325 research outputs found

    A Heuristic Approach for the Automatic Insertion of Checkpoints in Message-Passing Codes

    Get PDF
    [Abstract] Checkpointing tools may be typically implemented at two different abstraction levels: at the system level or at the application level. The latter has become a more popular alternative due to its flexibility and the possibility of operating in different environments. However, application-level checkpointing tools often require the user to manually insert checkpoints in order to ensure that certain requirements are met (e.g. forcing checkpoints to be taken at the user code and not inside kernel routines). The approach presented in this work is twofold. First, a spatial coordination protocol for checkpointing parallel SPMD applications is proposed, based on forcing checkpoints to be taken at the same places in the application code by all processes. Thus, global consistency is achieved without adding any new runtime communications or piggybacked data, and without the need to use specific fault-tolerant message-passing implementations. Second, the paper also introduces a compilation technique for the automatic insertion of checkpoints using the spatial coordination protocol, based on a static analysis of communications and a heuristic analysis of computational load. These analyses can also be used to achieve automatic checkpoint insertion in approaches based on classical protocols, such as uncoordinated checkpointing or distributed snapshots.Ministerio de Ciencia e Innovación; TIN-2007-67537-C03-0

    Compiler-Assisted Checkpointing of Parallel Codes: The Cetus and LLVM Experience

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in International Journal of Parallel Programming. The final authenticated version is available online at: https://doi.org/10.1007/s10766-012-0231-8[Abstract] With the evolution of high-performance computing, parallel applications have developed an increasing necessity for fault tolerance, most commonly provided by checkpoint and restart techniques. Checkpointing tools are typically implemented at one of two different abstraction levels: at the system level or at the application level. The latter has become an interesting alternative due to its flexibility and the possibility of operating in different environments. However, application-level checkpointing tools often require the user to manually insert checkpoints in order to ensure that certain requirements are met (e.g. forcing checkpoints to be taken at the user code and not inside kernel routines). This paper examines the transformations required to enable automatic checkpointing of parallel applications in the CPPC application-level checkpointing framework. These transformations have been implemented on two very different compiler infrastructures: Cetus and LLVM. Cetus is a Java-based compiler infrastructure aiming to provide an easy to use and clean IR and API for program transformation. LLVM is a low-level, SSA-based toolchain. The fundamental differences of both approaches are analyzed from the structural, behavioral and performance perspectives.Galicia. Consellería de Economía e Industria; 10PXIB105180PRMinisterio de Ciencia e Innovación; TIN2010-1673

    Analysis of Performance-impacting Factors on Checkpointing Frameworks: The CPPC Case Study

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in The Computer Journal. The final authenticated version is available online at: https://doi.org/10.1093/comjnl/bxr018[Abstract] This paper focuses on the performance evaluation of Compiler for Portable Checkpointing (CPPC), a tool for the checkpointing of parallel message-passing applications. Its performance and the factors that impact it are transparently and rigorously identified and assessed. The tests were performed on a public supercomputing infrastructure, using a large number of very different applications and showing excellent results in terms of performance and effort required for integration into user codes. Statistical analysis techniques have been used to better approximate the performance of the tool. Quantitative and qualitative comparisons with other rollback-recovery approaches to fault tolerance are also included. All these data and comparisons are then discussed in an effort to extract meaningful conclusions about the state-of-the-art and future research trends in the rollback-recovery field.Minsiterio de Ciencia e Innovación; TIN2010-1673

    CPPC: a compiler‐assisted tool for portable checkpointing of message‐passing applications

