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Abstract 
 

To reduce fossil fuel consumption and carbon emission in the building sector, 

renewable and low carbon energy technologies are integrated in building energy 

systems to supply all or part of the building energy demand. In this research, an 

optimal supervisory controller is designed to optimize the operational cost and the 

2CO  emission of the integrated energy systems. For this purpose, the building 

energy system is defined and its boundary, components (subsystems), inputs and 

outputs are identified. Then a mathematical model of the components is obtained. 

For mathematical modelling of the energy system, a unified modelling method is 

used. With this method, many different building energy systems can be modelled 

uniformly. Two approaches are used; multi-period optimization and hybrid model 

predictive control. In both approaches the optimization problem is deterministic, so 

that at each time step the energy consumption of the building, and the available 

renewable energy are perfectly predicted for the prediction horizon. The controller 

is simulated in three different applications. In the first application the controller is 

used for a system consisting of a micro-combined heat and power system with an 

auxiliary boiler and a hot water storage tank. In this application the controller 

reduces the operational cost and 2CO  emission by 7.31 percent and 5.19 percent  

respectively, with respect to the heat led operation. In the second application the 

controller is used to control a farm electrification system consisting of PV panels, a 

diesel generator and a battery bank. In this application the operational cost with 

respect to the common load following strategy is reduced by 3.8 percent. In the 

third application the controller is used to control a hybrid off-grid power system 

consisting of PV panels, a battery bank, an electrolyzer, a hydrogen storage tank 

and a fuel cell. In this application the controller maximizes the total stored energies 

in the battery bank and the hydrogen storage tank.  

 

Key words: building energy system, integrated renewable energy, low carbon 

energy technology, 2CO  emission, supervisory control, optimal control, model 

predictive control, multi-period optimization, multi-parametric programming, 

explicit model predictive control 
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Chapter 1                                                 

Introduction               

1.1 Introduction to building integrated renewable and low 
carbon energy systems  

The energy used in buildings contributes roughly half of the UK’s total carbon 

dioxide ( 2CO ) emissions (27 per cent to homes and a further 17 per cent to non-

domestic buildings) (DCLG, 2008). 2CO  is the main greenhouse gas, which is 

causing global warming and climate change. Utilisation of renewable and low 

carbon energy technologies for building energy supply systems are key methods 

for reducing 2CO  emission from the building sector and thus for tackling climate 

change. This approach helps to reduce the UK’s dependence on fossil fuels, and 

also decreases the impacts of energy price rises.  

 

For the above reasons, the UK Government’s July 2007 Building A Greener 

Future – Policy Statement (DCLG, 2006a) announced that all new homes will be 

zero carbon from 2016. In addition, in the 2008 budget the Government’s ambition 

was announced to be that all new non-domestic buildings should be zero carbon 

from 2019. 

 

Low and Zero Carbon (LZC) is the term which is applied to renewable sources 

of energy and also to technologies, which are either significantly more efficient 

than traditional solutions, or which emit less carbon in providing heating, cooling 

or power. There are a number of LZC technologies that can be integrated into new 

and existing buildings. Table 1.1.1 summarises some of these technologies, from 
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simple, heat or electricity based renewables, to technologies that supply both 

electricity and heat. 

 

            Table 1.1.1  LZC technologies integrated in buildings (ECI, 2005) 
 

Technology Heat only Heat and electricity Electricity only 

Low carbon Heat pumps Gas fired CHP in community heating 

Gas fired micro-CHP (Stirling engine) 

Gas fired micro-CHP (fuel cells) 

_ 

Zero  carbon Solar hot water 

Biomass* 

Geothermal 

Biomass* in micro-CHP (e.g.  Stirling 

engines) 

Photovoltaics 

Wind 

   * Biomass fuel has net zero carbon impact, since carbon emissions released by                               
combustion of biomass are equivalent to the carbon absorbed during fuel crop growth 

 
 

Of the LZC technologies that can be integrated in buildings, some are 

complementary (e.g. wind turbines and photovoltaic panels could both be installed 

at a site, each contributing to the electricity supply under different conditions), 

whereas others can be mutually exclusive (e.g. it is unlikely that ground source 

heat pumps will be installed at a site which already has a heat source such as 

biomass). Table 1.1.2 indicates those technologies which can be effectively 

installed as a combination (identified by ‘√’), together with those technologies 

which are unlikely to be complementary and therefore would not generally be 

installed together (identified by ‘×’). 

 

Renewable energies are mostly intermittent in nature and are not available on 

demand time. For example a photolytic panel (PV) generates electricity in the day 

time, but the peak electricity consumption of a home is usually in the early 

morning or night-time. In addition, on cloudy days the generated electricity may be 

less than the demand. Wind is also intermittent and the electricity produced by 

wind turbines is highly unpredictable.  

 

In order to harvest as much energy as possible from renewable energy 

resources, it is essential to store the extra energy when surplus energy exists, and 

use the stored energy when there is an energy deficit. 
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Table 1.1.2  Combination of LCZ technologies (Shearer and  Anderson, 2005) 
 

 

S
ol

ar
 th

er
m

al
 

Ph
ot

ov
ol

ta
ic

s 

D
is

tr
ic

t h
ea

ti
ng

 

C
om

bi
ne

d 
he

at
 a

nd
 p

ow
er

 

G
ro

un
d 

so
ur

ce
 h

ea
t p

um
ps

 

W
in

d 
po

w
er

 

B
io

m
as

s 

Solar thermal  √   √ √  

Photovoltaics      √  

District heating   √ ×  √ 

Combined heat and power   ×  √ 

Ground source heat pumps    × 

Wind power    

Biomass   

 

              √ technologies which are generally complementary 

               × technologies which can be mutually exclusive 

 

Energy storage is also important for load management in low carbon 

technologies. For example heat to power ratios of micro-CHP and building do not 

coincide. During the operation of micro-CHP systems, extra heat or electricity can 

be stored and used later when there is a heat or electricity deficit. In heat pump 

applications also, heat can be produced at night-time when electricity is cheaper, 

and stored for the peak time when the electricity is more expensive. 

 

In building applications, electricity can be stored in a battery or hydrogen tank. 

In the latter case, electricity is used for the decomposition of water into hydrogen 

and oxygen, and the hydrogen is compressed and stored in the tank. The stored 

hydrogen is used for electricity generation by fuel cell. 

 

For heat and cool storage, two main methods are used in buildings. These 

methods are sensible heat storage, normally in hot water tanks, and latent heat 

storage with phase change material. 
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1.2 Introduction to optimization of building energy system  

In many areas of science and technology, there is more than one way to achieve a 

specific goal. Optimization techniques aim to find the optimum solution for pre-

defined objectives. For a building energy system, in particular, given the building 

energy needs, optimization techniques  can be used to determine the most efficient 

selection of the equipment types, system structure (topology), equipment sizes and 

system operation, in order to reduce the costs or 2CO  emission.  

1.2.1 Selection of the energy equipment types 

Different renewable, low carbon and conventional equipment can be used to supply 

electricity, heating and cooling demand of buildings. For example, the heating  

demand of a building can be supplied by solar collector, CHP, heat pump, hot 

water boiler (fuelled by biomass or natural gas), or a combination of these 

equipment. For energy storage also, different energy storage devices can be 

selected. For example, for heat storage, the existing alternatives would be the hot 

water tank and phase change material. The optimization technique is used to 

determine the best component type(s) that will have minimum initial cost, running 

cost and/or 2CO  emission. 

1.2.2 Optimization of the energy system structure 

The selected energy equipment of the building can be connected in different ways. 

The structure of the connection, determines the energy flow from one piece of 

equipment to the other. For example a heat pump and a solar collector can be 

connected in series or parallel. The optimization determines the best arrangement 

of equipment, which will result in minimum running cost and/or 2CO  emission. 
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1.2.3 Optimization of the energy equipment sizes 

Having selected the energy equipment and system structure, the equipment sizes 

should be optimized in order to minimize the initial cost of the building energy 

system.  

 

The above three optimizations determine the optimum equipment and structure 

of the building energy system. However, in order to reduce energy consumption, 

the building energy system needs to operate efficiently. 

1.2.4 Optimization of the energy system operation 

 For a given building energy system (with specific component types, structure and 

sizes), under specified conditions, optimization of the system operation determines 

optimum power flows between grids, energy converters, storage devices and 

building loads, in order to reduce the operational cost and 2CO emission.  

1.3  Motivation and challenges 

The motivation for this research is the minimization of the operational cost and the 

2CO  emission of the building integrated renewable and low carbon energy systems 

by the efficient storage of energy and the management of the operation of 

equipment and energy flows. The effect of this minimization is important and 

considerable, because it is related to the whole lifetime of the system. In addition, 

considering the increasing trend of utilization of renewable and low carbon energy 

technologies in the building sector, this can further reduce the 2CO  emission level 

in the UK.   

 

The minimization of energy consumption and 2CO  emission can be 

accomplished by using a supervisory controller. In the building energy system, 

each of the renewable, low carbon, conventional and energy storage subsystems 
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has its own local control system and can be operated independently. The 

supervisory controller can optimize the operation of the whole energy system by 

considering the predicted energy demand and the available renewable energy for 

the next day and the price/ 2CO  emission of the non-renewable energies. The 

controller can calculate the optimum operation set point of the individual 

subsystems, as well as the optimum amounts of energy storage, energy 

import/export  from/to the grid.  

1.4 Aim 

The main aim of the research is to develop a supervisory controller to integrate 

renewable and low carbon energy systems in buildings. The controller will 

optimize the energy generation and storage in the building so as to reduce 2CO  

emissions.  

1.5 Objectives 

The objectives of this thesis are: 
 
 To develop mathematical models of typical energy system components 

 To select the appropriate structure of the optimal supervisory controller for   

integrating the different renewable and low carbon energy systems 

 To validate the supervisory controller by using various modelling and 

simulation techniques 

 To assess the effectiveness of the controller in reducing operational cost and 

2CO  emission by comparing typical systems with and without the controller in 

place 
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1.6 Hypotheses 

By validation and assessing the performance of the designed supervisory controller 

for different types of building integrated renewable and low carbon energy 

systems, the hypotheses can be tested in this research can be stated as: 

 
Hypothesis 1: In order to reduce operational cost and 2CO  emission of the 

building integrated renewable and low carbon energy system, could a supervisory 

controller to be designed to determine: 

  How much energy should be charged or discharged from energy storage 

devices? 

 Which one of the low carbon and conventional energy converters should be 

operated and how much should be their output power? 

 How much energy should be imported from or exported to the grid? 

 

 Hypothesis 2: Would the supervisory model predictive controller be a unified 

(generic) controller that can be tailored and used in all types of integrated 

renewable and low carbon energy systems in buildings. 

 
It is assumed that the supervisory model predictive controller could follow the 

electrical and thermal load set points of the building, and handle input, state and 

output constraints.  

1.7 Contribution 

Considerable research has been done in the area of controlling building integrated 

renewable and low carbon energy systems, however in the existing research each 

of the designed controllers has been for a specific energy system and cannot be 

used in other systems. Another limitation of the designed controllers is the 

dependency of the controllers on sophisticated and expensive hardware and 

software which in practice makes their application difficult, especially for small 

and medium size buildings. 
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This research has contributed substantially to obtaining a unified (generic) 

method for the supervisory controller design, which optimally controls the 

operation of building integrated renewable and low carbon energy systems. By 

utilization of this method, sophisticated operational schedules can be considered in 

the design of the supervisory controller, including sequential operation of the 

equipment and delays in the start/stop of the subsystems. In addition the design of 

the supervisory hybrid model predictive controller for the building energy system 

and the explicit implementation of this controller are novel approaches in this 

research. 

1.8 Outline of the thesis 

The remainder of  this thesis is organized as follows: 
 

 Chapter 2 critically reviews the background of the energy utilization, energy 

price, 2CO  emission and related policies and regulations. In this chapter some 

application samples of the building integrated renewable and low carbon energy 

systems are presented. This chapter critically reviews the existing control and 

management methods for the building integrated renewable and low carbon energy 

systems, and highlights the use of model predictive control as an innovative 

method for the supervisory control of these systems.  

 

In Chapter 3 the building energy system and its connection to energy 

infrastructures is discussed. The required data for controlling the building energy 

system, which include prediction of the weather conditions, the available 

renewable energy and the building’s electrical, heating and cooling loads, are fully 

described. 

 

The mathematical modelling of subsystems is described in Chapter 4 together 

with  mathematical model of the building energy system’s components. These 

components include energy converters and energy storage devices. 
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Chapter 5 covers the supervisory model predictive controller design. In this 

chapter the concept of supervisory controller is explained and two approaches for 

designing the model predictive controller are described. The first approach is based 

on multi-period optimization and the second approach is based on hybrid model 

predictive control. For the optimization purposes, economic, 2CO  emission and 

primary energy objective functions are formulated in this chapter. 

 

Chapter 6 describes three applications of the designed supervisory controller. In 

application 1, the building energy system consists of a micro combined heat and 

power (micro-CHP) system, a boiler (or auxiliary heat) and a hot water storage 

tank. In application 2, the energy system consists of PV panels, a diesel generator 

and a battery bank. In application 3, the energy system consists of PV panels, a 

battery bank, an electrolyzer and a fuel cell. In each application, the results are 

presented and discussed. 

 

The conclusion of the thesis is presented in Chapter 7. This chapter starts with a 

summary of the thesis. The conclusions are then explained, recommendations to 

industry are provided, and the limitations of the work are described. 
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Chapter 2                        

Literature review 

This chapter consists of four sections. In section one, a background regarding 

energy utilization in the building sector and its contribution in 2CO  emission is 

explained. Then the role of renewable energies is highlighted and incentives, 

regulations and policies for the utilization of renewable energies and low carbon 

emission technologies in the UK are described. In section two, samples of research 

and applications concerning the integration of renewable energies in buildings are 

presented. In section three, a literature review about the control and management 

methods of the building integrated renewable and low carbon energy systems is 

given. Section four is a review of optimization problems related to the supervisory 

model predictive controller deign. 

2.1 Background 

2.1.1 World and the UK energy consumption 

World energy consumption increases continuously. Most of the world’s energy 

need is supplied by fossil fuels. According to the International Energy Outlook 

2010 (EIA, 2010), in 2007 the total energy consumption of the world was 495 

Quadrillion Btu and 86 percent of this energy was supplied by fossil fuels. In the 

IEO2010 Reference case, world energy consumption increases by 49 percent, or 

1.4 percent per year, from 495 quadrillion Btu in 2007 to 739 quadrillion Btu in 

2035 (Figure 2.1.1). 
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Figure 2.1.1 World marketed energy consumption, 1990-2035 (quadrillion Btu*)    
(EIA, 2010) 
 
 
 

 
 

 
Figure 2.1.2  World marketed energy use by fuel type, 1990-2035 (quadrillion 
Btu*) (EIA, 2010) 

 

Figure 2.1.2 shows that up to 2035, the share of nuclear and renewable energy 

will increase but fossil fuels will still have the major share. 

 

The buildings sector, comprising residential and commercial consumers, 

accounts for about one-fifth of the world’s total delivered energy consumption 

(EIA, 2010). In the residential sector, energy use is defined as the energy 

consumed by households, excluding transportation uses. 

 

     *1 quadrillion Btu = 1015 Btu = 1.055 × 1018 joules (1.055 exajoules or EJ) 
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In the IEO2010 Reference case (EIA, 2010), world residential energy use 

increases by 1.1 percent per year over the projection period, from 50 quadrillion 

Btu in 2007 to 69 quadrillion Btu in 2035.  

 

The commercial sector - often referred to as the services sector or the services 

and institutional sector - consists of businesses, institutions, and organizations that 

provide services. This sector encompasses many different types of buildings and a 

wide range of activities and energy-related services. In the IEO2010 Reference 

case, the energy consumption of OECD (Organisation for Economic Co-operation 

and Development) and non-OECD countries in commercial sector expands by 0.9 

and 2.7 percent respectively from 2007 to 2035. 

 
In the UK, domestic sector - with 45.6 million tonnes of equivalent oil - was 

responsible for 29 percent of the final energy consumption in 2008. The final 

energy consumed by the service sector - with 19.8 million tonnes  of  equivalent  

oil - was 13 percent.  

 

The break down of the domestic energy consumption by fuel type shows that in 

this sector, fuel usage been shifted by 8%, from solid fuel in 1990 to natural gas in 

2007 (Figure 2.1.3).  

 
 

 

 
Figure 2.1.3  Domestic sector final energy consumption by end use by fuel in UK, 
1990 and 2007 (DECC, 2008) 
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The break down of the service sector energy consumption by fuel type, as 

shown in Figure 2.1.4, demonstrates that in this sector gas and electricity were the 

main energy types in 2007.  

 
Figure 2.1.4  Service sector final energy consumption by end use by fuel 2007 
(DECC, 2008) 
 
 

Projected trends in the energy demand of the UK by sectors is shown in Figure 

2.1.5 (DECC, 2009a). The domestic sector is projected to decrease by 19 percent 

between 2007 and 2020, despite the government’s major programme of house 

building, which is expected to result in almost three million new houses being built 

by 2020 (DCLG, 2010). This is driven by energy efficiency measures, 

microgeneration and renewable heat. 

 

 

 
Figure 2.1.5  Final energy demand by sector in UK (DECC, 2009a) 
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2.1.2 World and UK fossil fuel price 

The price of oil like any other commodity, is subject to the law of supply and 

demand. World oil prices forecast in three oil price cases are shown in Figure 2.1.6 

(EIA, 2010). The Reference case projection is a business-as-usual trend estimate, 

given known technology and technological and demographic trends. The effects of 

different assumptions about future oil prices with different macroeconomic growth 

rates are illustrated in IEO2010 by two alternative cases for high and low oil price.  

 
 

 
 

Figure 2.1.6  World oil prices in three Oil Price cases, 1990-2035 (2007 dollars per 
barrel) (EIA, 2010)  
 
 

 
 

Figure 2.1.7  Fuel price indices for the domestic sector in UK, 1980 to 2009 
(DCLG, 2010)  
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Fuel price in the UK depends on the world’s fuel price, and has increased 

continuously. Figure 2.1.7 shows the fuel price indices for the domestic sector 

from 1980 to 2009 (DECC, 2010a).  

2.1.3 Fuel poverty 

An increase in the fuel price causes low-income households to be faced with 

difficulties in heating their homes. A household is said to be in fuel poverty if it 

needs to spend more than 10% of its income on energy (DECC, 2009b) in order to 

heat their home to a “satisfactory level”, which is defined as 21˚C in the main 

living areas and 18˚C in other occupied rooms. 

 

Fuel poverty can be driven by three key factors; energy costs, energy efficiency 

of the home and the income of the household (SCRI, 2010).  

 

The number of households in fuel poverty in the UK has fallen from around 6.5 

million in 1996 to around 2.1 million in 2004. This figure has increased 

continuously since 2004, so that there were around 3.3 million fuel poor 

households in England in 2008. This rise is attributable to the higher energy prices 

experienced in recent years (DECC, 2010b).  

2.1.4 Security of supply 

As UK (and European) demand for fossil fuel increases and output from the North 

Sea declines, the UK will rapidly switch from near energy self sufficiency to being 

a major energy importer in a relatively short space of time. The increased 

dependence on fossil fuel from relatively politically unstable regions will increase 

the risk of supply interruptions and fuel price volatility.  

 

In addition the UK has a particular security-of-supply problem looming, known 

as the “energy gap” (Mackay, 2008). A substantial number of old coal power 

stations and nuclear power stations will be closed down during the next decade, so 
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there is a risk that electricity demand will sometimes exceed electricity supply, if 

adequate plans are not implemented. 

2.1.5 Carbon dioxide emission and global warming 

World energy use continues to be at the centre of the climate change debate 

because anthropogenic emissions of carbon dioxide result primarily from the 

combustion of fossil fuels. In the IEO2010 Reference case, world energy-related 

carbon dioxide emissions are set to grow from 29.7 billion metric tons in 2007 to 

33.8 billion metric tons in 2020 and 42.4 billion metric tons in 2035 ( Figure 2.1.8) 

(EIA, 2010). 

 

 
 

Figure 2.1.8  World energy-related carbon dioxide emissions, 2007-2035 (billion 
metric tons) (EIA, 2010) 

 

The Kyoto Protocol is an international agreement linked to the United Nations 

Framework Convention on Climate Change. The major feature of the Kyoto 

Protocol is that it sets binding targets for 37 industrialized countries and the 

European Community for reducing greenhouse gas emissions. 

Figure 2.1.9 shows the greenhouse gas and 2CO  emissions in the UK from 1990 

to 2009. In 2008, UK emissions of the basket of six greenhouse gases covered by 

the Kyoto Protocol were estimated to be 628.3 million tonnes carbon dioxide 

equivalent (MtCO2e) (DECC, 2010a).  
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Figure 2.1.9  Greenhouse gas and carbon dioxide emissions, 1990 to 2009 (DECC, 
2010a). 
 
 
 

2CO  is the main greenhouse gas, accounting for about 85 per cent of total UK 

greenhouse gas emissions in 2008, the latest year for which final results are 

available. In 2008, UK net emissions of 2CO  were estimated to be 532.8 million 

tonnes carbon (Mt).  

 

 
 

Figure 2.1.10  Emissions by sector, 1990 to 2009 (DECC, 2010a) 
 
 

Figure 2.1.10 shows the 2CO  emissions by different sectors in the UK from 

1990 to 2009. The residential and non-residential sectors account for 23% and 12% 

of the total UK greenhouse gas emissions respectively.  
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The UK Committee on Climate Change establishes a long-term framework to 

tackle climate change by introducing carbon budgets (CCC, 2011). A “carbon 

budget” is a cap on the total quantity of greenhouse gas emissions emitted in the 

UK over a specified time. Under a system of carbon budgets, every tonne of 

greenhouse gas emitted between now and 2050 will count. Where emissions rise in 

one sector, corresponding falls in another will be achieved. Each carbon budget 

covers a five-year period, with three budgets set at a time (DECC, 2011a). The first 

three carbon budgets will run from 2008-12, 2013-17 and 2018-22. The fourth 

carbon budget, covering the period 2023-2027, was set in law in June 2011 and 

requires emissions to be reduced by 50% below 1990 levels.  

2.1.6 Resource depletion 

Resource depletion is an economic term referring to the exhaustion of raw 

materials within a region. Resources are commonly divided between renewable 

resources and non-renewable resources. Use of either of these forms of resources 

beyond their rate of replacement is known as resource depletion. 

Fossil fuels are non-renewable resources because they take millions of years to 

form, so reserves are being depleted much faster than new ones are being made.  

2.1.7 Energy efficiency 

Energy efficiency means using less energy to provide the same level of energy 

service. It is therefore one method of reducing fossil fuel consumption and 

greenhouse gas emissions. 

 

There are a variety of energy efficiency measures available that can reduce the 

energy consumption in buildings, such as thermal insulation of the building 

envelope, double glazing, replacing low efficiency boilers and chillers with  high 

efficiency ones and using high efficiency lighting and appliances. 
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2.1.8  Renewable energy 

Renewable energy is energy which comes from natural resources such as sunlight, 

wind, rain, tides, and geothermal heat, and which are naturally replenished. 

Obtaining energy from renewable sources does not produce greenhouse gas, and 

since it replaces the energy obtained by the combustion of fossil fuels, thus using 

renewable energies reduces the greenhouse gas emission. Most of the renewable 

energies are dependent on atmospheric conditions, so they might not available on 

demand.  Energy management and storage systems can play a key role in 

overcoming the intermittency of renewable sources. 

In 2008, about 19% of the global final energy consumption of the world came 

from renewables, with 13% coming from traditional biomass, which is mainly used 

for heating, and 3.2% from hydroelectricity (REN21, 2010). Figure 2.1.11 shows 

the renewable energy share of global final energy consumption in 2008. 

 

 

Figure 2.1.11  Renewable energy share of global final energy consumption, 2008 
(REN21, 2010) 

 

In the UK, the total use of renewables was 6,874.9 Thousand tonnes of oil 

equivalent in 2009 (DECC, 2010a). Figure 2.1.12 shows that biomass accounted 

for 80.7% of the renewable energy sources used in 2009, with most of the 

remainder coming from large-scale hydro and wind generation. Wind (with an 

11.6% share) continues to account for more than large scale hydro (5.8%) in 

primary input terms. Of the 6.87 million tonnes of oil equivalent of primary energy 

use accounted for by renewables, 4.90 million tonnes was used to generate 
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electricity, 1.01 million tonnes was used for road transport, and 0.97 million tonnes 

was used to generate heat. Renewable energy use grew by 14.6% between 2008 

and 2009, and is now more than two and a half times the level it was at in 2000. 

 

 

Figure 2.1.12  Renewable energy sources in UK, 2009 (DECC, 2010a) 
 

 

In March 2007, the European Council agreed to a common strategy for energy 

security and tackling climate change. One element of this was establishing a target 

for 20% of the EU's energy to come from renewable sources. During 2008 a new 

renewable Energy Directive was negotiated on this basis and resulted in agreement 

of different country “shares” of this target. For the UK, by 2020, 15% of the final 

energy consumption – calculated on a net calorific basis, and with a cap on fuel 

used for air transport – should be accounted for by energy from renewable sources. 

 

During 2009, 3.0% of the final energy consumption of the UK was from 

renewable sources. (DECC, 2010a). The UK’s Renewable Energy Strategy (RES) 

(DECC, 2009c) was launched in July 2009. The strategy outlines how the UK aims 

to move towards generating 15% of its final energy consumption (including 

electricity, heat and transport) from renewable sources by 2020. 
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2.1.9 Incentives, regulations and policies in UK 

2.1.9.1 Climate Change Act 2008 

The Climate Change Act of 2008 is an Act of the Parliament of the United 

Kingdom (Crown, 2008a). It received Royal Assent on 26 November 2008. The 

Act places a duty on the Secretary of State to ensure that the net UK carbon 

account for all six Kyoto greenhouse gases for the year 2050 is at least 80% lower 

than the 1990 baseline. The Act aims to enable the United Kingdom to become a 

low-carbon economy and gives ministers powers to introduce the measures 

necessary to achieve a range of greenhouse gas reduction targets. An independent 

Committee on Climate Change (CCC) has been created under the Act to provide 

advice to UK Government on these targets and related policies. 

