The Computer Journal Advance Access published March 3, 2011
© The Author 2011. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

For Permissions, please email: journals.permissions @oup.com
doi:10.1093/comjnl/bxr018

Analysis of Performance-impacting

Factors on Checkpointing Frameworks:
The CPPC Case Study

GABRIEL RODRIGUEZ*, MARiA J. MARTIN, PATRICIA GONZALEZ
AND JUAN TOURINO

Computer Architecture Group, Department of Electronics and Systems, University of A Corufia, Spain
*Corresponding author: gabriel.rodriguez@udc.es

This paper focuses on the performance evaluation of Compiler for Portable Checkpointing (CPPC),
a tool for the checkpointing of parallel message-passing applications. Its performance and the factors
that impact it are transparently and rigorously identified and assessed. The tests were performed
on a public supercomputing infrastructure, using a large number of very different applications and
showing excellent results in terms of performance and effort required for integration into user codes.
Statistical analysis techniques have been used to better approximate the performance of the tool.
Quantitative and qualitative comparisons with other rollback-recovery approaches to fault tolerance
are also included. All these data and comparisons are then discussed in an effort to extract meaningful
conclusions about the state-of-the-art and future research trends in the rollback-recovery field.

Keywords: fault tolerance; checkpointing; parallel programming; message-passing;, MPI

Received 22 October 2010; revised 30 December 2010
Handling editor: Erol Gelenbe

1. INTRODUCTION

Experimentation conducted on different high-performance
computing systems reveals the mean time to interrupt of these
platforms to be relatively low [1]. Furthermore, increasing the
number of cores in the system causes a proportional growth in
failure rates. In this situation, it becomes increasingly difficult
for long-running application executions to progress in the
absence of fault tolerance mechanisms.

Checkpointing has become a widely used technique to obtain
fault tolerance. It periodically saves the computation state
to stable storage, so that the application execution can be
resumed by restoring such a state. A number of solutions and
techniques have been proposed [2], each having its own pros
and cons.

Current trends toward new computing infrastructures, such
as large heterogeneous clusters and Grid systems, present new
constraints for checkpointing techniques. Heterogeneity makes
it impossible to apply traditional state-saving techniques, which
use non-portable strategies for recovering opaque structures
such as application stack, heap or communication state. In
this context, modern checkpointing techniques need to provide

strategies for portable state recovery, where the computation
can be resumed on a wide range of machines, from binary
incompatible architectures to incompatible versions of software
facilities, such as different implementations for communication
interfaces.

Some mathematical models to predict the principal
performance measures of fault-tolerant systems have been
developed [3-6]. However, the complexity and stochastic
behavior of current supercomputers running multitasking
operating systems makes it difficult to devise mathematical
equations to model the behavior of such systems as a
whole. This paper presents a thorough performance evaluation
of ComPiler for Portable Checkpointing (CPPC) [7], a
checkpointing framework for message-passing applications
with an emphasis on portability. The fundamental factors
impacting the performance of fault-tolerant jobs are identified,
and their impact in application runtimes is qualitatively and
quantitatively addressed.

The structure of the paper is as follows. Section 2
describes CPPC’s design and implementation, focusing on the
distinguishing characteristics of its checkpointing approach.
Section 3 presents the experimental results for both the

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

2 G. RODRIGUEZ et al.

automatic instrumentation of parallel applications and the
runtime behavior, in terms of size and creation time of state
files, checkpoint overhead and restart overhead in case of
failure. Section 4 covers related work, drawing qualitative and
quantitative comparisons between the proposed approach and
the literature. Finally, Section 5 concludes the paper.

2. THE CPPC FRAMEWORK

CPPC is a checkpointing tool focused on the insertion of
fault tolerance into long-running message-passing applications.
It is an open-source tool, available at http://cppc.des.udc.es
under GNU general public license (GPL) license. It consists
of a runtime library containing checkpoint-support routines
together with a compiler that automates the use of the library.
The remainder of this section summarizes various fundamental
design aspects of the CPPC framework. For an in-depth
description of the design and implementation of CPPC, the
reader is referred to [7].

2.1. Portability

The vast majority of checkpointing research has focused on
systems implemented either inside the operating system (OS)
kernel or immediately above the OS interface. This kind
of solutions generally become locked into the platform for
which they were originally developed. For instance, when
checkpointing parallel communication APIs, such as message
passing interface (MPI), the typical approach has been to
modify the existing implementations of such APIs. This is,
for instance, the case of MPICH-IG [8], Open MPI [9, 10]
or MPICH-V [11, 12], among others. The problem arises
when, for this approach to be practical, it becomes necessary
to adopt the modified libraries in real systems, which use
highly tuned and optimized communication libraries. CPPC,
instead, is implemented at the application level [13], and thus
it is independent of the underlying communications application
programming interface.

CPPC aims to achieve portable restart of high-performance
applications in heterogeneous environments. A state file is said
to be portable if it can be used to restart the computation on
an architecture (or OS) different from the one that generated
the file. To achieve portability, state files should not contain
an architecture-dependent state. Rather, this state should be
recovered at the restart time using special protocols. The
solution used in CPPC is to recover the non-portable state by
means of the re-execution of the code responsible for creating
such an opaque state in the original execution. Moreover, CPPC
uses a portable checkpoint format based on the Hierarchical
Data Format 5 (HDF-5) [14], a data format and associated
library for the portable transfer of graphical and numerical
data between computers. This enables the restart on different
architectures. Portable offsets [15] are used to store pointers

in a way that enables aliasing relationships to be preserved
throughout application restarts.