    Get PDF
    This is the peer reviewed version of the following article: Rodríguez, G. , Martín, M. J., González, P. , Touriño, J. and Doallo, R. (2010), CPPC: a compiler‐assisted tool for portable checkpointing of message‐passing applications. Concurrency Computat.: Pract. Exper., 22: 749-766. doi:10.1002/cpe.1541, which has been published in final form at https://doi.org/10.1002/cpe.1541. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.[Abstract] With the evolution of high‐performance computing toward heterogeneous, massively parallel systems, parallel applications have developed new checkpoint and restart necessities. Whether due to a failure in the execution or to a migration of the application processes to different machines, checkpointing tools must be able to operate in heterogeneous environments. However, some of the data manipulated by a parallel application are not truly portable. Examples of these include opaque state (e.g. data structures for communications support) or diversity of interfaces for a single feature (e.g. communications, I/O). Directly manipulating the underlying ad hoc representations renders checkpointing tools unable to work on different environments. Portable checkpointers usually work around portability issues at the cost of transparency: the user must provide information such as what data need to be stored, where to store them, or where to checkpoint. CPPC (ComPiler for Portable Checkpointing) is a checkpointing tool designed to feature both portability and transparency. It is made up of a library and a compiler. The CPPC library contains routines for variable level checkpointing, using portable code and protocols. The CPPC compiler helps to achieve transparency by relieving the user from time‐consuming tasks, such as data flow and communications analyses and adding instrumentation code. This paper covers both the operation of the CPPC library and its compiler support. Experimental results using benchmarks and large‐scale real applications are included, demonstrating usability, efficiency, and portability.Miniesterio de Educación y Ciencia; TIN2007‐67537‐C03Xunta de Galicia; 2006/

    Compiler assisted chekpointing of message-passing applications in heterogeneous environments

    Get PDF
    [Resumen] With the evolution of high performance computing towards heterogeneous, massively parallel systems, parallel applications have developed new checkpoint and restart necessities, Whether due to a failure in the execution or to a migration of the processes to different machines, checkpointing tools must be able to operate in heterogeneous environments. However, some of the data manipulated by a parallel application are not truly portable. Examples of these include opaque state (e.g. data structures for communications support) or diversity of interfaces for a single feature (e.g. communications, I/O). Directly manipulating the underlying ad-hoc representations renders checkpointing tools incapable of working on different environments. Portable checkpointers usually work around portability issues at the cost of transparency: the user must provide information such as what data needs to be stored, where to store it, or where to checkpoint. CPPC (ComPiler for Portable Checkpointing) is a checkpointing tool designed to feature both portability and transparency, while preserving the scalability of the executed applications. It is made up of a library and a compiler. The CPPC library contains routines for variable level checkpointing, using portable code and protocols. The CPPC compiler achieves transparency by relieving the user from time-consuming tasks, such as performing code analyses and adding instrumentation code

    Reducing the overhead of an MPI application-level migration approach

    Get PDF
    [Abstract] Process migration provides many benefits for parallel environments including dynamic load balance, data access locality, or fault tolerance. This work proposes a solution that reduces the memory and I/O overhead in an application-level checkpoint-based migration approach. The proposal splits the checkpoint files in order to overlap the writing of the state in the terminating processes with the read and restarting operation in the newly spawned processes. It has been tested using the MPI NAS Parallel Benchmarks, showing encouraging results, both in terms of memory consumption and I/O migration times.Ministerio de Economía y Competitividad; TIN2013-42148-PGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2013/05

    Local Rollback for Resilient Mpi Applications With Application-Level Checkpointing and Message Logging

    Get PDF
    [Abstract] The resilience approach generally used in high-performance computing (HPC) relies on coordinated checkpoint/restart, a global rollback of all the processes that are running the application. However, in many instances, the failure has a more localized scope and its impact is usually restricted to a subset of the resources being used. Thus, a global rollback would result in unnecessary overhead and energy consumption, since all processes, including those unaffected by the failure, discard their state and roll back to the last checkpoint to repeat computations that were already done. The User Level Failure Mitigation (ULFM) interface – the last proposal for the inclusion of resilience features in the Message Passing Interface (MPI) standard – enables the deployment of more flexible recovery strategies, including localized recovery. This work proposes a local rollback approach that can be generally applied to Single Program, Multiple Data (SPMD) applications by combining ULFM, the ComPiler for Portable Checkpointing (CPPC) tool, and the Open MPI VProtocol system-level message logging component. Only failed processes are recovered from the last checkpoint, while consistency before further progress in the execution is achieved through a two-level message logging process. To further optimize this approach point-to-point communications are logged by the Open MPI VProtocol component, while collective communications are optimally logged at the application level—thereby decoupling the logging protocol from the particular collective implementation. This spatially coordinated protocol applied by CPPC reduces the log size, the log memory requirements and overall the resilience impact on the applications.This research was supported by the Ministry of Economy and Competitiveness of Spain and FEDER funds of the EU (Projects TIN2016-75845-P and the predoctoral grants of Nuria Losada ref. BES-2014-068066 and ref. EEBB-I-17-12005); by EU under the COST Program Action IC1305 Network for Sustainable Ultrascale Computing (NESUS) and a HiPEAC Collaboration Grant and by the Galician Government (Xunta de Galicia) under the Consolidation Program of Competitive Research (ref. ED431C 2017/04). We gratefully thank Galicia Supercomputing Center for providing access to the FinisTerrae-II supercomputer. This material is also based upon work supported by the US National Science Foundation, Office of Advanced Cyberinfrastructure , under Grants No. #1664142 and #1339763Xunta de Galicia; ED431C 2017/04US National Science Foundation, Office of Advanced Cyberinfrastructure; 1664142US National Science Foundation, Office of Advanced Cyberinfrastructure; 133976