2.1.9.2 Energy Act 2008 

The Energy Act 2008 was given Royal Assent on 26 November 2008 (national 

archive, 2008) (Crown, 2008b). Along with the Planning Act 2008 and the Climate 

Change Act 2008, the Energy Act was developed to ensure UK legislation sustains 

national long-term energy and climate change strategy. 

2.1.9.3 Feed-in tariff 

Following the Energy Act 2008, the government has introduced a feed-in tariff 

from April 2010 covering the generation of electricity from renewable sources. 

This brings the UK into line with many European countries that already have a 

feed-in tariff. In Germany, Spain, France and Italy the introduction of a feed-in 

tariff for renewable electricity has resulted in a massive growth in the installation 

of solar PV, wind and other renewable energy systems both for domestic and 

commercial systems (Renewable Energy Tariff, 2011).  The same effect is 

anticipated on the UK renewable energy market.  

The scheme covers the following electricity-generating technologies, up to an 

installation size of 5 Mega Watts: 
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 Solar electricity (PV) (roof mounted or stand-alone) 

 Wind turbine (building mounted or free standing) 

 Hydroelectricity 

 Anaerobic digestion 

 Micro combined heat and power (micro CHP) (limited to a pilot at this stage) 

The tariffs available and the process for receiving them vary, depending on the 

technology, scale of installation, when the technology was installed, and whether 

the system and the installer were certificated. The payment under feed-in tariff 

happens in 3 ways: 

1. Generation tariff – a set rate paid by the energy supplier for each unit (or kWh) 

of electricity the customer generates. This rate will decrease each year for new 

entrants to the scheme (except for the first 2 years), but once the customer join 

he/she will continue on the same tariff for 20 years, or 25 years in the case of solar 

electricity (PV). Table A-1 in Appendix A shows tariff levels for the installations 

completed from 1st April 2010 to 31st March 2013 for the lifetime of the tariff.  

2. Export tariff – the customer will receive a further 3p/kWh from the energy 

supplier for each unit  he/she exports back to the electricity grid, that is when it is 

not used on site. The export rate is the same for all technologies. 

3. Energy bill savings – the customer will be make savings on his/her electricity 

bills, because generating electricity to power his/her appliances means he/she does 

not have to buy as much electricity from the energy supplier. The amount the 

customer saves will vary dependent on how much of the electricity he/she uses on 

site. 

All generation and export tariffs will be linked to the Retail Price Index (RPI) 

which ensures that each year they follow the rate of inflation. 

2.1.9.4 Renewable heat incentive 

Heat production is responsible for around half (49%) of the final energy 

consumption demand in the UK and roughly half of all the UK’s carbon emissions. 
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Heat generated from renewable energy sources currently meets 1 percent of the 

UK’s total heat demand. To reach the 2020 renewable energy target, around 12 

percent of the UK’s heat needs to be generated from renewable sources. This will 

require all parts of society including government to play their role. 

 

The Renewable Heat Incentive (RHI) (DECC, 2011b) is a new payment being 

introduced in the UK for generating heat from renewable sources. The Renewable 

Heat Incentive starts in June 2011. However, any suitable system installed from 

July 15, 2009 will be eligible for the tariffs when they begin.  

 
At the start of the RHI scheme, only non-domestic sectors will be supported. 

The non-domestic segment includes schools, hospitals, businesses, public sector, 

charities and not-for-profit organisations, and industry.  

 

The second phase of support is intended to be introduced from 2012, which will 

establish support for the domestic sector as well as a number of other technologies 

and fuel uses that are unable to be supported from the outset.  

  

The renewable heat technologies that are eligible under the RHI are: 

 

 Biomass boilers (Including CHP biomass boilers)  

 Solar Thermal  

 Ground Source Heat Pumps  

 Water Source Heat Pumps  

 On-Site Biogas combustion  

 Deep Geothermal  

 Energy from Municipal Solid Waste  

 Injection of biomethane into the grid  

The renewable heat tariff levels which depend on the renewable heat type and 

its scale are shown in Table A-2, Appendix A.  The tariff life time is between 10 

and 23 years depending on which type of renewable heat system is used. The 

payback time is about five to nine years. According to the Government, which set 
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the tariff levels, users will earn a return of 12% per annum. This will be tax free for 

individuals. The equivalent for feed-in tariffs is 5%-8%.  

2.1.9.5 Building regulations Part L (2006, 2010) 

Part L is the section of the building regulations which deals with the conservation 

of fuel and energy. In general, Part L states that a building should be designed and 

constructed so as to ensure that the energy performance of that building limits the 

2CO  emissions from the operation of the building by limiting the energy 

consumption associated to the emission. For compliance it should be proved that 

the 2CO  emission rate of the complete building does not exceed the target 

emission rate set by the reference notional building. 

Part L does not refer to renewable energy sources anywhere, however to meet 

the carbon target the most effective method of reducing carbon emissions is on-site 

renewable electricity generation (photovoltaics, wind turbines, combined heat and 

power (CHP) or micro-CHP) and renewable heat ( solar heat, heat pump, biomass 

boiler).  

2.1.9.6 Code for sustainable homes 

The Code for Sustainable Homes is a rating system for the environmental impacts 

of housing in England & Wales. The Code was officially launched on December 

13, 2006, and was introduced as a voluntary standard in England in 2007. The 

Code is a complement to the Energy Performance Certificates system for new 

homes introduced in 2008 under the European Energy Performance of Buildings 

Directive, and is a base for the most recent changes to the Building Regulations in 

England and Wales. 

The Code is a 6 level rating system and considers the performance of 9 

sustainability criteria which are combined to assess the overall environmental 

impact. One of the sustainability criteria is the building energy consumption and 

resulting emissions of carbon dioxide to the atmosphere. 
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For energy and emission compliance the code levels require a Dwelling 

Emission Rate (DER) to be a certain percentage better than the Target Emission 

Rate (TER) as set in Part L of the Building Regulations. Table 2.1.1 shows these 

percentages which are better than Part L (2006) for different code levels. 

 
Table 2.1.1  Minimum standard and number of points for each code level (DCLG, 
2006b) 

 

 

2.1.9.7 Building a Greener Future: Policy Statement (2007) 

It was proposed that the energy/carbon performance set in the Building 

Regulations is improved continuously in three steps. Table 2.1.2 summarises the 

three steps of carbon improvement over time, compared to the 2006 Part L 

Building Regulations.  
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Table 2.1.2  Proposed carbon improvements over time (DCLG, 2006a) 
 

 

2.2 Integration of renewable energies in buildings 

The application of renewable energies for supplying energy demand for residential 

and service buildings has two main technical barriers. The first barrier is that 

renewable energies are mostly not available on demand time. For example PV 

panels generate electricity during the day-time, while the main electrical demand of 

a residential building is in the early morning and night-time. The second barrier is 

that the renewable energy sources are mostly intermittent and depend on the 

atmospheric conditions. To overcome these barriers, extra renewable energy 

should be stored and used when the generated renewable energy is not sufficient.  

 
Integration of different renewable sources is another way to overcome the 

intermittent nature of an individual source. For example PV panels and wind 

turbine can be integrated to have at least one source of energy when there is 

enough solar radiation or wind.   

 
It should be noted that the intensity of solar and wind energy is low. In some 

applications, especially in commercial and high-rise residential buildings the 

limitation of the available space for the renewable energy system installations and 

also the installations cost can be a barrier to having a fully stand-alone energy 

system. In these applications the available dimension of the renewable energy 

source (like PV panels) can be integrated with a conventional energy system, to 

supply only part of the energy demand. In this case, the conventional energy 

system can also be a backup for the renewable energy source. 

 
The integration of renewable energies in buildings and energy storage have been 

studied in different aspects in much of the literature. These literature studies 
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include the integration of thermal systems, the integration of electrical systems 

(hybrid power systems), and the integration of thermal and electrical systems and 

the role of energy storage in these three categories. In these literature studies the 

main objectives are the sizing and simulation of the systems, but they also 

highlight the importance of integrating the renewable and low carbon energy 

technologies as well as energy storage.  

 

Different types of energy storage devices can be used in the energy systems. 

Dell, et al. (2001) evaluated the prospects of the candidate storage technologies 

including pumped-hydro, flywheels, hydrogen (for use in fuel cells) and batteries 

for application in centralized and distributed electricity supplies, and hybrid 

electric vehicles. They concluded that there is a very real need for storing 

generated electricity from most renewable forms of energy. Realistic options for 

this are pumped-hydro, kinetic energy in flywheels, or chemical energy in 

batteries. Where the terrain is suitable, pumped-hydro is the way to store large 

quantities of electricity. By contrast, flywheels and batteries are able to store only 

comparatively small amounts of electrical energy and are therefore better suited to 

locally generated or distributed electricity. Flywheels, in particular, have only a 

small energy-storage capacity but may be charged and discharged at very high 

rates. They are, in effect, surge-power devices and, as such, are complementary to 

batteries. Batteries are the best option available for storing small–medium 

quantities of electricity.   

 
Sontag and Lange (2003) studied the cost effectiveness of a decentralized and 

integrated energy supply system for the power and heat supply of a residential 

complex. The system consisted of a power-controlled combined heat and power 

(CHP) plant, a PV array for power generation as well as a field of solar thermal 

collectors with a short-term accumulator for water heating and a long-term 

accumulator for supplying heat for domestic heating purposes. Figure 2.2.1 shows 

the energy supply system. Simulation results demonstrated the synergetic effects 

that result from the combination of a CHP plant with wind power and PV plants of 

varying sizes, which have an effect on the cost effectiveness of the plant as a 

whole. Different dynamics of energy sources (wind and solar energies) and of the 

consumption of power and heat were the decisive factors. The power deficits of 
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wind turbine and PV panels were compensated through the application of a natural 

gas-operated CHP plant. In almost all variants, the demand for fossil energy 

carriers was distinctly less than in conventional energy supply plants. 

 
 

 
 

Figure 2.2.1  Decentralized CHP plant system for power and heat supply with 
different renewable energy generating Components (Sontag and Lange, 2003)  
 
 

Doherty, et al. (2004) studied the performance of a ground source heat pump 

that has been installed at the Eco-House, University of Nottingham. The Eco-

House is a four bedroom detached dwelling constructed of brick, block, glass and 

steel. It is connected to the electricity grid and has an 18kW condensing gas boiler. 

In addition to a 8 kW reversible ground source heat pump installed into the house 

after construction, several other low energy systems have been installed (Figure 

2.2.2). These include integrated PV roof slates (1.5 kWp) on the south side and two 

tracking PV arrays (1 kWp each) to generate electricity. Two wind turbines are 

also used to generate additional electrical power. Evacuated solar tube collectors (3 

kWth) are used to provide part of the building’s requirement for hot water. Each 

technology makes a contribution to reducing the conventional energy consumption 

of the house. The heat pump was installed to provide space heating and cooling to 

the house, with back-up heating supplied by an installed natural gas-fired 

condensing boiler. The results showed that the design coefficient of performance 

(COP) of the heat pump can be achieved through proper installation and careful 

consideration of the operation of the system as a whole. 
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Figure 2.2.2  Schematic representation of the Ground Source Heat Pump installed 
in the Eco-House (Doherty, et al., 2004) 
 

Trigeneration, also called CCHP (combined cooling, heat and power), is a low 

carbon technology that simultaneously generates electricity, useful heating and 

useful cooling from the same original heat source such as fuel or solar energy 

(Figure 2.2.3). Kavvadias and Maroulis (2010) developed a multi-objective 

optimization method (see references within this paper) for the design of 

trigeneration plants. The optimization was carried out on technical, economical, 

energetic and environmental performance indicators. Both construction (equipment 

sizes) and discrete operational (pricing tariff schemes and operational strategy) 

variables were optimized, based on realistic conditions. The problem was solved 

using a multi-objective evolutionary algorithm. An example of a trigeneration 

system in a 300 bed hospital was studied in order to demonstrate the design 

procedure, the economic and energy performance of the plant, as well as the 

effectiveness of the proposed approach even under fluctuating energy prices. The  
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Figure 2.2.3  Energy flow diagram for a trigeneration system (Kavvadias and 
Maroulis, 2010) 

 

results showed that the trigeneration plants can be more economically attractive, 

energy efficient and environmental friendly than conventional cogeneration plants. 

The higher investment needed to approach the energetic optimum costs for buying 

a bigger prime mover cannot be left to entrepreneurs. Instead some financial 

incentives should be provided, in order to make the solution which provides the 

largest energy saving and emission reduction, economically attractive even under 

fluctuating energy prices. Incentives can be either given in the form of capital or 

fuel subsidy in order to keep a fixed spark spread price and reduce the uncertainty 

of energy prices. The latter would promote a more decentralized supply model, 

which could lower the delivered costs of electricity and reduce the demand of 

primary fuel while helping to reduce environmental impact. 

 

Table 2.2.1  Summary of the renewable and low carbon heating/cooling systems 
 

Heating system Cooling system Electrical system Reference 
Solar collector, 
CHP and after 
heating (boiler) 
 

- PV array, wind 
turbine, CHP and 
grid 

Sontag and 
Lange (2003) 

Solar collector, 
heat pump and 
boiler 
 

- - Doherty, et al. 
(2004) 

CHP and boiler Compression and 
absorption chillers 

CHP and grid Kavvadias and 
Maroulis (2010) 
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Table 2.2.1 shows a summary of the renewable and low carbon heating/cooling 

systems in the above research studies. 

 

As an application of the hybrid power system Nelson, et al. (2006) performed an 

economic evaluation of a hybrid wind/PV/fuel cell (FC) generation system for a 

typical home in the US Pacific Northwest (Figure 2.2.4). In this configuration the 

combination of an FC stack, an electrolyser, and hydrogen storage tanks was used 

as the energy storage system. This system was compared to a traditional hybrid 

energy system with battery storage. The cost of electricity, an overall system cost, 

and a break-even distance analysis was also calculated for each configuration. This 

analysis determines how far the site of the stand-alone alternative energy system 

should be from the existing utility line so that the system is cost effective (breaks 

even) when compared to using conventional grid power. Cost figures at the date of 

the research as well as the break-even line distance comparison showed a clear 

economic advantage for the traditional wind/PV/battery system over the 

wind/PV/FC/electrolyser system. 

 

 

 
 

 
Figure 2.2.4  Proposed wind/PV system with FC/electrolyser storage (Nelson, 
2006) 

 
 

Belfkira, et al. (2011) presented a methodology of sizing optimization for a 

stand-alone hybrid wind/PV/diesel energy system (Figure 2.2.5). Their approach 
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used a deterministic algorithm to suggest, among a list of commercially available 

system devices, the optimal number and type of units ensuring that the total cost of 

the system was minimized while guaranteeing the availability of the energy. A 

deterministic algorithm (Jones, et al., 1993) was used to minimize the total cost of 

the system while guaranteeing the satisfaction of the load demand. Obtained results 

showed the great impact of the site energetic potential (wind and solar radiation) as 

well as the load profile on the optimal hybrid system constitution (numbers of wind 

turbines, of PV panels and of batteries) and the related cost of the hybrid system.  

Also, conclusions showed that a stand-alone hybrid wind/PV/diesel system with a 

battery bank seems to be a motivating techno-economic solution to meet the energy 

demand of remote consumers, where the number of operating hours of the diesel 

generator has to be reduced. 

 

 
 

 
Figure 2.2.5  Block diagram of a hybrid wind/PV/diesel system (Belfkira, et al., 
2011) 
 
 

A stand-alone renewable-energy system employing a hydrogen-based energy 

store was commissioned within the HaRI project at West Beacon Farm, 

Leicestershire, UK. Little, et al. (2007) reported on the electrical integration of the 

renewable energies in this project. Figure 2.2.6 shows that the interconnection of 

the various generators, loads and storage system is made through a central DC 

busbar. 

 
The rotating generators, such as the wind turbines, have been connected through 

standard industrial drives operating in regenerative mode, while the DC devices-
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electrolyzer, fuel cell and solar photovoltaic array employ custom DC-DC 

converters. The main objective of the system control is to maintain the DC voltage 

on the busbar within the operational limits of the power-electronic converters, 

under all possible conditions. The energy flow in and out of the hydrogen tanks is 

determined by controlling the electrolyzer and fuel cell. Likewise, the thermal 

mass of the buildings provides some flexibility in the operation of the heat pump. 

The CHP unit has been used to provide additional heat for supplying a genuine 

heat demand in winter. 

 

 
 

 
Figure 2.2.6  The West Beacon Farm stand-alone power supply ( Little, et al., 
2007) 

 
 

The specifications of the renewable electrical systems in the above research 

studies are shown in Table 2.2.2. 

 
 

Study of the current research in building integrated renewable and low carbon 

energy systems shows that there are numerous applications with different 

combination of these technologies. These applications can be divided into 

heating/cooling systems, heating/cooling/electrical systems and electrical systems 

with storage.  
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Table 2.2.2 Summary of the renewable electrical systems 
 

Electrical generator Storage device Reference 
Wind turbine, PV array 
and  Fuel cell 
 

Hydrogen tank (with 
electrolyzer) 

Nelson, (2006) 

Wind turbine, PV array 
and diesel generator 
 

Battery Belfkira, et al. (2011) 

Wind turbine, PV array, 
hydro turbine, CHP, fuel 
cell and grid 

Battery and hydrogen tank (with 
electrolyzer and compressor) 

Little, et al. (2007) 

2.3 Management and control of renewable energy systems 
in buildings 

The intermittency of the available power from renewable sources has a great 

impact on the related energy system performance. Integration of renewable energy 

systems and energy storage in these systems has a major role in maximizing the 

utilization of renewable energies. By integrating different renewable energy 

sources, energy storage devices, non-renewable systems and grids, a sophisticated 

supervisory control system is needed for the management of the building energy 

plant. 

 

There are a number of controllers available in the literature; including heuristic 

or operational strategy based controllers, Fuzzy Logic based controllers, Artificial 

Neural Network based controllers, mathematical optimization based controllers, 

and finally hybrid controllers. These studies show the importance of optimal and 

reliable supervisory control for the building integrated renewable and low carbon 

energy systems. In this section a comprehensive study of these controllers is 

presented. 
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2.3.1 Fixed control algorithm  

The fixed control strategies of hybrid power systems are the operational routines 

that do not change during different environmental, technical and economical 

conditions. These methods mainly were used as operational strategy for 

optimization of the hybrid power system component sizes. Some parameters of the 

operational strategies could be optimized through the optimization procedure 

(Dufo-Lo´pez , et al., 2007). 

 

Barley and Winn (1996) set a guideline about the optimal dispatch strategy in a 

hybrid power system consisting of wind/PV generator(s), diesel generator and 

battery. These control strategies were frugal discharge, load-following, state of 

charge (SOC, see Section 4.2.1 for definition) set point and the full power strategy. 

Frugal discharge is based on critical load, where if the net load is higher than the 

critical load it is economical to run the diesel generator. In load-following strategy, 

batteries are not charged by the diesel generator. The diesel operating point is set to 

match the net load. SOC set point strategy is used to charge batteries to the user 

defined point, at which the diesel generator should be started. The generator 

operates at full-power and the excess power is used to charge the batteries without 

dumping power. In the full power strategy the generator operates at full power for 

a minimum time period.  

 

The results showed that it is not cost-effective to fully charge batteries with 

diesel power. Instead, one of the load-following or full power charging strategies 

should be used.  The right choice between these strategies depends on the fuel cost, 

the battery replacement cost per kWh of its cycle life, the round-trip storage 

efficiency, the diesel generator size, the diesel fuel curve slope and intercept, and 

the wind turbine array sizing.  Frugal discharge strategy should be used in 

conjunction with either of the load-following and full power charging strategies. 

 

Ulleberg  (2004) presented a control strategy for a PV and battery system with a 

hydrogen subsystem consisting of an electrolyzer, pressurized hydrogen gas 

storage, and fuel cell. The battery was used for short term energy storage and 
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hydrogen storage was used for the long term. The control strategy was based on the 

battery’s state of charge (SOC). When the demand is more than the supply and 

SOC is going down from its maximum point, first the electrolyzer turns off and 

then by further reduction of SOC the fuel cell turns on. When the supply is more 

than demand and SOC is going up from its minimum point, first the fuel cell turns 

off and by further increase of SOC the electrolyzer turns on. This study 

demonstrated that the performance of a PV/hydrogen system can be significantly 

affected by relatively small changes made to the control strategy.  

 
Dufo-Lo´pez , et al. (2007) presented a control strategy, optimized by genetic 

algorithms, to control stand-alone hybrid renewable electrical systems with 

hydrogen storage. The strategy optimizes the control of the hybrid system by 

minimizing the total cost throughout its lifetime. The optimized hybrid system can 

be composed of renewable sources (wind, PV and hydro), batteries, fuel cell, AC 

generator and electrolyzer. If the renewable sources produce more energy than the 

one required by the loads, the spare energy can be used either to charge the 

batteries or to produce 2H  in the electrolyzer. The control strategy optimizes how 

the spare energy is used. If the amount of energy demanded by the loads is higher 

than the one produced by the renewable sources, the control strategy determines 

the most economical way to meet the energy deficit. The optimization of the 

various system control parameters was done using genetic algorithms.  

 

The literature review of the fixed control algorithms shows that this control 

method is a simple control strategy that can be used without the need for complex 

hardware and software. The control set points can be determined by heuristic 

methods or they can be obtained during an optimization process. Without this 

optimization the controller cannot consider the economical parameters like battery 

wear cost. This method can be used easily in sizing problems. In these problems 

the time period is normally one year, and includes a large number of time steps, for 

example 8760 hours. Due to the lack of control variables, or low numbers of static 

variables, the fixed control algorithm does not cause a huge computational barrier 

in solving the related sizing optimization problem.  
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2.3.2 Fuzzy logic control 

Fuzzy logic control (FLC) provides a means of converting a linguistic control 

strategy based on expert knowledge into an automatic control strategy. FLC is 

derived from fuzzy set theory and fuzzy logic introduced by Zadeh (1965) and 

(1973) respectively. In fuzzy set theory (Zadeh, 1965), the transition between 

membership and nonmembership can be gradual. Therefore, boundaries of fuzzy 

sets can be vague and ambiguous, making it useful for approximate systems. In any 

fuzzy logic system, the system takes a value and first passes it through a 

fuzzification process. Then it is processed by an inference engine (or fuzzy rule 

set). Finally, it goes through a defuzzification process.  FLC’s are an attractive 

choice when precise mathematical formulations are not possible. Other advantages 

of FLC are: 1) it can work with less precise inputs; 2) it doesn’t need fast 

processors; 3) it needs less data storage in the form of membership functions and 

rules than conventional look up tables for nonlinear controllers; and 4) it is more 

robust than other nonlinear controllers.   

 
Jeong, et al. (2005) used FLC for the energy management of a hybrid system 

consisting of a fuel cell and a battery pack. In this system the battery was used to 

meet the peak power demand; hence, the size of the fuel cell stack can be 

minimum. A fuzzy logic algorithm was used to determine the fuel cell output 

power depending on the external power requirement and the battery state of charge 

(SOC). If the power requirement of the hybrid system is low and the SOC is low, 

then the greater part of the fuel cell power is used to charge the battery pack. If the 

power requirement is relatively high and the SOC is also high, then the fuel cell 

and the battery are concurrently used to supply the required power. These if-then 

operation rules were implemented by fuzzy logic for the energy management of the 

hybrid system. Non-linear models for the fuel cell and battery were used. The 

results showed that the fuzzy logic controller can be used for this non-linear system 

and with an acceptable load following capacity, the operation efficiency of the 

hybrid system is improved and the battery state of charge is maintained at a 

reasonable level, which increases the battery life time. 
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Boukettaya, et al. (2007) presented the design of a fuzzy logic supervisor for 

controlling the power flows in a hybrid power system, comprising a photovoltaic 

panel, a diesel generator and a flywheel storage system that supplies power to a 

load. The control of the power exchanged between the flywheel energy storage 

system and the load is achieved with the help of a fuzzy logic based supervisor, 

with the aim of minimizing the variations of the power generated by the diesel 

generator and supplying the load as much as possible. The performance of the 

fuzzy logic controller was confirmed by DC bus voltage. This voltage was kept 

near to the reference value during the test. 

 
Ben Salah, et al. (2008), Lautier, et al. (2007) and Chaabene, et al. (2007) 

presented a fuzzy algorithm (an algorithm based on fuzzy logic) for the energy 

management of a domestic PV panel which makes decision about connecting 

domestic apparatus on either the electrical grid or a PV panel. The decision is made 

in real time with respect to multi-energy saving criteria and to the photovoltaic 

panel maximum available power and apparatus states. The PV panel was 

considered as a complementary electric source to supply energy to domestic 

apparatus and to reduce the grid electricity consumption, so there was no need for 

batteries. 

 
Lautier, et al. (2007) developed a fuzzy logic controller for reducing the 

operational cost and the environmental impact of diesel power system for an off-

grid community. The system uses battery storage in order to supply the grid as a 

stand-alone power supply during low demand and to operate as a peak shaving and 

diesel generator load regulation unit during medium and high demand. 

 
Ben Salah and Ouali (2010) presented a control strategy for active energy flow 

in a hybrid PV system. The method introduced online energy management by a 

hierarchical fuzzy controller operating between energy sources that consist of  PV 

panels, the battery and the load. The fuzzy logic controller was developed for 

power splitting between the PV panels and the battery, and it makes decision to 

choose the switching chain rules and corresponding control action. Simulation test 

results illustrated improvement in the operation’s efficiency of the online state of 

the switches, and the battery’s SOC was maintained at a reasonable level. 
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Summary of the above research in which the FLC method has been used, are 

shown in Table 2.3.1.  

