probe demonstrated a measurement uncertainty 

of ± 0.2 mm and no bias at low frequency sinusoidal spinal displacement. A similar 

evaluation in-vivo with humans with an ultrasound probe mounted on a cervical-collar 

found a 0.8-1.3 mm amount of cervical spine distraction from the C4-5 Functional Spinal 

Unit. In human cadavers subjected to passive flexion and extension of the cervical spine, 

ultrasound measurements of the relative flexion/extension angles between consecutive 

cervical vertebrae were similar to fluoroscopy. 

3. Ultrasound was able to record dynamic motion of the cervical spine in-vivo in running on 

a treadmill, during parabolic flight, and traveling over a rough road in a military vehicle.  

 

The ultrasound methods developed and tested in this thesis could provide an inexpensive, 

portable and safe technique that can identify and characterize cervical spine anatomy and 

pathology. 
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1 Introduction 
Back and neck pain is a common occupational musculoskeletal complaint for workers in 

extreme environments such as NASA Astronauts and Army helicopter pilots[2]. It is also one of 

the most common work-related medical issues in the United States [3]. Countermeasures and 

treatments for this injury need to be developed, but an accurate understanding of the forces and 

biomechanics affecting the spine need to be understood first. These extreme environments make 

it difficult to get dynamic force and biomechanical information using traditional medical imaging 

methods, due to their size and power requirements. However, ultrasound can provide a robust, 

portable, small, and dynamic imaging technology that can be used in these environments to 

gather this information.  

1.1 Motivation 
As mentioned, back and neck pain is a problem (in cost, loss of productivity, and quality 

of life) in occupational health, both in aerospace and other fields. Extreme environment operators 

need imaging methods that can operate in the conditions to which they are subjected, which 

traditional methods for imaging the musculoskeletal anatomy cannot provide. An imaging 

solution is needed that can both capture the dynamic nature of the environment and survive the 

environment itself. Those limitations led to the exploration of ultrasound as an appropriate 

imaging technology.  

The number of cervical spine injuries is expected to rise as a result of increased mission 

lengths and helmet technologies. Examples include longer spaceflight missions, Army 

requirements for extended mission durations, and the increased reliance on night vision devices 

and helmet mounted displays (HMD) by all Army and Navy Warriors. In the case of head-

mounted hardware this increased weight significantly changes the center of gravity and the 

inertial forces and moments applied to the cervical spine, particularly during the dynamic loading 

conditions encountered during combat.  Countermeasures such as redesign of helmets and seats 

or changing the weight distribution of the equipment are being considered, but to do so 

analytically requires a better understanding of the biomechanical parameters of the cervical spine 

injury. It is not feasible to get this information from traditional methods of musculoskeletal 

imaging as large size and power requirements of plain radiography, computed tomography (CT) 

and Magnetic Resonance Imaging (MRI) prevent their use in evaluating the anatomy and 

dynamic motion of the cervical spine during the extreme environments encountered during 

military operations. Ultrasound does not have these limitations, so the purpose of this project is 

to develop the capabilities of clinical ultrasound beyond its current indications. We will 

demonstrate that ultrasound provides a small, portable, robust, dynamic imaging method that can 

gather real-time information about the kinematics of the cervical spine and inter-vertebral disc 

mechanics in the extreme conditions of military operations. Furthermore, the technology 

developed here could have considerable applications in civilian settings. Neck pain is one of the 

most pervasive problems in occupational health and a common presenting complaint in physician 

offices, outpatient clinics and emergency rooms [4]. Developing an inexpensive, portable and 

safe technique that can identify and characterize cervical spine anatomy and pathology without 

exposing patients to ionizing radiation or requiring expensive MRI technology unavailable in 

resource poor environments could have important societal benefits beyond the patient 

populations initially intended as the focus of this work.   
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1.2 Thesis Objectives 
With this work I intend to show that clinical ultrasound can provide a safe, inexpensive, 

portable, imaging modality to quantify intervertebral disc displacement and rigid body motion of 

functional spinal units comprising the cervical spine in response to static and dynamic loads in-

vivo in extreme environments such as spaceflight and military training operations. This will be 

accomplished through three series of experiments that each aim to validate a different aspect of 

what would be needed in such a functional ultrasound system.  

1.2.1 Static Ultrasound Imaging of the Cervical Spine Intervertebral Disc Space 
This work will show that ultrasound can be used to measure the anatomy and height of 

cervical spine intervertebral discs and that intervertebral disc height as measured by ultrasound, 

is similar to disc height measured by MRI and CT both ex-vivo and in-vivo.  

1.2.2 Ultrasound Imaging of the Rigid Body Motion of the Cervical Spine Vertebrae 
This work will show that ultrasound can be used to measure the motion of cervical spine 

vertebral body motion under different loading conditions meant to simulate wearing a head 

supported mass in an operational environment and that clinical ultrasound can detect the 

contribution of individual cervical spine functional spinal units to the total motion of the cervical 

spine in-vivo and ex-vivo.  

1.2.3 In-Vivo Ultrasound Imaging of the Motion of the Cervical Spine Vertebrae in 
Operational Environments  
This work will show that clinical ultrasound can be used to image the cervical spine in 

astronauts and pilots to understand the effects of their respective gravitational environments by 

attempting to take the same types of dynamic images studied in the prior two experiments in 

several operational environments.  

1.3 A Note on Format and Layout 
This thesis is intended as the combined work of three separate papers drafted for 

submission to peer-reviewed journals. Chapters 4, 5, and 6 should be read as such and are 

formatted in this way. Much of the repeated background and introductory material has been 

omitted from these chapters and combined in Chapters 2 and 3. As an aid to the reader, the 

abstracts for the draft papers have been retained as a guide to each. 

Chapter 4 is intended to be submitted to a radiology journal with the thesis author as first 

author. Other authors will be Jeannette Perez-Rosello, Erik Antonsen, Scott Sheehan, Anthony 

Samir, and Brian Snyder.  

Chapter 5 is intended to be submitted to an orthopedics research or clinical practice 

journal with the thesis author as first author. Other authors will be Jeannette Perez-Rosello, and 

Brian Snyder  

Chapter 6 is intended to be submitted to an occupational health or clinical practice journal 

with the thesis author as first author. Other authors will be Jeannette Perez-Rosello, and Brian 

Snyder.  

 Chapter 8 is intended to be the narrative section of a technology development grant 

application, such as an R21, again with the background content omitted.   
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2 Background 

2.1 Incidence and Epidemiology of Cervical Spine Injury 
Neck and back pain are an increasing problem among all military populations [5] and 

NASA Astronauts [6]. According to a survey of the Total Army Injury and Health Outcomes 

Database (TAIHOD) more than 1.2 million injuries to the spine were documented among Army 

personnel between 1980 and 2002.  Cervical spine related injuries resulted in over 1,200 

disability evaluations and almost 60,000 outpatient visits [7].   Most neck pain was related to 

intervertebral disc (IVD) degeneration, spondylosis with myelopathy and/or segmental/somatic 

dysfunction [7].  The incidence of cervical spine injury appears to be increasing: between 2003 

and 2007 the Defense Medical Surveillance System (DMSS) database attributed 1,405 hospital 

admissions and 146,635 outpatient visits to cervical spine related injuries. These injuries result in 

high treatment costs, permanent disability, and excessive loss of experienced Warriors. It is also 

the second most common musculoskeletal complaint among NASA Space Shuttle Program 

participants [6, 8]. 

Warriors who work in extreme environments such as Army helicopter pilots, Navy RIB 

(Ribbed Inflatable Boat) operators, tactical operations officers, Special Forces members and high 

performance fixed wing aviators are at increased risk for injuries to the neck and back.  

Gollwitzer [9] described the effects of repeated shock impacts on crewmembers of Naval Special 

Warfare (NSW) boats during high speed operations.  Occupants were exposed to severe, 

dynamic conditions characterized by discrete and repeated impacts as the craft repeatedly 

slammed into waves.  Both acute and chronic injuries reduced the short- and long-term 

effectiveness of naval personnel who were repeatedly exposed to these shock impacts.  A self-

reported injury survey conducted by The Naval Health Research Center (NHRC) confirmed the 

disproportionate rate of spinal injuries sustained by occupants of high speed NSW crafts [10].  

Military aviators were also found to have a significantly higher rate of neck and back 

pain than other military job specialties [7]. Aydog [11] reported that helicopter pilots had a 

higher incidence of arthritic changes in the cervical spine compared to pilots of other types of 

aircraft and non-aviators.  Other investigators [12, 13] have also documented the increased rate 

of neck pain with or without radiculopathy among helicopter pilots.  An increased incidence of 

degenerative changes of the cervical spine has been observed in fighter pilots as well [14, 15].  

Using low-field MR imaging of the cervical spine, senior fighter pilots flying high-performance 

aircraft were compared to non-aviators matched for age and sex; among the male fighter pilots 

(35-37 years of age), there was a higher occurrence and greater degree of inter-vertebral disc 

degeneration.  

Neck pain and cervical spine injury have been attributed to the added weight of protective 

gear and special equipment (e.g. communications, night vision) worn by Warriors in the harsh 

operational setting of combat; however, little is known about the effects of this gear on cervical 

spine function. Studies investigating spine injury in dynamic combat environments have focused 

on the effects of whole body vibration and/or repeated impacts to the lumbar spine [16-19] or the 

response of the neck supporting the mass of the head and head-mounted equipment and 

decreased performance associated with fatigue [20] and standards  ISO 2631-1 and ISO 2631-5 

are developed for it.. A few studies have evaluated the combined the effects of whole body 

vibration with the response of the cervical spine [21-23].  However all these studies have focused 

on global or external measurements of the head and neck using electromyography (EMG) to 
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measure muscle activity, and accelerometers to measure the motion and acceleration of the head 

and spine.  The kinetics and kinematics of the cervical vertebrae have not been measured 

directly, but surmised.  Only a few retrospective studies [14]have attempted to use imaging 

methods to systematically investigate specific changes in cervical spine anatomy directly. 

In astronauts these injuries are likely related to the prolonged unloading of the spine in 

microgravity, and the rapid reloading on landing [24, 25]. 

2.2 Anatomy of the Cervical Spine 
The cervical spine consists of the first 7 vertebrae, 

C1-C7 (Figure 2-1). While included in the cervical spine C1 

is not a true vertebra, as it has no vertebral body. This allows 

the additional rotational degrees of freedom for the head. C2-

C7 are load bearing structures that support the head. The 

vertebrae are stacked upon one another with an intervening 

intervertebral disc (IVD) that provides cushioning between 

consecutive vertebral bodies and bending and rotational 

motion. The intervertebral discs are made up of two 

structures, the nucleus pulposus and annulus fibrosus. The 

nucleus pulposus is the center of the disc and consists of a 

gelatinous viscoelastic substance with a high 

glucosaminoglycan (GAG) concentration. It is surrounded 

by the annulus fibrosus, a tough, multilayered tissue that 

contains the nucleus and gives structural support to the disc. 

Cervical vertebrae have an articular interface formed by the 

facet joints posteriorly. Layers of multiply oriented muscles 

provide stability, support, and movement of the head and cervical spine.  