2.2. State file sizes

The solution of large real scientific problems requires the use of
large computational resources, both in terms of CPU effort and
memory. Thus, many scientific applications are developed to
be run on a large number of processors. The full checkpointing
of this kind of applications, which consists in the storage of
the entire application state, including structures such as the
application stack or heap, leads to a large amount of stored state,
the cost being so high as to become impractical [1]. Besides, the
size of the state files is one of the most significant performance-
impacting factors in checkpointing. CPPC reduces the amount
of data to be saved by working at the variable level (i.e. storing
user variables only) and performing a live variable analysis that
identifies those variable values that are needed for the correct
restart of the execution. The process of marking a variable to be
included in subsequent state files is called variable registration.
Besides, compression of the checkpoint data can be enabled.
This not only does help save disk space and network transfers
(if needed), but also can improve checkpointing performance
when working with large data sets with high compression rates.
A multithreaded dumping option is also provided to overlap
the application execution and the generation of the checkpoint
file. If a failure occurs in the checkpointing thread, inconsistent
checkpoint files may be created. CPPC generates a CRC-32
code for the checkpoint file. This redundancy code is checked
upon restart to ensure file correctness.

2.3. Coordination protocol

When checkpointing parallel message-passing applications, the
dependencies created by interprocess communications have
to be preserved during recovery. If a checkpoint is placed in
the code between two matching communication statements, an
inconsistency will occur when restarting the application, since
the first one will not be executed. If it is a send statement, the
message will not be resent and becomes an in-transit message.
If it is a receive statement, the message will not be received,
becoming an inconsistent message.

Checkpoint consistency has been well studied in the
last decade [2]. Approaches to consistent recovery can be
categorized into two main protocols: uncoordinated and
coordinated. In uncoordinated checkpoint protocols, the state
of each process is saved independently of the others, leading
to the so-called domino effect (processes may be forced to
roll back up to the beginning of the execution). Because of
this, these protocols are not used in practice. As an alternative,
uncoordinated checkpointing may be combined with message
logging to avoid the domino effect at the expense of a
high overhead on communication latencies [16]. Coordinated
checkpointing synchronizes the individual checkpoints of all

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

PERFORMANCE-IMPACTING FACTORS ON CHECKPOINTING FRAMEWORKS: THE CPPC CASE STUDY 3

processes to ensure that the set of all process checkpoints is a
globally consistent state of the system. Coordinated approaches
are the most common practical choice [10, 17-19] due to the
simplicity of recovery. However, an important drawback of
coordinated protocols is their scalability [16].

CPPC avoids the runtime overhead of classical consistency
protocols by focusing on simple program multiple data
(SPMD) parallel applications and using a non-blocking
spatially coordinated approach [20]. Checkpoints are taken
at the same relative code locations by all processes, but
not forcibly at the same time. By statically ensuring that
checkpoints occur at the selected places, no interprocess
communications or runtime synchronizations are necessary. In
order to avoid synchronization problems caused by messages
between processes, checkpoints must be taken at points where
it is guaranteed that there are no in-transit, nor inconsistent
messages. These points will be called safe points. This
coordination protocol achieves to improve both efficiency and
scalability by transferring consistency concerns from runtime
to compile time and restart time. The restart is divided into
three phases: negotiation, file read and state recovery. During the
negotiation step, application processes identify the most recent
valid recovery line, formed by the newest checkpoint available
simultaneously to all processes. Once each process has selected
its appropriate local checkpoint file, in the second phase the file
contents are read into memory. Finally, in the third step, the
application state is effectively recovered.

2.4. CPPC compiler

In early stages of the work, the user was responsible
for inserting compiler directives to guide the operation of
the runtime library [21]. Currently, all analyses and code
transformations are transparently applied by a compiler that
translates the application source files into derived code with
added checkpointing capabilities. The global process is depicted
in Fig. 1.

The compiler performs code analyses and transformations
that insert checkpoint instrumentation into an application. The
most relevant of these transformations are: the detection of
variable values that are necessary during a restart, the automatic
safe point discovery and the insertion of checkpoint operations
at automatically selected safe points.

In order to identify the variables needed upon application
restart, the compiler performs an interprocedural live variable

CPPC library: manages application%
: state, saving and recovering it :
3 when necessary

FT Parallel cPPC
Application library

FIGURE 1. CPPC framework design.

CPPC Compiler: inserts fault
: tolerance and flow control code :

Parallel Application :

Stable
Storage

analysis. This is a complementary approach to memory
exclusion techniques used in sequential checkpointers to reduce
the amount of memory stored, such as the one proposed in [22].
The compiler does not perform optimal bounds checks for
pointer and array variables. This means that some arrays and
pointers are conservatively marked as necessary during restart,
and thus stored in state files.

To automatically discover regions in the code where neither
in-transit nor inconsistent communications exist, the compiler
analyzes communication statements and matches message
sends to their respective receives. The approach used is similar
to a static partial simulation of the execution, requiring constant
propagation and aggressive symbolic analysis. Only statements
that affect the outcome of communications are analyzed,
thus avoiding analysis of irrelevant code. A statement in the
application code is considered a safe point if, and only if, the
analysis does not detect any pending communications upon
reaching the location of the said statement.

Some parallel applications present irregular communication
patterns (those that depend on runtime input data) or non-
deterministic communications (which use wildcard receives).
In these situations, the information available at compile
time may not be enough to completely determine how the
communications will play out during runtime. To ensure the
correctness of the results, a conservative solution is used. This
approach is based on considering any of the potential matches
and deferring the match to the latest possible one in the code.
The correctness of the results is guaranteed, although some
actual safe points may not be considered as such for the sake of
consistency.

For automatic checkpoint insertion, the compiler locates
sections of the code that take a long time to execute, where
checkpoints would be needed in order to guarantee execution
progress in the presence of failures. Since the time to compute
a code section cannot be accurately predicted at compile time
without the knowledge of the computing platform and input
data, heuristics are used. The compiler discards any code
location that is not inside a loop, and ranks all loop nests in the
code using computational metrics. Once the loop nests in which
checkpoints are to be inserted are identified, the compiler uses
the results of the previous communication analysis and inserts a
checkpoint at the first available safe point in each selected nest.