 

The review of this research shows that it has been used with nonlinear energy 

system models or with energy systems that do not have a precise mathematical 

model. Fuzzy system is an approximate function. The quality of the fuzzy 

approximation is highly dependent on the experience of the user that sets the rules 

(Jain and Martin, 1999).  Derivation of these rules in a long time horizon, which 

should be considered in the storage of renewable energies, can be very difficult or 

impossible. So in the literature FLC is used in relatively simple energy systems 

which have less flexibility.  

 

Table 2.3.1  Summary of the literature of FLC method 
 

Energy system Controller characteristic Reference 
Fuel call and battery Control of Fuel cell to charge battery Jeong, et al. 

(2005) 
 

PV, diesel and 
flywheel storage 
 

Control of exchanged power 
between flywheel and load 

Boukettaya, et 
al. (2007) 

PV Control of domestic apparatus to 
connect either PV or grid 
 

Ben Salah, et al. 
(2008) 

Diesel and battery Control of stored electricity in 
battery in order to reduce operational 
cost 
 

Lautier, et al. 
(2007) 

PV and battery  Control of power flow between PV 
and battery  

Ben Salah and 
Ouali (2010) 

2.3.3 Artificial Neural Network (ANN) 

An artificial neural network (ANN), usually called neural network is a 

mathematical model or computational model that is mainly planned to imitate the 

behaviour of a biological network of neurons. It is developed and meant to 

overcome the unfavourable circumstances lying in serial computation with the 

parallel processors computing.  
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A neural network usually involves a large number of processors operating in 

parallel, each with its own small sphere of knowledge and access to data in its local 

memory. Typically, a neural network is initially "trained" or fed large amounts of 

data and rules about data relationships. A program can then tell the network how to 

behave in response to an external stimulus or can initiate activity on its own. 

 
In making determinations, neural networks use several principles, including 

gradient-based training, fuzzy logic, genetic algorithms, and Bayesian methods. 

Neural networks are sometimes described in terms of knowledge layers, with, in 

general, more complex networks having deeper layers. In feed forward systems, 

learned relationships about data can "feed forward" to higher layers of knowledge. 

Neural networks can also learn temporal concepts and have been widely used in 

signal processing and time series analysis. 

 
 

Al-Alawi, et al. (2007) presented a predictive ANN-based prototype controller 

for the optimum operation of integrated hybrid renewable energy-based water and 

power supply system consisting of PV panels, a diesel generator, a battery bank for 

energy storage and a reverse osmosis desalination unit. The electrical load 

consisted of typical households and the desalination plant. The proposed ANN 

controller was designed to take decisions on diesel generators on/off status and 

maintain a minimum loading level on the generator to reduce fuel dependency, 

engine wear and tear due to incomplete combustion and to cut down on greenhouse 

gas emissions. Back propagation architecture was used for the neural networks. 

The statistical analysis of the results indicated that the proposed ANN-based model 

can predict the power usage and generator status at any point of time with high 

accuracy. 

 
Jifang, et al. (2010) reported a neural networks control strategy for a grid 

connected hybrid power system consisting of a wind generator, solar panels and an 

energy storage device. In order to accelerate the convergence and to prevent 

oscillation, the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 

1963) was used in the training of neural networks. Simulation showed that the 

strategy can make the voltage sustained, stable and continuous in the maximum use 

of renewable energy. 
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There are few research studies concerning the application of the ANN controller 

in the control and management of renewable energy systems in buildings. Like 

FLC, ANN controllers do not use mathematical models of the system. The self-

learning and generalization nature of neural networks enable it to be more 

effectively used in nonlinear and time variant problems. The problem with the 

ANN controller is the difficulty of determining the proper size and structure of 

neural networks (Jain and Martin, 1999).  Also, neural networks do not scale well. 

To control a renewable energy system, the manipulation of learning parameters for 

learning and convergence becomes increasingly difficult. 

2.3.4 Multi-period optimization 

Multi-period optimization links more than one time period of the operation of a 

single model. This helps in using the trade-offs of resource allocation over time, 

such as energy storage, and also in the capture multi time step operation strategies 

like ramping and start and stop time delays of the units. Optimization models can 

be solved analytically, with mathematical programming, dynamic programming, or 

heuristic (global) search techniques such as evolutionary algorithms or 

combinations of the above. In the following sections, mathematical programming 

and dynamic programming models are explained. 

2.3.4.1 Mathematical programming  

Mathematical programming concerns finding the minimum or maximum of a 

function of one or multiple variables by mathematical methods. The function is 

called the objective function. The variables can be continuous or integer or a 

mixture of both. Mathematical programming can be unconstrained or it can be 

subjected to some constraints. In addition the objective function and the constraints 

can be linear or nonlinear. 

 

A general mixed-integer optimization model for the multi-period operational 

optimization problem was given by Iyer and Grossmann (1998): 
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Here tx  is the state and control variables for period t , t  is the binary variables 

that determine the on/off status of units for period t , and t  is the parameters (e.g. 

demands) for period t . 

 
In the above formulation, the objective function includes the operating costs tf  

for each period pt ,...,1 . Equation (2-1b) represents the state equations for each 

period of operation and Equation (2-1c) are linking constraints that represent 

constraints that involve variables for all periods of operation. 

 

In the process industry multi-period mixed integer programming has been used 

for production planning (Sahinidis and Grossmann, 1991; Zhang and Rong, 2008; 

Varvarezos, et al., 1995), heat exchanger networks (Floudas and Grossmann, 1986; 

Floudas and Grossmann, 1987) and the operational optimization of utility systems 

(Iyer and Grossmann, 1998; Marechal and Kalitventzeff, 2003; Zhang and Hua, 

2007). 

 

In the electrical power industry multi-period programming has been used for 

generation scheduling or unit commitment and dynamic economic dispatch (Xia 

and Elaiw, 2010; Tao Li and Shahidehpour, 2005; Carrion and Arroyo, 2006, 

Logenthiran and Srinivasan, 2009; Catalao, et al., 2010). The unit commitment 

problem determines the combination of available generating units, and the 

scheduling of their respective outputs to satisfy the forecasted demand with the 

minimum total production cost under the operating constraints enforced by the 

system for a specified period that usually varies from 24 hours to one week.  
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Multi-period programming has been used for the control of hybrid power and 

CHP systems. In some research it has been called optimal control or model 

predictive control. 

 
Korpas and Holen (2006) used mathematical optimization for deriving a 

methodology for the operation planning of a hybrid plant with wind power and 

hydrogen storage. Hydrogen produced from electrolysis was used for power 

generation in a stationary fuel cell, and as fuel for vehicles. The methodology was 

used for plants operating in a power market, but it was demonstrated that the 

operating principles could also be applied for isolated 2H - based energy systems 

with a backup generator. The generation scheduling problem for the hybrid plant 

was formulated as a profit-maximizing function, taking into account the electricity 

price variations and costs with imported 2H , or without imported 2H . During 

online operation, the hourly values of the electrolyzer power and the fuel cell 

power were determined by applying a receding horizon strategy, based on updated 

generation forecasts and costs for balancing power. It was shown that the fuel cell 

was used only in cases with large electricity price variations and high balancing 

costs, since the overall efficiency of the 2H chain is relatively low. In this literature 

the optimization problem was solved by linear programming, but the binary 

variables concerning on/off statuses of the equipment were not included in the 

optimization problem. The on/off statuses were determined by trail and error.  

 

Geidl and Andersson (2007a) presented a framework for the integrated 

modelling and optimization of energy systems with multiple energy carriers. Based 

on the concept of energy hubs, a generic steady state model for describing 

conversion and storage of multiple energy carriers, such as electricity, natural gas, 

hydrogen, or district heating, was developed and used for system optimization. In 

this literature, for the splitting of an energy carrier flow between multiple energy 

converters a dispatch factor was used, which led to a nonlinear optimization 

problem. The solution of a nonlinear problem is uncertain, since it is non-convex, 

and thus may have local optima (Sweeney, et al., 2009). In addition, the solution of 

a nonlinear problem, specially when integer variables are involved, is difficult. 

Although the start/stop of the converter and the charging/discharging of the storage 
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device were modelled by using integer variables, scheduling of complex 

operations, like sequential start up of the converters (for example cogeneration unit 

and auxiliary boiler) has not been considered in this literature. 

 
Zervas, et al. (2008) used mathematical programming for the optimal control of 

a grid connected hybrid power system consisting of a PV array, electrolyzer, 

hydrogen storage tank and fuel cell. The system was used to cover the energy 

needs of a typical household located in Athens, Greece. The system could buy 

electricity from the grid or sell it to the grid. An on-line optimization problem was 

formulated and solved and was used as a decision making tool regarding the 

operation of the system. The formulation took into account updated estimations of 

the PV power generation over a future prediction horizon and a profile of the 

energy demand over the same time horizon. In this literature, the benefits of using 

the rolling horizon concept for improving the decision strategy were shown. The 

system did not include a battery for the storage of electricity. The battery with 

respect to the hydrogen storage has a higher round trip efficiency and is suitable for 

short term storage. In this dissertation, both battery storage and hydrogen storage 

are considered.   

 

Houwing, et al. (2008) showed possible cost advantages of applying 

mathematical programming to a residential micro-combined heat and power 

system. The mathematical programming was considered as Model Predictive 

Control (MPC). Simulation results illustrated that MPC gives better outcomes in 

terms of daily energy costs when a larger prediction horizon is adopted by the 

controller. The results also showed that MPC control of distributed energy 

resources can lead to cost savings, but that these savings were strongly dependent 

on the controlled physical systems and their surroundings in terms of (regulated) 

energy tariffs. So it was recommended that the MPC controllers should be 

designed in such a way that they would be flexible and can be adjusted to evolving 

systems and system environments. The Stirling engine used in this study can only 

operate in part load and full load modes. In new micro-CHP products, fully 

modulating Stirling engines are used for increasing of performance, that are 

considered in this dissertation. 

 



Chapter 2 Literature review                                                                                      45 
 

    

Collazos, et al. (2009) developed a predictive optimal control system for micro-

CHP in domestic applications. The system aimed at integrating stochastic 

inhabitant behaviour and meteorological conditions as well as modelling 

imprecision, while defining operation strategies that maximize the efficiency of the 

system, taking into account the performances, the storage capacities and the 

electricity market opportunities. Numerical data of an average single family house 

was taken as a case study. The predictive optimal controller used mixed-integer 

and linear programming, where energy conversion and energy services models 

were defined as a set of linear constraints. Start-up and shut-down operations, as 

well as the load dependent efficiency of the cogeneration unit, were modelled by 

integer variables. Due to low heating demand in domestic applications, the back-up 

or auxiliary boiler should operate in sequence (in series) with micro-CHP, which is 

considered in this dissertation. 

 
Clastres et al. (2010) explained how a PV based multisource system for 

residential application with co-management of sources and loads could contract to 

provide ancillary services, particularly the supply of active power services. The 

mathematical model for calculating the system’s optimal operation (sources, load 

and exchanges of power with the grid) resulted in a linear mixed integer 

optimisation problem, in which the objective was to maximize the profits achieved 

by taking part in the electricity market. The results showed that PV electricity 

producers can gain by taking part in the markets for balancing power or ancillary 

services despite the negative impact on profit of several types of uncertainty, 

notably the intermittent nature of the PV source. In this literature, only the battery 

has been considered for electricity storage, which will become very expensive if it 

is sized for long term (seasonal) electricity storage in stand-alone (grid 

independent) applications. 

 

A summary of the research outlined above, in which the mathematical 

programming method has been used, is shown in Table 2.3.2. 

 

 The existing research in the area of the control of renewable energy systems 

based on multi-period optimization shows that  this  method  is  the  best  candidate  

for optimal  control  of  building  energy  systems.  The multi-period  optimization 
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based on mathematical programming can use trade-offs of resource allocation over 

time and capture constraint on the variables. The objective function can handle 

various types of costs, including economical and emission costs. This method can 

also consider the on/off inputs that are essential in the planning and scheduling of 

energy systems. In addition, complex operational strategies can be included in the 

mathematical model of the energy system. Finally the prediction capability of this 

method makes it a powerful tool for the optimization of the energy systems with 

energy storage and time variant energy prices. In this kind of energy system the 

optimal inputs should be calculated for a long time period (with enough time 

steps), to  include the effects of energy storage and energy price in one time step on 

the other time steps. This method can be used to consider the uncertainty in 

weather forecasting and load prediction by stochastic programming. In this method 

the operation of non-linear energy systems can be optimized by non-linear 

programming. 

 

 

Table 2.3.2  Summary of the literature of mathematical programming method 
 

Energy system Controller characteristic  Reference 
Wind power, hydrogen 
storage and fuel cell 

Control of exported electricity, 
electrolyzer and fuel cell power  
 

Korpas and 
Holen (2006) 

Energy system with 
multiple energy 
carriers 

Control of exchanged energy with 
grid , and converters and storage 
power 
 

Geidl and 
Andersson 
(2007a) 

PV, electrolyzer, 
hydrogen storage tank 
and fuel cell 

Control of exchanged electricity 
with grid, and electrolyzer and fuel 
cell power 
 

Zervas, et al. 
(2008) 

Micro-CHP, auxiliary 
boiler and  hot water 
tank 

Control of exchanged electricity 
with grid, and micro-CHP,  boiler 
and hot water storage power 
 

Houwing, et al. 
(2008) 

Micro-CHP, boiler and  
hot water tank 

Control of exchanged electricity 
with grid, and micro-CHP,  boiler 
and hot water storage power 
 

Collazos, et al. 
(2009) 

PV and battery Control of sources, load and 
exchanges of power with grid 

Clastres, et al. 
(2010) 
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2.3.4.2 Dynamic programming 

Dynamic programming usually refers to simplifying a decision, by breaking it 

down into a sequence of decision steps over time. The method is generally 

applicable to problems which exhibit the Markovian property (Belegundu and 

Chandrupatla, 2011). A process exhibits the Markovian property if the decisions 

for optimal return at a stage in the process depend only on the current state of the 

system and the subsequent decisions. Dynamic programming relies on the principle 

of optimality enunciated by Bellman (Bellman, 1957). Bellman’s Principle of 

Optimality states “An optimal policy has the property that whatever the initial state 

and initial decisions are, the remaining decisions must constitute an optimal policy 

with respect to the state resulting from the first decision.” 

 

Faille, et al. (2007) studied the optimal control of a domestic micro combined 

heat and power system. The objective function was to reduce the gas and electricity 

bill of the consumer. The optimizations of a micro-CHP were carried out using 

mixed integer linear programming and dynamic programming. It was explained 

that the dynamic programming is more suited to integrate nonlinearity and mixed 

integer programming can integrate time-dependent constraints. This study showed 

that dynamic programming compared well with mixed integer linear programming. 

It was described that the dynamic programming is simpler to implement in real-

time application, because it does not need a sophisticated solver and presents a 

constant computation time. Furthermore, stochastic features of thermal and 

electrical needs should be better handled in a dynamic programming framework.  

 

Dynamic programming is well suited for solving allocation problems with a few 

discrete points of control variables and state variables (one or two state variables). 

If the control and state variables are discretized to have M  variables, for N  time 

steps, an order of 
NM calls to the system model would be required. Such a 

computational overhead is sufficient to discount dynamic programming as a viable 

option for solving the control problem of complex integrated renewable and low 

carbon energy systems. 
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2.3.5 Model Predictive Control 

Model Predictive Control (MPC) (Camacho and Bordons, 2004; Maciejowski, 

2002) is a powerful method of controlling multi-input/multi-output (MIMO) 

systems that are subject to input and output constraints. The objective of the MPC 

control calculations is to determine a sequence of control inputs so that the 

predicted response moves to the set point in an optimal manner.   

 

The basic concept of MPC is shown in Figure 2.3.1. At each sampling time, 

denoted by k , the future outputs },...,1),(ˆ{ Piiky   over the prediction horizon P 

are predicted. These predictions are based on the process model and future control 

signals }1,...,0),({  Miiku . The input is held constant after the control horizon 

M . The actual output y , predicted output ŷ , and manipulated input u are shown in 

Figure 2.3.1. 

 

 

 

Figure 2.3.1  Basic concept for model predictive control (Seborg, et al, 2004) 
 

 

After this, the set of future control signals,  }1,...,0),({  Miiku , for the 

control horizon  M are calculated by solving the following optimization problem: 
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Here ry and  ru  are reference outputs and reference inputs respectively and yQ , 

uQ  and  uQ   are weighting matrices. P and  M  are the number of predictions and 

control inputs which are referred to as the prediction horizon and the control 

horizon respectively. p is the norm, that can be 2, 1 or infinity.  

 

MPC uses a receding horizon principle. Although at time step k  the future 

control sequence )1(,),(  Mkuku   is determined, only the first element of 

optimal sequence ))(( ku is applied to the process. At the next time instant the 

horizon is shifted one step, the model is updated with new information from the 

measurements, and a new optimization at time step 1k  is performed. This 

procedure is repeated at each sampling time. 

 

The hierarchical, multilayer approach to process automation is a standard in 

process industries, and a well understood technique able to cope with the 

complexity and multiple criteria of operation (Tatjewski, 2010). Figure 2.3.2 shows 

the multilayer control structure. The main control layers include: the regulatory 

(feedback) control layer, which keeps the process at given operating points and can 

itself be divided into basic and advanced control layers, and the set-point 

optimisation layer, which calculates these operating points (Findeisen, et al., 1980; 

Marlin, 1995; Blevins, et al., 2005; Brdys and Tatjewski, 2005; Tatjewski, 2007). 

In complex control systems applying advanced control techniques, the regulatory 

control layer consists typically of two layers (Tatjewski, 2010): the basic (direct) 

dynamic control layer, usually equipped with PID (proportional-integral-

derivative) controllers, and a higher, advanced control layer (also called the 
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constraint control layer, set-point control layer or the MPC layer), in which MPC 

algorithms are typically implemented, see, e.g., Blevins, et al. (2005), Qin and 

Badgwell (2003), Maciejowski (2002), Brdys and Tatjewski (2005) or Tatjewski 

(2007). 

 

 

 

Figure 2.3.2  Multilayer control structure (Tatjewski, 2010) 
 

 

To maximise economic profits, MPC algorithms cooperate with set-point 

optimisation, the purpose of which is to calculate online optimal set-points for 

MPC (Blevins, et al., 2005; Brdys and Tatjewski, 2005; Engell, 2007; Tatjewski, 

2007; 2008; Ławryn´czuk, 2011; Maciej, 2011). 

 

It is also possible to integrate set-point optimisation and MPC optimisation into 

one optimisation problem (Tvrzska de Gouvea and Odloak, 1998; Tatjewski, 2007; 

Zanin, et al., 2000; 2002). Alternatively, an integrated predictive optimiser and 

constraint supervisor can be used (Tatjewski, et al., 2009). It provides the control 

layer with set-points calculated for both optimality and constraint handling. 

 

There has been significant interest recently in using MPC for various aspects of 

building for controlling primary and secondary HVAC systems. A primary HVAC 
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system is associated with the plant and a secondary HVAC system is associated 

with distribution and end use. 

 

The evaluation of optimal controllers for active and passive building thermal 

storage has been studied by several researchers (Henze, et al., 2004a;  Liu and 

Henze, 2006 ; Henze, et al. 2007 ;Henze, et al., 2003). In particular in Liu and 

Henze (2006) the optimal controller was implemented in a receding horizon 

fashion. 

 

The controller that minimizes cooling costs by regarding the time-varying 

electrical energy price was presented by Yudong Ma, et al. (2009). The aim was to 

take advantage of night-time electricity rates and to lower the ambient temperature 

while precooling the chilled water tank. 

 

Ma, et al. (2011) developed a model-based multi-variable controller for building 

cooling systems equipped with thermal energy storage by using the prediction of 

weather conditions and buildings loads. Real-time implementation and feasibility 

issues of the MPC scheme were addressed by using a simplified hybrid model of 

the system, a periodic robust invariant set as terminal constraints, and a moving 

window blocking strategy. 

 

Optimal zone temperature and ventilation set-points  (load-side analysis) have 

been studied by Henze, et al. (2004b) and Kolokotsa, et al. (2009). 

 

Yuan and Perez (2006) and  Huang, et al. (2009) focused on optimal operating 

strategies in the context of VAV systems by considering the optimization of air 

flow rate and air temperature set-points. 

 

Yudong Ma, et al. (2011) worked on Model Predictive Control (MPC) of 

heating, ventilation, and air conditioning (HVAC) over networks of thermal zones. 

The control objective is to keep zone temperatures within a comfort range while 

consuming the least energy by using predictive knowledge of weather and 

occupancy. 
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Siroky, et al. (2011) focused on the analysis of energy savings that can be  

achieved in a building heating system by applying Model Predictive Control 

(MPC) and using weather predictions. 

  
In the electrical power system, the MPC method has recently been studied. Le 

Xie and Ilic, (2009) presented potential benefits of applying MPC to solving the 

multi-objective economic/environmental dispatch problem in electric power 

systems with many intermittent resources. They showed  that the proposed MPC 

approach could lower the generation costs by directly dispatching the generator 

output from the renewable resources in order to compensate temporal load 

variations over pre-defined time horizon. Furthermore, the multi-objective 

economic/environmental cost function provided a formulation to study the trade-

off of efficiency and environmental impact in future energy systems. 

 

Xiaohua Xia, et al. (2009) proposed an MPC approach to the dynamic dispatch 

problem by the optimal control dynamic dispatch framework. They showed that the 

MPC approach provides solutions converging to the optimal solution and the MPC 

algorithm is also robust under certain disturbances and uncertainties. 

 

The above studies highlight the importance and novelty of MPC for the 

supervisory control of building integrated renewable and low carbon energy 

systems.  

2.3.6 Hybrid methods 

In last 20 years, a lot of work has been done for the further improvement of the 

optimization algorithms in the industry. On one side, an algorithm may be simple 

but suboptimal and on the other, complex but accurate. To achieve further 

advancements over the existing algorithms, one must complement the different 

algorithms. So in the main, more than one algorithm has been merged together 

which forms a hybrid model to meet the industry requirement. 
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Ohsawa, et al. (1993) used hybrid artificial neural networks-dynamic 

programming for the operation control of the photovoltaic/diesel hybrid power 

generation system. The optimal operation patterns of the diesel generator were 

calculated by dynamic programming under the known insulation and load demand, 

which minimize the fuel consumption of the diesel generator. These optimal 

patterns were learned by a three layers neural network, and it was tested for the 

different insulation and demand data from those used in the learning. 

 

Fung (2000) used a combined fuzzy-logic and genetic algorithm technique for 

the short term generation scheduling of a system consisting of diesel generators, a 

PV array and a battery bank. The fuzzy logic algorithm based on the heuristic 

knowledge about the proposed hybrid energy system was developed and was used 

to determine the preliminary diesel generator schedule and the battery 

charge/discharge strategy. A genetic algorithm was then used to optimise the initial 

schedule by working on the rule base of the fuzzy logic algorithm. 

 

Welch and Venayagamoorthy (2007) presented a particle swarm optimization 

method for optimizing an FLC for a grid independent system consisting of a PV 

collector array, a storage battery, and loads (critical and non-critical loads). Particle 

swarm optimization was used to optimize both the membership functions and the 

rule set in the design of the fuzzy logic controller. Optimizing the PV system 

controller yielded improved performance, allowing the system to meet more of the 

loads and keep a higher average state of battery charge. The potential benefits of an 

optimized controller included lower costs through smaller system sizing and a 

longer battery life. 

 

Venayagamoorthy and Welch (2010) presented an energy dispatch controller for 

use in a grid-independent PV system. The controller was an optimal energy 

dispatch controller based on a class of Adaptive Critic Designs (ACDs) called 

Action Dependent Heuristic Dynamic Programming (ADHDP). This class of 

ACDs uses two neural networks to evolve an optimal control strategy over time. 

The first neural network or ‘‘Action’’ network dispenses the actual control signals 

while the second network or ‘‘Critic’’ network uses these control signals along 

with the system states to provide feedback to the action network, measuring 
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performance using a utility function. This feedback loop allows the action network 

to improve behaviour over time. The optimal energy dispatcher placed emphasis on 

always meeting the critical load, followed by keeping the charge of the battery as 

high as possible so as to be able to power the critical load in cases of extended low 

output from the PV array, and lastly to power the non-critical load in so far as not 

interfering with the first two objectives.  

 

As mentioned in Sections 2.3.2 and 2.3.3, every intelligent technique has 

particular computational properties (e.g. ability to learn, explanation of decisions) 

that make them suitable for particular problems and not for others. The literature 

review shows that by combining the intelligent techniques together, or with other 

techniques, the limitations are reduced. However, hybrid methods have still not 

been used in complex energy systems, and it is very difficult to generalize their 

application in building energy systems. 

2.4 Optimization problems 

In this section a comprehensive review of the basic optimization problems, which 

is used in the proposed approaches to the design of a supervisory MPC (Chapters 5 

and 6), is presented.  

2.4.1 General formulation 

The general optimization problem is a determination of the optimum (minimum or 

maximum) of an objective function under certain constraints. It can be generally 

stated as: 

 
                                               )( min x

x
f                                                    (2-3a)            

eqi mih ,...,2,1,)( tosubj.  0x                           (2-3b) 

migi ,...,2,1,)(           0x                              (2-3c) 

                                     XS x  



Chapter 2 Literature review                                                                                      55 
 

    

Here the vector nRx  denotes the optimization variable, RRf n :)(x  is the 

objective function, RRh n
i :)(x  and RRg n

i :)(x  are equality and inequality 

constraints, respectively. The set S  is a subset of n-dimensional space. X  is the 

domain of the decision variables and XS   is the set of feasible or admissible 

decisions. 