    Failure Avoidance in MPI Applications Using an Application-Level Approach

    Get PDF
    [Abstract] Execution times of large-scale computational science and engineering parallel applications are usually longer than the mean-time-between-failures. For this reason, hardware failures must be tolerated by the applications to ensure that not all computation done is lost on machine failures. Checkpointing and rollback recovery is one of the most popular techniques to provide fault tolerance support to parallel applications. However, when a failure occurs, most checkpointing mechanisms require a complete restart of the parallel application from the last checkpoint. New advances in the prediction of hardware failures have led to the development of proactive process migration approaches, where tasks are migrated in a preventive way when node failures are anticipated, avoiding the restart of the whole application. The work presented in this paper extends an application-level checkpointing framework to proactively migrate message passing interface (MPI) processes when impending failures are notified, without having to restart the entire application. The main features of the proposed solution are: low overhead in failure-free executions, avoiding the checkpoint dumping associated to rolling back strategies; low overhead at migration time, by means of the design of a light and asynchronous protocol to achieve a consistent global state; transparency for the user, thanks to the use of a compiler tool and a runtime library and portability, as it is not locked into a particular architecture, operating system or MPI implementation.Ministerio de Ciencia e Innovación; TIN2010-16735Galicia. Consellería de Economía e Industria; 10PXIB105180P

    Extending an Application-Level Checkpointing Tool to Provide Fault Tolerance Support to OpenMP Applications

    Get PDF
    [Abstract] Despite the increasing popularity of shared-memory systems, there is a lack of tools for providing fault tolerance support to shared-memory applications. CPPC (ComPiler for Portable Checkpointing) is an application-level checkpointing tool focused on the insertion of fault tolerance into long-running MPI applications. This paper presents an extension to CPPC to allow the checkpointing of OpenMP applications. The proposed solution maintains the main characteristics of CPPC: portability and reduced checkpoint file size. The performance of the proposal is evaluated using the OpenMP NAS Parallel Benchmarks showing that most of the applications present small checkpoint overheads.Ministerio de Economía y Competitividad; TIN2013-42148-