2.3 Cervical Spine Pathology 
Neck pain and back pain are strongly associated with degeneration of the IVD [26]. 

Degeneration of the disc is thought to be caused by both repetitive 

loading and natural aging [27]. Disc degeneration alters disc 

height and the extent of hydration of the nucleus pulposus, as well 

as the mechanics of the rest of the spinal column, including the 

surrounding ligaments and muscle. Over the long term, disc 

degeneration is thought to lead to disc herniation and/or spinal 

stenosis, both of which are major causes of acute pain [28].  

Chronic neck pain, though less understood, is also believed to be 

associated with disc degeneration. The correlation between pain 

radiating from and in the neck and cervical degenerative disc 

disease (CDDD) has been reasonably established; however, the 

correlation between axial neck pain and CDDD has greater variability. Rarely is axial neck pain 

seen in the absence of CDDD, but an exception is often noted in whiplash (ligamentous) injury, 

which can fall in the category of highly dynamic cervical spine loading.   

The relationship between loading and CDDD is also not well established. In the normal 

degenerative cascade, natural aging of the nucleus pulposus leads to loss of proteogylcans in the 

Figure 2-1. Cervical Spine anatomy 

(http://www.eorthopod.com/images/C

ontentImages/spine/spine_cervical/cer

vical_anatomy/spine_cervical_anatom

y_intro01a.jpg) 

Figure 2-2. Anatomy of 

Intervertebral disc. Annulus 

Fibrosus surrounds the Nucleus 

Pulposus. From [1] 
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nucleus pulposus with resultant loss of hydration and nucleus pulposus pressurization. This is a 

multi-factorial response believed to be dependent on both genetic and environmental factors.  

Proteogylcan concentration in the intervertebral disc nucleus pulposus is well correlated to 

nucleus pulposus T1rho signal [29]. It is hypothesized that the annulus fibrosis breaks down in 

response to altered annulus fibrosis loading brought on by the nucleus pulposus degenerative 

changes. Nucleus pulposus degenerative changes have been shown both experimentally and in 

finite element modeling to increase internal strains within the annulus fibrosis [30-35].  

Moreover, it is hypothesized that the facet joints subsequently degenerate as alteration in disc 

loading increases facet loading. In the absence of macroscopic trauma, this theory of CDDD is 

supported by the clinical observations that the nucleus pulposus is observed to change hydration 

as observed on MRI before annulus fibrosis breakdown, which precedes facet degeneration. The 

Pfirrman classification for classifying CDDD based on MRI findings formalizes this 

degenerative cascade. 

Acute disc rupture and ligament and facet capsule disruption are clearly in the spectrum 

of acute cervical injury, which would include vertebral fracture and cervical dislocation as well.  

In instances of acute disc rupture, the loss of nucleus pulposus hydration and pressurization often 

occurs rapidly and is assumed secondary to active enzymatic proteoglycan breakdown.  

Therefore, in these cases, alterations of the annulus fibrosis precede the nucleus pulposus 

degeneration. This nucleus pulposus degenerative process is much more acute than that of 

natural aging.    

High amplitude, high frequency loading, common in extreme environments, is 

particularly challenging to the intervertebral disc. The energy absorbing function of the highly 

visco-elastic disc, which is due in large part to fluid flow, is lost at high frequencies where fluid 

path-lengths are short. Moreover, it is assumed that much of the damping occurring by the 

musculature at low frequency loading is lost at high frequency where voluntary actuation of 

muscle is unable to follow the load as a function of time. 

2.4 Standard Methods of Imaging the Cervical Spine 
MRI  and CT are the current gold standards for imaging cervical spine anatomy and 

pathology [36]. MRI is particularly well suited for examining soft tissues and bone marrow.  

Clinical markers for evaluating the health of the IVD include the relative hydration of the 

nucleus pulposus observed on T2 weighted MRI images (degenerated discs lose water content 

and become dark on T2 weighted images), disc height, disc protrusion/herniation, presence of 

osteophytes and cross-sectional area of the dural sac.  CT is better for visualizing 3D bony 

anatomy than MRI, particularly the presence of osteophytes, facet joint arthropathy (i.e. joint 

space narrowing, cyst formation) and measuring the cross-sectional area of the neural canal when 

evaluating stenosis of the cervical spine. Figure 2-3 shows how CT and MRI would image the 

same ovine specimen. Fluoroscopy (dynamic single plane X-ray) is sometimes used for dynamic 

motion analysis to evaluate the mechanical stability of the cervical spine during flexion and 

extension. None of these technologies can be used in extreme environments since the machines 

are large and require significant electrical power. Additionally MRI requires isolation from any 

ferro-magnetic surfaces and objects.  
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Figure 2-3. Three views of an ovine cervical spine. A = Anterior, P = Posterior 

2.5 Ultrasound Imaging 
Ultrasound provides a practical, cost-effective alternative to MRI and CT for imaging 

many anatomic sites and specifically for evaluating musculoskeletal pathoanatomy at the soft 

tissues and joints comprising the appendicular skeleton [37, 38]. It can be used to observe 

dynamic joint motion and mechanical stability in real time and has the potential to measure the 

material properties of tissues directly (since the velocity of the sound waves propagated through 

the material depends on its density and modulus of elasticity). Unlike CT, ultrasound does not 

risk exposure to ionizing radiation. Ultrasound devices have been certified to military 

specifications (MIL-STD 810F), allowing them to be used on Army Helicopters and Navy RIB 

boats with few additional certifications and modifications.  

The HRF Ultrasound system aboard the International Space Station, though currently 

inoperative at least as of June 2011, has been used for both research and simple clinical 

evaluations [39, 40]. Non-physicians can and have been trained to take clinical and research 

quality images. These images can be analyzed by the crew in space to make initial diagnoses 

using simple checklists or reference images [41] and then be sent down to Earth to be analyzed 

by a physician. 

Ultrasound produces images by measuring the time-of-flight of sound waves propagating 

through the tissue. The systems interpret differing echo times due to changes in acoustic 

impedance as tissue layers. Each piezoelectric crystal in an ultrasound probe can produce a 1 

dimensional image (called A-Mode) that shows the tissue interfaces as a function of distance 

from the probe. When these A-Mode images are combined into a B-Mode image, the 

stereotypical 2 dimensional planar image is produced. Figure 2-3 shows a B-Mode image of a 

ovine cervical spine IVD and what the same anatomic area looks like in CT and MRI.   

Previous studies have demonstrated that current clinical ultrasound systems can be used 

to image changes in IVD height [42]. Others have shown that the anatomy of the disc can be 

visualized using properly focused ultrasound imaging technology in animals [43] and in humans.  
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In-vivo surveys of human thoracic and lumbar spines detailed the extent that the IVD was visible 

from a posterior approach [44]. Ex-vivo comparisons between IVD anatomy imaged by 

ultrasound and direct histological evaluation [45] demonstrated that ultrasound could 

differentiate between the annulus fibrosus and nucleus pulposus. Others have shown that 

ultrasound can differentiate various anatomic structures in the cervical spine [46].  Ultrasound 

syatems can also be made portable (Figure 2-4). Therefore it is feasible to use both static and 

dynamic ultrasound imaging to measure the height of the IVD and dynamic motion of cervical 

vertebrae in military personnel and astronauts. 

 

Figure 2-4. Laptop based portable ultrasound system. Coffee mug shown for scale. 

2.6 Dynamic Behavior of the IVD 
The biomechanics of the IVD has been studied under normal and abnormal loading 

conditions in a variety of ways. Although we have a reasonable understanding of disc 

degeneration and how it is affected by repetitive loads, the scientific community lacks 

knowledge of the IVD’s response to dynamic, high-impact loads, and how these loads affect disc 

degeneration. Analysis of the mechanical behavior of the lumbar spine under static and 

quasistatic loading conditions has been studied extensively [47-53].  Panjabi’s group was 

fundamental in establishing mechanical testing methods for the cervical spine [54]. They 

performed pivotal investigation of the mechanisms of whiplash injury and analyzed the effects of 

these injuries on the biomechanical behavior of the cervical spine using novel bench top models 

of cervical vertebrae subjected to whiplash trauma [55].   

Most dynamic tests of human and animal cervical spines have been analyzed in the 

context of pure axial compression [56-59].  However, this loading condition does not approach 

those of the military personnel that we are attempting to model. The dynamic loading 

frequencies of Costi and Izambert fall short of the high-impact loads we seek to impose and the 

stiffness values reported by Yingling and Lee are not as high as the typical stiffness values 

observed in our preliminary experiments that simulated the representative loads encountered by 
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fast boat operators during high velocity missions.  Little work has focused on impact loading of 

the human cervical spine. Elias performed high impact loading experiments on baboon spines 

[60]. Zhu subjected human cadaver spines to dynamic loading, but their analysis only explored 

ranges of motion in the “neutral zone”, and they did not investigate changes in the mechanical 

behavior of the spine for these dynamic loads [61].  Developing human, cadaveric, cervical spine 

models that simulate the dynamic, high-impact loads imposed during combat will allow a better 

understanding of the cervical spine injury patterns observed in our military personnel 

In spaceflight there is extended unloading upon orbital entry which continues for the 

duration of the flight and leads to spinal elongation of 3-5 cm [62]. However, it is unknown 

which how the elongation is distributed along the spine. This is followed by rapid loading on 

landing, so rapid that all evidence of spinal elongation is gone by the time investigators could 

study flight crews [63]. There is also anecdotal evidence that flight crewmembers who spend 

time in spacesuits for Extra-Vehicular Activity (EVA) gain and lose up to 3 cm over several 

hours as they are strapped into the spacesuit and then released following EVA [64]. 

2.7 Standards Statement 
Recognizing that there were no prior standards for measuring intervertebral disc height 

that could be applied for this work a Standards Meeting was held with several clinical and 

research specialties represented including Orthopedics, Emergency Medicine, Radiology, Pain 

Management, and Engineering and the following statement was produced:  

Clinically, there is no currently accepted quantitative measure of intervertebral disc 

height. There are qualitative indicators (relative disc heights in CT, MRI, or 

Fluoroscopy, and disc hydration and bulging in MRI), but they are not easily used 

for diagnosing quantitative differences from normal. Quantitative measurements of 

the height of the intervertebral disc height as measured from the anterior border of 

the disc using ultrasound would be a clinically useful metric to assess 

intervertebral disc heights and intervertebral disc height changes under loading 

conditions. 

2.8 Modeling the Cervical Spine  
The smallest unit of the spine to share the biomechanics of the entire spine is called the 

functional spinal unit (FSU) [54]; it consists of two adjacent vertebrae, the disc and all adjoining 

ligaments between them, excluding connecting tissues such as muscles, tendons, and skin. The 

motion of the FSU can be defined by the relative motion of the two vertebral bodies in relation to 

each other. One measure of the FSU that is useful clinically is the stiffness (k): 

  
 

 
 

Equation 2-1 

 

Where F = the axial force applied to the FSU and δ = relative displacement of the 

vertebral bodies. In practice the Compliance (C), or the inverse of stiffness is calculated since 

this represents the motion of the FSU as the result of an applied force: 

   
 

 
 
 

 
 

Equation 2-2 
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Ultrasound has been used to measure the compliance of lumbar spine FSUs by 

submerging the patient in a water bath while applying longitudinal traction [65, 66]. These 

studies indicated that the lumbar spine was stiffer in older subjects than younger subjects. After 

age 35 there was a loss of compliance (or increase in stiffness) where the capacity of the spine to 

elongate when distracted decreased 0.01-0.04 mm/yr. There was no observed difference between 

male and female subjects.   

