1,490 research outputs found

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Building Temperature Control with Intelligent Methods

    Get PDF
    Temperature control is important for both human comfort and the need in industry. In the thesis, two good intelligent control methods are compared to find their advantages and disadvantages. Matlab is used as the tool to make models and process calculations. The building model is one simple room in Akwesasne in New York State and the target is to keep the temperature indoor around 22 degree Centigrade from 12/29/2013 to 12/31/2013. Heat pump is used to provide or absorb heat. All data in the experiments is from JRibal Environmental eXchange network and PJM. The first method is fuzzy neural network (FNN). With the control from fuzzy logic and the learning process in neural network, the temperature is kept around 22 degree Centigrade. Another method is model predictive control (MPC) with genetic algorithm (GA). And the temperature is also controlled around 22 degree Centigrade by predicting the temperature and solar radiation. In addition, the cost is saved by using genetic algorithm with an energy storage system added in the building model. In summary, FNN is easy to build but the result is not very accurate; while the result of MPC is more accurate but the model is hard to develop. And GA is a good optimization method

    Supervisory model predictive control of building integrated renewable and low carbon energy systems

    Get PDF
    To reduce fossil fuel consumption and carbon emission in the building sector, renewable and low carbon energy technologies are integrated in building energy systems to supply all or part of the building energy demand. In this research, an optimal supervisory controller is designed to optimize the operational cost and the CO2 emission of the integrated energy systems. For this purpose, the building energy system is defined and its boundary, components (subsystems), inputs and outputs are identified. Then a mathematical model of the components is obtained. For mathematical modelling of the energy system, a unified modelling method is used. With this method, many different building energy systems can be modelled uniformly. Two approaches are used; multi-period optimization and hybrid model predictive control. In both approaches the optimization problem is deterministic, so that at each time step the energy consumption of the building, and the available renewable energy are perfectly predicted for the prediction horizon. The controller is simulated in three different applications. In the first application the controller is used for a system consisting of a micro-combined heat and power system with an auxiliary boiler and a hot water storage tank. In this application the controller reduces the operational cost and CO2 emission by 7.31 percent and 5.19 percent respectively, with respect to the heat led operation. In the second application the controller is used to control a farm electrification system consisting of PV panels, a diesel generator and a battery bank. In this application the operational cost with respect to the common load following strategy is reduced by 3.8 percent. In the third application the controller is used to control a hybrid off-grid power system consisting of PV panels, a battery bank, an electrolyzer, a hydrogen storage tank and a fuel cell. In this application the controller maximizes the total stored energies in the battery bank and the hydrogen storage tank

    Integrated Thermal Systems and Controls Modelling for AUTO Mode Simulation and Optimization

    Get PDF
    Virtual product development has become the preferred approach for vehicle A/C system development. The advantages provided by virtual modelling compared to traditional approach are accelerated development pace and reduced cost. The thesis focuses on virtual modelling of the A/C system on a SUV vehicle based on experimental data. A virtual model of the A/C system is constructed and calibrated in Simcenter Amesim. The model includes a vapour-compression refrigeration cycle and a cabin air model. The components are modelled and calibrated based on supplier data. The two thermal systems interact thermally at the evaporator level. The cabin air blower unit with a PI controller and a small DC motor is also modelled in MATLAB/Simulink. The virtual thermal model is able to simulate the cabin air temperature development during High Ambient AUTO mode drive cycle. The controlled DC motor system tracks reference speed to provide adequate air flow for the cabin. The virtual models can be used for A/C system and components performance analysis and optimization. The modelling process provides deeper understanding on thermal and control systems design

    Advanced control strategies for optimal operation of a combined solar and heat pump system

    Get PDF
    The UK domestic sector accounts for more than a quarter of total energy use. This energy use can be reduced through more efficient building operations. The energy efficiency can be improved through better control of heating in houses, which account for a large portion of total energy consumption. The energy consumption can be lowered by using renewable energy systems, which will also help the UK government to meet its targets towards reduction in carbon emissions and generation of clean energy. Building control has gained considerable interest from researchers and much improved ways of control strategies for heating and hot water systems have been investigated. This intensified research is because heating systems represent a significant share of our primary energy consumption to meet thermal comfort and indoor air quality criteria. Advances in computing control and research in advanced control theory have made it possible to implement advanced controllers in building control applications. Heating control system is a difficult problem because of the non-linearities in the system and the wide range of operating conditions under which the system must function. A model of a two zone building was developed in this research to assess the performance of different control strategies. Two conventional (On-Off and proportional integral controllers) and one advanced control strategies (model predictive controller) were applied to a solar heating system combined with a heat pump. The building was modelled by using a lumped approach and different methods were deployed to obtain a suitable model for an air source heat pump. The control objectives were to reduce electricity costs by optimizing the operation of the heat pump, integrating the available solar energy, shifting electricity consumption to the cheaper night-time tariff and providing better thermal comfort to the occupants. Different climatic conditions were simulated to test the mentioned controllers. Both on-off and PI controllers were able to maintain the tank and room temperatures to the desired set-point temperatures however they did not make use of night-time electricity. PI controller and Model Predictive Controller (MPC) based on thermal comfort are developed in this thesis. Predicted mean vote (PMV) was used for controlling purposes and it was modelled by using room air and radiant temperatures as the varying parameters while assuming other parameters as constants. The MPC dealt well with the disturbances and occupancy patterns. Heat energy was also stored into the fabric by using lower night-time electricity tariffs. This research also investigated the issue of model mismatch and its effect on the prediction results of MPC. MPC performed well when there was no mismatch in the MPC model and simulation model but it struggled when there was a mismatch. A genetic algorithm (GA) known as a non-dominated sorting genetic algorithm (NSGA II) was used to solve two different objective functions, and the mixed objective from the application domain led to slightly superior results. Overall results showed that the MPC performed best by providing better thermal comfort, consuming less electric energy and making better use of cheap night-time electricity by load shifting and storing heat energy in the heating tank. The energy cost was reduced after using the model predictive controller

    Optimal Control of Hybrid Systems and Renewable Energies

    Get PDF
    This book is a collection of papers covering various aspects of the optimal control of power and energy production from renewable resources (wind, PV, biomass, hydrogen, etc.). In particular, attention is focused both on the optimal control of new technologies and on their integration in buildings, microgrids, and energy markets. The examples presented in this book are among the most promising technologies for satisfying an increasing share of thermal and electrical demands with renewable sources: from solar cooling plants to offshore wind generation; hybrid plants, combining traditional and renewable sources, are also considered, as well as traditional and innovative storage systems. Innovative solutions for transportation systems are also explored for both railway infrastructures and advanced light rail vehicles. The optimization and control of new solutions for the power network are addressed in detail: specifically, special attention is paid to microgrids as new paradigms for distribution networks, but also in other applications (e.g., shipboards). Finally, optimization and simulation models within SCADA and energy management systems are considered. This book is intended for engineers, researchers, and practitioners that work in the field of energy, smart grid, renewable resources, and their optimization and control

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used
    corecore