 

Optimization problems which are maximization problems can be cast in the 

form of (2-3) through the simple transformation (Fletcher, 2000): 

 
                                 )(min)(max xx

xx
ff                                   (2-4) 

 

The function )(xf  has a local (relative) minimum at x  if  )()( xx ff    

holds for all x  in a small neighbourhood N  of x  in the feasible design space S  

(Arora, 2011). If strict inequality holds then x  is called a strong (strict) local 

minimum; otherwise it is called a weak local minimum.  

 

Neighbourhood N  of the point x  is defined as the set of points: 

 

                                }with{  xxxx SN                       (2-5) 

 
for some small 0 . Geometrically, it is a small feasible region around the 

point x . 

 

 The function )(xf  has a global (absolute) minimum at x   if )()( xx ff   for 

all x  in the feasible design space S. If strict inequality holds for all x  other than 

x , then x  is called a strong (strict) global minimum; otherwise it is called a weak 

global minimum. 

2.4.2 Convex optimization 

A set sRS   is convex if 
 
                                 Sxx  21 )1(   for all ]1,0[,, 21  Sxx . 
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A function RSf :  is convex if S  is convex and 
 

                                )()1()())1(( 2121 xfxfxxf    
 

                                                                      for all ]1,0[,, 21  Sxx . 

 
A function RSf :  is strictly convex if S  is convex and 

 

                              )()1()())1(( 2121 xfxfxxf    
 

                                                                    for all )1,0(,, 21  Sxx . 

 
A function RSf :  is concave if S  is convex and f is convex. The 

standard optimization problem (2-3) is said to be convex if the cost function f is 

convex on X  and  S  is a convex set. A fundamental property of convex 

optimization problems is that local optimizers are also global optimizers. 

2.4.3 Linear Programming  

The Linear Program (LP) is a convex optimization problem where the objective 

function and constraints are linear functions. LPs are usually formulated in the so-

called inequality form as follows: 

 

xc
x

Tmin                                       (2-6a) 

subj. to bAx                            (2-6b) 

           eqeq bxA                       (2-6c) 

 

with nRc , nmR A , nRb , nm
eq

eqR A , and eqm
eq Rb . Here, m  and 

eqm denote, respectively, the number of inequality and equality constraints.  

 
An optimal solution of a linear programming must lie on the boundary of the 

feasible region. Algebraically, this says that an optimal solution must satisfy the 

boundary equation for one or more of the constraints (Winston and Goldberg, 

2004).  
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There are two fundamentally different types of algorithms for solving LPs: 

simplex and interior-point methods (Vanderbi, 2008). The runtime for the simplex 

method is exponential in the worst case, while interior-point algorithms have a 

worst-case polynomial bound. However, this worst-case bound has little relevance 

for practical problems and both schemes are competitive in practice. 

2.4.4 Mixed Integer Linear Programming 

If in a linear programming problem, the vector of variables is composed of a real 

and a binary part, i.e. TT
b

T
r ],[ xxx   with rn

r Rx  and bn
b }1,0{x , problem (2-6) 

is referred to as a Mixed Integer Linear Program (MILP). Formally it can be stated 

as: 

 
                                  b

T
br

T
r xcxc

x
min                                     (2-7a) 

                                  subj. to   bxAxA  bbrr                   (2-7b) 

                                                 eqbbeqrreq bxAxA  ,,            (2-7c) 

                                                 bn
b }1,0{x  

 
 

A Mixed Integer Linear Program (MILP) is a non-convex optimization problem. 

Although the objective function and constraints are linear, the non-convexity 

comes from the fact that the optimized variables rx  and bx  belong to the real set 

R  and binary set {0, 1}, respectively. The non-convexity makes solving MILP 

more difficult for obtaining a global optimum. 

 

In a native brute-force way of solving an MILP problem, all feasible 

combinations of binary variables are enumerated and then an LP problem for each 

condition is solved. The binary variables which lead the best value of the objective 

function are selected as optimum values. As there are bn  binary variables, this 

would require bn2  LP problems to be solved, in the worst case. So the complete 

enumeration approach is inefficient for large-scale problems (Sarker and Newton, 

2008). Fortunately, if the binary variable is fixed or relaxed, a convex set is 

attained and the problem can be solved using methods for convex optimization. 
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This principle is deployed in the branch and bound and the cutting plane methods. 

The details of these methods can be found in Nemhauser and Wolsey (1999). The 

combination of these techniques is known as the branch and cut method (Hillier 

and Lieberman, 2005). It should be noted that even with these methods, the 

algorithms have exponential complexity depending on the cardinality of binary 

vector bx . 

2.5 Conclusions 

The literature review showed that from environmental, economical and energy 

security points of view, utilization of the renewable and low carbon energy systems 

in buildings is desirable and inevitable. 

 

Review of the regulations, policies and incentives showed that there are enough 

incentives and enforcements for using renewable and low carbon energy systems in 

buildings, so the use of these systems will be increased in the future.  

 

The literature review of the sample integrated renewable and low carbon energy 

systems showed that a wide range of technologies have been studied for sizing and 

optimization. Integration of different renewable energies gives more reliability for 

the utilization of them. For example by the integration of a PV and a wind turbine 

in a building, at night-time when the PV arrays cannot generate electricity, wind 

speed may be high enough for the wind turbine to generate electricity. The 

renewable energy technologies that have been proposed in building applications 

are mostly PV cell, solar collector, wind turbine and biomass. Low carbon 

technologies in building applications are CHP, heat pump and fuel cells. Storage 

devices used in building energy systems are the battery, the hydrogen tank, the hot 

water tank and the phase change material.  

 

A literature review of the various control methods showed that each control 

method has its advantages and disadvantages. The methods based on multi-period 

optimization and MPC have been recognised as the best method for supervisory 
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control and operational management of the integrated renewable and low carbon 

energy systems.  

 

Although the multi-period optimization has been used in some of the literature, 

there is not a unified method for the utilization of this technique in various types of 

building integrated renewable and low carbon energy systems. In addition, some of 

the complicated operational strategies have not been studied in the literature; for 

example, the operational sequence of the subsystems, e.g. the operation of the 

auxiliary boiler after reaching the full capacity of the cogeneration unit, or the 

maximizing of the stored energy in a multi-storage energy system (e.g. battery and 

hydrogen).  

 

The MPC method has been used in chemical process engineering, electrical 

power networks, and in building primary and secondary HVAC systems, but it has 

not been used in the building integrated renewable and low carbon energy systems. 

In addition, there are no studies for designing explicit MPC in this research area. 

  

A review of the related mathematical programming methods revealed that 

although there are efficient methods for the solution of linear and mixed integer 

linear programming, the number of binary variables (a binary variable represents 

an event which either does/does not occur, e.g. start/stop or charge/discharge in 

this research) in the mixed integer linear programming can be a computational 

barrier in the solving of large scale problems. 
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Chapter 3                                  

Building energy system  

In this chapter the building integrated renewable and low carbon energy system is 

described. This is the basis of the building energy system model which is obtained 

in Chapter 5. Input energies to the system and output energies from the system are 

explained in this chapter. In addition, the input data which are necessary for the 

operation of the supervisory controller are described in this chapter. These data 

include the predicted weather data and the building energy demand. 

3.1 Building energy system  

A system is a collection of connected components that is characterized by the 

interrelation between the components and system boundaries. The boundary 

separates the components of the system from the outside environment.   

 

The components of the building energy system are energy converters, energy 

storage devices and on site renewable energy generators. These components have 

interaction with each other, and are surrounded by the building energy system 

boundaries.  

 

Input and output energies cross the boundary of the system. The input energies 

bring different kinds of energies from distribution grids to the inside of the system. 

The available grids depend on the geographical location of the building. These 

grids are discussed in Section 3.2. The output energies can be divided into two 

parts. One part is delivered to the building to supply different kinds of energy 
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demands including electricity, heating and cooling loads and the other part is 

delivered to the grid. The amount of energy that is delivered to the grid depends on 

the energy price, the contract with the grid operator and governing regulations.  

 

For each energy carrier an energy bus is considered. This bus can enter the 

system and/or exit from the system, or just be placed inside the system. All of the 

energy converters, storage devices and renewable energies are connected to the 

associated energy buses. 

 

Renewable energies that enter the system are characterised in terms of their 

intensity; for instance, solar energy in terms of solar radiation per unit area 

( 2W/m ), wind energy in terms of wind velocity (m/s) and biomass energy in terms 

of mass flow rate (kg/h). The harvested renewable energies are added to the related 

energy buses inside the system.  

 

The system boundary, system inputs and outputs, energy buses and system 

components are shown in Figure 3.1.1. 

 

In a building energy system there are other types of equipment, like pumps, fans 

and controllers. Although these consume energy, they have no direct role in the 

conversion or storage of the energy carriers, and usually their energy consumption 

is negligible. This equipment is excluded from the modelling of the system, but 

their electricity consumption can be included in the building electrical load.  

 

The data that is needed for the optimal control of the system includes current 

and forecasted energy prices, weather data and building energy demand. These 

data are discussed in Section 3.4.  
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Figure 3.1.1  Building energy system concept 

3.2 Energy infrastructures 

Energy infrastructures are large distribution networks that connect energy sources 

to the energy consumers including the building energy system. These networks are 

called national grids, and each country has different types of them in different parts 

of the country. Some of the grids can be extended to several countries. The 

building energy system can buy energy from the grid or sell energy to the grid 

(Chapter 5).  

3.2.1 Electricity grid 

For the distribution of electrical energy from generating power plants to the 

consumers, it is first transmitted to the substations located near to the consumers.  

For this purpose electricity is transmitted at high voltages (110 kV or above) to 

Energy Market Weather Station
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Energy Storage Energy Converter

Energy Bus 
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reduce the energy losses in long distance transmission. In the UK, the 

interconnected high voltage transmission lines are typically referred to as the 

national grid, while in the US, they are called power grids or just the grid. In the 

substation, voltage is reduced and electricity is distributed to the consumers. Figure 

3.2.1 shows that the electricity grid in the UK has been spread all around the 

country and supplies the electricity to buildings and industries. In addition, 

distributed renewable generators can easily be connected to the grid.  

 

 
 
 

Figure 3.2.1  Gas and electricity grids in UK (National Grid, 2011) 
 

3.2.2 Gas grid 

Gas is transmitted with high pressure from gas terminals to the local distribution 

points. At these points gas is taken from the high pressure transmission system and 

distributed through low pressure networks of pipes to industrial complexes, offices 

and homes. 
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In the UK, National Grid is the owner, operator and developer of the majority of 

Britain's gas transportation system. National Grid receives gas from six coastal 

reception terminals around Great Britain (National Grid, 2011). 

 

There are eight Gas Distribution Networks (GDNs), which each cover a separate 

geographical region of Britain. In addition there are a number of smaller networks 

owned and operated by Independent Gas Transporters (IGTs) - most but not all of 

these networks have been built to serve new housing. Figure 3.2.1 shows that UK 

has an advanced gas grid which can supply gas to the boilers and micro-CHP 

systems in buildings. 

3.2.3 District heating grid 

District heating requires central heating plants or combined heating and power 

(CHP) plants and a  highly insulated heat main of supply and return pipes 

distributing hot water (or steam) to the buildings which might be connected 

(ASHRAE, 2008). At a junction point, heat is transferred from the mains to the 

building heating circuits by a heat exchanger.  

 

District heating is widely used in regions with large fractions of multi-family 

buildings, providing as much as 60% of the heating and hot water energy needs for 

70% of the families in Eastern European countries and Russia (OECD/IEA, 2004). 

In UK, the Pimlico District Heating Undertaking (PDHU), located just north of the 

River Thames in London, first became operational in 1950 and continues to expand 

to this day (Energy Saving Trust, 2005). Two other large municipal district heating 

schemes are in Nottingham and Leicester (Ove Arup, 2008). The Nottingham 

district heating scheme has been running since the 1970s. It provides heat and 

power to 4,600 homes, civic buildings, schools and Nottingham Trent University. 

Leicester district heating scheme has CHP units at four council sites, serving 17 

council buildings and 4,000 residential premises. 
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3.2.4 District cooling grid 

District cooling is the production and distribution of chilled water or other cooling 

media from a central source, for the cooling of multiple buildings (ASHRAE, 

2008). This is done by producing chilled water at a central plant by vapour 

compression or absorption chillers and then piping the water, through underground 

insulated pipes to customers. The main benefits of district cooling are reduced 

energy and maintenance costs because the buildings that employ it eliminate the 

need for expensive water chillers. District cooling is suitable for nearly all kind of 

densely built-up areas like downtown business districts and institutional settings 

such as college campuses where cooling demand exists. 

3.2.5 Hydrogen grid 

A hydrogen infrastructure is the infrastructure of pipes and stations for the 

distribution and sale of hydrogen fuel (Ball and Wietschel, 2009). This 

infrastructure connects the point of hydrogen production or delivery of hydrogen, 

with the point of demand. Mostly hydrogen is produced at the place of demand, 

with every 50 to 100 miles (80 to 160 km) having an industrial production facility. 

As of 2004 there are 900 miles (1450 km) of low pressure hydrogen pipelines in 

the USA and 930 miles (1500 km) in Europe (Hephaestus Books, 2011). 

3.3 On grid and off grid energy systems 

The building energy system can be connected to one or more grids, or it can be 

stand-alone, without any connection to the regional or country energy 

infrastructures. 
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3.3.1 On grid building energy system 

An on grid building energy system is connected to the energy infrastructures. The 

common energy infrastructures were discussed in the Section 3.2. The on grid 

building energy system can produce energy locally by renewable resources. It can 

convert one form of energy to other form(s), and store it for later consumption. 

Also a grid connected building energy system can buy energy from the grid and/or 

sell energy to the grid. 

3.3.2 Off grid building energy system 

An off grid or stand-alone building energy system does not have any connection to 

the energy grids. The energy supply from this system is onsite energy harvested 

from renewable resources. In this system, the extra energy can be stored and used 

later. For emergency cases, when there is no renewable energy available, a diesel 

generator is normally considered. If different kinds of renewable energy resources 

are used, the system is called a hybrid system. Remote rural area electrification and 

summer house electrification are examples of the off grid energy system. 

3.4 Renewable energies 

The renewable energies which are used mostly in the building energy systems are 

solar energy, wind energy, ground source energy and biomass energy. In the 

following sections, a brief description of these energy sources is given. The related 

renewable energy harvesting equipment is described and modelled in Section 4.1 

and Appendix A.  

3.4.1 Solar energy 

Almost all of the energy that drives the various systems (climate systems, 

ecosystems, hydrologic systems, etc.) found on the Earth originates from the Sun. 
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Solar energy is created at the core of the Sun when hydrogen atoms are fused into 

helium by nuclear fusion. The radiative surface of the Sun, or photosphere, has an 

average temperature of about 5800 Kelvin. Most of the electromagnetic radiation 

emitted from the Sun's surface lies in the visible band centred at 0.5 µm. The total 

quantity of energy emitted from the Sun's surface is approximately 63,000,000 

2W/m . 

 

The energy emitted by the Sun passes through space until it is intercepted by 

planets and other celestial objects. The power density of solar radiation measured 

just outside Earth's atmosphere and over the entire solar spectrum is called the 

solar constant. According to the World Meteorological Organization, the most 

reliable (1981) value for the solar constant is 1370 ± 6 2W/m . Of this power, 8% 

is in the ultraviolet wavelengths, 47% in the visible spectrum, and 45% in the 

infrared region. The solar constant is actually not a true constant, but is subject to a 

small continuous variation due to the shape of the Earth's orbit, amounting to 

−3.3% from the average at about July 5, when the Earth is at its greatest distance 

from the Sun, and +3.4% at about January 3, when the Earth is closest to the Sun. 

 

Solar radiation is attenuated before reaching Earth's surface by an atmosphere 

that removes or alters part of the incident energy by reflection, scattering, and 

absorption. Radiation scattered by striking gas molecules, water vapour, or dust 

particles is known as diffuse radiation. Clouds are a particularly important 

scattering and reflecting agent, capable of reducing direct radiation by as much as 

80 to 90%. Because cloud distributions and types are highly variable, these 

reductions are quite unpredictable. The radiation arriving at the ground directly 

from the Sun is called direct or beam radiation. Global radiation is all the solar 

radiation incidents on the surface, including direct and diffuse. 

The map in Figure 3.4.1 shows variations in annual mean values of global solar 

irradiation on a south facing  30 °  inclined plane in the UK in 2kWh/m . The map 

shows that utilization of solar energy in the southern part of  the UK is more 

feasible. 
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Solar energy can be converted directly to thermal and electrical energy, by solar 

collector and by PV cell respectively, and can be used in buildings.    

 

 
 

Figure 3.4.1  UK annual mean values of global solar irradiation on a south facing 
30 ° inclined plane in 2kWh/m  (Source: Solar Trade Association). 

3.4.2 Wind energy 

Wind energy is energy from moving air, caused by temperature (and therefore 

pressure) differences in the atmosphere. Irradiance from the sun heats up the air, 

forcing the air to rise. Conversely, where temperatures fall, a low pressure zone 

develops. Winds (i.e. air flows) balance out the differences. Hence, wind energy is 

solar energy converted into the kinetic energy of moving air. 

 

Figure 3.4.2 shows that the UK has a great wind resource, however the wind 

speed depends on the terrain, bodies of water and vegetative cover, and careful 
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consideration of the exact location is required prior to deployment of a wind 

turbine.  

 

The wind energy, when harvested by modern wind turbines, can be used to 

generate electricity. 

 

 
 

 
Figure 3.4.2  Annual mean wind speed in different part of the UK (Source :UK 
Wind speed Database/BERR) 

 

3.4.3 Ground source energy 

Ground source energy is a type of solar energy as it relies on the Sun warming the 

ground. As a result, the ground temperature shows seasonal fluctuations to depths 

of about 15 m where the temperature is relatively constant and approximately equal 
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to the mean annual air temperature (8 - 11°C in the UK). The ground source energy 

can be taken from the ground itself or from groundwater. Due to the low 

temperature of the source, a heat pump should be used for exploiting this energy. 

3.4.4 Biomass energy 

The UK Biomass Strategy (DTI and DEFRA, 2007) define biomass as “any 

biological material, derived from plant or animal matter, which can be used for 

producing heat and/or power, fuels including transport fuels, or as a substitute for 

fossil fuel-based materials and products”. Biomass is considered a carbon neutral 

resource because the carbon dioxide ( 2CO ) emitted during energy production is 

reabsorbed during the growth of the crop. Emissions released during the 

establishment, harvesting, production, supply and transport phases however, result 

in a slight positive overall contribution to 2CO  emissions. 

 

Raw materials that can be used to produce biomass fuels are widely available 

across the UK and come from a large number of different sources, including virgin 

wood, energy crops, agricultural residues, food waste and industrial waste and co-

products. Different sources of biomass fuel have different characteristics such 

as moisture content and size. These characteristics can be affected by 

transportation and storage.  

 

The simplest way of using many forms of biomass for energy is simply burning 

it in a biomass boiler. Three types of biomass most commonly used in building 

applications are logs, wood chips and wood pellets. Wood pellets are made from 

compressed sawdust and wood shavings and other biomass products and are 

uniform in size and shape. They have higher energy content and so take up less 

storage space than logs or wood chips. Stove and boiler manufacturers specify the 

size, shape and moisture content their products need to perform well. Wood pellet 

systems are the smallest, neatest and the most like a mainstream boiler and require 

the least input from the user. 
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Wood chips are cheaper and more abundant. They allow for more 

mechanisation than logs, but are not as efficient as wood pellets. It is important that 

they are pretty uniform in size in order to work smoothly in an automated domestic 

system.  

3.5 Predicted data 

Weather prediction and building energy demand prediction are the data that enter 

the supervisory controller. The weather forecasted data is received online from the 

weather station for the next few hours up to the next few days. This data can be 

modified by some statistical models locally and then used for prediction purposes. 

The predicted data are used for prediction of available renewable energies and 

building loads. The detail of prediction methods is not considered in this research, 

so in Chapter 6 it is assumed that the solar radiation and building load values are 

predicted values.  

3.5.1 Prediction of weather data 

Forecasted weather data are used for the prediction of building heating, cooling 

and electrical loads, as well as for the prediction of available renewable energy in 

the future hours. The forecasted data include solar radiation, wind speed, dry bulb 

temperature and the relative humidity of the outdoor air. These data can be 

obtained online from the weather stations. The forecasts are usually not perfect, 

however in this research the prediction errors are disregarded. 

 

The approaches used in modern weather forecasting mainly include traditional 

synoptic weather forecasting, numerical weather prediction, and statistical 

methods. 
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Synoptic weather forecasting was the primary method for making weather 

predictions until the late 1950s, and involved the analysis of synoptic weather 

charts, employing several empirical rules.  

 

Numerical weather prediction, used extensively in modern weather forecasting, 

is based on the fact that the gases of the atmosphere obey fluid dynamics and 

thermodynamics principles. Ideally, these physical laws can be used to predict the 

future state of the atmosphere, when the current conditions are known. Numerical 

weather prediction uses a number of highly refined computer models that attempt 

to mimic the behaviour of the atmosphere.  

 

Statistical methods, using past weather data to predict future events, are often 

used in conjunction with numerical weather predictions. One statistical approach, 

the analog method, examines past weather records to find those that come close to 

duplicating current conditions.  

3.5.2 Prediction of building loads 

The building energy demand includes electricity, heating and cooling demands 

which are dependent on the weather condition, occupancy schedule and 

temperature set points. If electricity or hydrogen is used for refuelling cars,  in the 

building or in the home, the required energy should be considered in the building 

load. The predicted heating, cooling and electrical loads of the building should be 

available online for the controller. 

 

There are several methods for the prediction of heating and cooling loads, which 

fall into three categories: physical models, black-box models and grey-box models. 

The physical models use the building simulation tools, like EnergyPlus, for the 

building heating and cooling load calculations. However these models have a large 

number of parameters to tune and need a lot of building and system data. The 

black-box models (including time-series models, Fourier series models, regression 

models, Artificial Neural Network (ANN) models and fuzzy logic models) are 

easier to implement, but it is more difficult to find the optimum parameters. The 
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gray-box models are similar to the black-box models, except that they use a 

simplified thermal model of the building in the calculations. 

 

Similar to the building heating and cooling load prediction methods there are 

some methods for the prediction of building electrical load. Most of the current 

research has focused on the ANN method. 

 

In this study it is assumed that the building heating, cooling and electrical loads 

have been predicted and are available for the controller. 

3.5.3 Prediction of available Renewable energy 

The output power from the renewable sources can be forecasted by using the 

related predicted weather data. For this purpose the controller uses the forecasted 

weather data in the mathematical model of the renewable energy equipment 

(Chapter 4) and determines the predicted output power for the future hours. 

3.6 Conclusions 

In this chapter a general building energy system was explained. It was shown that 

this system consists of three groups of components: energy converters, energy 

storage devices and on site renewable energy generators. Depending on the 

building energy system component and building location, different energy carriers 

can enter the system. Also, depending on the building energy demands, different 

energy carriers exit from the system. In addition, surplus electricity generated by 

the  renewable and low carbon energy equipment can be exported to the grid.  

 

It was shown that for the supervisory control of the building energy system, 

short term prediction of the weather data and building electrical, heating and 

cooling loads are necessary. The forecasted weather data are used for the 

prediction of available renewable energy, as well as for the prediction of heating 

and cooling loads of the building. 
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Chapter 4                        

Modelling of energy conversion 

and storage equipment 

A building energy system usually consists of energy converters and energy storage 

devices. Each of these components is a subsystem of the whole energy system. 

Energy converters convert energy from one form to another in order to supply 

building electricity, heating and cooling demands. For example, a boiler is an 

energy converter which transforms chemical energy of the natural gas into heat. In 

energy storage devices, energy can be directly stored, for example storage of heat 

in the hot water tank, or it can be converted to another form of energy and stored, 

similar to the storage of electrical energy in chemical energy form as in batteries 

and hydrogen tanks.  

 

In this chapter, mathematical models of the subsystems are derived. A 

mathematical model is an abstract model that uses appropriate equations to 

describe the behaviour of a system. In deriving the mathematical models it is 

assumed that the subsystems are in steady state. With long time steps, the transient 

behaviour of the subsystem, which may take place in a short portion of the time 

step, can be neglected. In addition, it is assumed that the subsystems are linear and 

their models are expressed by linear equations. In fact most of the energy 

converters and storage devices have nonlinear behaviour. However, the error 

resulting from assuming a linear model for these components - in comparison with 

the uncertainties which exist in the building energy demand and available 

renewable energy predictions - is negligible. 
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4.1 Energy conversion equipment 

In a building energy system various pieces of mechanical and electrical equipment 

are used for energy conversion. The selection and sizing of these pieces of 

equipment are out of the scope of this research. In the following sections, a brief 

description of the equipment is given, and their mathematical models are 

described. The equipment that is considered in the following sections are: the 

boiler, the CHP, the PV cell, the electrolyzer, the fuel cell and the diesel generator. 

These are used in the applications described in Chapter 6. Mathematical models of 

other conventional energy converters, which are not used in the applications, are 

presented in Appendix B. 

4.1.1 Boiler 

Boilers convert energy from fossil fuels, biomass or electricity to heat. There are 

several different types of boilers. The efficiency of fuel-burning boilers is defined 

in three ways: combustion efficiency, overall efficiency, and seasonal efficiency. 

 

The combustion efficiency of a boiler is defined as input minus stack (chimney) 

loss, divided by input, and ranges from 75 to 86% for most noncondensing 

mechanically fired boilers. The combustion efficiency of condensing boilers is in 

the range of 88 to over 95% (ASHRAE, 2008). 