Difficulty gathering in-vivo spine performance data in extreme work environments has 

led to an emphasis on modeling; the FSU is subjected to forces that simulate those applied to the 

spine in the work environment. However the complexity of the anatomy and the heterogeneity of 

the tissue properties can complicate modeling of cervical spine mechanical properties. If the 

focus is on performance of the IVD, or kinematics of the entire spine, the vertebra itself can be 

simply modeled as a homogenous bulk solid.  Many models use recorded muscle potentials and 

muscle cross-sectional areas as inputs for determining muscle forces and then calculate the 

imposed spinal motion. These models have been tested using human or animal cadaveric spines 

subjected to static [67] and dynamic forces at low (~1Hz) frequencies. Analytic models using 

numerical methods have also been used to evaluate mechanical properties when simpler models 

were not appropriate such as the location of failure surfaces [68] and the effect of non-uniformly 

distributed loads [69]. Finite element models (FEM) have been developed that assess the 

mechanical performance of single and multiple contiguous cervical spine FSUs; however 

accurate specification of the heterogeneous material properties, boundary conditions and applied 

loads required to formulate the model and to evaluate the performance of the FSU in health and 

disease can be tricky.  Few of these FEM have been carefully validated. 

Estimating the contribution of muscles to the stability and structural support of the 

cervical spine is another focus of modeling. In the simplest representations, muscles are treated 

as powered springs attached to skeletal elements [70].  However, even these models can get 

complicated as there are many muscles in the neck that have varying levels of strength and 

directions of orientation. This complexity is handled by graphical programs that allow 

assignment of the origin, insertion and strength of each muscle.  While these models are scalable 

and can account for the activity of each muscle, they lack the fidelity of individual muscle 

function. Most of these models assume that muscles are either on or off, where in actuality, each 

muscle is made up of individual fibers that are not necessarily all active or all inactive at the 

same time but instead depend on the skeletal motion being performed and the action of 

antagonistic muscle groups.  Some models account for variability in muscle activation by 

measuring surface EMG in-vivo while subjects perform specific tasks [71]. However, surface 

EMGs record bulk muscle electrical activity and cannot differentiate individual muscle actions. 

Combinations of EMG and graphical modeling have been attempted with some success [72-74].  

None of these spine models have be used to evaluate the performance of the cervical 

spine at high vibration states and few if any models have integrated direct measurement of 

vertebral motion during specific activities. Each of the extreme work environments in which our 

potential patient populations function has unique loading conditions that affect the 

biomechanical behavior of the cervical spine. Army Helicopter pilots are subjected to high 

amplitude vibrations on the order of 8-10 Hz.  Since they are strapped into their seats, most of 

this energy is transmitted to the cervical spine.   

 



- 18 - 

 

 

 

3 Hypotheses  

3.1 Global Hypothesis 
Clinical ultrasound provides a safe, inexpensive, portable, imaging modality to quantify 

IVD displacement and rigid body motion of functional spinal units comprising the cervical spine 

in response to static and dynamic loads in-vivo. 

3.2 Detailed Hypotheses 
Static Ultrasound Imaging of the Cervical Spine Intervertebral Disc Space 

1. Ultrasound can be used to measure the anatomy and height of cervical spine 

intervertebral discs 

2. Disc height as measured by ultrasound, is similar to disc height measured by MRI and 

CT. 

Ultrasound Imaging of the Rigid Body Motion of the Cervical Spine Vertebrae 

1. Ultrasound can be used to measure the motion of cervical spine vertebral body motion 

under different loading conditions  

2. Clinical ultrasound can detect the contribution of individual cervical spine functional 

spinal units to the total motion of the cervical spine in-vivo and ex-vivo.  

In-Vivo Ultrasound Imaging of the Motion of the Cervical Spine Vertebrae in Operational 

Environments  

1. Ultrasound can be used to image the cervical spine in astronauts and pilots to understand 

the effects of their respective gravitational environments 
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4 Static Ultrasound Imaging of the Cervical Spine 
Intervertebral Disc Space 

4.1 Abstract 
Purpose: Increased incidence of cervical spine disease in high performance pilots 

may be caused by variability in short-interval loading during high-G flight 

maneuvers.  Currently, there is no method to assess cervical spine displacements 

during flight. We hypothesize that clinical ultrasound may provide a portable 

imaging modality capable of quantifying cervical spine intervertebral disc (IVD) 

displacement and compliance in response to applied forces. 

Materials and Methods: 12 Adult cadaveric ovine cervical spines were imaged 

using Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and 

Ultrasound (U/S). The U/S images were acquired using a standard ultrasound 

unit with a 15 MHz linear transducer. Images were analyzed to compare the 

ability of the three imaging modalities to assess IVD anatomy by measuring the 

anterior distance between vertebral bodies. Similar comparisons were done in-

vivo in 8 humans during Emergency Department visits.  

Results: Static analysis of ex-vivo sheep cervical spines imaged by ultrasound, 

MRI, and CT demonstrated that the imaging modality affected the measured 

intervertebral disc (IVD) displacement (p<0.01); post-hoc analysis indicated that 

IVD heights measured by CT were on average 1.1 mm greater than those 

measured by MRI (p=0.09), and 0.9 mm less than those measured by US 

(p=0.04); IVD heights measured by MRI were 2.0 mm less than those measured 

by US (p<0.01).  Similar evaluation was done in-vivo in Emergency Department 

patients who received a CT scan as part of their clinical course.  

Conclusion:   This is the first study to demonstrate the ability of U/S to measure 

cervical spine anatomy and concludes that the accuracy of static measures may 

be adequate to develop the technique and equipment for clinical diagnostic use.   

4.2 Introduction and Background 
We propose that clinical ultrasound (US) can provide the appropriate technology to 

image the kinematics of the cervical spine and deformation of the intervertebral disc during 

exposure of personnel to extreme work environments.  

Images of human and animal adult thoracic and lumbar spine in-vivo have been 

previously demonstrated [44, 75], but measurements of the intervertebral disc space by US have 

not been validated or compared to other imaging technologies such as CT and MRI. The purpose 

of this project is to expand the capabilities of clinical US beyond its current indications. We 

hypothesize that clinical US can provide a portable imaging modality capable of quantifying 

cervical spine intervertebral disc displacement and the mechanical compliance of a functional 

spinal unit in response to applied forces. Besides applications in work place environments to 

assess spine biomechanics under extreme conditions (that cannot be easily assessed by other 

means), the technology developed here will provide an inexpensive, portable and safe technique 

that can identify and characterize cervical spine anatomy and pathology without exposing 

patients to ionizing radiation or requiring expensive MRI technology unavailable in resource 

poor environments. 
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4.3 Methods 

4.3.1 Ovine Methods 
Twelve adult, fresh frozen, cadaveric ovine cervical spines (34 intervertebral disc spaces) 

were thawed and held in the neutral anatomic position. The spines were sequentially imaged 

using CT (Siemens Somatom Sensation 40, Forchheim, Germany), MRI, (Siemens 3T Trio, 

Erlangen, Germany) and US (Philips iu22, Bothel, WA) using a 15 MHz linear transducer. The 

paracervical muscles and adipose tissue were retained, but trachea, esophagus, skin, and wool 

were removed. The US transducer was placed in the interval between the sternocleidomastoid 

and the tracheal bed, with the US beam aimed at the midline of the anterior cervical spine similar 

anatomically to the anterior surgical approach to the cervical spine in humans. Static US images 

were obtained using a 1.5 cm stand-off pad. Due to physical limitations of the available US 

transducers only one intervertebral disc space could be imaged at a time; each disc space was 

imaged from the left and from the right. Additionally, one of the ovine cervical spine specimens 

was imaged using a standard GE E9 US unit with a 15 MHz linear transducer and Fusion 

software to compare the CT data with dynamic US images.  

After a short training session, two board certified radiologists (with 10 years’ experience 

respectively) measured the anterior distance between the vertebral bodies in the three imaging 

modalities. Images were randomized within imaging modality and viewed in a high resolution 

monitor (Dome C5i; Planar Systems, Waltham, MA) equipped with viewing software (Synapse, 

Fujifilm Medical, Tokyo, Japan). For CT and MRI the radiologist was allowed to scroll through 

the sagittal image stack before measuring the midline intervertebral body distance. The static US 

images were presented individually and the radiologist was not informed if they were seeing a 

repeated disc space from another side. The measured intervertebral disc space heights were 

analyzed by a Generalized Linear Model and post-hoc Tukey test to determine the effect of 

radiologist and imaging modality 

4.3.2 Human Methods 
8 subjects (48 total disc spaces) for the in-vivo study were recruited from the Brigham 

and Women’s Hospital Emergency Department with approval from the Partners Heathcare 

Institutional Review Board. Inclusion criteria were that the subject (a) be over 18 years old and 

(b) have already received a CT C-spine study as a matter of their clinical course.  After verbal 

consent an operator took ultrasound images in a manner similar to the ovine study, where the 

ultrasound transducer was placed in the interval between the sternocleidomastoid and the 

trachea, with the ultrasound beam aimed at the midline of the anterior cervical spine similar 

anatomically to the anterior surgical approach to the cervical spine (Figure 4-1). Static images of 

one or two intervertebral disc spaces were imaged at a time and each disc space was imaged 

from both the left and right. Additionally a 10 second long cine-loop was taken while the 

ultrasound probe traversed the length of the cervical spine. Subjects were continually asked their 

comfort level with the imaging technique and imaging was discontinued if the subject felt too 

discomforted by the pressure on their neck.  
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After a short training session, a resident 

radiologist measured the anterior distance 

between the vertebral bodies, and the height of 

the vertebral bodies themselves in the CT 

images. The same radiologist, an emergency 

medicine resident and an engineer 

independently measured the ultrasound images 

and agreed on a consensus value at a later 

meeting. Images were randomized and viewed 

in a high resolution monitor (Dome C5i; Planar 

Systems, Waltham, MA) equipped with viewing 

software (Synapse, Fujifilm Medical, Tokyo, 

Japan). For CT the radiologist was allowed to 

scroll through the sagittal image stack before 

measuring the midline intervertebral body 

distance. The static US images were presented 

individually and the measured intervertebral 

disc space heights were analyzed by a simple 

correlation test due to the low number of 

completed subjects.  

Additional human study was done in-

vivo with 2 other subjects to determine the 

feasibility of using clinical ultrasound to image 

FSU compliance. The compliance of the C5-C6 

FSU was calculated by measuring the change in 

height of the intervening disc in response to the 

application of known axial compressive and distractive loads applied to the head and neck using 

a customized traction device in human subjects. 

4.4 Results 

4.4.1 Ovine  

The ovine cervical spine was imaged with CT, MRI and ultrasound, after which it was 

cut down the midline and imaged with a digital camera to give a saggital view Figure 4-2. This 

figure shows the various attributes of each modality. CT, where brightness of the image is 

proportional to density, is quite good at showing the border of bone but can’t differentiate 

between different soft tissues within the intervertebral disc. MRI, where brightness of the image 

is proportional to the presence of water (more specifically the relaxation time of hydrogen ions), 

can show the borders between soft tissues, but is not as precise at bone edges as CT. Ultrasound, 

where brightness of the image is proportional to acoustic impedance changes of tissue, can see 

soft tissue changes and precise bone edges, but cannot “see” into the bone or around corners of 

bone.  