The CPPC compiler is built on the Cetus compiler
infrastructure [23], which is written in Java and thus inherently
portable. Although Cetus was originally designed to support
C codes, we have extended it for parsing Fortran 77 codes.
More details about the CPPC compilation analyses and code
transformations are provided in [7, 20].

3. PERFORMANCE EVALUATION

This section is divided into two main parts: the evaluation of
the compiler, which performs the transformations to instrument

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

4 G. RODRIGUEZ et al.

the checkpointing of parallel codes, and the experimental
results obtained by the runtime library containing the routines
for checkpoint and restart. Twelve applications were selected
for testing, separated into three different categories. The first
category is formed by the eight applications in the NPB-MPI
v3.1 benchmarks [24]. They are well known and widespread,
which makes them a good option for comparison purposes. Each
kernel has several workloads to scale from small systems to
supercomputers. The second category contains two scientific
applications in use in the Supercomputing Center of Galicia
(CESGA), called CalcuNetw [25] and Fekete [26]. While these
applications do not have particularly long runs, they are good

choices for evaluating the performance of the framework when
checkpointing typical applications used in supercomputing
centers. Finally, two large-scale applications called DBEM [27]
and STEM-II [28] were added to test the tool in long-running
programs. Table 1 gives more details about the test applications
used.

3.1. Compiler performance

A summary of the static characteristics of the test codes is shown
in Table 2, including number of files, lines of code (LOCs), the
time it takes the CPPC compiler to instrument them, number of

TABLE 1. Summary of test applications.

Source

Application

Description

NAS NPB-MPI v3.1

CESGA

Others

BT (class = B)

CG (class = C)
EP (class = C)
FT (class = B)
IS (class = C)

LU (class = B)

MG (class = B)

SP (class = B)

CalcuNetw [25]

Fekete [26]

DBEM [27]

STEM-II [28]

A simulated computational fluid dynamics (CFD) application that uses an implicit algorithm to
solve 3D compressible Navier—Stokes equations. The resulting systems are Block-Tridiagonal of
5 x 5 blocks and are solved sequentially along each dimension.

Uses a Conjugate Gradient method to compute an approximation to the smallest eigenvalue of a
large, sparse, unstructured matrix.

Embarrassingly Parallel benchmark. It generates pairs of Gaussian random deviates according to a
specific scheme.

Contains the computational kernel of a Fast Fourier Transform (FFT)-based spectral method. It
performs three 1D FFTs, one for each dimension.

Integer Sort: It works with a list of small integer values, not really sorting them but assigning every
list member a number indicating the position in the sorted list.

A simulated CFD application that uses a symmetric successive over-relaxation (SSOR) method to
solve a seven-block-diagonal system by splitting it into block Lower and Upper triangular
systems.

Uses a V-cycle MultiGrid to compute the solution of the 3D scalar Poisson equation. The algorithm
works continuously on a set of grids that are made between coarse and fine.

A simulated CFD application that has a similar structure to BT. The finite differences solution to the
problem is based on a Beam-Warming approximate factorization that decouples the x, y and z
dimensions. The resulting system has Scalar Pentadiagonal bands of linear equations that are
solved sequentially along each dimension.

Calculates some characterization measurements in a given network, consisting of a set of nodes or
vertices joined together in pairs by links or edges, and compares it with a number of random
networks specified by the user. The program calculates the subgraph centrality, bipartivity and
network communicability.

Determines the position of a certain number of points on a 2D sphere such that the potential energy
produced by the interaction of these points is minimum. This is the seventh of the Smale’s
problems [45].

Crack growth analysis using the Dual Boundary Element Method. The analysis leads to a large
number of discretized equations that grow at every step when the crack growth is evaluated. It
solves the resulting dense linear system using the generalized minimal residual (GMRES)
iterative method, regarded as the most robust of the Krylov subspace iterative methods.

Used to know in advance how the meteorological conditions, obtained from a meteorological
prediction model, would affect the emissions of pollutants by the power plant of As Pontes (A
Coruiia, Spain) in order to fulfill EU regulations. The underlying equation is a time-dependent,
3D partial differential atmospheric-diffusion equation.

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

PERFORMANCE-IMPACTING FACTORS ON CHECKPOINTING FRAMEWORKS: THE CPPC CASE STUDY 5

TABLE 2. Characteristics and compilation times for test applications.

Application Files LOCs Compile time (s) Loop nests # Checkpoints # Registers
BT 18 3650 14.19 25 1 121

CG 1044 2.61 13 2 38

EP 1 180 0.90 4 1 14

FT 1 1269 4.82 20 1 31

IS 1 672 3.88 6 3 34

LU 25 3086 7.78 35 1 74

MG 1 1618 13.08 12 1 34

SP 24 3148 13.69 25 4 143
CalcuNetw 5 810 24.55 14 1 28

Fekete 1 182 0.86 6 1 17
DBEM 42 12533 77.14 92 4 279
STEM-II 110 6506 15.14 24 1 94

TABLE 3. Breakdown of compilation times for test applications (s).