 

Overall efficiency of the boiler is gross output divided by input. Gross output is 

measured from the steam or water leaving the boiler, and depends on the 

installation characteristic. Overall efficiency is lower than combustion efficiency 

by the percentage of heat lost from the outside surface of the boiler (this loss is 

usually called radiation loss), and by off-cycle energy loses (for applications where 

the boiler cycles on and off). Overall efficiency can be precisely determined only 

under laboratory test conditions, directly measuring the fuel input and the heat 

absorbed by the water or steam of the boiler. The overall efficiency of electric 

boilers is in the 92 to 96% range. 
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Most of the boilers operate at part load during the heating season. Part load 

efficiency of the boiler is normally less than full load efficiency. In addition, the 

boiler is off sometimes in the heating season. Seasonal efficiency is the actual 

operating efficiency of the boiler considering losses during part load operation of 

the boiler and heat losses when the boiler is off. 

 

 For the purpose of this research, the seasonal efficiency is used. If the seasonal 

efficiency of the boiler is known, then output heat from the boiler can be 

determined from the following equation (ASHRAE, 2008): 

 

)()( tmLHVtP fuelfuelbb                (4-1) 

 

Here bP  is the output heat from the boiler, b  is the seasonal boiler efficiency, 

fuelLHV  is the lower heating value of fuel and fuelm  is fuel rate. For condensing 

boilers the higher heating value of the fuel ( fuelHHV ) should be used. 

4.1.2 Cogeneration or Combined Heat and Power (CHP)  

Cogeneration or combined heat and power (CHP) is the use of a heat engine or a 

thermal power plant to simultaneously generate electricity and useful heat. 

  

According to the second law of thermodynamics it is impossible to convert heat 

completely into work. That is, it is impossible to extract energy by heat from a 

high-temperature energy source and then convert all of the energy into work. At 

least some of the heat must be passed to a low-temperature heat sink. Thus, a heat 

engine with 100% efficiency is thermodynamically impossible. 

 

The rejected heat in large power plants is carried to the users by district heating 

pipelines. Micro-combined heat and power (or micro-CHP) is an extension of the 

application of cogeneration to the single/multi family home or small office 

building. 
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For a cogeneration plant having electric and thermal efficiency, electrical and 

heat power outputs are calculated as below (ASHRAE, 2008): 

 

)()( tmLHVtP fuelfuelchpechpe             (4-2) 

 

)()( tmLHVtP fuelfuelchphchph             (4-3) 

 

Here chpeP  and chphP  are the output electricity and output heat from the CHP 

respectively, chpe  and chph   are the electrical and thermal efficiencies of the CHP 

respectively, fuelLHV  is the lower heating value of the fuel and fuelm  is the fuel 

consumption rate.  

 

In a cogeneration system the Alfa value is defined as the ratio of electrical 

output to thermal output: 

 

chph

chpe

P

P
valueAlfa                           (4-4) 

 

In the UK, the heat to power ratio is conventional, and is the ratio of output heat 

power from the CHP unit to output electrical power. 

 

 Table 4.1.1 compares some of the important performance characteristics of the 

various types of small scale cogeneration systems (Kreith and Goswami, 2007). 

 

Natural gas is the preferred fuel for the spark engines, but they can also run on 

propane or gasoline. Compression-ignition engines can operate on diesel fuel or 

heavy oil, or they can be set up in a dual-fuel configuration that burns primary 

natural gas with a small amount of diesel fuel. The engines used for micro-CHP 

units are normally designed as packaged units. The size of micro-CHP units, which 

use internal combustion engines as a prime mover, varies from 10 to 200 kW. 
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Table 4.1.1  Technical Features of small- Scale CHP Devices (Kreith and 
Goswami, 2007) 
 

                    Reciprocating Engine              Microturbine             Stirling Engines               PEM Fuel Cells 

Electric power(kw)           10 – 200                                    25 – 250                       2-50                                            2-200 

Electric efficiency,            24 – 45                                      25 – 30                        15 – 35                                            40    
full load (%) 

Electric efficiency,             23 – 40                                     20 – 25                          35                                                  40  
half load (%) 

Total efficiency (%)          75 – 85                                       75 – 85                       75 – 85                                         75 - 85    

Heat/electrical power         0.9 – 2                                      1.6 – 2                         1.4 – 3.3                                      0.9 – 1.1 
Ratio 

Output temperature          85 – 100                                      85 – 100                       60 – 80                                         60 - 80 
Level ( C) 

Fuel                                  Natural or biogas,                     Natural or biogas,          Natural or biogas,         Hydrogen, gases 
                                  diesel fuel oil                             diesel, gasoline,            LPG, several liquid                  including  
                                                                                            alcohols                   or solid fuels                           hydrogen 
                                                                                                                                                                             methanol 

Interval between             5000 – 20,000                            20,000-30,000                 5,000                                               N/A 
Maintenance (h) 

Investment cost                800 – 1500                                900 – 1500                   1300 – 2000                            2500 - 3500 
($/kw) 

Maintenance costs            1.2 – 2.0                                     0.5 – 1.5                           1.5 – 2.5                                  1.0 – 3.0 
(c/kw) 

 
   

The microturbine is a newly developed small-sized gas turbine with power 

generation from 25 to 250 kW. Like the large gas turbines, the microturbine 

generator consists of a compressor, a combustion chamber, a one-stage turbine, and 

a generator. The rotating speed of the generator can be up to 10,000 rpm. The high-

frequency electricity output is first rectified and then converted to 60 Hz. The 

advantages of microturbine CHP are low noise and relatively low xNO  emission. 

Its disadvantages are low electricity efficiency and high initial cost. Micro turbine 

CHPs are suitable for taking a base-load of electricity, heating, and cooling 

because of their inflexibility in handling load changes. 

 

The Stirling engines are small-scale engines from 2 to 50 kW that are targeting 

the future residential CHP needs (Kreith and Goswami, 2007). The Stirling engine 

uses the Stirling cycle and is a reciprocating engine. However, unlike the internal-

combustion engine, the Stirling engine is an external-combustion engine. The 

combustion takes place outside the cylinder. The piston is driven by compression 

or expansion of working gases due to the alternating heating and cooling of the 

cylinder by the external heat source. The engine converts thermal energy to 
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mechanical energy and drives the generator. The Stirling engine can run on various 

fuels, both gas fuels and solid fuels, due to its external combustion. As it has been 

shown in Table 4.1.1 the advantages of Stirling engines are its quiet operation, 

little maintenance, and low xNO  emission. Its disadvantage is its relative lower 

electrical efficiency, typically 25-30%. 

4.1.3 PV Cell 

Photovoltaic cells (PV cells) produce direct current electricity from light. 

Photovoltaic systems are designed around the photovoltaic cells. Since a typical 

photovoltaic cell produces less than 3 watts at approximately 0.5 volt dc, cells must 

be connected in series-parallel configurations to produce enough power for high-

power applications. Figure 4.1.1 shows how cells are configured into modules, and 

how modules are connected as arrays. 

 
 
 

 
 
 

Figure 4.1.1  Several PV cells make a module and several modules make an array 
 

 
The actual power output from a PV cell depends on several factors including 

ambient temperature, operating voltage and current, wind speed, shadows and dirt. 

For calculating the output powers some literatures like Senjyu, et al.  (2007) and 

Bernal-Agustín, et al. (2010) have assumed that the output power is proportional to 

the hourly solar irradiation on the photovoltaic generator surface. The coefficient 

of proportionality is called efficiency, which depends on the above factors. Kolhe, 

et al. (2003) have derived the efficiency analytically and Yang, et al. (2009) have 
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considered the PV cell temperature, voltage and current directly to obtain output 

power. If the PV generator has a Maximum Power Point Tracking (MPPT) system, 

the efficiency is multiplied by the MPPT system efficiency (Yang, et al., 2009).  In 

this research the following equation is used to estimate the PV array power from 

the estimated average hourly beam and the diffuse irradiation on the tilted PV 

surface (NREL, 2008). 

 

)(
S

T
PVPVPV I

I
YfP                          (4-5) 

 

Here PVf  is the PV derating factor, PVY  is the PV array capacity, TI  is the global 

solar radiation incident on the PV array, and SI  is 1 kW/m2, which is the standard 

amount of radiation used to rate the capacity PVY  of PV modules. The PV derating 

factor accounts for losses/discrepancies between the rated and the actual 

performance of the PV array due to factors such as the soiling of the panels, 

operating temperature, wiring losses and shading. NREL (2008) recommends a 

derating factor of 90% in temperate climates, and between 70% and 80% in 

warmer climates. 

4.1.4 Electrolyzer 

Electrolysis of water is the decomposition of water molecules )OH( 2  into oxygen 

)O( 2  and hydrogen gas )H( 2  caused by an electric current being passed through 

the electrodes and water. One important use of the electrolysis of water is to 

produce hydrogen. The hydrogen can be stored and used in a fuel cell to produce 

electricity and it can also be used for fuelling of cars. 

All electrolysers consist of an anode and a cathode separated by an electrolyte. 

However, different electrolysers function in slightly different ways (HMGS, 2011). 

 
In a Proton Exchange Membrane (PEM) electrolyser the electrolyte is a solid 

plastic material. The water reacts at the anode to form oxygen and positively 

charged hydrogen ions (protons). These hydrogen ions migrate across the PEM to 
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the cathode, where they combine with electrons from the external circuit to form 

hydrogen gas. 

Anode Reaction:       eHOOH 442 22  

Cathode Reaction:    2244 HeH    
 

In Alkaline electrolysers the PEM is replaced with an alkaline solution 

(typically sodium or potassium hydroxide) that acts as the electrolyte. 

 

Solid oxide electrolysers use a solid ceramic material as the electrolyte. This 

selectively transmits negatively charged oxygen ions at elevated temperatures and 

therefore generates hydrogen in a slightly different way: 

 Water at the cathode combines with electrons from the external circuit to form 

hydrogen gas and negatively charged oxygen ions; 

 The oxygen ions pass through the membrane and react at the anode to form 

oxygen gas and give up the electrons to the external circuit. 

 

Table 4.1.2 shows the electrolyte, operating temperature and technology status for 

the above three types of electrolyzers. 

 

Table 4.1.2  Electrolyte, operating temperature and technology status of the 
electrolyzers (HMGS, 2011) 

 
 Electrolyte Temperature Technology Status 
PEM Solid plastic 80-100°C Pre-commercial - at a similar stage 

as hybrid vehicles. 
Alkaline KOH, NaOH 100-150°C Has been commercial for decades. 

A well mature technology that can 
be installed tomorrow - similar to 
the familiar ICE engine. 

Solid Oxides Solid ceramic 500-800°C Still under research 
 

 

A number of mathematical models for electrolyzers are available in the 

literature. Most of these models use empirical coefficients to describe the current-

voltage relationship for the electrochemical reactions occurring at the electrolyzer 

stack. In some cases the power draws of ancillary equipment are ignored. 

Empirical relationships are used to characterize the water consumption, auxiliary 
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power requirements, the efficiency of converting electrical power at the stack to 

hydrogen, and the oxygen production. 

The electrical conversion efficiency of the electrolyzer is defined as the energy 

content (based on higher heating value) of the hydrogen produced divided by the 

amount of electricity consumed (NREL, 2008). With this definition, electrolyzer 

efficiency can be expressed by the following equation: 

 

ely

hh
ely P

HHVm
22


     (4-6) 

 

Here elyP  is input power to the electrolyzer, 
2hm is mass flow rate of the produced 

hydrogen and 
2hHHV is higher heating value of hydrogen. The higher heating value 

of hydrogen is 142 MJ/kg, which is equal to 9.4 kWh/kg (NREL, 2008). 

Electrolyzer efficiency is a function of the power supply and the electrolyzer’s 

temperature, but in this research the working condition and then electrolyzer 

efficiency is considered to be a constant average value. With this assumption, the 

electrical power consumed by the electrolyzer can be derived from the equation: 

 

ely

hh
ely

HHVm
P


22


                              (4-7) 

4.1.5 Fuel Cell 

A fuel cell is an electrochemical cell that produces electricity from a fuel and 

consists of an anode, a cathode, and an electrolyte. The fuel (hydrogen) is fed to 

the anode and releases electrons and hydrogen ions (protons). The electrons are 

conducted to the cathode via an external circuit. The electron current can be 

utilized to generate electricity. The hydrogen protons move through the electrolyte 

material to the cathode. Oxygen or air passes through the cathode in the fuel cell, 

where oxygen is reacted with the hydrogen proton to form water and release heat. 

A typical fuel cell system consists of three parts: a fuel reformer section, a power 
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generation section, and a power conditioning section. The heat rejected from the 

fuel reformer and the power generation section can be recovered and used to drive 

absorption chillers and heat exchangers to supply hot water and chilled water for 

building air conditioning systems. 

 

 The fuel cell technologies can be classified as Polymer Electrolyte Membrane  

Fuel Cell (PEMFC), Alkaline Fuel Cell (AFC), Phosphoric Acid Fuel Cell (PAFC), 

Solid Oxide Fuel Cell (SOFC), and Molten Carbonate Fuel Cell (MCFC), 

according to their types of electrolyte (EEA, 2008). Characteristics of major fuel 

cell types are shown in Table 4.1.3. Although solid oxide fuel cells have been used 

recently in residential applications, PEM fuel cells seem to be the most suitable for 

residential applications and are the type used in most of the building energy 

systems currently under development. This is largely due to their relatively low 

operating temperatures (under 100° C; 212° F) and favourable price (EEA, 2008). 

 

Table 4.1.3  Characteristic of major fuel cell types (EEA, 2008) 
 

 

 

 The advantages of fuel cell technology are its high electrical efficiency, which 

can be as high as 45% - 55 %, and low emission. Fuel cells are applicable for 

various purposes, based on the operating temperature levels of the cell. The major 

disadvantage of a fuel cell is the high price.  
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A number of system-level PEMFC models are available in the literature. 

However, many of these focus upon the electrochemical reactions occurring within 

the stack and neglect the power draws of ancillary devices such as pumps, fans, 

and controls. In contrast, the lumped parameter model has been derived to facilitate 

calibration and considers the performance of the coherent unit (Beausoleil-

Morrison, et al., 2006). The unit’s steady-state electrical and thermal output is 

characterized by empirical correlations in response to 2H  consumption, cooling 

water temperature and flow rate. 

 

The heat and power produced by a fuel cell stack are calculated from the 

electrical and thermal efficiencies.  

The electrical and thermal efficiencies of fuel cell are defined based on the 

lower heating value (LHV) of hydrogen (NREL, 2008). The electrical efficiency of 

the fuel cell  is defined as the electrical power generated divided by the amount of 

hydrogen consumed : 

                      
22 hh

fce
fce LHVm

P


         (4-8) 

 

Here fce  is the fuel cell’s electrical conversion efficiency, 
2hm is mass flow rate of 

the consumed hydrogen and 
2hLHV is lower heating value of hydrogen. The lower 

heating value of hydrogen is 120 MJ/kg, which is equal to 33.3 kWh/kg  (NREL, 

2008). Fuel cell efficiency is a function of the power output and fuel cell’s 

temperature, but in this research the working condition and then the fuel cell’s 

efficiency is considered to be a constant average value. With this assumption the 

electrical power output from the fuel cell can be derived from the equation: 

 

                       
22 hhfcefce LHVmP                 (4-9) 

Similarly, the thermal efficiency of the fuel cell is defined as the heating power 

output divided by the amount of hydrogen consumed: 
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22 hh

fch
fch LHVm

P


                                      (4-10) 

 

Here fch  is the fuel cell’s thermal conversion efficiency. The other variables are 

the same as expressed above. The electrical power output from the fuel cell  can be 

derived from the equation: 

 

22 hhfchfch LHVmP                 (4-11) 

4.1.6 Diesel generator 

The conventional diesel generator normally consists of an internal combustion 

engine, directly coupled to a synchronous generator. A diesel engine converts the 

chemical energy of the fuel into mechanical energy, which rotates the generator. In 

the generator, mechanical energy is converted to electrical energy.  

 

The fuel of the engine is normally diesel fuel, but other kind of fuels such as 

gas, biogas, and hydrogen can be used in the engine. 

 
Skarstein and Uhlen (1989) proposed a linear equation for the diesel generator’s  

fuel consumption: 

 

dslio PFFF                             (4-12) 

 
Here F (litres/h) is the diesel generator fuel consumption and dslP  (kW) is the 

diesel generator output power. iF  is a constant and equal to 246.0 (litres/kWh). 

oF  is proportional to the rated power of the diesel generator )( dslrP : 

 

                     dslro PBF                                             (4-13) 

 
 
Here B  is equal to 0.08415 (litres/kWh). 
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4.2 Energy storage devices 

Energy storage in the building integrated energy system includes electrical energy 

storage, hydrogen storage, heat storage and cool storage. Storage of each type of 

energy can be based on different technologies. The selection and sizing of the 

energy storage devices is out of the scope of this research. Some of the 

technologies that are used in the applications in Chapter 6, including the battery, 

the hot water tank and the hydrogen tank will be modelled in the following 

sections. Cooling energy storage, which is used in chilled water systems in order to 

use cheap night-time electricity, is presented in Appendix B. 

4.2.1 Battery  

Extra electricity generated in the building energy system from renewables and 

CHP, and also electricity from the grid (when it is cheaper), can be stored in the 

building energy system in different ways. Battery (normally a lead-acid battery), 

the ultracapacitor and the flywheel are used for short term electricity storage. For 

long term storage of electricity, electricity is used for hydrogen production and 

then the hydrogen is compressed and stored in cylinders. The stored hydrogen can 

be converted to electricity by a fuel cell. In the following, the battery energy 

storage model is derived. 

 

The battery is a device that stores electrical energy in electrochemical form. 

There are different type of battery on the market including lead-acid, Lithium-Ion, 

and Nickel–Cadmium. Lead-acid batteries are normally used in buildings and 

stationary applications. 

 

Different mathematical modelling of batteries has been reported in many 

studies. Among them, the KiBaM model (Manwell and McGowan, 1993) and the 

Ampere-hour (Ah) model (like Diaf, et al., 2007 and Ai, et al., 2003) are mostly 

used. In this research the ampere-hour model is used. In this model, the energy 

stored in the battery in time step )( tt   is determined by the following equation: 
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tePtEttE batbatbat  )1)(()(                   (4-14) 

 
Here batE  is the energy stored in the battery,   is the self discharge rate of the 

battery, batP  is the power charged to the battery )0( batP  or discharged from the 

battery )0( batP and e  is calculated from the following equations: 
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Here the chbat ,  and dchbat ,  are battery charging and discharging efficiency 

respectively. 

 

The maximum charging power of the battery depends on the energy stored in 

the battery. In this research, the maximum charging power recommended by the 

battery manufacturer will be used. 

 

Sometimes the stored energy of the battery is expressed by state of charge (SOC) 

value. The state of charge of the battery is the ratio (often expressed in %) between the 

currently stored amount of electricity batQ  and the battery capacity: 

 

max,bat

bat
bat Q

Q
SOC               (4-16) 

 
Here max,batQ (Ah)  is the battery capacity, the maximal charge which can be reversibly 

extracted from the battery. 

4.2.2 Hot water tank  

Thermal energy can be stored as a sensible heat, latent heat and chemical reaction 

(adsorption). For sensible heat storage, normally the media is water and a hot water 

tank is used. The hot water tank can be modelled as a fully-mixed tank and fully-

stratified tank (TRNSYS). Thermal performance of a real hot water tank is 

between these two ideal models. 
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 The fully-mixed hot water tank model is used in this research. In this model, 

the entire liquid in the tank is assumed to have a uniform temperature which 

changes with time as a result of the net energy addition or withdrawal during the 

charge or discharge processes, or due to heat loss to the surrounding. The energy 

balance for the tank can be written as:  

 

tPttPtEttE hlosshhh  )()()(              (4-17) 

 

Here )(tEh  and )( ttEh   are the energy stored in the tank at the end of time 

steps t  and tt   respectively, )(tPh  is the thermal power charged to or 

discharged from the tank at the end of time step t , hlossP is the heat loss rate form 

the tank and t  is the time step length.  

4.2.3 Hydrogen tank 

Hydrogen produced by the electrolyser should be stored for later use in the fuel 

cell, or for fuelling of hybrid vehicles and etc. The mass of hydrogen stored in the 

tank is calculated by:  

 

tmmtMttM outhinhhh  )()()(
2222

             (4-18) 

 

Hydrogen can be stored in tanks as compressed gas or cryogenic liquid, in solids 

(metal hydrides, carbon materials) and in liquid 2H  carriers (methanol, ammonia). 

Compressed gas storage is common in a large scale stationary application. 

 
If a high pressure electrolyzer is used, the outlet hydrogen could be directly 

stored  in the tank, otherwise a compressor is needed to compress the hydrogen. In 

addition, the fuelling of vehicles by hydrogen requires higher pressure than the 

hydrogen storage tank and normally a separate compressor is used for this purpose. 

Reciprocating compressors or centrifugal compressors are used for hydrogen 

compression. The power consumption of a compressor depends on the pressure 
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ratio (between the outlet and inlet of compressor) so with a high pressure 

electrolyzer this power can be reduced. 

 
The power consumption of the compressor is derived from: 

 

2hc VSECP                                            (4-19) 
 
Here SEC  is the specific energy consumption of the compressor between the 

electrolyzer and the 2H  storage tanks (Korpas and Holen, 2006). It is assumed that 

using an average value for SEC  is sufficient, since compressed hydrogen will only 

require 5%-10% of the total energy consumption of the hydrogen production 

process. 

4.3 Conclusions 

In this chapter the mathematical models of several energy converter and energy 

storage devices were described. These models are steady state and linear models, 

and these have been used in the modelling of the energy systems in Chapters 5 and 

6. The renewable energy and conventional converters can be used for electricity, 

heating and cooling generation. The need for the electricity for lighting and 

electrical appliances is common between all buildings. But the heating and cooling 

of the buildings depends on the climatic conditions. In some climates only heating 

or only cooling are required, and in some climates both heating and cooling are 

required. For heat storage, using hot water tanks is common but other kinds of heat 

storage devices like phase change material can be used. For electricity storage in 

buildings, the lead acid battery and hydrogen are more suitable. Due to the higher 

round trip efficiency of batteries they are used for short term storage (one or two 

days) and hydrogen is used for seasonal electricity storage. 



  90 

 
 
 

Chapter 5                     

Supervisory controller design 

In this chapter two methods are used for building the energy system modelling and 

Model Predictive Controller (MPC) design. The first method is based on the multi-

period optimization and the second method is based on hybrid model predictive 

control. The designed controller in the second method can work in implicit or 

explicit form. In the explicit form inputs are obtained by searching a look up table, 

therefore an online optimization is not required. In each method, initially the 

building energy system model is derived and then the controller is designed. These 

methods are used to develop and validate the supervisory controller (Chapter 6).   

 

The models of the building energy system include multiple energy carrier flows 

from the grid to the system, renewable energies generated on site, energy 

conversion, energy storage and multiple energy carrier flows from the system to 

the building and possibly from the system to the grid. The energy converter models 

used here are steady-state linear models, since the considered time steps are large 

enough that the dynamics and transient behaviour of the energy converter during 

the time step are neglected.  

 

The controller can be designed based on a cost, primary energy or emission 

objective function but, as it was discussed in Chapter 1, the main aim of the 

controller is to reduce the cost or the 2CO  emission.  

 

The designed controllers are deterministic controllers, so that renewable 

energies and building loads are completely predictable. Usually to account for 
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uncertainty in the predicted values stochastic controllers could be used, however 

this is out of the scope of this research.  

5.1 Concept of supervisory controller  

It was explained in Section 2.2 that due to the weather conditions, most of the 

renewable energies are intermittent. So the extra energy from these renewable 

sources should be stored and used at a later time when the renewable sources are 

not available.  

 

In addition, in a multiple energy converter, since the demands for output 

energies are different, operation set point of the equipment should be determined. 

For example, in cogeneration systems normally the output heat to power ratio is 

not the same as the heat to power ratio of the building. 

 

Different energy carriers which are bought from the grids can have different 

prices at different time of day. For example electricity is cheaper at night. So the 

energy converters that use electricity for conversion, can use cheaper electricity at 

night-time and store the converted energy for the next day time. Examples of these 

kind of converters are the heat pump and the vapour compression chiller. 

 

In a building energy system each of the subsystems that was explained in 

Chapter 4 has its own local control. The supervisory controller determines the 

operation set points of these local controllers. If a time period is divided into time 

steps, according to the above reasons, at each time step the duty of the supervisory 

controller is to determine: 

 

 How much energy should be charged or discharged from the energy storage 

device 

 Which ones of the low carbon and conventional energy converters should be 

operated and the appropriate output capacity of the converters 

 How much energy should be imported from or exported to the grid 
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For this purpose at each time step, the supervisory controller measures the 

current states of the system, and based on a specific objective function, the model 

of the energy system and its constraints, an optimization problem is solved inside 

the controller and the optimal control sequence for the next finite number of time 

steps are determined. The concept of the supervisory controller is  shown  in  

Figure 5.1.1. 

 

 

 

Figure 5.1.1  Concept of supervisory controller 
 

 

Since the behaviour of the building energy system cannot be exactly predicted 

by the system’s model, and considering the uncertainties in forecasted profiles of 

the renewable energies and building loads, from the calculated sequence of control 

inputs only the first time step’s inputs are applied to the system. The rest of the 

control inputs sequence is disregarded. The system then moves to the next time 

step with evolved states. Based on the new system measurements and updated 

forecasts, the whole procedure is repeated and a new control inputs sequence is 

determined. This procedure is repeated in the next time steps. 

 

Supervisory Controller 

Multi Period Optimization or 
Model Predictive Control 

 Objective Function 
 Model of the Energy System 
 Constraints 

Inputs Measurements 

Building Energy System

 Forecasted values of 
renewable energies and 
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 Unit price of energy 
carriers 
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5.2 Receding horizon multi-period optimization approach 

In this approach, a generic model for the system’s elements are first derived. Then 

these models are integrated into the energy buses’ model to obtain the whole 

energy system model. Finally the system model is used for controller design. 