 

Figure 4-1. Placement of Ultrasound Probe and 

Path of Ultrasound Beam (Green Arrow) to C-

Spine. 
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Figure 4-2. Sheep cervical spine intervertebral disc space under differing imaging modalities. The dotted 

green outline on the images shows the outline of the bone.  

 

A Generalized Linear Model showed no significant effect of radiologist or a significant 

difference between left and right side US measurements and therefore was not included in 

subsequent analysis (Figure 4-3). That analysis showed an effect of Imaging Modality (p<0.01) 

and a post-hoc test of effect sizes showed heights measured from a CT to be not significant from 

MRI, CT 0.9 mm less than US (p=0.04), and MRI 2.0 mm less than US (p<0.01). There was no 

significant difference in variance between any two of the three modalities.     

 
Figure 4-3. Box plot of measured ovine cervical spine intervertebral distances (n = 34 disc spaces in 12 animal 

specimens) by imaging modality, CT, MRI and US. Box defines values between 1
st
 and 3

rd
 quartiles, notches 

define 95 % confidence interval of the mean, whiskers define remaining values absent outliers defined by ‘*’. 

 

The data in Figure 4-3 is also presented in table form as measures of uncertainty 

(standard deviation of means, Table 1) and bias (difference in means,   Table 2) for each 

specimen and are pooled so the reader can get a sense of the range of values encountered. 

Finally, measurements done with the GE Fusion system in real time showed high anatomic 

correlation between the US and CT images as judged by a radiologist (Figure 4-4).  
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Table 1. Standard Deviation of Measures   Table 2. Measure of Means (Bias)  

by Specimen (measures in mm)   by Specimen (measures in mm) 

 Std Dev  Means 

Specimen CT MRI US  CT MRI US 

1 1.1 1.7 1.2  8.6 8.7 8.9 

2 1.2 0.4 1.8  9.2 7.8 9.1 

3 1.5 0.5 1.5  10.0 8.4 9.7 

4 3.6 0.8 0.8  10.7 7.4 8.7 

5 1.3 1.0 2.5  7.6 9.1 11.3 

6 0.8 1.7 1.0  8.3 9.4 10.2 

7 0.4 0.9 1.3  8.2 5.2 10.7 

8 0.5 1.6 1.6  7.3 8.5 10.3 

9 3.6 1.0 2.4  12.8 8.1 11.2 

10 1.6 1.2 0.9  9.4 7.1 10.4 

11 1.4 1.2 2.5  10.9 11.1 13.2 

12 0.7 1.1 1.7  9.8 9.0 11.6 

Total 2.1 1.8 1.9  9.3 8.3 10.5 

 

 

 

Figure 4-4. GE Fusion screenshot showing co-registered measurement of US (left, 0.81 cm) and CT (right, 

0.80cm).  Distances are measured between crosses in each respective image. Green box in CT corresponds to 

viewing area of US. Note: measurement technique for this image was different than for prior analysis. 



- 24 - 

 

 

 

4.4.2 Human Results 
Of the 8 consented subjects (age 63.6±26.2), 7 were able to complete the imaging 

protocol. The incomplete subject was unable to tolerate the pressure of the probe on their neck. 

The remaining subjects were found to have 38 total disc spaces eligible for comparison due to 

pathologies such as fused vertebrae. CT measure of vertebral body height (not intervertebral disc 

height) was correlated with Ultrasound measure of vertebral body height (Pearson's correlation = 

0.65 (p<0.01)). The intervertebral disc height has almost no correlation based on the 7 subjects 

currently analyzed given the inability to exactly position the neck the same as when the CT scan 

was taken. Bone edge and disc surface structure are well identified on patients with minimal 

pathology and smaller body habitus.    

 

Figure 4-5. Correlation between CT and Ultrasound measurements for intervertebral disc space show an 

underestimation by ultrasound suggestive of positioning changes from removal of the c-collar.  Determination 

of optimal patient positioning and ultrasound technique is still underway.   

 

Other in-vivo results with the addition of MRI imaging reveal further correlations 

between anterior intervertebral disc bulges and narrowed disc spaces for cervical spines 

evaluated by both MRI and Ultrasound (Figure 4-7 and Figure 4-6). Further measurement of the 

mechanical compliance of a functional spinal unit determined from changes in intervertebral disc 

height measured in real time by US in response to applied uni-axial compressive and distractive 

loads demonstrated that the compliance of the C4-C5 functional spinal unit was decreased in 

older subjects compared to younger subjects (Figure 4-8). This is consistent with the observation 

that cervical spondylosis most commonly occurs at the C5-C6 level. 
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Figure 4-8. Change in in-vivo intervertebral disc height during axial loading of cervical spine in young 

human. From these images compliance of the intervertebral disc is calculated by Compliance = ∆ height/ ∆ 

force. Similar images and calculations were done on an older subject and the two results were plotted (right). 

Younger subject (solid line, slope =0 .009mm/N), older subject (dotted line, slope =0 .008mm/N). No loading = 

neutral, Distraction = 20 lb tension, Compression = 20 lb compression. 

4.5 Discussion 
This is the first study to demonstrate the ability of US to measure intervertebral disc 

anatomy in the cervical spine. The results suggests that clinical US systems may provide a low 

cost, portable, and convenient method to assess the cervical intervertebral disc space anatomy 

without the use of ionizing radiation. A perceived limitation of US is lack of repeatability but our 

Figure 4-6. Anterior 

Cervical IVD Protrusion 

visible on ultrasound 

(Green Box). 

Figure 4-7. In-vivo US (left) and MRI (right) of human 

cervical spine. Red box in MRI corresponds to viewing 

area of US. Cross hatches in US show anterior disc 

protrusion also seen in MRI. 
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model did not show a significant difference between measurements taken of the same disc space 

from the left or right side. Another limitation of US is the perceived operator dependence of both 

the individual taking the image and the radiologist interpreting it, but we did not see a significant 

difference between radiologists (n = 2), suggesting that sufficiently trained operators can obtain 

similar results. This study did not look at the dependence of the operator on the quality of the 

image acquisition. If CT is taken as the gold standard for intervertebrtal disc height, post-hoc 

analysis of the effect of imaging modality on measured disc height demonstrated a statistically 

significant difference of 0.9 mm greater intervertebral disc height when measured by US 

compared to CT. MRI measures of intervertebral disc height were not significantly different 

from CT. However, the statistical analysis of these results is only one metric in which to judge 

the utility of these measurements and the clinical significance of this small difference is unclear. 

The real-time co-registration analysis revealed that many anatomic features visible on CT and 

MRI, such as disc bulges and separated vertebral endplates were also visible on US.  

In humans our preliminary data indicate that ultrasound is able to obtain high quality 

images of cervical spine anatomy including vertebral body edges and IVD geography. Image 

quality shows promise for measurements of bone edges and vertebral length in the cervical spine 

of healthy individuals but there are significant limitations to image quality and reproducibility 

that occur with spinal degeneration with age. Cervical spine ultrasound requires technique and 

positioning definitions to generate reproducible measurements, but image quality is sufficient to 

warrant further research in this area. 

4.6 Conclusions 
The ex-vivo ovine study demonstrated that US can measure intervertebral disc heights 

nearly equivalent to CT and MRI and helps establish that US may be useful tool to ascertain 

intervertebral disc height and the overall mechanical compliance of the functional spinal unit by 

measuring changes in disc height induced by compression and distraction of the cervical with 

known loads. Improvements in the temporal and spatial resolution of the US platform will be 

required before US can be used operationally to image the displacements of the cervical spine 

while subjected to extreme work environments.  

The human results show that more work needs to be done to translate these findings into 

in-vivo practice, but that it is technically possible to fit in the workflow of pre-hospital care.  
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5 Ultrasound Imaging of the Rigid Body Motion of the 
Cervical Spine Vertebrae 

5.1 Abstract 
Dynamic analysis of isolated ex-vivo human lumbar and ovine cervical spinal 

segments intervertebral disc displacement with a mounted ultrasound probe 

demonstrated a measurement uncertainty of ± 0.2 mm and no bias at low 

frequency sinusoidal spinal displacement. A similar evaluation in-vivo with 4 

human subjects that compared measures from an ultrasound probe mounted on a 

cervical-collar to the motion of the head relative to the top of the thoracic spine 

measured by motion tracking found a 17-38% contribution of cervical spine 

distraction (from the C4-5 Functional Spinal Unit) to the overall motion of the 

head with respect to the shoulders. This contribution was mostly a factor of 

subject differences rather than loading on the head or frequency of motion.   

In human cadavers subjected to passive flexion and extension of the cervical 

spine, ultrasound measurements of the relative flexion/extension angles between 

consecutive cervical vertebrae were similar to fluoroscopy. 

5.2 Introduction and Background 
Previous work (Chapter 4) showed that ultrasound can measure intervertebral disc 

heights nearly equivalent to CT and MRI, the current “gold standards.” In that work the tissue 

and subjects were not moving, but in this series of experiments we are interested in the ability of 

ultrasound to measure the dynamic motion of the cervical spine. Ultrasound is already used as a 

modality that can measure dynamic motion in cardiac and obstetric care, and we intend to apply 

methods used in those fields to the musculoskeletal system and also apply imaging processing 

methods and principles in order to get quantitative data from those images. We hope to show that 

ultrasound can be used to measure the motion of cervical spine vertebral body motion under 

different loading conditions and that clinical ultrasound can detect the contribution of individual 

cervical spine functional spinal units to the total motion of the cervical spine in-vivo and ex-vivo 

in order to be able to calculate the strain each functional spinal unit is subjected to during 

operational maneuvers.  

5.3 Methods 

5.3.1 Ex-vivo Methods  

Four isolated adolescent ovine cadaveric cervical spines (C2-C6) were subjected to cyclic 

loads in combined axial compression and tension at different loading rates (1, 2, 4 and 8 Hz) and 

displacement amplitudes (2 and 4 mm total spine displacement). The spines were prepared, 

potted and mounted in an Instron, biaxial mechanical testing machine. The accuracy of 

ultrasound measures of vertebral motion was compared to those measured directly, using a 

mechanical tracking system. The paracervical muscles and adipose tissue were retained, but 

trachea, esophagus, skin, and wool were removed.  The ultrasound transducer was placed in the 

interval between the sternocleidomastoid and the tracheal bed, with the ultrasound beam aimed at 

the midline of the anterior cervical spine similar anatomically to the anterior surgical approach to 

the cervical spine in humans (Figure 5-1). Dynamic ultrasound images were obtained using a 1.5 
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cm stand-off pad. Due to physical limitations of the available ultrasound transducers only one 

intervertebral disc space could be imaged at a time. The mechanical tracker was attached to the 

vertebral body on one side via fixed posts that were screwed into the bone on either side of the 

intervertebral disc space while the ultrasound probe was acoustically coupled to the spine and 

positioned using a clamp that secured the probe to the moving cross-head of the Instron and 

maintained the probes in fixed orientation relative to the disc space being imaged.  

 

Figure 5-1. Placement of Ultrasound Transducer and Extensometer on Ovine Cervical Spine. Flueroscopic 

image (right) shows that both measurement methods viewed same intervertebral disc space.  