Application Total time Data flow Communications analysis Checkpoint insertion Rest
BT 14.19 3.17 2.45 0.85 7.72
CG 2.61 0.52 0.64 0.08 1.37
EP 0.90 0.12 0.08 0.01 0.69
FT 4.82 1.18 0.84 0.27 2.53
IS 3.88 1.04 1.68 0.05 1.11
LU 7.78 1.92 1.30 0.39 4.17
MG 13.08 1.56 7.71 0.32 3.49
SP 13.69 221 1.76 0.78 8.94
CalcuNetw 24.55 21.96 0.00* 0.20 2.39
Fekete 0.86 0.15 0.07 0.02 0.62
DBEM 77.14 17.20 15.23 20.33 24.38
STEM-II 15.14 5.95 3.55 1.45 4.19

4CalcuNetw is a sequential application.

loop nests in the code and number of checkpoints and variable
registrations inserted by the CPPC compiler. Compilation times
were measured in a desktop machine, an Intel Core2 Duo CPU
at 3.00 GHz with 1 GB of RAM. Although the CPPC compiler
is not yet optimized for production use, it can be seen that
compile times are acceptable for all test applications, and mostly
dependent on the number of source LOCs. The highest compile
time, 77.14s, is obtained for the DBEM application, which
contains 12533 LOCs.

A more in-depth analysis of compilation times is given in
Table 3. Times have been broken down into the times consumed
by each of the foremost analyses performed by the compiler:
data flow analysis, communication analysis and checkpoint
insertion. The column labeled Rest includes the combined times
for other compilation tasks such as parsing, instrumentation and
code generation. Although the number of applications is not

nearly enough as to develop a complete mathematical model
of execution times, some tendencies can be inferred from these
times. The data flow analysis is O (#LOC). However, it is very
dependent on the programming language of the application.
If a linear regression model were fitted to the times for the
data flow analysis, two different models would be needed
for the analysis of C and Fortran 77 applications. Regarding
the communications analysis, it also tends to O#LOC),
but depends on more complex factors like the number of
communication-related variables. The checkpoint insertion
analysis does not depend on the LOCs of the application, but
rather on the number of loop nests (#L), being O#L?). As
for the times labeled as Rest, they include many compilation
passes, such as insertion of the actual registration calls for
restart-relevant variables, control flow code, etc. Each of these
passes is O (#LOC).

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

6 G. RODRIGUEZ et al.

TABLE 4. Number of nodes and cores used for runtime tests for each
application.

Application Nodes Cores per node Total cores
BT 3 12 36
CG 2 16 32
EP 2 16 32
FT 2 16 32
IS 2 16 32
LU 2 16 32
MG 2 16 32
Sp 3 12 36
CalcuNetw 1 1 1
Fekete 2 16 32
DBEM 2 16 32
STEM-1I 2 16 32

3.2. Runtime performance

Runtime tests of the CPPC library were performed on the
Finis Terrae supercomputer hosted by CESGA, which consists
of 142 HP Integrity rx7640 nodes with 16 Itanium Montvale
cores at 1.6 GHz and 128 GB of RAM per node. The nodes
are connected through an Infiniband 4xDDR network with a
bandwidth of 20 Gbps. It features a high-performance storage
system, the HP scalable file share (SFS), made up of 20
HP Proliant DL380 G5 servers and 72 SFS 20 disk arrays.
The SFS storage system is accessed through the Infiniband
network. The Finis Terrae software configuration consists of
a SuSE Linux Enterprise Server 10 IA64 OS, the Intel C
and Fortran compilers (icc and ifort) v10.1.012 and the MPI
library HP-MPI v2.2.5.2. Table 4 details the number of nodes
used for each application in runtime tests. Whenever possible,
two nodes with 16 cores each were used for the execution.
However, the NPB-MPI BT and SP applications require the
number of parallel processes to be a perfect square, which
caused the number of processes to be raised to 36, allocating
3 nodes and using 12 cores of each of them. The remaining
4 cores in each node were allocated to prevent applications
belonging to other users from being executed on them, thus
disrupting the results. CESGA CalcuNetw is a sequential
application. A whole node was allocated for its execution, while
only one of its cores was used for the tests.

Measurements taken include: generated state file sizes,
times for state file generation, checkpointing overhead and
restart times. For proving portability, the applications were
cross-restarted on the Finis Terrae using state files generated
on the NM cluster, a local cluster hosted by the Computer
Architecture Group of the University of A Corufia. It consists
of eight execution nodes, each powered by two Intel Xeon
dual-core CPUs with 4 GB of RAM. The cluster nodes are
connected through an Infiniband network, and the InteIMPI
library v4.0.0.0.017 is used for communication. With regard

to software configuration, the cluster runs on a Linux Rocks
5.2 v2.6.18-128 OS using the GNU C and Fortran compilers
v4.1.2. Note that the OS, compilers and MPI implementations
are different from those available in the Finis Terrae.

The NPB-MPI CG, IS and SP and the DBEM application
generate two or more different checkpoint files during their
execution, due to the compiler detecting more than one loop
nest with intensive computation (see column #Checkpoints in
Table 2). In order to provide normalized results for the state file
sizes, state file creation times and restart times, these parameters
were measured for the largest checkpoint file created by each
code. In this way, worst case results are reported. This makes it
easier to provide graphical comparisons of the obtained results
for different applications.

3.2.1. State file sizes

When using CPPC’s spatially coordinated technique, the
incurred overhead will mainly depend on the overhead
introduced by the checkpoint file creation. This overhead
heavily depends on the size of the data to be dumped. In
this context, it is important to determine how checkpointing
at the variable level affects checkpoint file sizes. In order
to analyze this effect, state file sizes have been measured
for different checkpointing configurations, and compared with
sizes obtained using full checkpointing.