5.2.1 Modelling of the energy system 

Combined modelling and analysis of energy systems including multiple energy 

carriers have been studied widely by a research team of the Power Systems and 

High Voltage Laboratories at the ETH Zurich in the framework of a project named 

Vision of future energy networks (Favre-Perrod, 2005). The key approach in this 

project is the so-called energy hub (Geidl, et al., 2007b). An energy hub is 

considered to be a unit where multiple energy carriers can be converted, 

conditioned, and stored.   

 
Regarding the dispatch factors that have been used in the energy hub model, this 

model is a nonlinear mathematical model (Geidl and Andersson, 2007a). So when 

the model is used for the controller design, the associated optimization problem is a 

nonlinear and non-convex problem. In nonlinear and non-convex optimization 

problems, there is uncertainty in finding a global optima (Sweeney, et al., 2009). In 

addition, solving nonlinear problems is normally difficult and time consuming, 

which puts a limitation on the online application of the controller. 

 

 In this section a linear mathematical model for the building energy system is 

derived.  

 

The following definitions and notations will be used in the development of the 

mathematical model of the system, which some of them are based on the research 

carried out by Geidl and Andersson (2007a). 

 

A set of energy carriers which are entered/exited from the system are considered 

whose members are denoted by: 
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..}hydrogen,. gas, natural y,electricit{},...,,,{   

 

For each energy carrier, an energy bus B  is considered, to which all the related 

system elements are connected:  

 

},...,,,{  BBBBB  

 

The building energy system has a set of  conN  numbers of energy converters. Each 

converter C belongs to this set: 

 

},...,...,,{ 21 conNi CCCCC   

 

From each energy bus B  the power that goes to the energy converter is denoted 

by cP , and the power that comes from the converter to the energy bus is denoted 

by cQ . 

 

For each energy bus the power that is delivered from the grid is denoted by dP .  

 

For each energy bus the renewable energy power of the same types can be entered. 

These energies are denoted by R  and their number is renN : 

 

},...,,...,,{ 21  renNi RRRRR   

 

From each energy bus the energy that goes to supply the corresponding building 

load is shown by lP   and the power that is exported to the grid is shown by xP . 

 

For each energy bus charging/discharging power to/from the storage devices is 

shown by sP and the amount of stored energy and storage rate (power) are shown 

by E  and E  respectively. 
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5.2.1.1 Energy converter model 

In the following sections a generic model for energy converters is developed. First 

a converter with single input and single output is modelled. Then the model is 

generalized for multiple inputs and multiple outputs converters.  

5.2.1.2 Single input and single output converter 

A single input, single output converter iC  that converts an energy type   to 

another energy type   is shown in Figure 5.2.1. Steady state power input and 

power output are indicated by ciP   and  ciQ  respectively. If the conversion 

efficiency of the converter is denoted by  , the equation between the input and 

output powers is: 

 

ci
c

ci PQ i
       (5-1) 

 

 

 

 

Figure 5.2.1  Converter with single input and output 
 

 

As it was stated in Chapter 4, the efficiency of the converter devices are not 

constant and depend on the input power: 

 
)( ci

c pfi
                                     (5-2) 

 

So, in general, the equation (5-1) is a non linear equation. In this research, an 

average constant efficiency for the converters will be considered; hence the 

equation (5-1) is a linear equation. 

ciP ciQ  Converter Ci  
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5.2.1.3 Multiple inputs and multiple output converter 

A multiple input, multiple output converter system is shown in Figure 5.2.2. An 

example for this type of converter is a combined heat and power (CHP) unit. In this 

converter natural gas is normally the input energy carrier and the output energies 

are electricity and heat. 

 

 

Figure 5.2.2  Converter with inputs  PPP ,...,, and outputs  QQQ ,...,, . 

 

Similar to equation (5-1), the relation between all inputs and all outputs can be 

shown by the following matrix equation: 
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In matrix notation form the above equation can be written as: 

 

ΨPQ       (5-4) 

 

Here Q , P  and Ψ  are the output power vector, the input power vector and the 

conversion efficiency matrix respectively. 

 

 

 

Converter
       Ci 
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ciP  
ciQ  
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Remark 1 

 

For the converters that were modelled in Section 4.1, in addition to the input 

power to the converter for the main process, some power is normally needed for 

the lateral devices inside the converter like the pumps, the control panel and so on. 

This power is called ancillary or parasitic power and can be considered in the 

model as energy input with zero output efficiency in the time steps that the energy 

converter status is on. For simplicity the parasitic power is ignored in the small 

capacities. 

 

 Remark 2 

 

Some thermal equipment like high temperature hot water boilers, steam boilers, 

combined heat and power units, diesel generators and high temperature fuel cells, 

especially in large capacities, need to remain on for a minimum number of hours 

after they started being on. This period is sometimes called the warm up time. 

During this period the equipment consumes fuel at warm up rate, while the output 

power from the equipment is zero. In addition, this type of equipment cannot be 

started again immediately after shutdown. They need some time to stay in 

shutdown mode, before they can restart again. These conditions can be 

mathematically modelled, but are not considered in this research. 

 

Remark 3 
 

The diesel generator equation (4-12) shows that the input fuel is the sum of a 

constant value and a value that is proportional to the output power from the diesel 

generator. So we use the following model for the fuel consumption:  

 

)()()( tPFtFtF dslio                         (5-5) 

 

Here )(t  is a binary variable for each time step that indicates the on status of the 

diesel generator. 
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Interface

Renewable
Energy 

 
R

rP

B  

Remark 4 

 

 If the input/output powers of the converter are connected to the energy buses  

through a power conditioner(s), the efficiency of the converter will be multiplied 

by the efficiency(s) of the interface(s).  

5.2.1.4 Renewable energy 

A general model for a renewable energy source is shown in Figure 5.2.3. The 

renewable energy is considered to be connected to the related energy bus through 

an interface.  

 

 

Figure 5.2.3  Model of a renewable energy device. 
 

Through the interface, power may be conditioned and/or converted into another 

energy carrier (for example from AC to DC ). In addition the interface may include 

a Maximum Power Point Tracking (MPPT) system for the PV panel and wind 

turbine generators. In the interface, some of the energy is lost due to the efficiency. 

If we denote the interface efficiency by r , the power delivered to the bus is: 

 

 RrP r                 (5-6) 

 

Here R   is the generated power from the renewables, as described in Chapter 4. 
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5.2.1.5 Energy Storage 

The energy storage device can store energy in one time step and deliver it in other 

time steps. The amount of energy that is stored in the energy storage device is not 

equal to the amount of energy that is obtained from it. These losses are due to the 

physical or chemical processes that take place during the charging and discharging 

of energy. An energy storage device is shown in Figure 5.2.4. If the charging 

efficiency is denoted by ch  the amount of energy that is added to the storage in a 

time step t  is:   

 

dtPttEtE s

t

tt ch   
 )()(              (5-7) 

 

 

 

 

 

 

 

 

 

Figure 5.2.4  Model of an energy storage device 
 
 

In the discharging case if the discharging efficiency is denoted by dch , the 

amount of stored energy reduction inside the storage device is: 

                 . 

dtPttEtE s

t

tt
dch




  


1
)()(               (5-8) 

 

The charging and discharging is a dynamic process and the efficiencies depend 

on the current energy stored level in the device, E , and the rate of charging or 

discharging, sP . In this study a steady state storage process is assumed, and 

Storage

E

sP

B  



Chapter 5 Supervisory controller design                                                                100 
 

    

average constant values for the charging and discharging efficiencies are used. 

With this assumption the change of the energy level in the storage device is: 

   

tPettEtE s  )()(                     (5-9) 

 

where : 

 

 

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
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                       ng)(dischargi                                         0    1

               standby)(charging/                               0  if      

sdch

sch

P

P
e




 


 (5-10) 

 

Remark 1 

 

If the storage device is connected to the energy bus through an interface the 

charging and discharging efficiencies should be multiplied by the interface 

efficiencies in the charging and discharging directions respectively. An example 

for this interface is the charge controller for connecting a lead acid battery to a DC 

electricity bus. 

5.2.1.6 Energy bus model 

A general energy bus is shown in Figure 5.2.5.  In this figure 


conN

i
ciP

1
 represents the 

sum of all power flows from the energy bus B to the different energy converters 

and  
 






conN

i
ciQ

1

  is the sum of all power flows from different energy converters, 

that convert any type of energy   to the energy type of , to the energy bus B . 

For this energy bus the energy balance is: 
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renconcon
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
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        (5-11) 
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Figure 5.2.5  Energy bus inputs and outputs 
 
 

By substitution of the different elements from equations (5-3), (5-6) and (5-9) in 

the equation (5-11) we have:  
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(5-12) 

 

Equation (5-12) is a general equation for an energy bus in the system. For  

modelling of the whole energy system this equation is written for each energy bus. 

In matrix form the equation is: 

 

xlccd PPRPPEP  
 

i

N

i

N

i

N

i

rencon
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111





             (5-13) 

 

Here   and   are the storage efficiency and renewable energies conversion 

matrices. 

 

Remark 1 

 

 If we assume that the time step is one hour and the power unit is kWh then the 

equation (5-12)  is written as: 


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                                                                                                             (5-14) 
 
 
Example: 
  
In the energy system shown in Figure 5.2.6 there are four energy buses namely 

electricity, natural gas, hot water and hydrogen buses. A PV panel is connected to 

the electricity bus. A combined heat and power unit (CHP), a boiler, an 

electrolyzer  and a fuel cell are the energy converters. Energy can be stored in hot 

water and hydrogen storage tanks in the system. Electricity supplies the electrical 

load of the building, and surplus electricity is converted to hydrogen in the 

electrolyzer.  

 

 
Figure 5.2.6  An example of energy system 

 
 

Natural gas can be converted to the electricity and heat (hot water) in the CHP 

unit. In the auxiliary boiler, natural gas is used to prepare hot water. Hot water 

from the CHP and the boiler supply the heating load of the building including the 
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space heating load and the domestic hot water demand. Hydrogen can be converted 

to electricity in the fuel cell, or it can be used for refuelling a hydrogen car. 

 
Equation (5-12) for each of the energy buses is: 

 
 
For the electricity bus:  
 

0)()()]()([)(0)( ,,, 22
 tPtRrtPtPtPtP elpvpvfch
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geelyede   
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For the gas bus:  
 

0)(00)()(0)( ,,  tPtPtPtP lgbgchpgdg  

 
)()()()( ,, tPtPtPtP lgbgchpgdg   

 
For the hot water bus:  
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For the hydrogen bus:  
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5.2.2 Control problem formulation 

The optimal supervisory controller works based on constrained optimization 

techniques. A constrained optimization problem has one or multiple objective 

functions and a set of constraints (Section 2.4). In controlling an energy system, 
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several objective functions can be regarded. In this research three types of 

objective function are explained, which are minimized by the optimization for 

control purposes: the economic objective function, the emission objective function 

and the primary energy objective function.  

 

Due to the linear model of the system components, the optimization problem is 

a Mixed Integer Linear Problem (MILP) (Section 2.4.4). The integer (binary) 

variables are associated with start/stop or charge/discharge modes of the operation 

of the system components. In addition, the occurrence of events in the system is 

linked by integer (binary) variables; for example, reaching a maximum output of a 

CHP unit is linked to the sequential operation of auxiliary boiler. The results of the 

optimization are the optimal power flows and optimal energy storage levels in the 

system in time steps. 

 

In the online operation the controller works according to the receding horizon 

strategy. At each time step k, the controller initially evaluates the current states of 

the system. Then it calculates the optimal power flows in the system for the next 

N-1 time steps. Only the control variables computed for the first time step are then 

applied to the system and the remaining are disregarded. The system then transfers 

to the next time step (k+1), after which the cycle is repeated.  

5.2.2.1 Economic objective function 

The economic objective function is the total sum of running costs and profits. The 

running costs include the energy carriers’ costs, the operation and maintenance 

(O&M) costs and the replacement cost. 

 

The energy carrier costs depend on the various energy suppliers charging 

tariffs. In the UK the main six energy suppliers (British Gas, EDF, E.on, NPower, 

Scottish Power and SSE) have different tariffs for electricity and gas. Generally a 

household is charged one level (unit 1 price) until they reach a pre-specified 

consumption level (split level), and then the rate switches to a lower level (unit 2 

price). However, some tariffs have a fixed daily rate instead which must be paid 

regardless of how much energy is consumed (standing charge). An electricity tariff 
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may also consider different prices for night and day times. Table A.3 in Appendix 

A shows the prices of electricity and gas in the UK which have been used in this 

research. 

 
There are different tariffs for the district heating price. Normally the price 

includes a fixed part which is depend on the heating power required by the 

consumer and a varying part which is dependent on consumption in various months 

of the year. The district heating price is given to the supervisory controller 

according to the contract between the supplier and the consumer. 

 
 

The operation and maintenance (O&M) costs and the replacement costs of the 

equipment depend on the number of hours that the equipment are in operation. The 

hourly O&M cost can be obtained from the manufacturer’s specification. The 

hourly replacement cost is equal to the replacement cost divided by the lifetime of 

the equipment. 

 

The power from the renewable energy generators is free. The maintenance cost 

of these generators is low, and it is neglected in this research. The replacement cost 

is normally constant and is independent of the operation of the generator, so it can 

be omitted from the economical objective function.   

 

The profits are the revenue obtained from selling off the energy to the grid. In 

small applications only electricity can be sold to the grid. The price of the exported 

electricity is determined based on the contract.   

 

Considering the above costs and profits, the objective function that should be 

minimized is the sum of the costs minus the profits in N time periods: 
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            (5-15) 

 

Here dC and xC are the unit price of energy carrier bought from the grid and the 

unit price of  the energy sold to the grid respectively. MOC &  , repC  and LT  are the 
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hourly O&M cost, the replacement cost and the lifetime (hours) of the energy 

converter respectively. 

 
Remark 1 
 

The O&M and replacement costs are normally small in comparison with the 

energy consumption cost, so for simplicity they are omitted: 
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Remark 2  
 

According to the feed-in tariff and the renewable heat incentive, there are 

payments for the consumption of electricity and heat which are generated by 

microgeneration and renewable sources,  which should be considered in equation 

5-15 as profits.  

 
Remark 3 
 

The replacement cost of the energy storage device is normally very small in 

comparison with the other costs, except in the case of electricity storage by battery. 

If there is a battery in the energy system, its wear cost should be added to the 

economic objective function. 

 

The battery life depends on the number of charging-discharging cycles and how 

deeply the battery is discharged.  

 

Assume that during the lifetime of a battery a fixed amount of energy can be 

cycled through the battery before it needs replacing. This amount of energy is 

called “lifetime throughput” in NREL (2008). The battery wear cost bwC  (£/kWh) 

is the degradation cost that is caused by the cycling of a unit energy through the 

battery and can be calculated as: 
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Here batrepC ,   is the replacement cost of the battery bank, (£), batN  is the number of 

batteries in the bank and  rt  is the battery roundtrip efficiency (fractional). lifetimeQ  

is the lifetime throughput of a single battery, (kWh), and is calculated by 

converting the maximum capacity of the battery from Ah to kWh and multiplying 

it by the depth of discharge and the number of cycles to failure (NREL, 2008):  

 


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
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1000100
max, nombati

ilifetime

VQd
fQ                          (5-18) 

 
Here if  is the number of cycles to failure, id  is the depth of discharge, (%),  

max,batQ  is  the maximum capacity of the battery, (Ah) and  nomV   is the nominal 

voltage of the battery, (V). 

5.2.2.2 Emission objective function 

The emission objective function is the sum of 2CO  emissions related to the 

different energy carrier consumption. The emission of 2CO  for each energy carrier 

is determined by the multiplication of the energy consumption by the emission 

coefficient. In the case of onsite energy production and exportation to the outside 

of the site, the equivalent emission should be subtracted.  
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tPKtPKJ
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t
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
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
                            (5-19) 

 
Here dK  and  xK  are the 2CO  emission  factors for delivered and exported 

energy of type   respectively. These coefficients are not necessarily the same. The 

emission factor of some fuels are shown in Table A.3 in Appendix A. For the net 

electricity exported to the grid the factor is that  for  grid-displaced  electricity 

(SAP 2009). 

5.2.2.3 Primary energy objective function 

Primary energy is the energy from natural resources such as coal, crude oil, natural 

gas, uranium, sunlight and wind which has not yet undergone any  conversion and 
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transmission to the end user (building). Primary energy is subdivided into 

renewable/non renewable or into fossil/non-fossil primary energy. 

 

Primary energy is converted in the power plants to electricity and transmitted by 

power lines. Natural gas is pressurized by a compressor and transmitted in pipe 

lines. The amount of end used energy can be converted to the equivalent primary 

energy by multiplying by the primary energy factor. This factor is ratio of input 

primary energy to the delivered energy to the end user (SAP 2009). The primary 

energy factor for electricity is dependent on the type of electricity generation in 

each country. If transmission losses, or the energy required for transmission is 

considered, the boundary of the system (buses) will be extended to the power 

plants or terminals and we should add the equivalent primary energy of the 

transmission as well. In case of onsite energy production and exportation to the 

outside of the site, the related primary energy equivalent should be subtracted.  

 
The primary objective function can be written as: 
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xxdd


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


                       (5-20) 

Here df   and  xf   are the primary energy factors for delivered and exported 

energy of type   respectively. These coefficients are not necessarily the same. For 

example in the case of electricity, the exported electricity may be considered to be 

in competition against other new (high efficiency) electricity plants and/or may be 

considered as saving off-peak load rather than base load, while the delivered 

electricity in most countries is regarded as the national mix of existing plants that 

deliver to the grid. Primary energy factors of the UK’s energy sources are shown in  

Table A.3 in Appendix A.  

5.2.2.4 Constraints 

The equality constraint of the optimization problem is the energy balance for each 

energy bus as described by equation (5-13). 
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The inequality constraints are the upper ( ) and lower ( ) limit of the power 

flows and storage levels: 

 
                                   ddd PPP                          (5-21a) 

                                   xxx PPP                          (5-21b)                  

                                   
iii ccc PPP                        (5-21c) 

                                   EEE                              (5-21d) 

                                   EEE                             (5-21e) 

5.3 Hybrid Model Predictive Control (MPC) approach  

 In this approach, a general model for the hybrid dynamic system is initially 

explained. Then a Constrained Finite-Time Optimal Control (CFTOC) problem is 

described in order to find the optimal input sequence, which minimizes the 

performance criteria and satisfies the constraints. The CFTOC problem is solved in 

each time step and the controller works in a receding horizon manner. 

5.3.1 Modelling of renewable and low carbon energy system 

In hybrid dynamic system approach the building renewable energy system is 

described by a combination of Linear Time Invariant (LTI) differential and 

algebraic equations. In this section a state space model for the building integrated 

renewable and low carbon energy system is considered. 

 

In the building integrated energy system usually continuous and discrete 

dynamics exists together. For example the charging and discharging of a battery is 

a continuous dynamic but switching between charging and discharging modes is a 

discrete event. For this reason the state space model is extended to the hybrid 

dynamic model. 
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5.3.1.1 State Space Model 

The behaviour of continuous dynamic systems can be described by the following 

state space equations: 

 

))(),(()( tutxftx                             (5-22) 

                                     ))(),(()( tutxgty   

 

For the linear time invariant systems the above equations can written as: 

 

 )()()( tButAxtx                             (5-23) 

        )()()( tDutCxty   

 
For the model predictive control, the system equations are often used in the 

discretized form: 

 

)()()1( kBukAxkx                         (5-24) 

                              )()()( kDukCxky   

 

In the building energy system the inputs are the operation set points of  the 

energy converters and the charging/discharging power of the energy storage 

devices. The states are the energy stored, and the outputs are the building’s loads. 

5.3.1.2 Hybrid Dynamic Model 

Hybrid dynamic systems are systems consisting of continuous-time and discrete-

event components that interact with each other. In the model of hybrid dynamic 

systems the continuous-time component is related with physical first principles and 

the discrete-event component with logic devices, such as switches, mode selectors 

and digital circuitry. 

 

Discrete Hybrid Automata (DHA) (Torrisi and Bemporad, 2004) is one of the 

general modelling formats for hybrid systems. In DHA a finite state machine and a 
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switched linear dynamic system are interconnected through a mode selector and an 

event generator, Figure 5.3.1. 

 

 

 

Figure 5.3.1  A discrete hybrid automaton (DHA) (Torrisi and Bemporad, 2004) 
 

A switched affine system (SAS) is a collection of linear affine systems:  

 

)()()( )()()1( kirkirkir fkuBkxAkx 
                    (5-25) 

                   )()()( )()()( kirkirkir gkuDkxCky 
 

 

An event generator (EG) is an object that generates a logic signal according to 

the satisfaction of a linear affine constraint of states and inputs: 

 

)),(),(()( kkukxfk rrHe                                         (5-26) 

 

A finite state machine (FSM), which is also called an automaton, is a discrete 

dynamic process, where the logical states evolve based on a logical state update 

function: 

 

))(),(),(()1( kkukxfkx ebbBb                              (5-27) 
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A FSM can also have an associated Boolean output: 

 

)(),(),(()( kkukxgky ebbBb                                        (5-28) 

 

The mode selector (MS) selects the dynamic mode )(ki  of the SAS according to 

a Boolean function consisting of the logic state )(kxb , the Boolean inputs )(kub , 

and the events )(ke . The output of this function: 

 

))(),(),(()( kkukxfki ebbM                                            (5-29) 

 

is called the active mode. 

 

Analysis and control design based on the DHA model often results in 

computationally complex and difficult problems. Therefore the DHA models are 

transferred to two special hybrid formats. These formats are Piecewise Affine and 

Mixed Logical Dynamic system formats. 

 

Piecewise Affine (PWA) systems (Sontag, 1981) are defined by partitioning the 

state space into polyhedral regions. In each region, the system is associated with a 

distinct linear affine state-update equation: 

 

)()()( )()()1( kikiki fkuBkxAkx 
                            (5-30) 

                  )()()( )()()( kikiki gkuDkxCky   

                  )(ki  such that  )()()( )()( kikiki KkuJkxH   

 

Here )()()( )()( kikiki KkuJkxH   is a polyhedral partition. 

 

The discrete part of hybrid systems is considered as logical statements. The 

logical statements can be transformed into mixed integer linear non equalities. The 

combination of these linear non equalities and LTI state space equations can be 
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described by the following equalities and non equalities, and this is called the 

Mixed Logical Dynamic (MLD) format (Bemporad and Morari, 1999): 

 
)()()()()1( 321 kzBkBkuBkAxkx                  (5-31a)        

)()()()()( 321 kzDkDkuDkCxky                 (5-31b) 

                   54132 )()()()( EkxEkuEkzEkE                (5-31c)           
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






    is the input vector, rcrkz R)(      and       

b1}{0,)( rk   are auxiliary variables, A  , iB   , C   , iD   , and   iE  

denotes real constant matrices,  5E  is a real vector,  0cn   and  cp , 

cm , cr  , bn , bp , bm , 0br . 

5.3.2 Hybrid MPC design 

Model predictive control theory (Section 2.3.5) can be used to control hybrid 

systems (Bemporad and Morari, 1999). In this case, controller tries the output )(ty  

to track a reference output signal ry . The corresponding references for the state, 

input, and auxiliary variables are denoted by rrr zux ,,  respectively. The current 

time step is represented by t , and  the current state is represented by )(tx . The 

following CFTOC problem is defined: 
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Here N  is the optimal control interval, )( tkx   is the state predicted at time kt   

resulting from input u  to the system (5-31) starting from the initial state 

)()0( txtx  . minu , maxu , miny , maxy  and minx  , maxx are hard bounds on the inputs, 

outputs, and states respectively, and }:{ xx TxSx   is the final target polyhedral 

subset of the state space nR . xNQ , xQ , uQ , zQ  and yQ  are weighting matrices. 

For the control of the building integrated renewable and low carbon energy system 

uQ  is determined by fuel costs or emission factors (Sections 5.2.2.1 and 5.2.2.2), 

and other weighting matrices are determined by appropriate penalty values. N is 

predictions horizon and p  is norm, that can be 2, 1 or infinity.   

 

It is assumed that for the current time 0k  and the initial state of the building 

integrated renewable and low carbon energy system, )()0( txtx  , the optimal 

solution )}1(,),0(),1(,),0(),1(,),0({ ******  NzzNNuu tttttt    exists. 

According to the receding horizon idea, the first series of inputs are applied to the 

system: 

 
               )0()( *

tutu                                      (5-33) 

 
and the subsequent optimal inputs )1(,),1( ** Nuu tt  are ignored. By repeating the 

above optimization procedure at time step 1t , the control problem (5-32)-(5-33) 

will provide an extension of MPC to the hybrid model of the building integrated 

renewable and low carbon energy system. 
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5.3.3 Explicit MPC 

By parametrically solving the CFTOC problem (5-32) we can obtain an explicit 

solution of the optimal control inputs sequence  ],...,[)( *
1

*
00

*
 NN uuxU  as a PWA 

function of the form (Kvasnica, et al., 2004): 

 

rrN GxFxU  00
* )(  if rPx 0  for }|{ 0 rrr KxHxP  , Rr ,...,1           (5-34) 

 

Here rP  is a polyhedral region and R  defines the total number of active regions 

i.e. the region contains the given state 0x , over which such a function is defined. 

              

So for a given state measurement )(0 txx  , the actual )( 0
* xU N  is obtained by 

evaluating the PWA function (5-34) and no additional optimization is required. 

Such a function evaluation can usually be implemented using simple control 

hardware rather than using a computer, which is normally required for the 

optimization. Once )( 0
* xU N  is obtained it can be used to perform the MPC in a 

receding horizon manner in real time. 

5.4 Net present value of the supervisory controller 

The net present value (NPV) method converts the excess of benefits over costs 

occurring at different times, where all amounts are discounted for their present 

value (Kreith and Goswami, 2007). When this method is used for evaluating a 

cost-reducing investment, the cost savings are the benefits, and it is often called the 

Net Saving method. 