 

Because the ultrasound data output is given a time signature by the internal software, 

rather than a hardware timer, there are inconsistences in the time code for the signal. This is 

especially prevalent when dealing with processor heavy images and compression for fast moving 

structures. This was corrected by finding an effective sampling rate of the ultrasound measures 

which varied by ± 0.1 sec per trial. As shown in Figure 5-2 analysis was completed by 

comparing measures from the ultrasound with mechanical tracking data. Ultrasound B-mode 

(video) images were exported in AVI format from the Terason system (Teratech, Burlington, 

MA). In the image analysis software (Mocha, Imagineer Systems, Guildford, UK) a region of 

interest was defined by two different users (to compare the reliability of the method) in the first 

frame and tracked through the image file while correcting every second using the methods of  

Loram[76]. Mechanically tracked extensometer data was collected by a LabView script and the 

displacement calculated. The ultrasound derived frame-by-frame location of the region of 

interest was exported to a MATLAB script where it was compared with the exported mechanical 

tracking data from the extensometer. The extensometer data was collected at 50 Hz, and the 

ultrasound images were collected at ~25.5 (+/-0.1) Hz. Because of the difference in time coding 

between the two data an interpolation function was used on the extensometer data to find what 

the measured displacement was at each data point for the ultrasound measures. From these two 
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measures an uncertainty (defined as the error of the ultrasound measure with respect to the 

extensometer measured displacement) was calculated at each ultrasound measured time point.  

 
Figure 5-2. Ultrasound image (left) with regions of interest defined and workflow for measurements. 

 

The effect of loading rate, displacement, user, and cross effects on uncertainty and 

goodness-of-fit (r
2
) for each second of collected data were analyzed by General Linear Model.  

Other ex-vivo work was done with two full human cadavers. Two intact cadavers with 

head, neck and torso were be subjected to flexion/extension motions. Ultrasound measures of 

vertebral body angles were taken using a single hand-held ultrasound transducer to measure 

cervical spine flexion/extension angles compared to those measured fluoroscopically. To 

approximate the “Cobb” angle [77] traditionally measured with a fluoroscope in 

flexion/extension imaging the ultrasound measurements assumed that the intervertebral disc 

width between the inferior and superior surfaces of the two adjacent vertebral endplates is 

Figure 5-3. "Cobb" angle measured with fluoroscopy (left) and ultrasound (right). 
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approximately twenty percent greater than the length of the anterior surface on the body of a 

vertebra. 

5.3.2 In-vivo Methods 
Ultrasound images of cervical spine intervertebral disc spaces were taken on 4 subjects 

while jumping in place following MIT Instatutional Review Board approval. The placement of 

the ultrasound probe was similar to the ex-vivo experiments and similar to previous experiments 

(Chapter 4) and allowed the measurement of the dynamic motion of the anterior surface of the 

visualized cervical spine vertebral bodies (Figure 5-4). The ultrasound probe was placed 

externally against the front neck of subject and held in stable position by modified cervical collar 

(Figure 5-5, National Orthopedics and Prosthetics Corporation (NOPCO) at Children's Hospital 

Boston). Images were taken of subject’s cervical spine intervertebral disc space during directed 

jumping motion at rates of 1 and 2 jumps per second. Subjects were instructed to jump at the rate 

of an audible metronome playing at the designeated frequency while trying to jump and land on 

the same spot on the ground. The analysis of the ultrasound images was done with the same 

method as the ex-vivo experiments. To simulate the effect of Head-Supported-Masses (HSM) 

such as Night Vision Goggles that an Army aviatior would be expected to wear, a football 

helmet was worn while jumping and the subject performed the motion with the helmet 

unweighted (No HSM) and weighted with an additonal 7.5 lbs (HSM) (Figure 5-5).  Additionaly, 

motion was tracked by video interpretation of the three-dimensional position of reflective 

surfaces placed on the cervical collar and the helmet by a kinematic motion tracking system 

(Vicon, Oxford, UK). From the position of the markers the superior (C1) and inferior (C7) 

borders of the cervical spine could be derived and the total motion of C1 with respect to C7 

could be calculated. Both the ultrasound derived measures of intervertebral disc height changes 

and the displacement of the were imported into a MATLAB script for further analysis.  

 
Figure 5-4. Schematic of ultrasound probe placement and cartoon of anatomic structures (C4-C6) visible. The 

ultrasound beam can visualize the anterior surface of the vertebral bodies, which can allow calculation of the 

displacement and rotation (right of image) of those surfaces in the place of the ultrasound beam.  
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Ultrasound motion was compared to measured head and neck displacement to determine 

the contribution (by fraction of total displacement) of functional spinal unit displacement to 

overall motion and the effect of the addional mass on cervical spine displacement. Ultrasound 

motion was calculated in the MATLAB script by finding the average maxium and minimum 

values of displacement in each experimental condition and then calculating the difference 

between them. Total displacement was calculated the same way from the motion tracking data. 

As the total displacement was sampled at a much higher rate (120 Hz) than the ultrasound data 

(~25.5 Hz) the total displacement data was run through a low-pass filter of 20 Hz to make the 

plots and data parsing simpler.  

The effect of helmet loading and jumping frequency fraction on total displacement and 

fractional contribution of functional spinal unit displacement were analyzed by General Linear 

Model. 

 

 
   

5.4 Results 

5.4.1 Ex-vivo Results 
Dynamic intervertebral disc height measured by ultrasound was consistent with the data 

from the mechanical testing machine. Each 10 second ultrasound video was segmented into 8 

non-overlapping one-second long samples. These second length samples were overlaid on each 

Figure 5-5. Placement of Motion Tracking Markers (silver spheres) and 

Ultrasound Probe on subject. Helmet is shown in weighted (7.5lbs) 

configuration.  
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Figure 5-8. Goodness of Fit (or r
2
) of each second 

of measured data by frequency. Standard error of 

each point is less than the height of each square.  

Values (and standard errors) are Least Square 

Means calculated from General Linear Model. 

other in images similar to Figure 5-7 to visualize the accuracy and precision of the ultrasound 

measures in comparison to the mechanical tracking measures.  

 
Figure 5-7. Sample data from a 2 Hz test. Green dots are individual ultrasound measures and the diameter of 

the dot is proportional to the error from the extensometer measured displacement at that point (blue line). 

 

Prior to statistical analysis uncertainty and r
2 

values were transformed to satisfy the 

normality assumption of the statistical tests. Both uncertainty and r
2 

showed no significant effect 

of user or total input displacement. There was a significant effect (p<0.01) of the loading 

frequency (Figure 5-6, Figure 5-8) and the cross-effect of the total displacement and frequency. 

This cross effect can be thought of as the speed of the motion of the vertebral bodies, so it makes 
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sense that it would have a significant effect on the error and fit. It may seem counter-intuitive 

that the uncertainty decrease as the frequency increases, however the effect of speed (not plotted) 

is to increase the uncertainty as the speed (which proportional to frequency) increases. The end 

result gives a relatively constant error of ± 0.2 mm for motion occurring at less than 8 Hz, which 

will be applied to the in-vivo results discussed in the next section. The r
2
 value follows similar 

logic and decreases as the speed and frequency of the motion increases and approaches the 

Nyquist limit of the sampling rate of the ultrasound. However, as we are interested in motion 

occurring at frequencies below 8 Hz and we see that the r
2
 value is above 0.7 in this range, we 

can conclude that ultrasound measures of 

phenomena in this range of frequencies are 

credible.  

In the full cadaver experiments the 

flexion/extension Cobb angles measured by the 

ultrasound and fluoroscopy techniques were not 

significantly different (Figure 5-9). Owing to the 

stiffness of the cadaveric specimen we were 

unable to get full flexion of the neck, and so the 

“flexion” image was closer to the neutral position 

as delineated in the figure. 

5.4.2 In-Vivo results 
The jumping study (n = 4) also showed 

that the ultrasound data was consistent with 

external measures. When the uncertainty of 

±0.2mm calculated in the ex-vivo work was 

applied to the ultrasound measures taken in the in-

vivo trials it was seen that the amount of motion 

seen by the ultrasound exceeded the uncertainty and 

usable data was collected (Figure 5-10). 

 

Figure 5-9. Box Plot Comparison of measured 

Cobb angle using ultrasound (blue filled boxes) 

vs. fluoroscopy (empty boxes). There was no 

significant difference between the modalities in 

the neutral or extended position.   
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Figure 5-10. Collected data from a 2Hz in-vivo jumping trial with weighted helmet. Blue line is data from 

motion tracking. Green line is data from ultrasound, error bars on each data point of the ultrasound data 

reflect the ±0.2 mm uncertainty calculated in the previous work.  

 

Calculation of the relative contribution of the visualized functional spinal unit (FSU) to 

the overall motion of the head with respect to the torso, by analysis of individual trials similar to 

Figure 5-11 and statistical comparison with a General Linear Model, found a much larger effect 

of subject (Figure 5-12, p<0.01) than of weighting (7.5 lbs of weight decreased %contribution by 

2.5%, p<0.05) or frequency of jumping (NS). This implies that the method each individual 

subject chose to use to follow instructions varied more than the effect the experimental 

conditions had on the result. There was also a significant cross effect (p<0.01) of the Weighting 

with Subject, probably due to the differing methods the subjects used to compensate for the 

increased weighting.  
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Figure 5-11. Calculated Ultrasound (top left) and Total Displacement (bottom left) during a 1 Hz weighted 

jumping trial. Blue lines in both plots show the maximum displacement values used for average calculation 

and Green lines show minimum values. Thick Blue and Red Arrows show approximate anatomic regions of 

where displacement occurred. All attempts were made to keep two displacement planes parallel.  

 
Figure 5-12. Fractional Contribution of the visualized FSU to overall motion of the cervical spine and 

ultrasound measured displacement of the FSU by subject. Values (and standard errors) are Least Square 

Means calculated from General Linear Model. 

We also looked at just the displacement of the FSU rather than the relative displacement. 

A General Linear Model found a large effect of subject (p<0.01) but none of weighting (NS) or 
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frequency of jumping (NS). However, there was a significant cross effect of both weighting and 

frequency with subject, again probably due to the differing methods the subjects used to 

compensate. This may imply that the subjects calibrated their comfort level with jumping by 

maintaining a consistent strain (derived from the change in length of the FSU divided by the 

initial length) in the FSU.  

5.5 Discussion 
In all of the ex-vivo experiments detailed fluroscopic (or x-ray) images produced a clearer 

image of the edges of bones than ultrasound. However, ultrasound provided a reliable dynamic 

imaging capability and did so without any ionizing radiation that would limit the types of in-vivo 

experiments that could be performed. With some specimens, in both the ovine and human 

cadaver trials, it was difficult to consistently recognize smooth lines that indicated the edge of a 

vertebrae and pathologic anatomic features, such as osteophytes and disc space fusions, on the 

body of the vertebrae in the cadavers made it more difficult.  