For most applications, file sizes vary depending on the
number of processes involved in the execution, because the
sizes of array data are defined to match the problem size. The
exceptions to this rule are NPB-MPI EP, CESGA Fekete, DBEM
and STEM-II, which are Fortran 77 codes that statically allocate
afixed array size that determines the maximum allowed problem
size. An example of state file size variations is shown in Fig. 2 for
the NPB-MPI IS application. The values labeled as ‘Automatic’
are file sizes obtained by the automatic variable registration
included in the compiler. ‘Compressed’ corresponds to file sizes
obtained by enabling the compression included in the HDF-5
library. Compression is only applied to both static and dynamic
array variables larger than a certain user-specified threshold,
which in this case was set to 2000 elements. For comparison
purposes, ‘Optimal’ shows the optimal file sizes obtained by
a manual analysis of live variables, and ‘Full checkpointing’
presents the sizes obtained for a checkpointer that stores the
whole application state. The CKPT library [29] was used for
this test. Figure 3 shows the summary of sizes obtained for
all applications using the number of cores (processes) shown
in Table 4. The high compression rates obtained for DBEM
and STEM-II (97.86 and 96.10%, respectively) are due to the
already stated fact that these applications statically allocate
arrays that are oversized to fit a maximum problem size. As
a result, an important amount of empty memory is allocated in
our tests, resulting in high compression rates.

Sizes obtained using automatic analyses are close to the
optimal ones for most applications. The existing difference is
due to the registration of unnecessary array sections because

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

PERFORMANCE-IMPACTING FACTORS ON CHECKPOINTING FRAMEWORKS: THE CPPC CASE STUDY

[Optimal @ Automatic B Compressed B Full checkpointing
3000

2500

state file size (MB)

8 16 32 64
processes

FIGURE 2. Evolution of file sizes with the number of processes for the NPB-MPI IS application.

[optimal [Automatic B Compressed M Full checkpointing
350

300

250

150

state file size (MB)

100

50

SP Fekete CalcuNetw DBEM STEM-II

FIGURE 3. Summary of state file sizes.

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

8 G. RODRIGUEZ et al.

of the conservative approach employed by the compiler, as
explained in Section 2.4. As can be seen, variable level
checkpointing achieves very important file size reductions
compared with full checkpointing. Table 5 gives the details and
reduction percentages for the file sizes depicted in Fig. 3. The
table includes the size of the files created by the automatic live
variable analysis, the reduction obtained with respect to the
size of the files created by full checkpointing and the optimal
reduction (bracketed) obtained by a manual analysis.

Throughout the rest of this section, all measurements are
taken for codes that use the automatic version of the variable
registration.

3.2.2. State file creation times.
The Finis Terrae machine exhibits a high variability between
the observed runtimes of different executions of the same

TABLE 5. Performance of the automatic variable registration
algorithm.

experiment. Allocating entire nodes reduces this variability,
but does not completely solve the problem. Because of this,
performing a large number of experiments and statistically
analyzing the results is a better approach than just giving the
minimum, maximum or mean times for each experiment. The
experimental approach consisted in measuring the creation time
for state files a minimum of 500 times for each application,
followed by the elimination of outliers and the calculation of
the 99% confidence interval for the mean. The approach used
for outlier identification was to discard observations higher
than a certain threshold. This threshold is defined for each
application as the third quartile of the data series plus 1.5 times
the interquartile range (IQR). This is a classical approach to
outlier identification [30]. Table 6 shows, for all the applications,
the 99% confidence interval for the mean creation times (Xyjn,
Xmax) of: (1) a standard HDF-5 state file, (2) the same HDF-
5 file including a CRC-32 error detection scheme and (3)
the compressed HDF-5 file. The minimum times obtained are
also shown for comparison purposes. Note that these times
correspond to the raw dumping time of a single checkpoint,
not the real contribution of file creation times to the checkpoint

Application F;/l{e]zgilze ?(;Sz:ig;l overhead, which is reduced by using multithreaded dumping.
Also, it should be noted that the width of the confidence interval
BT 17.30 93.77% (98.55%) obtained for the mean creation times of compressed files for the
CG 19.77 93.55% (93.64%) NPB-MPI MG application is relatively large (~ 0.25s). This
EP 1.04 88.87% (99.71%) is due to the entropy of the stored data being variable through
FT 40.10 87.32% (92.38%) the execution, causing compression times to decrease as the
IS 72.10 78.28% (92.76%) execution progresses.
LU 8.26 51.81% (64.26%) Stored data are tagged with their corresponding datatypes by
MG 15.64 60.49% (63.15%) the HDF-5 library to allow for conversions to be performed,
SP 19.77 86.05% (91.99%) if necessary, during the restart of the execution. This improves
Fekete 1.60 82.59% (92.81%) checkpoint performance by moving the conversion overhead
CalcuNetw 3.12 73.78% (73.80%) to restart, which should be a much less frequent operation.
DBEM 275.67 5.94% (10.70%) Figure 4 graphically compares the results shown in Table 6,
STEM-II 114.13 39.72% (83.42%) using the worst case estimated value (i.e. the upper limit of
TABLE 6. Checkpoint file creation times (s).
Standard CRC-32 Compressed
Application Xmin Xmax Min Xmin Xmax Min Xmin Xmax Min
BT 0.1374 0.1436 0.1162 0.2221 0.2286 0.2016 1.3248 1.3299 1.3095
CG 0.0904 0.0991 0.0896 0.1914 0.1988 0.1728 1.7216 1.7256 1.7093
EP 0.0065 0.0066 0.0061 0.0112 0.0113 0.0108 0.1195 0.1198 0.1187
FT 0.1612 0.1717 0.1259 0.3601 0.3685 0.3217 3.4236 3.4339 3.3957
IS 0.2875 0.2996 0.2457 0.6500 0.6599 0.6008 6.2744 6.3449 6.1869
LU 0.0776 0.0810 0.0661 0.1145 0.1172 0.1040 0.6191 0.6279 0.6006
MG 0.1035 0.1077 0.0890 0.1796 0.1840 0.1666 0.6795 09111 0.5113
Sp 0.1633 0.1692 0.1471 0.2657 0.2706 0.2509 1.2629 1.2699 1.2387
Fekete 0.0251 0.0275 0.0187 0.0309 0.0322 0.0267 0.0818 0.0824 0.0802
CalcuNetw 0.0207 0.0214 0.0189 0.0353 0.0363 0.0313 0.0964 0.0968 0.0951
DBEM 2.2384 2.2725 2.1339 3.6321 3.6769 3.4345 7.0284 7.0646 6.8588
STEM-II 0.9898 1.0147 0.8724 1.5406 1.5617 1.4581 4.3067 4.3527 4.0857