 

The NPV from an investment, like a new supervisory control system, is 

calculated by the following equation: 

 

                   
 




N

t
t
tt

AA d

CB
NPV

0
2:1 )1(

)(
                                        (5-35) 
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Here A2:A1NPV  is the net present value of benefits (benefits or savings net of 

present value costs) for the alternative A1 as compared with the alternative A2 , 

tB  is the benefits in year t , which may be defined to include energy savings, tC  is 

the cost in year t  associated with the alternative A1 as compared with a mutually 

exclusive alternative A2 , and d  is the discount rate. 

 

For the supervisory controller, the alternatives A1 and A2  are the optimal and 

non-optimal supervisory control system respectively, so the benefit is determined 

by the total reduction of the operational cost of the building energy system,  which 

is achieved by the utilization of the optimal controller instead of a non-optimal 

controller.  

 

The non-optimal controller depends on the application. For each application a 

different control system has been studied in the literature; some of these were 

explained in Section 2.3.  

 

To calculate the benefits of the supervisory controller in year t , the operation of 

the controller is simulated based on the weather data and the load profiles of a 

typical year. The difference of the operational cost of the system with two 

alternative controllers is the benefit of utilization of the optimal controller. The 

initial benefits ( 0t ) are zero.  

 

The cost in year t  is the maintenance cost of the two alternative control 

systems. This cost for 0t  is the difference of the initial cost of the two control 

systems. 

 

For simplicity, in the applications 1 and 2 in Chapter 6 only the value of the 

supervisory controller is calculated in a typical day. The yearly value of the 

controller can be calculated with a whole-year simulation or roughly by 

multiplying the typical day value by the number of typical days in the year. 

 

 Although the direct implication of using the optimal supervisory controller is 

the reduction of the operational cost of the system, the indirect implications can be 
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the decrease in 2CO  emission at the national and international level and an 

increase in the job market in the related industries.  

5.5 Conclusions 

In this chapter two methods for the modelling of a general building integrated 

renewable and low carbon energy system were derived. The first method was 

based on the mathematical modelling of the energy system by assuming a steady 

state model of the components. The second method was based on the hybrid 

dynamical model of the energy system. A separate controller was designed based 

on each modelling approach. Using the first modelling method, the control 

problem was solved with the multi-period optimization and using the second 

modelling method, the control problem was solved based on the hybrid MPC. In 

both approaches it was assumed that the weather data and building load are 

completely predictable for the time horizon in which the control problem is solved. 

 

Both of the modelling methods and controller designs are unified (generic), and 

can be used in different building integrated renewable and low carbon energy 

applications. 
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Chapter 6                         

Applications 

In this chapter, three applications of the supervisory controller for building energy 

systems are considered. These applications are selected from different applications 

of the building integrated renewable and low carbon energy systems to represent 

three categories: a low carbon energy system, a hybrid renewable power system 

and a stand-alone hybrid power system. In application 1, the building energy 

system consists of a micro combined heat and power (micro-CHP), a boiler (or 

auxiliary heat) and a hot water storage tank. In application 2, the building energy 

system consists of PV panels, a diesel generator and a battery bank. In application 

3, the building energy system consists of PV panels, a battery bank, an electrolyzer 

and a fuel cell. For comparison of the controllers’ performance, in application 1 the 

controller has been designed based on the multi-period optimization and hybrid 

MPC methods. For brevity, in applications 2 and 3 the controller has been designed 

only by the multi-period optimization method.  

6.1 Application 1 

In this application, a 3 bedroom detached house is considered which is located in 

the UK. The energy system of the house consists of a modulating micro-CHP and a 

modulating supplementary boiler, which are connected in series and located in one 

package. The package is connected in parallel with a hot water storage (buffer) 

tank. Figure 6.1.1 shows a simplified diagram of the system. The auxiliary boiler 

gets started sequentially if the heating output from the micro-CHP is in maximum 

limit, and there is more heat demand. Figure 6.1.2 shows the sequence of operation 

of the micro-CHP system (BAXI, 2010). Heat from the micro-CHP unit and the 
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boiler is delivered to the storage tank. For space heating, hot water is supplied from 

the storage tank with a pump and supply and return pipes. Domestic hot water is 

supplied with a heat exchanger that transfers heat from the hot water tank to the 

cold water coming from the water mains. It is assumed that heat loss from the hot 

water storage tank is negligible and the charging and discharging efficiency of the 

tank is 100%. The system is connected to the electricity grid with a two-way 

electrical meter, and can buy electricity from the grid or sell electricity to the grid. 

 
Figure 6.1.1  Diagram of the micro-CHP system 

 
 

 
 

Figure 6.1.2  Relationship between heat and electrical outputs (BAXI, 2010) 
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The main specifications of the pieces of equipment are shown in Table-6.1.1. 

The electrical and thermal efficiencies of the micro-CHP and the thermal 

efficiency of the boiler depend on the operation point, but in this application 

average efficiency values are used.  

 
Table 6.1.1  Specifications of the equipment in Application 1 

 
Micro-CHP 
Thermal performance 
Engine min heat input (net) 3.7 kW 
Engine max heat input (net) 7.7 kW 
Engine electrical efficiency (average) 0.1 
Engine thermal efficiency (average) 0.8 
Auxiliary boiler min heat input (net) 3.8 
Auxiliary boiler max heat input (net) 18 
Auxiliary boiler efficiency 1.0 
Electrical performance 
Electric output min 0.3 kW 
Electric output max 1.0 kW 
Hot water storage tank 
Hot water tank min energy storage 0 
Hot water tank max energy storage 4 kWh 
Charging rate max 3 kW 
Discharging rate max 3 kW 

 
 
 

The water temperature in the hot water storage tank is between 60 and 80 °C, so 

for storing 4kWh thermal energy a net volume of 176 litres is needed.  

 

Electrical, space heating and domestic hot water heating loads of the 3 bedroom 

detached house for a typical winter’s day are shown in Figures 6.1.3 and 6.1.4 

respectively (Abu-Sharkh, et al., 2006). 

 
According to the feed-in tariff in the UK, the payment for the generated 

electricity with micro-CHP which is consumed in the house is 10.2 p/kWh, and the 

payment for the generated electricity with micro-CHP which is sold to the grid is 

3.1 p/kWh (Table A.1). 

 
The price of the electricity which is bought from the grid is 11.46 p/kWh and 

the price of the natural gas is 3.1 p/kWh (based on higher heating value). 
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Figure 6.1.3  Electrical load of the house 
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Figure 6.1.4  Space heating and domestic hot water load of the house 

 
 

 

For designing the supervisory model predictive controller for this energy 

system, the following two approaches, explained in Chapter 5, are used: 



Chapter 6 Applications                                                                                           122 
 

 

    

6.1.1 Multi-period optimization approach 

The diagram of the system (Figure 6.1.1) has been redrawn based on the unified 

modelling method explained in Section 5.2 and is shown in Figure 6.1.5. There are 

three energy buses in the system. These buses are the electricity bus, the natural 

gas bus and the hot water bus. The electricity bus starts from the grid and ends in 

the building and grid. The natural gas bus starts from the grid and ends in the 

energy system. The hot water bus starts from the energy system and ends in the 

building.  

 

 

 

Figure 6.1.5  Diagram of the system in Application1 
 

 

For the modelling of the energy system five binary variables are considered, 

which indicate the operating states of the equipment. Table 6.1.2 shows the related 

equipment states which are indicated by these variables. 

 

The aim is to control the system during one day. The day is divided into 24 time 

steps, so each time step is equal to one hour.  
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Table 6.1.2  Auxiliary binary variables in Application 1 
 

1  1= system buys electricity from grid, 0= does not buy 

2  1= system sells electricity to the grid, 0= does not sell 

3  1= micro-CHP is on,  0= micro-CHP is off 

4  1= auxiliary boiler is on, 0= auxiliary boiler is off 

5  1 if max,chpgchpg PP  , 0 if max,chpgchpg PP   

 
 

  The model of the energy system components in Chapter 4 and the modelling 

method in Section 5.2.1 are used to obtain the mathematical model of the system. 

 

The energy balance equation (5-12) for the electricity bus is: 

 
)()()()( 2,31 tPtPtPtP exelchpg

chp
geed    

 
The system cannot import and export electricity at the same time so: 
 

121   
 
The energy balance equation (5-12) for the gas bus is: 
 

)()()( ,4,3 tPtPtP bgchpggd    

 
 
The energy balance equation (5-12) for the hot water bus is: 

 
)()1()()()( ,4,3 tPtEtEtPtP hlhwthwtbg

b
ghchpg

chp
gh    

 
The constraint for the boiler operation is: 
 

054   

 
It is assumed that the amount of initial and final energy stored in the storage tank is  

zero in this application: 

 
0)24()0(  hwthwt EE  

 
The other constraints are the minimum and maximum values of the imported 

and exported electricity as well as the minimum and maximum values of the gas 

input to the micro-CHP and boiler. These values are shown in the Table 6.1.1. 
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The objective function is the total cost of running the system during the 24 hour 

period: 

 

)()()()(
24

1

tPCtPCtPCtPCJ gdgdeconeconexex
t

eded  


       (6-1) 

 
Here edC  is the cost of delivered electricity and exC  is the payment for the 

exported electricity to the grid. econP  is the consumed electricity in the house and 

econC  is the payment for the consumed electricity. gdC  is the cost of delivered 

natural gas. 

 
The above optimization problem is converted to a mixed integer linear 

programming problem, and is solved. The imported and exported electricity are 

shown in Figure 6.1.6. The generated electricity by micro-CHP and the consumed 

part of this electricity are shown in Figure 6.1.7. The heat generated by the micro-

CHP and auxiliary boiler and stored  heat  in  the  storage  tank  is  shown  in 

Figure 6.1.8.  

 

Figure 6.1.7 shows that in hours 1 and 2 the micro-CHP is in operation and 

generates heat and electricity. The extra generated electricity is exported to the 

grid. In hour 2 the stored heat in the storage tank reaches its maximum limit, so in 

hours 3 and 4 the micro-CHP stops running and the heat demand is supplied by the 

storage tank and the electrical load is supplied by the grid. In hours 5 until 8, where 

there is a high heating demand, the micro-CHP runs and supplies the heating load, 

and the extra electricity is sold to the grid. In hour 9 all the electricity generated by 

the micro-CHP is consumed. In addition, in this hour the electricity deficit is 

supplied from the grid. In hours 10, 12, 15, 21, 23 and 24 the micro-CHP is off and 

the electricity is supplied from the grid, and the heating is supplied from the 

storage tank. In the remaining hours the operation of the system  is  similar  to  

hour 9.  

 

Figures 6.1.6 and 6.1.7 show that the controller tracks the electrical load 

fluctuations effectively. For example in hour 6, the generated electricity is 0.73 

kWh and the consumed electricity is 0.23 kWh, which is equal to the electrical load 
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in hour 6 (Figure 6.1.3). Figure 6.1.6 shows that at this hour the exported 

electricity is 0.5 kWh, which is equal to the difference of generated electricity and 

consumed electricity (0.73 – 0.23=0.5 kWh).   
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Figure 6.1.6  Imported and exported electricity 
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Figure 6.1.7  Generated electricity by micro-CHP and the consumed part of this 
electricity 
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Figure 6.1.8 shows that the controller tracks the heating load fluctuations 

effectively. For example in hour 18, the generated heat by the micro-CHP is 6.16 

kWh, and at this hour the stored heat has been increased from 0.66 kWh at hour 17 

to 2.02 kWh at hour 18. This means that from 6.16 kWh of generated heat, 1.36 

kWh (2.02–0.66=1.36 kWh) has been stored in the storage tank and 4.8 kWh 

(6.16–1.36=4.8 kWh) is used for heating, which is equal to the heating load at hour 

18 (Figure 6.1.4). 

 
 

Figure 6.1.8 shows that in hour 24 all the stored heat in the hot water tank is 

consumed and the stored energy amount is zero, which is the condition that was set 

by the constraint equation 0)24()0(  hh EE . 
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Figure 6.1.8  Heat supplied by the micro-CHP and boiler, and stored heat in the 
storage tank 
 

 
The conventional control strategy for micro-CHP systems is heat led control. In 

this strategy the output of the micro-CHP is controlled by heat demand. If the 

generated electricity is more than the electrical demand, the extra electricity is 

exported to the grid, and if the generated electricity is less than the electrical 

demand, the electrical deficit is imported from the grid. Due to the minimum 

output limit of the micro-CHP, when the micro-CHP operates at minimum capacity 

and if there is excess heat, this heat is stored in a storage tank. 
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The operational cost of the micro-CHP system with the supervisory controller 

was compared with the operational cost of the micro-CHP system with a heat led 

control strategy. The results show that the operational cost with the supervisory 

controller is 3.63 percent less than the operational cost with heat led control 

strategy.   

 

The 2CO  emission factors of natural gas and electricity are 0.198 and 0.517 kg 

2CO  per kWh respectively as shown in Table A.3, Appendix A. The results show 

that 2CO  emission with the supervisory controller is 1.34 percent less than the 

2CO  emission with heat led control strategy. 

 

Solving the optimization problem with different storage tank sizes shows that 

increasing the tank size has no effect on the total cost. This is because of the feed-

in tariff. With the feed-in tariff, the system does not need to store the heat 

generated by the micro-CHP, and instead of this, the micro-CHP operates 

whenever there is a need for heating, and exports the extra generated electricity to 

the grid. 

 
As it is shown in Figure 6.1.8, due to the high capacity of the micro-CHP, the 

auxiliary boiler is always off. To see the contribution of the auxiliary boiler in the 

supplying of heating  load,  the  space  heating  load  is  increased  by  50%  

(Figure 6.1.9).  

 

In this case the imported and exported electricity are shown in Figure 6.1.10. 

The generated electricity by the micro-CHP and the consumed part of this 

electricity are shown in Figure 6.1.11. In Figure 6.1.12 the heat supplied by the 

micro-CHP and boiler and also the stored heat in the storage tank are shown.  

 

Figures 6.1.10 and 6.1.11 show that, in hours 1 and 2 the micro-CHP supplies 

the electrical and thermal loads, and the extra heat is stored in the hot water tank. 

In hour 2, the stored heat in the tank reaches its maximum level, so in the next hour 

(hour 3) the micro-CHP is turned off. So the electrical load is supplied from the 

grid and the heating load is supplied from the hot water tank. In hours 4 to 8 and in 
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hour 17, the heating demand is supplied by the micro-CHP, and the extra generated 

electricity is exported to the grid. 
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Figure 6.1.9  Space heating load (50% more) and domestic hot water load 
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Figure 6.1.10  Imported and exported electricity (case of 50% more heating load) 
 

 

Figure 6.1.12 shows that in this case, due to the higher heating demand in hours 

6,7,8 and 17 and lack of enough stored heat in the hot water tank, the auxiliary 
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boiler is turned on sequentially, when the output heat from the micro-CHP reaches 

its maximum limit.  
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Figure 6.1.11  Generated electricity by micro-CHP and the consumed part of this 
electricity (case of 50% more heating load) 
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Figure 6.1.12  Heat supplied by micro-CHP and boiler and the stored heat in the 
storage tank (case of 50% more heating load) 
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The results of simulations show that in this case, the supervisory optimal 

controller with respect to the heat led control strategy reduces the operational cost 

and 2CO  emission by 7.31 percent and 5.19 percent  respectively. 

6.1.2 Hybrid MPC approach 

In this approach, as explained in Section 5.3, the hybrid model of the system is 

initially derived. 

 

 The system has five continuous inputs, ]'[ ,, bgchpgexedhwtr PPPPPu  , and 4 

binary inputs , ]'[ 4321 bu . edP  and exP  are the delivered and exported 

electrical powers respectively. chpgP , , bgP ,  and hwtP  are the input powers to the 

micro-CHP, the boiler and the storage tank respectively. The binary inputs  are 

defined in Table 6.1.2.     

 

 The states of the system are ]'[ hlelhwtr PPEx  , and the outputs of the system 

are ]'[ hlelhwtr PPEy  . hwtE , elP  and hlP  are the stored energy in the tank, the 

electrical load and the heating load respectively. 

 

The discrete hybrid system is a collection of linear systems: 
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By considering the operational constraints of the system, which were explained 

in the previous section, the hybrid model of the system is transformed to the MLD 
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model. For this purpose,  HYSDEL (Kvasnica and Herceg, 2009), which is a high-

level modelling language for DHA, is used. The MLD matrices have been given in 

Appendix C. By using the Multi-Parametric Toolbox (Kvasnica, et al., 2004), the 

hybrid MPC controller is derived. 

 

 The controller is simulated for the case of a 50% increased space heating load. 

In the cost function, input electricity and gas and exported electricity are penalized 

with prices which are the same as in the previous section. Figure 6.1.13 shows that 

the controller exactly follows the required electrical (Le) and heating (Lh) outputs 

from the systems. In this figure, the stored heat in the hot water tank (Eh) also has 

been shown. The profile of the stored heat in this method is similar to the pervious 

method (with 50% more space heating load), with a small difference. 
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Figure 6.1.13  Stored energy in the tank ( hwtE ), electrical load ( elP ) and heating 

load ( hlP ) (case of 50% more heating load) 
 
 

The imported and exported electricity are shown in Figure 6.1.14. The profiles 

of  the imported and exported electricity in this method, are similar to the previous 

method (with 50% more space heating load), but again there are small differences 

between the profiles. 
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The inputs to the micro-CHP ( chpgP , ), the boiler ( bgP , ) and the storage tank 

( hwtP )  are shown in Figure 6.1.15. To obtain the outputs from the micro-CHP and 

the boiler, the input values should be multiplied by the related efficiencies. 
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Figure 6.1.14  Delivered ( edP ) and exported ( exP ) electricity (case of  50% more 

heating load) 
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Figure 6.1.15  Inputs to the CHP ( chp,gP ), boiler ( b,gP ) and storage tank ( hwtP )  

(case of 50% more heating load) 
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Although in this method the optimum values of the inputs are slightly different 

from the values obtained in the multi-period optimization approach, the optimum 

cost values are exactly equal in both approaches. This is acceptable, since in linear 

programming, with a unique objective function value, alternate optimal solutions 

can exist (Dantzig and Thapa, 2003; Alpay and Shor, 1999). 

6.1.3 Explicit hybrid MPC 

As described in Section 5.3.3, the explicit controller of the above system is a 

simple membership test to find the active region with the minimum cost value. 

Then the inputs sequence is computed by the equation (5-34). 

 

For each time step, there is a distinct explicit controller. For obtaining the 

explicit controller, the computation time increases by n2 , where n is the number of 

binary variables. For this reason, only 2 time steps have been considered in the 

computation. Figure 6.1.16 shows the controller partition for the control and 

prediction horizons of 2 time steps. In this figure 1x , 2x  and 3x  are the states of 

the stored energy in the hot water tank, the electrical load and the heating load 

respectively. 
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Figure 6.1.16  Explicit controller partition for the control and prediction horizon of  
2 time steps 
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6.2 Application 2 

In this application, the electrification of a small farm is considered, located near to 

London in the UK. The electricity supply system of the farm consists of PV panels, 

a diesel generator unit and a battery bank.  

 
 

The electricity supply system of the farm consists of 20 PV panels each of      

220 Wp, a diesel generator unit with a nominal capacity of 10 kW and 12 battery 

packs each of 360 Ah (2.16 kWh) nominal capacity. The tilt angle of the PV panels 

is 51°. 

 
The hourly electrical load of the farm is shown in Figure 6.2.1. In this figure 

hourly incident solar radiation on the panels for a sample day in early May is also 

shown.  
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Figure 6.2.1  Electrical load of the farm and incident solar radiation on the panels 
for a sample day in early May. 
 
 

The electrical system is shown in Figure 6.2.2. The PV panels are equipped with 

a Maximum Power Point Tracking (MPPT) unit and a boost converter. The battery 

has a charge controller and the AC/DC/AC unit converts the AC power to DC 
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when there is power excess, and when there is a power deficit it converts the DC 

power of the battery to AC.  

 

 
 

Figure 6.2.2  Diagram of the system in application 2 
 
 

If the losses of the power electronic devices are neglected the simplified system 

will be the system as shown in Figure 6.2.3.  

 

 
 

Figure 6.2.3  Simplified diagram of the system in Application 2 
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The main specifications of the pieces of equipment are shown in Table 6.2.1. 

The maximum charging and discharging powers of the battery have been selected 

according to the manufacturer recommendations. The diesel generator nominal 

power has been selected based on the maximum power demand. 

 

 The charging and discharging efficiency is very difficult to measure. In the 

calculation it is assumed that the charging efficiency is equal to the roundtrip 

efficiency of the battery (0.85) and the discharging efficiency is equal to 1. 

 
Table 6.2.1  Specifications of the equipment in Application 2 

 
PV panel  
Peak power 220 Wp 
Number of panels 40 
Diesel generator 
Nominal power 10 kW 
Fuel type Diesel 
Battery bank 
Manufacturer-Model Trojan-L16P 
Nominal capacity 360 Ah (2.16 kWh) 
Maximum capacity 396 Ah 
Maximum charging power 0.65 kW 
Maximum discharging power 1.08 kW 
Round trip efficiency 0.85 
Minimum SOC 0.30 
Number of batteries  10 

 
 

For the modelling of the energy system we consider 3 binary variables: 1  for 

the on/off status of the diesel generator and 2  and  3  for the charging and 

discharging states of the battery respectively. 

  
The model of the energy system components in Chapter 4 and the modelling 

method in Section 5.2.1 are used to obtain the mathematical model of the system. 

 

The energy balance equation (5-12) for the fuel bus is: 
 

)()( , tPtP dsldodod   

 
The energy balance equation for the electricity bus is: 
 



Chapter 6 Applications                                                                                           137 
 

 

    

)()()()()( ,2,31 tPtPtPtPtP elchbatdchbatdslpv    

 

)(
1

)1()()1()(
)()( 321 tP

tEtEtEtE
tPtP el

bdc

batbat

bch

batbat
dslpv 











  

 
The battery cannot charge and discharge at the same time so we have: 
 

132   
 
It is assumed that the initial and final energy stored in the battery bank is equal to 

6.48 kWh (SOC = 0.3): 

 
48.6)24()0(  batbat EE  

 
 

The other constraints are according to the data given in Table 6.2.1. 
 

The optimization period is 24 hours which is divided into 1 hour time steps. The 

objective function is the total fuel cost, the battery wear and the diesel generator 

replacement cost for the 24 hours that should be minimized.  
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Here F  is the fuel consumption of the diesel generator which is obtained from 

equation (4-12). doC  is the fuel cost per litre. The diesel engine uses red diesel oil 

which costs 0.63 £/lit. 

 

dslrepC ,  is the diesel generator replacement cost which is : 

 

hr
hrlifetime

pricegeneratordiesel
C dslrep /£29.0

12000

£3500
,   

 
 

The depth of discharge and the cycles to failure of the batteries are shown in 

Table 6.2.2. From this data and using the equation (5-18) for each depth of 

discharge values, the lifetime of the battery was calculated and is shown in Figure 

6.2.4. As can be seen from this figure the lifetime does not so much depend on the 

depth of discharge, so we can use an average lifetime throughput between the 

minimum and maximum states of charge which are assumed to be 30% and 100% 
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respectively (NREL, 2008). The average lifetime throughput is 1182 kWh. Each 

battery has a price of 510.34 pounds and according to the manufacturer’s data the 

roundtrip efficiency of the battery is 85%. So from the equation (5-17) the wear 

cost of the battery is equal to 0.468 pounds/kWh. 

 

Table 6.2.2  Cycles to failure vs. depth of discharge (data from NREL, 2008) 
 

Depth of 
Discharge 
(%) 

Cycles to 
failure  

Depth of 
Discharge 
(%) 

Cycles to 
failure  

10 4,398 60 884 
20 2,322 70 774 
30 1,614 80 698 
40 1,266 90 633 
50 1,036 100 600 
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Figure 6.2.4  Battery cycles to failure and lifetime throughput vs. depth of 
discharge 
 
 

The results of optimization for the diesel generator output power is shown in 

Figure 6.2.5. The unit cost of the power generation by the diesel generator is 

decreased by increasing the output power. So the diesel works at higher outputs 

and stores the extra power in the batteries. However, for the cost of stored power 

the wear cost of the batteries should be added when this power is discharged from 

the batteries. So the controller decides between the extra power generation by the 

diesel generator and storage of it, or generation of power as much as it is needed. 
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Figure 6.2.5 shows that the power generation by the diesel generator for less than 

3.04 kW is not economical.  
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Figure 6.2.5  Diesel generator power output 
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Figure 6.2.6  Battery bank charging and discharging power 
 
 

Figures 6.2.6 shows the battery bank’s charging and discharging power. The 

charging power comes from the PV panels and the diesel generator. Figure 6.2.7 

shows the stored power in the battery bank, which in each hour is equal to the 
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stored electricity at the previous hour plus the charging power and minus the 

discharging power at the same hour. The final stored power in the battery is 6.48 

kWh which is equal to its initial value. 
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Figure 6.2.7  Battery bank stored power 
 
 

The simulation results of the supervisory controller are compared with the 

results of the load following strategy (Barley and Winn, 1996). In the load 

following strategy, if the batteries cannot meet the electrical load, the diesel 

generator runs at a rate that produces only enough power to meet the net load. The 

batteries will be charged whenever the renewable power exceeds the primary load, 

but they will not be charged by the diesel generator. The results show that the 

supervisory controller with respect to the load following strategy reduces 

operational cost by 3.8 percent.  

6.3 Application 3 

In this application a hybrid power system is used for the electrification of an off 

grid house. The house is located in London, UK. The electrification of the house is 

performed by a hybrid power system. The hybrid power system consists of PV 
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panels, a battery bank, an electrolyzer, a hydrogen storage tank and a fuel cell as 

shown in Figure 6.3.1.  