As mentioned in the results, speed of bone motion has a larger effect on the uncertainty 

than just frequency or total displacement when the frequency of the motion under observation is 

less than the Nyquist limit, probably due to the way the B-Mode image is reconstructed in the 

ultrasound system. The refresh rate of the entire reconstructed image is different than the 

sampling rate and the components of the image are not all refreshed at the exact same moment, 

leading to blur that could contribute to the uncertainty. Functionally, this will limit the 

environments in which the ultrasound can provide reliable data. Anecdotally, Navy SEALS are 

thought to encounter 50 Hz impulses on some of their small boat maneuvers, so this method 

would not be appropriate for that environment unless the damping action of the human torso is 

found to bring the response of the neck to below 8 Hz. We chose 8 Hz as our limit because the 

literature referenced in the background section details that as the upper limit Army investigators 

are concerned with their population, so our method would be appropriate for the Army helicopter 

environment.  

Further work on ultrasound hardware development should focus on increasing the 

sampling rate of the ultrasound systems in B-Mode, increasing the amount of video storage 

available (the system we used was unable to take more than 10 seconds of data), and having a 

hardware controller determine the rate of sampling. The variable sampling rate of the ultrasound 

system limited the types of analysis we could do with the data we collected. With a more reliable 

time signal on the ultrasound we would likely have been able to determine the transfer function 

between the motion of the visualized FSU and the total cervical spine motion, rather than the 

gross measures of comparing average displacement over a trial.  

In this feasibility trial we only looked at the translation of the cervical spine vertebral 

bodies with the image analysis software. A limitation of this method is that when looking at only 

the anterior surface of the cervical spine during motion it becomes difficult to decouple rotation 

about the X axis (flexion/extention movement) from z-displacement (axial displacement). The 

software used is able to look at rotation of the regions of interest, but we found that the noisiness 

of our data made that analysis much more difficult for the software and required a great deal 

more manual correction which we worried would make the results much more dependent on the 

operator. Further work in this area could be focused on doing the image analysis entirely within 

MATLAB. However, even with the limitations encountered, the range of motion (17-38% of the 
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total displacement of the cervical spine) we saw in the C4-5 disc space in the in-vivo trial is 

consistent with the values seen by Panjabi [78].  

5.6 Conclusions 
The ex-vivo ovine study demonstrated that ultrasound can measure dynamic intervertebral 

disc height changes with an uncertainty of ±0.2 mm and be reliable tracking motion occurring at 

less than 8 Hz. Improvements in the temporal reliability of the ultrasound platform will be 

required before ultrasound can be used operationally to image the displacements of the cervical 

spine while subjected to extreme work environments.  

The human results show that ultrasound can be used to measure the motion of cervical 

spine vertebral body motion under different loading conditions and that clinical ultrasound can 

detect the contribution of individual cervical spine functional spinal units to the total motion of 

the cervical spine in-vivo in order to be able to calculate the strain each functional spinal unit is 

subjected to during operational maneuvers. 
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6 In-Vivo Ultrasound Imaging of the Motion of the Cervical 
Spine Vertebrae in Operational Environments 

6.1 Abstract 
We have demonstrated that it is feasible to characterize the mechanical properties 

of the cervical spine in-vivo during operational maneuvers.  Previous work 

indicates that clinical ultrasound provides a safe, portable, imaging modality to 

quantify intervertebral disc displacement and rigid body motion of functional 

spinal units (i.e. adjacent vertebrae, the intervertebral disc and adjoining 

ligaments excluding muscles) comprising the cervical spine in response to static 

and dynamic loads. In-vivo field experiments have successfully collected useful 

data in treadmill running, parabolic flight, and rough terrain driving in an Army 

National Guard Humvee. Necessary improvements to the portable ultrasound 

system, probe collar, and analysis methods are detailed such as improvements in 

the temporal and spatial resolution of the Ultrasound platform will be required 

before ultrasound can be used operationally to image the cervical spine during 

the high G maneuvers encountered during flight.    

6.2 Introduction and Background 
Previous work (Chapter 4 and 5) showed that ultrasound can measure intervertebral disc 

heights nearly equivalent to CT and MRI and that ultrasound can be used to measure the motion 

of cervical spine vertebral body motion under different loading conditions. The intention of the 

previous work was to show that if ultrasound was able to be used in operational environments the 

data collected would be valid and comparable to data collected by CT or MRI in more traditional 

clinical settings. Having done so, we intended to determine if portable ultrasound systems 

currently available for purchase are able to collect this data in the operational environments that 

we are interested in evaluating. With this work we hope to show that ultrasound can be used to 

image the cervical spine in astronauts and pilots to understand the effects of their respective 

gravitational environments on possible mechanisms of back and neck injury. 

6.3 Methods 
Three environments were tested for operational feasibility: treadmill running, parabolic 

flight, and rough terrain driving in an Army National Guard Humvee. All environments utilized a 

modified cervical collar similar to Section 5.3.2 for consistent hands-free placement of the 

ultrasound probe, the development of which is detailed below. Most used a Terason Ultrasound 

system with S2-5 transducer or system with similar imaging and portable operating 

characteristics.   

6.3.1 Transducer Holder Collar 

A single ultrasound transducer was positioned just medial to the sternocleidomastoid 

muscles to provide unencumbered sonic wave trajectories to image the vertebral bodies of the 

lower cervical vertebrae (C3-C7).  The alignment of the transducers relative to the cervical spine 

was stabilized by mounting them in a cervical collar that is fixed to the upper torso by a thoracic 

extension anchored at the prominence of the T1 spinous process (similar to shoulder pads). The 

measured motion of the lower cervical vertebrae will be relative to each other and to the torso 
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and thorax. The device is designed to allow more natural neck movement and will withstand the 

operational environment. Several versions of the collar were made (Figure 5-10, Figure 6-2). The 

modified cervical collar was made by National Orthopedics and Prosthetics Corporation 

(NOPCO) at Children's Hospital Boston. 

6.3.2 Treadmill Running 
In two subjects ultrasound images 

of cervical spine intervertebral discs were 

first taken with the subject in a stationary 

seated position to find the optimal 

transducer placement for the most robust 

image. This placement (Figure 6-1) was 

replicated with the collar so similar 

ultrasound images could be taken while 

jogging at two different speeds on a 

treadmill.       

6.3.3 Parabolic Flight 
In one subject (who had completed 

the Treadmill portion as well) ultrasound 

images of cervical spine intervertebral discs were first taken with the subject in a stationary 

seated position prior to flight to find the optimal 

transducer placement for the most robust image. This 

placement was replicated with the collar so similar 

ultrasound images could be taken while seated during 

an immediately following parabolic flight (operated by 

Zero-G Corporation). The flight profile entailed 

periods of microgravity, hypergravity (2 times body 

weight), and transitions between them. The subject was 

seated and strapped into an aircraft seat per Zero-G 

standard practice. To prevent injury and motion 

artifacts, the ultrasound system was fastened to the 

adjoining seat per Zero-G standard practice. In cases of 

motion sickness or discomfort from collar placement, 

which are common in parablolic flight experiments, the subject was instructed to remove the 

collar and attempt placement by hand if more comfortable. Since this environment was the first 

done chronologically an earlier version of the cervical placement collar was used (Figure 6-2).  

6.3.4 Humvee 
In one subject ultrasound images of cervical spine intervertebral discs were first taken 

with the subject in a stationary seated position prior to the drive to find the optimal transducer 

placement for the most robust image. This placement was replicated with the collar so similar 

ultrasound images could be taken while seated during and immediately following drive over 

rough terrain in an Army National Guard Humvee with the subject seated in the front passenger 

Figure 6-2. Custom cervical collar used in 

parabolic flight 

Figure 6-1. Image from video of ultrasound imaging of c-

spine while running (left). Anatomic image on right shows 

area of imaging with red dots indicating cervical levels 

visualized. 
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side seat. The rough terrain profile entailed having the 

vehicle drive forward at a constant 10 mph and hit an 

approximately 1 ft deep pothole with the passenger side 

tires (Figure 6-3). Several runs of the profile were also 

driven while not impacting the pothole to assess the 

ability of the ultrasound to detect magnitude of 

displacement differences between trials.  

The subject was seated and strapped into front 

passenger seat per regulations and was wearing 

required US Army issued protective helmet (approx. 5 

lbs). Acceleration and angular rate measurements were 

measured at the seat pan and at an accelerometer on the 

helmet.  

6.3.5 Image Analysis 
Same method as described in 5.3.1.  

6.4 Results 
In all field testing, the cervical collar provided a feasible platform for maintaining a 

constant imaging window of the cervical spine.  

6.4.1 Treadmill Running 
Qualitative analysis of the treadmill running in the two subjects showed minimal 

displacement of the visible intervertebral space during running trials on a treadmill. This was 

attributed to the fact that exercise treadmills are designed to be low impact exercise for 

cardiovascular health and footfall impacts are absorbed by the flexible treadmill surface as well 

as being transmitted up the legs to the spine of the runner. However, consistent images were 

achieved with both subjects at jogging and walking speeds.  

6.4.2 Parabolic Flight 
The subject remained seated in the second row of seats during parabolic maneuvers. The 

system was robust to parabolic maneuvers and being quickly stored and rebooted for take-off, 

landing, and transport. The battery lasted the entire flight. Images looked similar to Figure 6-1. 

     Use of the cervical collar in parabolic flight kept the ultrasound transducer in place. In 

parabolas that did not make use of the collar, an adequate way of holding the probe was utilized 

by supporting the arm holding the transducer with the other arm. Cleaner data were actually 

collected during these parabolas (Figure 6-4). 

Figure 6-3. Humvee used in Trial at Ft. 

Rucker hitting Pothole 
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6.4.3 Humvee 
As in the other conditions above, video of cervical spine motion was able to be analyzed 

in several of the test runs. Ultrasound images looked similar to Figure 6-1. When the video was 

not clear enough to be analyzed the most common reason for loss of image was acoustic 

decoupling between the transducer and the skin of the neck. Noise in the accelerometer signal 

and lack of coordination of measurement locations between the accelerometers and the 

ultrasound imaging area prevented direct comparison of displacements between measuring 

modalities. When comparing the pothole and no pothole profiles both the ultrasound and 

accelerometer were able to detect differences in their respective magnitudes; the ultrasound 

measured a larger displacement in the pothole profile and the accelerometers measured a greater 

acceleration of the head with respect to the seat in the pothole profile (Figure 6-5).    
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Figure 6-5. Data from feasibility trials in Humvee. Two experimental runs are displayed in two formats. The 

left graph shows acceleration data taken by subtracting data from an accelerometer on the seat pan from an 

accelerometer on the helmet. The right graph shows displacement data taken at the same time from 

ultrasound data. There is drift in the tracking data.  The blue line displays data from a Humvee run where a 

pothole was encountered. The green line displays data from a run where the Humvee missed the pothole.  

6.5 Discussion 
The variable acceleration environment we were trying to simulate has several inherent 

common limitations to consistent medical imaging. When designing tools for use in aerospace 

and military environments efforts must be made to limit the mass, power, volume, time, and cost 

requirements. Mass and power requirements lead to lowered flight performance and increased 

fuel requirements. Volume is a scarce resource in flight vehicle design, so large equipment will 

often not be flight qualified, even if it is low power and mass. The time needed for data 

collection and analysis by crew-members during the mission is a scarce resource, as well as 

training time required for optimal performance. All of these prior issues also figure into the 

technology cost, beyond the cost of the equipment and development itself. The purposes of cost 

reduction should be self-evident in both medical imaging and government spending. Portable 

ultrasound has very desirable characteristics in all of these realms. It has low power, mass, and 

volume, requirements which are similar to a heavy laptop. In comparison, CT and MRI systems 

require entire rooms and considerable infrastructure. Portable X-ray is still much larger and 

comes with attendant radiation concerns. Portable ultrasound, at least in this application, does not 

require extensive training, nor large costs, when compared to other imaging modalities.  