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

PERFORMANCE-IMPACTING FACTORS ON CHECKPOINTING FRAMEWORKS: THE CPPC CASE STUDY 9

[Standard [CRC-32 E Compressed

8
7
6
5
0
o 4
E
3
2
1
0- T —= T T J J
IS LU MG

BT CG EP FT

SP Fekete CalcuNetw DBEM STEM-II

FIGURE 4. Maximum mean dumping times (Xmax) for test applications.

the confidence intervals) for each application. The experimental
data also show that using compression notably increases overall
dumping times. Therefore, it should be enabled only when the
physical size of state files is critical: for instance, if there are
problems with disk quotas or when the files are going to be
transferred using a slow network.

A regression analysis on the dumping times with respect to
the checkpoint file sizes yields a linear relationship between
both factors in both the standard and the CRC-32 file creations.
Figure 5 shows the obtained function for the standard file
creations. The coefficient of determination (R?) indicates that
the state file size alone accounts for a 98.81% of the variability of
these times. The regression line grows ~1 s for each 120 MB of
generated data. For the CRC-32 file creation, this percentage
increases slightly, up to 99.10%, while the regression line
is steeper than in the standard case, growing ~1s for each
75MB of data due to the necessary data hash calculations.
Using compression, however, the relationship is not linear, since
the dumping time depends on the number of variables to be
compressed and the entropy of the data. Hence, R? decreases,
and the percentage of variability explained by a linear model is
only 71.59%.

3.2.3. Checkpoint overhead

To reduce the overhead introduced by file generation,
multithreaded state dumping has been implemented into the
CPPC library. This absorbs a big amount of the state file creation
and disk writing times. When performing the overhead tests,

the problem of the experimental variability in Finis Terrae has
to be carefully dealt with. The load of the allocated nodes
dramatically impacts execution times. To handle this situation,
full nodes were reserved for the execution of the experimental
applications as explained before. Moreover, it is important that
all the repetitions of a given experiment are executed on the
same nodes and under the same load conditions. To achieve this,
once the nodes were allocated, a sequence of N experiments
was run on them. Before the start of each experiment a random
number was generated, and depending on it being odd or even
the original version of the application or the CPPC-instrumented
one was run. For the shorter applications, N was limited to 500,
anumber that should provide statistically representative results.
For the larger ones this number was determined by the maximum
allowed node allocation time (10h). Performing more than
one allocation is not a valid approach, since the obtained time
series may not be assumed to come from the same statistical
distribution. This experimental setup is designed to ensure that
the variability exhibited by the machine affects all types of
experiments to the same degree. Outliers are identified, as in
the previous experiment, by removing observations higher than
the third quartile plus 1.5 times IQR in each of the series. Table 7
shows the number of regular and CPPC runs performed for each
application (excluding outliers), a 99% confidence interval for
the mean checkpointing overhead, the minimum execution time
for both the regular and CPPC versions of the code and the worst
case overhead percentage calculated as the upper limit of the
overhead confidence interval divided by the minimum original

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

10 G. RODRIGUEZ et al.

20} " DBEM

N
o

creation time (s)
5

- STEM-I

e
0

0 50 100 150 200 250 300
state file size (MB)

A
O
=
<)
o o
o N
(0
i
. 1]
- <ommnc] |

@© 0.10
E ,
E |!| MG
5 .
2 X
= | U
8 0.05 Fekete €|
=
o
0.00 | CalcuNet-\fv.“_.v"-l.

0 2 4 6 8 10 12 14 16 18 20
state file size (MB)
FIGURE 5. Relationship between state file sizes and creation times.

(a) Linear regression model for standard file creation time depending
on file size (R2 = 0.9881). (b) Zoom of the region labeled “Rest” in (a).

runtime. These overheads include, besides file generation, all
CPPC instrumentation (e.g. variable registration). Files were
generated with CRC-32 and without compression. For all the
applications in the table, one state file per checkpoint introduced
by the CPPC compiler was generated (see column #Checkpoints
in Table 2).

As can be seen in Table 7, sometimes the minimum execution
time for the CPPC version is below the minimum time for the
original version of the application. This evidences the need for
statistical analyses of execution times. Note that, even when
considering the maximum possible overhead at 99% confidence
and the minimum time obtained for the execution of the original
code, the overhead percentages remain low, usually in the 1%
range, except for the IS application. IS runs for ~25s and
therefore the 9.37% overhead obtained does not account for
more than 2.5s.

The previously detailed experimental setup is not feasible for
the long-running applications, DBEM and STEM-II, since they

run for more than 22 and 6 h, respectively. Obtaining statistically
significant measurements for these applications using the same
approach as for the shorter ones would require an unreasonable
amount of computation time. For this reason, these applications
were run on the NM cluster. This environment exhibits neither
the high loads nor the high variability experienced in the Finis
Terrae supercomputer, therefore making it possible to reach
plausible conclusions without executing a large number of
experiments. As such, 10 executions of each version of the
codes were run. The checkpointing frequency for these tests
was adjusted to approximately 1 checkpoint per hour, meaning
that 23 checkpoints were created during the DBEM executions
and 7 checkpoints during the STEM-II ones. The selection
of the optimum checkpoint interval is a well-studied research
area [31-33].