    Application-level Fault Tolerance and Resilience in HPC Applications

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] As necesidades computacionais das distintas ramas da ciencia medraron enormemente nos últimos anos, o que provocou un gran crecemento no rendemento proporcionado polos supercomputadores. Cada vez constrúense sistemas de computación de altas prestacións de maior tamaño, con máis recursos hardware de distintos tipos, o que fai que as taxas de fallo destes sistemas tamén medren. Polo tanto, o estudo de técnicas de tolerancia a fallos eficientes é indispensábel para garantires que os programas científicos poidan completar a súa execución, evitando ademais que se dispare o consumo de enerxía. O checkpoint/restart é unha das técnicas máis populares. Sen embargo, a maioría da investigación levada a cabo nas últimas décadas céntrase en estratexias stop-and-restart para aplicacións de memoria distribuída tralo acontecemento dun fallo-parada. Esta tese propón técnicas checkpoint/restart a nivel de aplicación para os modelos de programación paralela roáis populares en supercomputación. Implementáronse protocolos de checkpointing para aplicacións híbridas MPI-OpenMP e aplicacións heteroxéneas baseadas en OpenCL, en ámbolos dous casos prestando especial coidado á portabilidade e maleabilidade da solución. En canto a aplicacións de memoria distribuída, proponse unha solución de resiliencia que pode ser empregada de forma xenérica en aplicacións MPI SPMD, permitindo detectar e reaccionar a fallos-parada sen abortar a execución. Neste caso, os procesos fallidos vólvense a lanzar e o estado da aplicación recupérase cunha volta atrás global. A maiores, esta solución de resiliencia optimizouse implementando unha volta atrás local, na que só os procesos fallidos volven atrás, empregando un protocolo de almacenaxe de mensaxes para garantires a consistencia e o progreso da execución. Por último, propónse a extensión dunha librería de checkpointing para facilitares a implementación de estratexias de recuperación ad hoc ante conupcións de memoria. En moitas ocasións, estos erros poden ser xestionados a nivel de aplicación, evitando desencadear un fallo-parada e permitindo unha recuperación máis eficiente.[Resumen] El rápido aumento de las necesidades de cómputo de distintas ramas de la ciencia ha provocado un gran crecimiento en el rendimiento ofrecido por los supercomputadores. Cada vez se construyen sistemas de computación de altas prestaciones mayores, con más recursos hardware de distintos tipos, lo que hace que las tasas de fallo del sistema aumenten. Por tanto, el estudio de técnicas de tolerancia a fallos eficientes resulta indispensable para garantizar que los programas científicos puedan completar su ejecución, evitando además que se dispare el consumo de energía. La técnica checkpoint/restart es una de las más populares. Sin embargo, la mayor parte de la investigación en este campo se ha centrado en estrategias stop-and-restart para aplicaciones de memoria distribuida tras la ocurrencia de fallos-parada. Esta tesis propone técnicas checkpoint/restart a nivel de aplicación para los modelos de programación paralela más populares en supercomputación. Se han implementado protocolos de checkpointing para aplicaciones híbridas MPI-OpenMP y aplicaciones heterogéneas basadas en OpenCL, prestando en ambos casos especial atención a la portabilidad y la maleabilidad de la solución. Con respecto a aplicaciones de memoria distribuida, se propone una solución de resiliencia que puede ser usada de forma genérica en aplicaciones MPI SPMD, permitiendo detectar y reaccionar a fallosparada sin abortar la ejecución. En su lugar, se vuelven a lanzar los procesos fallidos y se recupera el estado de la aplicación con una vuelta atrás global. A mayores, esta solución de resiliencia ha sido optimizada implementando una vuelta atrás local, en la que solo los procesos fallidos vuelven atrás, empleando un protocolo de almacenaje de mensajes para garantizar la consistencia y el progreso de la ejecución. Por último, se propone una extensión de una librería de checkpointing para facilitar la implementación de estrategias de recuperación ad hoc ante corrupciones de memoria. Muchas veces, este tipo de errores puede gestionarse a nivel de aplicación, evitando desencadenar un fallo-parada y permitiendo una recuperación más eficiente.[Abstract] The rapid increase in the computational demands of science has lead to a pronounced growth in the performance offered by supercomputers. As High Performance Computing (HPC) systems grow larger, including more hardware components of different types, the system's failure rate becomes higher. Efficient fault tolerance techniques are essential not only to ensure the execution completion but also to save energy. Checkpoint/restart is one of the most popular fault tolerance techniques. However, most of the research in this field is focused on stop-and-restart strategies for distributed-memory applications in the event of fail-stop failures. Thís thesis focuses on the implementation of application-level checkpoint/restart solutions for the most popular parallel programming models used in HPC. Hence, we have implemented checkpointing solutions to cope with fail-stop failures in hybrid MPI-OpenMP applications and OpenCL-based programs. Both strategies maximize the restart portability and malleability, ie., the recovery can take place on machines with different CPU / accelerator architectures, and/ or operating systems, and can be adapted to the available resources (number of cores/accelerators). Regarding distributed-memory applications, we propose a resilience solution that can be generally applied to SPMD MPI programs. Resilient applications can detect and react to failures without aborting their execution upon fail-stop failures. Instead, failed processes are re-spawned, and the application state is recovered through a global rollback. Moreover, we have optimized this resilience proposal by implementing a local rollback protocol, in which only failed processes rollback to a previous state, while message logging enables global consistency and further progress of the computation. Finally, we have extended a checkpointing library to facilitate the implementation of ad hoc recovery strategies in the event of soft errors) caused by memory corruptions. Many times, these errors can be handled at the software-Ievel, tIms, avoiding fail-stop failures and enabling a more efficient recovery
    corecore