 

The solar radiation is converted to electricity by the PV panels. The panels have 

been equipped with a Maximum Power Point Tracking (MPPT) system and a boost 

converter. When the power from the PV panels exceeds the load, the extra power is 

stored in the batteries or is consumed by the electrolyzer to produce hydrogen 

which is stored in the hydrogen tank. The batteries are equipped with a charge 

controller that controls the charging/discharging rate and the minimum state of 

charge (SOC) of the batteries. A buck converter regulates the voltage and current 

of the electrolyzer. The hydrogen is stored in the hydrogen tank. In this application 

it is assumed that the pressure of the hydrogen produced by the electrolyzer is high 

enough so that the hydrogen can easily be stored in the tank and there is no need 

for a compressor. 

 

 
Figure 6.3.1  Diagram of the hybrid power system in Application 3 

 
 

When the solar radiation is not enough for electricity generation which satisfies 

the electrical load of the house, the batteries and fuel cell supply the power deficit. 

For matching the output voltage of the fuel cell with the DC bus a boost converter 
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has been used. The DC power from the DC bus is converted to AC power by an 

inverter and supplies the electrical load of the house. 

 

 

Figure 6.3.2  Simplified diagram of the hybrid power system in Application 3 
 
 

If the power losses in the power converters, the charge controller and the power 

inverter are neglected, the diagram of the hybrid power system in Figure 6.3.1 is 

simplified to the diagram shown in Figure 6.3.2. 

 
The specification of the components is shown in Table 6.3.1. The maximum 

charging and discharging powers of the battery have been selected according to the 

manufacturer recommendations. The stored electrical energy in the hydrogen tank 

has been given based on the higher heating value of the hydrogen. The amount of 

stored hydrogen can be obtained by dividing it to the heating value of the 

hydrogen. 

 

The electrical load profile of the house is the same as the electrical load profile 

in Application 1. Average daily global horizontal radiation values for each month 

have been used for the calculation of incident solar radiation on the PV panels. 

Assuming a constant daily load profile, the electricity load profile and the incident 

solar radiation for three subsequent days in early May are shown in Figure 6.3.3. 
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Table 6.3.1  Specifications of the equipment in Application 3 
 

PV panel 
Peak power 220 Wp 
Number of panels 24 
Battery bank 
Manufacturer-Model Trojan-L16P 
Nominal capacity 360 Ah (2.16 kWh) 
Maximum capacity 396 Ah (2.38 kWh) 
Maximum charging power 0.65 kW 
Maximum discharging power 1.08 kW 
Round trip efficiency 0.85 
Minimum SOC 0.30 
Number of batteries  6 
Electrolyzer 
Capacity 5.0 kW 
Efficiency* 0.8 
Fuel cell 
Capacity 1.0 kW 
Efficiency* 0.50 
Hydrogen tank 
Minimum storage level* 10 kWh 
Maximum storage level* 300 kWh 

 
      * Based on higher heating value (HHV) of hydrogen (39.4 kWh/kg ) 
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Figure 6.3.3  Electricity load and incident solar radiation on the solar panels 
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For the modelling of the system, 4 binary variables 1 , 2 , 3  and 4  are 

considered which indicate the charging state of the battery, the discharging state of 

the battery, the electrolyzer operation and the fuel cell operation respectively. 

 

The model of the energy system components in Chapter 4 and the modelling 

method in Section 5.2.1 are used to obtain the mathematical model of the system. 

 
The energy balance equation (5-12) for the electricity bus is: 
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The battery cannot charge and discharge at the same time so: 
 

121    
 
In addition the electrolyzer and fuel cell cannot operate simultaneously: 
 

143   
 

The initial stored energy in the battery bank and hydrogen tank are assumed to be 

equal to 6 kWh and 40 kWh respectively: 

 

6)0( batE  

 
40)0(

2
hE  

 
 
The other constraints in the optimization are according  to  the  data  given  in 

Table 6.3.1. 

 
The optimization period is 3 days which is divided into 72 time steps, each of 1 

hour. The objective function is the total energy stored in the battery and the 

hydrogen tank. 
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When there is a power surplus the extra power can be stored in the batteries or 

in the hydrogen tank by the electrolyzer. When there is a power deficit, the 

remaining power can be supplied by the battery or by converting hydrogen to 

electricity in the fuel cell. The round trip efficiency of the battery is more than the 

round trip efficiency of the hydrogen cycle so the extra power should first be stored 

in the battery, but if the battery is full or the power is more than the maximum 

charging rate of the battery this power should be stored in the hydrogen tank. The 

power deficit should be first supplied by the battery, and if the battery is empty or 

the power deficit is more than the maximum discharging rate of the battery this 

power should be supplied by the fuel cell.  

 
The results of optimization in Figures 6.3.4 and 6.3.5 show that in the early 

hours of  day 1 the battery starts to discharge and supply the load. At hour 7 of  day 

1 the sun rises and starts shining on the PV panels. The generated electricity by the 

PV panels supplies the load and reduces the discharge rate of the battery. At hour 8 

and in later hours up to hour 17 the generated power by the PV panels is more than 

the power consumption, so the extra power is stored in the battery and/or in the 

hydrogen tank (by electrolyzer). It is seen that in this period the charging power of 

the battery in hour 13, which has the highest radiation (Figure 6.3.3), is limited by 

the maximum charging power of the battery bank which is equal to 

kW9.365.06  . At hour 18 when the sun sets, until hour 4 of the next day, the 

electrical load is supplied by the battery. In hour 5 on day 2 although the stored 

power in the battery is still more than the minimum SOC value 

( kWh17.10.30.656  ) and the round trip efficiency of the battery is more than 

the round trip efficiency of the hydrogen storage, the battery is not discharged 

below 6.67 kWh. But at the end of day 2 (hours 10, 11 and 12) the battery is 

discharged to have enough capacity so that it can be charged during day 3. On day 

3,  where the solar radiation and the load profiles are almost similar to day 1, first 

the battery is discharged and supplies the load then electricity is generated by the 

PV panels and the battery and hydrogen tank are charged. At the end of day 3 the 

battery and the fuel cell supply the load.  
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Figure 6.3.4  Charging and discharging power of the batteries 
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Figure 6.3.5  Input power to the electrolyzer and out put power form the fuel cell 

 
 

The total stored energy in the battery and hydrogen tank at the beginning of the 

period is 46 kWh (6 kWh in the battery bank and 40 kWh in the hydrogen tank). 

Figure 6.3.6 shows that the total stored energy at the end of the period is 45.14 

kWh (10.38 kWh in the battery bank and 34.76 kWh in the hydrogen tank). So the 
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discharged energy from the battery and hydrogen tank during a cloudy day 2, 

where the PV panel generates less electricity, has almost been compensated by the 

charged energy on days 1 and 3. 
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Figure 6.3.6  Stored energy in the batteries and the hydrogen tank 
 

6.4  Conclusions 

In this chapter, three applications of the supervisory model predictive controller 

were studied. These applications have been selected from various applications of 

the building integrated renewable and low carbon energy systems to show that the 

designed controller in Chapter 5 is flexible and can be used in different 

applications. In the first application it was shown that the controller is able to 

reduce the daily energy cost and 2CO  emission from the heating and electrification 

of a house in the UK. The second application showed that the controller reduces 

the diesel generator fuel cost by preventing its operation in low loads and running 

it in higher loads in order to store the cheaper generated electricity in the batteries. 

Also the controller compares the battery wear cost and the diesel generator 

operational cost for reducing the total cost. In the third application, the controller 

was used in a hybrid power system and it was shown that the controller manages 
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the power flows between the system components to supply the electrical demand 

and minimize the losses due to the energy storage in the system. 
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Chapter 7                            

Conclusions                                                       

 In this chapter a summary of the thesis is first given. Then the conclusions which 

were derived from this research are explained. Next some recommendations are 

given for the industry. Finally, some related future work are presented.  

7.1 Summary 

From environmental, economical and energy security points of view, utilization of 

the renewable and low carbon energy systems in buildings is desirable and 

inevitable. The integration of different renewable energies gives more reliability 

for the utilization of them.  

 

A literature review of the various control methods showed that each control 

method has its advantages and disadvantages. The methods based on multi-period 

optimization and MPC were recognised as the most appropriate methods for 

supervisory control and operational management of the integrated renewable and 

low carbon energy systems, since these methods can consider the predicted values 

of the available renewable energy and also the building energy demands.  

 

Although the multi-period optimization has been used in some literature, there 

is not a unified method for the utilization of this technique in the various types of 

building integrated renewable and low carbon energy systems. The MPC method 

has been used in chemical process engineering, electrical power networks and 

building primary and secondary HVAC systems, but it has not been used in the 
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building integrated renewable and low carbon energy systems. In addition, there 

are no studies for designing explicit MPCs in this research area.  

 

The multi-period optimization and hybrid MPC methods were used for 

designing a unified supervisory controller for building integrated renewable and 

low carbon energy systems. For this purpose, the mathematical models of the 

energy system were initially obtained, then the related controllers were designed.  

 

In the multi-period optimization method, for each one of the energy carriers an 

energy bus was considered. Energy converters and energy storage devices are 

connected to this bus and also energy from grids and renewable energies enter into 

the bus, and the energy supply of the building and energy exported to the grid exit 

from the bus. Each one of the energy buses are modelled using the energy 

conservation law. Then, the optimal inputs of the system are obtained by solving 

the optimization problem consisting of an objective function, a system model and 

constraints.   

 

In the hybrid MPC method the model of the system is obtained with the state 

space equations which are modified to integrate the discrete and the continuous 

time dynamics of the building energy system (MLD model). Then the optimal 

inputs of the system are obtained by solving a constraints finite time optimal 

control problem. 

 

Three applications of the supervisory controller were studied in this research. In 

the first application it was shown that the controller is able to reduce the daily 

energy cost and 2CO  emission from the heating and electrification of a house in 

the UK. The second application showed that the controller reduces the diesel 

generator fuel cost by preventing its operation in low loads and running it in order 

to store the cheaper generated electricity in the batteries. In the third application the 

controller was used in a hybrid power system, and it was shown that the controller 

manages the power flows between the system components to supply the electrical 

demand and minimize the losses due to the energy storages in the system. 
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7.2 Conclusions 

The aim of this research was to develop a unified supervisory controller for 

building integrated renewable and low carbon energy systems. The controller 

optimised the energy generation and storage in the building in order to reduce the 

operational cost and 2CO emissions. 

 

According to the objectives of the research, a mathematical model of the typical 

energy system components was determined. Then a unified model of the building 

integrated renewable and low carbon energy system was obtained. This model was 

used in designing the supervisory controller. The supervisory controller was 

validated by the simulation of three different applications. In addition, in 

Application 1 the controller was validated  by two methods. The first method was 

based on multi-period optimization and the second method was based on the hybrid 

model predictive control. In the second method, the explicit operation of the 

controller was also considered.  

 

In conclusion, the results of the simulations showed that : 

 

1. The controller is a unified controller and can be tailored to different 

applications. 

2. The controller successfully follows up loads set points. 

3. The controller captures inputs and outputs constraints. 

4. The controller determines how much energy should be charged or 

discharged from the energy storage devices. 

5. The controller determines the start up and shut down of the non-renewable 

energy converters and their output capacity when they are in operation. 

6. The controller determines the amount of energy which should be imported 

from the grid or exported to the grid. 

7. The controller, with respect to the other non-optimal control strategies, 

reduces the operational cost and 2CO  emissions.  
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8. The optimal operational cost of the energy system with the designed 

controllers based on multi-period optimization and hybrid model 

predictive control methods are identical.          

7.3 Contribution 

In Section 2.3, it was highlighted that there was no unified optimal supervisory 

controller in the existing research for controlling the building integrated renewable 

and low carbon energy systems. In this research a unified controller was designed 

based on the linear mathematical model of the system. The linearity of the 

mathematical model of the system was important, since it resulted in a convex  

optimization problem which was simple to solve and certain to find a global 

optima.  

 

The other contribution to knowledge was in using the MLD model and the 

hybrid model predictive control approach in the design of the supervisory 

controller. As stated in Section 2.3, using the hybrid model predictive control for 

the supervisory control of the building integrated renewable and low carbon energy 

systems has not been reported in the literature. In this approach, high level tools 

were used in the design of the controller. In addition the supervisory controller was 

designed in the explicit form.  

7.4 Recommendations for industry 

Considering the UK government’s policies and incentives for utilization of the 

renewable and low carbon energy technologies in buildings (explained in Section 

2.1.9) and also the continuous reduction of the cost of these technologies, there is 

an increasing market demand for them. Therefore the supervisory controller 

designed in this research, is attractive to the related industry. 

 



Chapter 7 Conclusions                                                                                            153  
 

    

For the implementation of the designed supervisory controller, certain types of 

hardware and software are needed. The required hardware is a computer with 

acceptable performance and the required software is numerical computing 

environment (like MATLAB) with optimization software for MILP.  

 

The commercial optimization software is normally expensive and requires a 

powerful computer to run it properly. As stated in Section 7.2, in the online 

operation of the controller, the run time of the optimization program should be less 

than one time step. 

 

 The prediction of the weather data and the building loads that are needed by the 

controller are performed by dedicated software. In the online operation, these 

predictions also should be calculated in less than one time step.  

 

Considering the above factors, the following recommendations are given for the 

implementation of the supervisory controller: 

 

1. In buildings that have a building management system (BMS), the energy 

converters and energy storage devices (explained in Chapter 4) are connected to 

the BMS. The Human Machine Interface (HMI) of the BMS normally runs on a 

powerful workstation(s), which can be used for running the supervisory control 

program as well. In this case, the control program environment (e.g. MATLAB) 

can exchange the required data with the energy system components through HMI 

and a standard communication interface, like Dynamic Data Exchange (DDE).  

 

The predicted weather data can be received via the internet and used for renewable 

energy and building load predictions. The controller can access the predicted data 

via a standard method. For instance, MATLAB can communicate with routines 

written in other programming languages with External Interfaces. 

 

2. In homes and small buildings with no BMS, due to the complexity and/or cost, a 

computer based controller is not feasible. For these applications two methods are 

recommended. The first method is using the explicit form of the controller. In this 

manner there is no need for the optimization. The controller can receive weather 
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data from a weather station via the internet, and can calculate the available 

renewable energies. The building loads in each month can be assumed to have a 

fixed profile for week days, weekends and holidays.  

 

The second method is to use a gateway to connect the energy system 

components to an Energy Service Provider (ESP). ESP calculates the control inputs 

and sends them to the energy system via the internet. The ESP predicts the building 

loads and the available renewable energies, based on the weather prediction data  

that it receives from the weather stations.  

7.5 Future work 

 The following research objectives are suggested as future work to be investigated: 

 

1. In practical applications the models of the energy converter and the energy 

storage equipment are non-linear. This non-linearity will be considered in 

designing a non-linear model predictive controller. 

 

2. Output power from most of the renewable energy technologies, like solar 

collectors, photovoltaic cells and wind turbines, depends strongly on the weather 

conditions. Due to the uncertainty of weather forecasting, the prediction of the 

output power is also uncertain. In addition, the prediction of the energy 

consumption of a building, which depends on the weather conditions and the 

occupants’ behaviour, is uncertain. These uncertainties will be considered in 

designing a stochastic model predictive controller. 

 

3. If the supervisory optimal controller minimizes the cost, it may not also optimize 

the 2CO  emission, and vice versa. A model predictive controller will be designed 

based on multiple objective functions, which will need to compromise between the 

minimization of cost and 2CO  emission.  
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Appendix A 
 

 

In this Appendix, Table A.1 shows feed-in tariff levels for the installation of 

microgeneration technologies. Table A.2 shows the renewable heat tariff levels and 

Table A.3 shows various fuel prices, emission factors and primary energy factors 

in the UK. 

 
 
 

Table A. 1  Feed-in tariff levels for technologies installed between 1st April 2010 
to 31st  March 2013  (DECC, 2010c) 
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Table A. 2  Renewable heat tariff levels (ICAX, 2011) 
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Table A. 3  Fuel prices, additional standing charges, emission factors and primary 
energy factors (SAP 2009) 
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Appendix B 
 

B.1 Chiller 
 

A chiller is a machine that removes heat from a liquid via a vapor-compression or 

absorption refrigeration cycle. Most often water is chilled, but this water may also 

contain ~20% glycol and corrosion inhibitors; other fluids such as thin oils can be 

chilled as well (ASHRAE, 2008). 

 

There are basically two types of chillers: compression and absorption. 

Compression chillers, including reciprocating compression, scroll compression, 

screw-driven compression, and centrifugal compression, are all mechanical 

machines that can be powered by electric motors, steam, or gas turbines 

(ASHRAE, 2008). They produce their cooling effect via the reverse-Rankine cycle, 

also known as vapor-compression. The heat of the cooling process is absorbed in 

the evaporator and rejected from the condenser.  

 

The absorption chiller’s thermodynamic cycle is driven by a heat source; this 

heat is usually delivered to the chiller via steam, hot water, or combustion. 

Compared to electrically powered chillers, they have very low electrical power 

requirements - very rarely above 15 kW in combined consumption for both the 

solution pump and the refrigerant pump. However, their heat input requirements 

are large, and their COPs are often 0.5 (single-effect) to 1.0 (double-effect) 

(ASHRAE, 2008). For the same cooling capacity, they require much larger cooling 

towers than vapor-compression chillers. However, absorption chillers, from an 

energy-efficiency point of view, excel where cheap, high grade heat or waste heat 

is readily available like heat rejection from heat engines or thermal power plants. 

In extremely sunny climates, solar energy has been used to operate absorption 

chillers. 

 

The condenser of the chillers can be air-cooled or water-cooled. Water-cooled 

condensers are cooled by cooling towers and have better heat rejection 

performance. This is due to heat transfer at or near the air's wet-bulb temperature 
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rather than the higher dry-bulb temperature of the air. To increase the effectiveness 

of the air cooled condenser, a spray of water is used to wet down the condenser. 

This condenser is called an evaporative condenser. 

 

For the vapour compression chillers, the coefficient of performance (COP) is 

defined as the ratio of the cooling capacity of the chiller to the electric energy input 

to the chiller (ASHRAE, 2008): 

 

powerelectricinput

capacitycooling
COPcooling                 (1) 

 

So the cooling power of the chiller can be determined from: 

 

echcoolingcchi PCOPtP )(                                     (2) 

                              
Similarly the coefficient of performance and the cooling power for absorption 

chillers can be determined from the following equations respectively: 

 

powerheatinput

capacitycooling
COPcooling                         (3) 

         hchcoolingcchi PCOPtP )(                       (4) 

            

The results of the mechanistic chiller model indicate that the chiller COP is 

primarily a function of only two variables, the load and the temperature difference 

between the leaving condenser and the chilled water flows. In this research we will 

consider an average constant COP that includes the total power consumption by 

the chiller, the cooling tower and the related pumps in the cooling system. 

 

B.2 Heat Pump 
 

A heat pump is a piece of equipment that moves heat from a low temperature 

location (the source) to a higher temperature location (the sink or heat sink), by 

using work or high temperature heat. 
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The source of the heat for a heat pump can be outside air or underground heat. 

The sink is normally the hot water of the heating system in the building.  

 

Heat pumps can be thought of as a refrigeration machine, which is operating in 

reverse. So the above formulation for the chiller’s power consumption can be used 

for heat pumps as well. The coefficient of performance for a vapour compression 

heat pump is defined as the ratio of the heating capacity of the heat pump to the 

electric power input (ASHRAE, 2008): 

 

                         
inputpowerelectric

capacityheating
COPheating                     (5) 

 

So the output heat from the heat pump can be determined by:  

 

ehpheatinghhp PCOPtP )(                              (6) 

                               

In the case of the absorption heat pump heatingCOP  and output heat power of the 

heat pump can be determined from the following equations: 

 

inputpowerheating

capacityheating
COPheating            (7) 

 

hphheatinghph inout
PCOPtP )(                           (8) 

 

The results of the mechanistic heat pump model indicate that heating COP is a 

function of heating load and the temperature difference between the evaporator and 

condenser temperatures. In this research we will consider an average constant COP 

for heat pumps which includes all the electricity consumption by pumps, fans, etc. 

 

B.3 Wind Turbine 
 

A wind turbine is a rotating machine that converts the kinetic energy of wind into 

mechanical energy. If the mechanical energy is then converted to electricity, the 
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machine is called a Wind Generator, Wind Turbine, Wind Power Unit or Wind 

Energy Converter. 

 

In building applications, small scale wind turbines have become more widely 

available over the past few years (Environmental Protect UK, 2007). These 

turbines vary in size according to how much electricity they generate, ranging from 

100 watts to 6 kilowatts. The average house would need a system of 1-6 kilowatts 

depending on the location and size of the property, whilst a public building such as 

a community hall would require around 5-6 kilowatts. There are two types of small 

scale wind turbines available: mast mounted and roof mounted. Although mast 

mounted systems are generally more cost effective, they may not be appropriate for 

many properties. However, smaller roof mounted systems are capable of 

generating a reasonable proportion of the energy requirements given the right 

conditions. Most small wind turbines generate direct current electricity (DC) and 

require an inverter to convert it to alternating current electricity (AC). 

 

For the estimation of wind turbine power, several models exist in the literature, 

such as the linear model (Yang, 2003; Yang, 2007), the model based on Weibull 

parameters (Lu, et al., 2002; Borowy and Salameh, 1996), the quadratic model 

(Diaf, et al., 2008) and the cubic model (Diaf, et al., 2007).  

 
If we have the wind turbine characteristic curve that shows the relation between 

wind speed and power output, then we can use a linear interpolation to find the 

power output in the desired wind speed (Koutroulis, et al., 2006): 

 

                           1
12

12
1 ))(( P

vv

PP
vvPwt 




                          (9) 

 
Here v  is the wind speed (m/s) at turbine height and ),( 11 vP  , ),( 22 vP  are the wind 

turbine power and the wind speed pairs stored in the lookup table, such that 

21 vvv  . 

 
If we have only the rated power of the wind turbine )( wtrP , the cut-in speed 

)( cinv  and the cut-out speed )( coutv  then we can use the following quadratic model 

to calculate the power generated by the wind turbine in the desired wind speed: 
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Wind speed should be adjusted for the wind turbine hub level. The adjusted 

wind speed is derived by the vertical profile of the wind speed which is determined 

from the power law: 

 














ref
ref H

H
vv                                           (11) 

 

Here v  is the wind speed (m/s) measured at the hub height H (m); refv is the wind 

speed (m/s) measured at the reference height refH (m) and a  is the wind speed 

power law coefficient, ranging from 1/7 to 1/4 (Ilinca, et al., 2003; Johnson, 1985). 

 

B.4 Solar Collector 
 
Solar collectors receive the sun's radiation, transform it into heat and then transfer 

that heat to water, solar fluid, or air. The solar thermal energy can be used in solar 

water heating systems, solar pool heaters, and solar space-heating systems. Solar 

collectors can be flat-plate collectors or evacuated-tube collectors. Here we derive 

a mathematical model for the flat plate collector. 

  

Flat plate solar collector efficiency   is defined as the ratio of useful heat 

collection uQ  to the radiation that is incident on the surface of collector TAI  

(Duffie and Beckmann, 1991): 

 

                                   
T

u

AI

Q
                                                  (12) 

                           

Here TI  is global radiation incident on the solar collector (tilted surface) and A  is 

the total collector array aperture or gross area. 
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In practice thermal efficiency of solar collector can be determined from a 

quadratic efficiency model originating from theoretical equations developed by 

Duffie and Beckmann (1991): 

 

TT I

T
a

I

T
aa

2

210

)()( 



                                     (13) 

 

Here T  is the temperature difference between the inlet temperature of the fluid to 

the collector iT   and the ambient (air) temperature aT . The thermal efficiency is 

defined by 3 parameters: 0a , 1a  and 2a . These 3 parameters are available for 

collectors tested according to American ASHRAE Standard 93-77, as well as for 

collectors tested according to the European Standards on solar collectors DIN EN 

12975. Many examples of collector parameters can be found on the manufacturers’ 

websites on the internet. 

 

Collector test reports sometimes provide the efficiency curve using a different 

temperature difference (TRNSYS): 

 















aoo

aavav

aii

TTT

TTT

TTT

T     (14) 

 

Here iT  is the inlet temperature of the fluid to the collector, aT  is the ambient (air) 

temperature, avT  is the average collector fluid temperature and oT  is the outlet 

temperature of the fluid from the collector. The first formulation is usually 

preferred in the US, while the second one is used in most European documents. 

Equation (13) can use any of those definitions of the temperature difference and 

the user can specify the 0a , 1a  and 2a coefficients using any of the definitions. If 

the coefficients are given in terms of the average or the outlet temperature, 

correction factors are applied.  
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The total collector array may consist of collectors connected in series and in 

parallel. The thermal performance of the total collector array is determined by the 

number of modules in series and the characteristics of each module. 

  

B.5 Cool storage 
 

The cooling energy demand of buildings is normally supplied by the chilled water 

that is prepared by compression or absorption chillers. Compression chillers 

consume electrical energy which is cheap at night-time. This cheap electricity can 

be used to produce cooling energy which can be stored and used in the following 

day-time. 

 

The cooling energy can be stored as cold water or ice. Cold water storage needs 

a large storage tank but the stored cold water can be directly connected to the 

building chilled water system. Ice storage needs a smaller storage tank but requires 

a complex control system.  

 

Ihm, et al. (2004) have developed a model for ice storage system. In a steady 

state a simplified energy balance for cool storage can be written as: 

 

ttePtEttE ccc  )()()(            (15) 

 

Here cE  is the stored cool, cP  is the cooling power charged or discharged from the 

cooling tank and e is the efficiency of the system: 
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e                          (16) 
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Appendix C 
 
 

The MLD matrices of the hybrid model predictive control approach used in the 

application 1 (Section 6.1.2) are given below: 
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