Table 8 details the minimum execution times for the original
and CPPC-instrumented versions of both DBEM and STEM-
II executed on 4 cores, and the corresponding checkpoint
overhead percentage. Generally speaking, the main difference
between real-world applications and kernel benchmarks lies
in their code sizes and total execution times. For instance,
a STEM-II execution lasts for more than 100 times longer
than the longest running NPB code. However, checkpoint file
sizes do not increase proportionally. Since the time to create a
checkpoint file is linearly dependent on its size, the overhead of
checkpointing large-scale applications is proportionally much
lower than when checkpointing short benchmarks. The table
shows how the relative incurred overheads drop down to below
0.5% working with large-scale applications.

3.2.4. Restart times
If a failure occurs, the restart time overhead must be taken
into account into the global execution time. Restart times
have been measured and split into its three fundamental
phases: negotiation, file read and effective data recovery, as
described in Section 2.3. As when measuring checkpoint file
creation times, 500 experiments were performed, outliers were
discarded from each series and a 99% confidence interval
was calculated for the mean times for each of the phases.
The results for uncompressed files including CRC-32 codes
are shown in Table 9. Figure 6a graphically compares the
upper limit of the time intervals for each phase. As can be
seen, the negotiation is the most costly phase. During the
negotiation, application processes have to check the integrity of
the checkpoint files available for restarting the execution. If this
experiment is performed with standard files without CRC-32
codes, negotiation times are reduced to the range of milliseconds
for all applications. If performed on compressed files with CRC-
32 codes, negotiation times are reduced due to the files being
smaller, thus requiring less time for the integrity checks to be
performed.

The times obtained for the file read phase mainly depend on
the size of the files themselves, the relationship between both
being linear. Read times would be increased if using compressed

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

PERFORMANCE-IMPACTING FACTORS ON CHECKPOINTING FRAMEWORKS: THE CPPC CASE STUDY 11

TABLE 7. Runtime overhead caused by checkpointing.

Test runs Overhead (s) Min. time (s)
Application Original CPPC Xmin Xmax Original CPPC Max. % overhead
BT 157 138 —2.8233 3.6010 562.87 563.43 0.6398
CG 73 74 —1.1995 1.2385 211.07 210.25 0.5868
EP 213 238 0.5300 0.8049 58.71 58.32 1.3710
FT 132 148 2.0734 3.6943 256.81 259.14 1.4385
IS 232 227 1.9252 2.4136 25.76 27.66 9.3696
LU 106 89 —2.7466 5.0750 857.30 861.99 0.5920
MG 249 218 —1.3841 0.9145 66.07 66.87 1.3841
SP 47 63 1.8426 3.1817 774.12 775.48 0.4110
Fekete 247 227 —0.1340 0.1874 51.63 52.02 0.3630
CalcuNetw 92 87 —3.5301 3.9988 351.71 350.23 1.1370

TABLE 8. Runtime overhead of large-scale applications.

Min. runtime (s)

Application Original CPPC % overhead
DBEM 80473.13 80729.15 0.31
STEM-II 21622.41 21723.55 0.47

files because of the need for data decompression. Read times
may also be increased when using state files generated on
different architectures, due to the necessary data conversions.
This effect is shown in Fig. 6b, which compares file read
times in the Finis Terrae supercomputer for both Finis Terrae-
and NM cluster-generated state files, labeled ‘Native’ and

‘Cross-restart’, respectively. This test also serves to demonstrate
portability, by verifying that restarts take place correctly using
externally generated files. Although the tests were performed
using the same statistical approach as for the other experiments,
only the upper limits of the intervals are shown for simplicity.
The relationship between both times depends exclusively on the
amount of data that needs to be converted, but the general trend
is that the read time increases ~50% when compared with the
original one.

Finally, data recovery times depend on the amount of data
being recovered and the amount of code that must be re-executed
in order to achieve complete state recovery.

Note that the time for the failure detection is not being taken
into account in these experiments. Failure detection techniques
are well studied in the literature [34].

TABLE 9. Restart times (s).

Negotiation File read Recovery

Application Xmin Xmax Xmin Xmax Xmin Xmax

BT 0.2668 0.3027 0.0913 0.0947 0.0507 0.0534
CG 0.2845 0.3177 0.0608 0.0629 0.0551 0.0568
EP 0.1714 0.2145 0.0152 0.0162 0.0132 0.0148
FT 0.6850 0.7667 0.0911 0.0947 0.1010 0.1033
IS 0.5248 0.5330 0.1476 0.1533 0.1783 0.1813
LU 0.3675 0.4193 0.0535 0.0553 0.0252 0.0271
MG 0.3057 0.3382 0.0500 0.0524 0.0440 0.0461
SP 0.2454 0.2580 0.0937 0.0992 0.0903 0.1006
Fekete 0.1775 0.2233 0.0198 0.0210 0.0100 0.0115
CalcuNetw 0.0178 0.0180 0.0111 0.0113 0.0030 0.0030
DBEM 3.3010 3.5141 0.6193 0.6498 0.7348 0.7624
STEM-II 1.1269 1.1715 0.4711 0.4885 0.5468 0.5792

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

12 G. RODRIGUEZ et al.

] Negotiation [ORrRead M Recovery

(a) ®
5
4
m
©
c
s
()
@
(0]
=
2
1
OH,H,I‘I,H,H,H,H,H,I‘I,
BT CG EP FT IS LU MG SP

Fekete CalcuNetw DBEM STEM-II

|:| Native . Cross-restart

(b) 1.2
1.0
08
I
©
c
3 o6
g o
2
(0]
£
0.4
0.2
0.0
BT cG EP FT s Lu MG SP Fekete CalcuNetw DBEM STEM-II
FIGURE 6. Restart times for test applications
In conclusion, these tests show restart times to be very low and of the restart overhead is introduced by the consistency checks
fairly negligible in most situations. Restart times never exceed on state files, while the restart protocol itself remains very light
1 s, except when working with large state files as is the case with and negligible when compared with the total runtime of these

the DBEM and STEM-II applications. Even in these cases, most applications.