The cervical collar provided a feasible platform for maintaining a constant imaging 

window of the cervical spine. Each of the three testing scenarios led to further development of 

the system and informed future design choices.  

Chronologically the parabolic flight was the first scenario tested; it used an early version 

of the cervical collar (Figure 6-2) and a different portable ultrasound system (Sonosite, Bethel, 

WA). The early collar was custom fit to the subjects’ neck and shoulder anatomy and fit very 

closely to the neck in order to reduce motion artifact. However, this served to hold the head in an 

extended position, which is not desirable when trying to determine the amount of axial neck 

extension occurring due to the acceleration changes in the environment. Holding the head in 

position by the collar would also prevent this collar being used in pilots or other operators who 

need free motion of the head to properly asses the biomechanics of their operational activities. 
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This early collar also restricted blood flow to and from the head by pushing the ultrasound 

transducer against the neurovascular bundle in the neck (containing the carotid artery and jugular 

vein), negatively affecting the comfort of the subject and possibly increasing hypoxia induced 

motion sickness. Indeed the subject in the parabolic flight became ill during the flight and had to 

remove the collar in order to vomit, and then was too uncomfortable to replace it during 

parabolic maneuvers. Fortuitously this led us to find that it was possible for the subject to hold 

the transducer in the correct position free-handed and still obtain usable data which was much 

more dynamic than data acquired while the subject was wearing the collar, possibly due to the 

now free motion of the head unrestricted by the extension imposed by the collar.  

The portable ultrasound system used in parabolic flight was a clinical system that was 

designed to be robust, and was in fact qualified to military grade specifications (MIL-STD 810F) 

for its designed use. It was able to maintain its battery charge throughout almost the whole flight 

and work in both the >90F heat of the pre-flight checkout and the ~60F cabin atmosphere at 

altitude during the flight. The battery did die in the final few parabolas but the system failed 

appropriately and no data was lost.  However, since the system was designed for clinical use and 

not research, there were some limitations on controlling the ultrasound imaging parameters and 

the accuracy of the timing of the data acquisition points in the video. This prevented us from 

correlating the displacement measured via ultrasound with an external accelerometer the subject 

was wearing.  

The lessons learned from the parabolic flights were then applied to the collar and 

ultrasound system used for the treadmill testing. Rather than a custom snug-fit collar, we 

modified a collar that was designed to protect motorcycle rider’s necks in a fall to hold the 

ultrasound transducer up to the same position on the neck. This collar (Figure 5-10) allowed 

almost full range of motion of the neck and only interfaced with the neck at the transducer, it 

also allowed the subject full use of their upper extremities which allows us to see the motion of 

the neck in a more realistic environment. The transducer is secured in position by several Velcro 

straps that allow a large range of neck sizes to use the same collar. This increased size flexibility 

comes at the cost of image consistency, but can be minimized with adequate instructions to the 

subject about maintaining head position and our method of image analysis which uses relative 

motions of the vertebrae to each other within the field of view. Another ultrasound system 

(Terason, Burlington, MA) was selected for treadmill testing that allowed a higher degree of 

control of imaging parameters and more reliable timing feedback, but was not as robust to 

vibration and heat changes.  

The collar and ultrasound system used in the treadmill testing was then used essentially 

unchanged in the Humvee. As noted in the results, we were able to detect differences in height 

changes of the cervical spine intervertebral disc height between testing runs that included a large 

axial acceleration due to terrain and testing runs that did not include large axial impulse. Future 

versions of this system should better integrate both the positioning and time signal of the 

ultrasound measures and accelerometers to allow more direct correlation and comparison.  

6.6 Conclusions 
These studies showed that clinical ultrasound can be used to image the cervical spine in 

astronauts and pilots to understand the effects of their respective gravitational environments on 

cervical spine biomechanics. Ultrasound imaging out performs other imaging modalities in the 

realm of mass, power, volume, time and cost. If further developed, this system could allow 
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equipment designers and physicians to directly determine the effect of seating and helmet 

designs on the in-vivo biomechanics of the cervical spine in almost real-time. Future work should 

be focused on using a system similar to the one we have presented here, but with improved 

temporal resolution,  reliability, and integration with other external measures such as 

accelerometers or motion tracking equipment, to assess the relationship of the biomechanics of 

the cervical spine with the mechanisms of injury of cervical spine degeneration. 
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7 Conclusions 
The engineering challenges encountered in extreme acceleration environments such as 

space flight and military aviation present unique challenges to dynamic monitoring of 

biomechanics of the cervical spine. These challenges include vibrations at a broad range of 

frequencies and amplitudes as well as power, volume, and mass constraints. This thesis explored 

a way image the dynamic motion of the cervical spine using clinical ultrasound, an off-the-shelf 

technology that fits within the limitations of the flight environment.   

Initially, this work expands on the work of others who showed that ultrasound can be 

used to image changes in IVD height [42] by adding the ability to image the cervical spine. 

While Naish and McNally have shown that the anatomy of the disc can be visualized using 

properly focused ultrasound imaging technology in animals [43] and in humans statically, this 

work expands their conclusions to apply to dynamic imaging of the cervical spine and shows that 

portable ultrasound systems can be used to image the height of the IVD and dynamic motion of 

cervical vertebrae in military personnel and astronauts.  

This work also allows more realistic modeling of the loading conditions of military 

personnel by more accurately measuring the biomechanics of the cervical spine in conditions 

closer to flight. Further development of this concept will help refine the models of Costi and 

Izamvert, Yingling and Lee, and Elias [30, 56-60]. With this more mobile and robust method of 

measurement of cervical spine biomechanics, the FSU compliance measured in the cervical spine 

can be combined with the lumbar spine work of Kururtz [65, 66] to form a more complete model 

of the degenerative stiffness changes in the whole spine due to aging and injury. Alternatively, a 

modified version of this work could be used to validate the work of Kurutz.  

Combining this methodology with EMG based models could also provide a more 

complete model of the biomechanics of the neck and musculoskeletal components of the spine, 

by more completely integrating the motion of the skeletal system with the electrical activity of 

various muscle groups.  

Clinical ultrasound can provide a safe, inexpensive, portable, imaging modality to 

quantify intervertebral disc displacement and rigid body motion of functional spinal units 

comprising the cervical spine in response to static and dynamic loads in-vivo in extreme 

environments such as spaceflight and military training operations. Static Ultrasound Imaging 

of the Cervical Spine Intervertebral Disc Space showed that ultrasound can be used to 

measure the anatomy and height of cervical spine intervertebral discs and that intervertebral disc 

height as measured by ultrasound, is similar to disc height measured by MRI and CT both ex-

vivo and in-vivo. Ultrasound Imaging of the Rigid Body Motion of the Cervical Spine 

Vertebrae showed that ultrasound can be used to measure the motion of cervical spine vertebral 

body motion under different loading conditions meant to simulate wearing a head supported 

mass in an operational environment and that clinical ultrasound can detect the contribution of 

individual cervical spine functional spinal units to the total motion of the cervical spine in-vivo 

and ex-vivo. In-Vivo Ultrasound Imaging of the Motion of the Cervical Spine Vertebrae in 

Operational Environments showed that clinical ultrasound can be used to image the cervical 

spine in astronauts and pilots to understand the effects of their respective gravitational 

environments. 

Outside the subject populations previously mentioned the implications of this work could 

change the practice of diagnosing cervical spine instability. Current practice is to diagnose 

instability by inference based on radiologic signs in static images such as CT, X-Ray images, or 
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MRI. This method could allow direct visualization of instability by imaging of dynamic out of 

plane motion of the vertebral bodies during neck motion and the advantages of ultrasound with 

respect to mobility and cost could improve screening and diagnostic prevalence beyond the 

capabilities of current medical practice.  
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8 Future Work - Development of Dual Ultrasound System 
To measure and calculate the three-dimensional motion of the cervical spine vertebrae 

ultrasound measurements will be obtained in a manner similar to previous studies where 

ultrasound images clearly indicate that the anterior surfaces of two or more adjacent vertebral 

bodies can be identified. In addition, the images also demonstrate that the inter-vertebral disk 

separation can also be estimated. In order to obtain the data necessary to achieve the objectives 

of this project, this preliminary approach will be extended by adding an additional ultrasound 

imaging array. This is necessary in order to obtain information on the three-dimensional (3D) 

motion of the vertebral bodies.  

The optimal placement of the two transducers will be determined by the need to obtain 

complementary kinematic information (suggesting an orthogonal orientation of the two arrays); 

while at the same time being able to obtain sufficiently detailed information on the boundaries 

and surfaces of the vertebral bodies. Preliminary testing with a single transducer suggests that 

one transducer placed on the anterior surface of the neck with another placed on the lateral 

surface of the neck will allow both components (largely orthogonal orientations and high quality 

images) to be obtained. Note that the positioning of the transducers relative to one another will 

be fixed and known, through use of a collar/fixture, similar to that shown in Figure 6-2. This will 

allow the data from each set of ultrasound images (i.e., a set of images associated with one 

imaging array, and another set of images associated with the other imaging array) to be 

combined and processed in order to obtain the desired kinematic information in 3D (Figure 8-1).  

We plan to use an ultrasound imaging system that will be able to be deployed on aviators 

and other military personnel. In order to do this, a portable, compact yet highly advanced 

ultrasound imaging system is required. Such a system has been identified and is produced by 

Terason, in Burlington, Massachusetts which has all the features of high quality clinical 

ultrasound imaging systems, but which is portable and relatively inexpensive. The Terason t3000 

system is a sophisticated phased array imaging system that incorporates proprietary integrated 

circuit design and digital beam-forming technology. As noted, and of critical importance, is its 

capability to be deployed in the military environments being studied.  

The Terason t3000 system runs as a Windows application on a standard laptop computer, 

which can be certified to MIL-STD 810. In our application, we will use two identical systems 

that are configured to save to an external hard drive the images acquired (at 25 frames per second 

for each system for about 5 minutes during each test run) from the two ultrasound array 

transducers. The two systems will be initiated simultaneously by hardware, and the images will 

be tagged so that images from the two arrays can be temporally matched. Various configurations 

of ultrasound imaging protocols will be used initially to determine optimal settings. These will 

include various ultrasound arrays to determine optimal operating frequency, as well as the 

investigating of harmonic imaging techniques. 
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Figure 8-1.Ultrasound probe placement and calculated rigid body motion.  

8.1 Image Processing 
The images will be post-processed to obtain a set of kinematic data. Initially, for 

calibration and validation (using cadaveric and healthy volunteers), the data will be manually 

processed to obtain measures of inter-vertebral spacing from the two orientations. In addition, 

the relative motion of the two vertebral bodies being imaged will be analyzed from both arrays. 

This will entail manually detecting vertebral surfaces, and processing this data to obtain the 

desired relative motion of the vertebral bodies with respect to one another. This process will be 

carried out by two blinded (as to the type of motion under study) operators, and the kinematic 

data obtained will be assessed in terms of accuracy and precision. Once manual processing of the 

ultrasound images has been shown to be effective for assessing the relative kinematic motion, 

semi-automated image processing techniques will also be investigated. These will include edge 

detection and segmentation algorithms [79]. This portion of the work will also include 

techniques for automated detection of bone surfaces, as previously reported [80-82] 

  The detection and quantitative identification of the vertebral bone surfaces and inter-

vertebral disc displacement is a complex problem, and therefore a combination of both manual 

and automated processing may be found to be the approach that provides the best results. Such 

an approach, although somewhat tedious owing to the high degree of manual overhead, should 

provide the kinematic information needed for successful completion of this project. Further 

studies aimed at fully automating the processing of the ultrasound images can be part of a 

subsequent research study. 
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Technology currently in clinical use (MedicalMetrix Inc) can automatically calculate the 

vertebral endplate angles; we believe this same technology can be applied to ultrasound. A 

cadaveric whole human study was done to compare fluoroscopy with ultrasound in the cervical 

spine. It shows both the placement of the transducer and the image taken at that moment. 

Intervertebral motion measurements will be made from the ultrasound imaging using computer-

assisted patter recognition technology that has been previously validated to measure 

intervertebral motion in the lumbar and cervical spine with errors under 1 millimeter and 1 

degree [83, 84] Applied to ultrasound, this same software facilitates pattern matching of 

anatomic features visualized in ultrasound images taken with the spine in different positions. 

After each vertebrae in the segment being analyzed has been tracked, the mathematics required 

to calculate intervertebral motion are identical to that used to measure intervertebral motion from 

X-rays, MRI, or other modalities. This step is accomplished by using the transformation matrices 

created during the tracking process to transform the coordinates of landmarks from one image to 

the other images in a sequence. This avoids the large errors that can occur when a human 

operator attempts to subjectively identify specific landmarks in a series of images. The 

landmarks are selected in only the first image of a series, and the coordinates are calculated for 

all subsequent images. This software has already been used to analyze multiple ultrasound 

studies of the spine. 

8.2 Cadaveric Validation of Ultrasound System 
We will determine axial compressive behavior  of a full cervical human cadaveric spine 

loaded using a multi-axis servo-hydraulic test frame and compare disc displacements to 

displacement measurements made on the same spine during loading using the custom ultrasound. 

The objective is to validate the ultrasound measurements using an electromagnetic tracking 

system on human cervical cadaveric spine in vitro. 

Full cervical spines with shoulders attached will be purchased from NDRI (Philadelphia).  

Samples will be prepared, potted and mounted on an Instron biaxial mechanical test machine.  

Ultrasound measurement equipment will be mounted to the cervical spine in the test frame.  The 

cervical spine will also be instrumented with Polhemus electromagnetic tracking system sensor 

(with sampling rate capabilities up to 240 HZ) on each vertebra, which will be considered rigid 

bodies.  Polhemus has worked with military entities since 1970. Their systems have flown on 

U.S. Air Force, Navy, and Army fixed and rotary wing aircraft as well as simulators of most 

airframe manufactures and in laboratories such as Wright Patterson AFB, NAWC, NAVAIR, 

Fort Rucker, NASA and DARPA.   Spines (n=6) will be loaded in two strain rates simulating the 

accelerometer readings from the fast boat and flight readings during missions in addition to 

loading under quasi-static load conditions.  Load-displacement measurements will be made using 

the Instron and the Polhemus displacement data.   Displacement from ultrasound data will be 

compared to data from the Instron/Polhemus system.  Differences between displacement 

measurements at different strain rates will be used to validate the ultrasound measurement 

system.   

8.3 In-vivo Validation of Ultrasound System 
Following the cadaveric validation of the ultrasound system, similar studies will be 

performed in Adult volunteers (n = 12) of the same demographics as the military population. The 

MRI compatible ultrasound collar will be used so that compression/distraction and 
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flexion/extension images can be taken at the same time with both MRI and ultrasound and 

compared. A subset of the volunteers will be recruited based on known cervical intervertebral 

disc pathology, so that comparisons can also be made of pertinent clinical anatomy such as 

intervertebral disc anterior prolapse and compression.  

8.4 Data and Power Analysis 
For comparing ultrasound to other modalities, a sample size of 34 disc spaces (12-15 

subjects) will provide 80% power (=0.05, =0.20) to detect a mean difference of 0.5 mm 

assuming a variability of 1mm using a paired t-test (version 7.0, nQuery Advisor, Statistical 

Solutions, Saugus, MA). This will be done by employing a paired t-test with the null hypothesis 

stated that there is a no difference in disc height between the two measurement techniques. In 

addition, 34 samples will allow provide a minimum power of 80% to detect a moderate Pearson 

correlation of r = 0.50 between measurement techniques assuming that the intervertebral disc 

heights follow a normal Gaussian-shaped distribution. If there are significant departures from 

normality, as tested by the Shapiro-Wilk test, the nonparametric Wilcoxon signed-rank test will 

be utilized to compare medians and boxplots will be constructed to summarize the results. The 

Bland-Altman method will be used to determine the mean difference in disc height between the 

imaging methods with 95% limits of agreement. The three primary statistical methods will 

include:  

1. Paired t-test and nonparametric Wilcoxon signed-ranks test [85]  

2. Pearson product-moment correlation coefficient [86] 

3. Bland-Altman method for assessing agreement of Ultrasound to CT. Able to evaluate 

mean difference based on 34 disc spaces and 95% limitations of agreement which will 

provide context for how closely ultrasound agrees with other imaging techniques [87] 

8.5 Operational Environment Testing 
For the proposed study we will instrument the boat or helicopter to include acceleration 

and angular rate measurements on the deck, seat, lower lumbar spine, head and neck of each test 

participant. Typical high amplitude, high frequency loading exposures for both fast boat and 

rotary aircraft platforms will be quantified and the response data (global kinematics and 

accelerations) will be measured using the mounted accelerometers and ultrasound transducers. 

Inertial forces applied to the cervical spine will be derived from the multi-axial accelerometers 

mounted on the head and base of neck.  The extent that the torso damps some of the impulses 

transmitted to the seat will be ascertained by comparing the accelerations of the seat relative to 

the head and neck. 

8.6 Data Analysis 
1) Collect kinetic and kinematic data from the cervical spine in helicopter pilots, fast-boat 

operators and matched controls in-vivo during operational conditions (if feasible) and/or 

during simulated operational conditions 

a. Relate kinematic data to the kinetic data – correlative analysis.  Compare applied 

accelerations to head and neck to resultant displacements of C4 – C7 and changes in 

IVD heights measured by ultrasound.  
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b. If enough subjects, relate kinetic and kinematic data to MRI based evaluation of 

intervertebral disc health 

2) Perform multi-factorial analysis iteratively expressing Pfirrman disc grade other MRI based 

measures of IVD function @ C5-6, C4-5,C6-7 as function of: age, BMI, years of exposure to 

high impact loads, median load amplitude, median loading rate, high frequency (>30 Hz) 

power spectra, low frequency (<30 Hz) power spectra, maximum IVD displacement 

measured by ultrasound. 

These studies will extend the research from this thesis to better visualize the three-dimensional 

rigid body motion of the cervical spine vertebrae.  
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Full Data set from Ovine Experiment in Chapter 4 (in mm) 
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1 L 9.82 10.21  9.25 11.81  8.99 10.9 12.33 11.64 

1 M 8.22 7.73  7.45 7.46  8.38 7.96 10.06 8.73 

1 U 8.42 7.41  7.54 8.57  10.42 7.87 11.7 9.74 

2 L 10.75 9.7  8.23 7.58  8.8 8.31 9.54 8.98 

2 M 10.18 8.79  7.03 7.71  9.75 10.47 11.48 12.54 

2 U 7.71 8.02  8.16 7.85  6.96 9.33 10.54 10.83 

3 L 11.81 10.91  8.63 8.58  12.55 7.73 13.91 8.7 

3 M 11.13 9.7  7.94 9.09  7.75 7.79 9.14 8.62 

3 U 8.9 7.74  8.32 7.9  7.54 7.66 8.17 9.12 

4 L 10.81 8.86  8.39 7.65  10.45 9.55 11.05 9.39 

4 U 15.72 7.48  6.42 7.15  6.21 8.62 8.36 11.19 

5 L 8.7 8.75  8.77 10.62  9.85 10.53 11.41 12.7 

5 U 6.91 6.09  8.65 8.36  10.17 10.82 11.75 11.64 

6 L 8.41 8.13  11.03 11.97  12 11.82 12.54 12.37 

6 M 8.79 9  8.39 8.14  9.15 9.82 13.51 10.01 

6 U 8.85 6.84  8.24 8.74  8.44 7.01 9.46 4.92 

7 L 8.05 7.76  3.85 4.84  8.45 8.77 8.49 9.47 

7 LM 8.75 8.55  5.43 6.42  10.02 8.96 10.31 9.37 

7 U 8.12 7.68  6.36 4.53  7.67 8.57 10.65 9.76 

7 UM 8.01 8.35  4.85 5.38  7.88 8.88 9.2 11.33 

8 L 8.26 7.72  8.9 9.96  10.02 8.87 10.45 10.28 

8 LM 6.9 7.28  8.75 8.72  9.41 7.94 10.4 10.05 

8 U 6.73 6.92  5.56 7.15  8.86 8.47 11.19 12.32 

8 UM 7.03 7.2  7.83 10.74  9.47 8.95 10.51 11.15 

9 L 18.33 11.8  9.44 8.81  15.07 13.86 17.39 15.78 

9 M 15.91 9.3  8.08 7.58  11.67 9.46 14.42 9.94 

9 U 11.69 9.5  8.21 6.43  10.13 9.76 13.9 9.9 

10 L 10.72 11  7.58 8.21  11.04 8.96 11.35 9.84 

10 M 9.76 9.99  7.62 7.83  10.51 10.77 11.67 11.21 

10 U 7.13 7.55  5.97 5.27  8.97 7.84 7.54 9.91 

11 L 10.91 10.62  10.71 9.72  10.13 11.31 14.32 12.23 

11 M 13.11 9.79  11.86 12.87  10.67 10.24 13.95 11.96 

11 U 9.41 11.8  11.4 9.91  9.11 10.5 11.55 11.1 

12 L 9.81 10.9  9.18 11.23  11.48 10.19 11.7 10.53 

12 LM 9.81 10.47  8.82 9.26  11.53 11.15 11.76 13.02 

12 U 8.41 10.11  8.62 9.41  7.82 10.05 9.62 10.08 

12 UM 9.38 9.55  7.59 8.28  11.54 11.36 12.62 12.27 
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Complete Data from One Ovine Specimen in Chapter 5 

   1 mm Amplitude    2 mm Amplitude 

 

  
1 Hz 

2 Hz 

4 Hz 
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1 mm Amplitude    2 mm Amplitude  

 

 

 

 

 

 

 

 

 

  

8 Hz 

Green dots are individual ultrasound measures and the diameter of the dot is 

proportional to the error from the extensometer measured displacement at that point 

(blue line). 
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Complete Data from One Human Subject in Chapter 5 

    

  Without Helmet Weight   With Helmet Weighted 

    

 

 

 

 

1 Hz 

2 Hz 

Collected data from a 2Hz in-vivo jumping trials with helmet. Blue line is data from 

motion tracking. Green line is data from ultrasound, error bars on each data point of the 

ultrasound data reflect the ±0.2 mm uncertainty calculated in the previous work. 