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

PERFORMANCE-IMPACTING FACTORS ON CHECKPOINTING FRAMEWORKS: THE CPPC CASE STUDY 13

4. RELATED WORK

Although several tools for checkpointing have been proposed
in the literature, each one with its own approach, it is often
very difficult to draw performance comparisons due to the
experimental evaluation of these tools being very weak or
to a complete mismatch in the corresponding focuses of
the evaluations themselves. Nevertheless, this section tries to
address both the qualitative and quantitative (when possible)
differences between CPPC and other approaches.

CoCheck [19]is a full checkpointing library for parallel appli-
cations based on Condor [35]. It uses a coordinated checkpoint-
based approach, with messages requesting checkpoints acting
as initiators. Upon reception of a checkpoint request, each pro-
cess stores the state of its communication buffers and sends
another request via all its communication channels. The draw-
backs of this approach are its coordinated nature, which hampers
its scalability, and the use of full checkpointing, which makes it
unable to work on heterogeneous environments and also results
in lower efficiency. Besides, CoCheck depends on ruMPI, a spe-
cific MPI implementation. Regarding its performance, the only
concern it addresses is the time it takes for the system to migrate
a checkpoint file from one machine to another. It serves no pur-
pose to draw comparisons regarding this parameter, since in the
general case it will only depend on the network connecting the
source and destination machines and the size of the state files
to be transferred.

CLIP [17] is a tool focused on checkpointing parallel
applications written for Intel Paragon architectures. CLIP
implements efficient and simple solutions. Portability is not a
design goal, and its architecture is completely Paragon-centric.
It implements a blocking coordinated approach and performs
full checkpointing, but allows for dead memory regions to be
excluded from the checkpoint file, which improves efficiency.
It requires the user to specify checkpoint locations in the
application code. Some interesting details are given in the
experimental evaluation of CLIP. Tests are executed on an Intel
Paragon machine and use 128 execution nodes. Quantitative
comparisons can be drawn from its use of the NPB-MPI LU
application. Although the actual version used when evaluating
CLIP was NPB-MPI v2.1, the benchmarks did not include
significative changes between the two versions of the code.
For this application, the memory exclusion techniques used by
CLIP achieve no visible reduction, while CPPC’s automatic
live variable analysis achieves a 51.81% reduction (Table 5).
The main difference between CPPC and CLIP is that CPPC
only stores live variables into checkpoint files, while CLIP
performs full checkpointing excluding dead variables. In this
way, significant amounts of extra non-portable information,
such as buffered messages or stack data, are included into
CLIP-generated checkpoint files. However, not having access
to the codes used for these experimental tests, no conclusive
reasons for this difference in file sizes can be given. Regarding
the overhead per checkpoint taken, CLIP presents an overhead

of 27.5s per checkpoint, approximately a 0.69% of the total
execution time. CPPC creates a CRC-32 checkpoint for this
application in ~ 0.12 s (Table 6), or a 0.01% of the execution
time of the application. The total overhead introduced by CPPC
in the whole execution is 0.59% (Table 7), which is less than
the overhead for only one checkpoint file creation in CLIP
(not taking into account the instrumentation overhead). When
comparing the overheads of both CLIP and CPPC, it has to
be taken into account that there is a 10-year technological gap
between both.

Porch [36] is a source-to-source compiler that translates
sequential C programs into semantically equivalent C programs
that are capable of saving to and recovering from portable
checkpoints. The user inserts a call to a checkpoint routine
and specifies the desired checkpointing frequency. A compiler
then makes source-to-source transformations to instrument its
operation. Although this is a tool for sequential applications,
it is of fundamental importance in the context of this paper,
since it introduces basic ideas and techniques for checkpoint
portability. The performance of Porch was evaluated in [37].
Its instrumentation overhead is generally low, although it can
get as high as 301% when checkpointing small kernels with
many recursive calls. The overheads for checkpointing itself
are of ~1% as long as the checkpoint file sizes are kept
low, but get significantly higher for medium- and large-scale
applications.

In Starfish [38], each MPI node runs a separate Starfish dae-
mon. Its modular system enables the use of different checkpoint-
based protocols, namely uncoordinated and coordinated forms
of checkpointing. Since the checkpointing mechanisms are
implemented on top of the OCaml virtual machine, and given
that OCaml is platform-independent, it is able to operate in het-
erogeneous clusters. However, the use of OCaml is also the
biggest drawback of the approach performance-wise. This is
aggravated by the creation of full checkpoints.

MPICH-V2 [39] is a communications driver for MPICH.
It provides transparent fault tolerance by using the Condor
checkpoint and restart capabilities. As such, it uses full
checkpointing with no support for portability or heterogeneous
environments. It uses a sender-based pessimistic logging
approach. Although checkpointing using message logging is an
efficient operation, since it involves no process coordination, the
scalability is hindered by the log-based approach, which affects
the latency of communications causing severe performance
degradation for applications with frequent, short-message
communications. Performing full checkpointing helps neither
efficiency nor portability. The fact that it is built as an MPICH
driver forces all machines to implement it in order to obtain fault
tolerance. The advantage of message logging is that only failed
processes are required to roll back, which improves the recovery
performance when compared with coordinated approaches.

In the C3 system [40], the user must insert checkpoint
locations and a compiler is in charge of orchestrating fault
tolerance at the variable level, but storing all the variables

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

14 G. RODRIGUEZ et al.

in the code (i.e. it does not perform liveness analysis). It is
implemented on top of MPI and therefore, like CPPC, does
not need any specific implementation to be used in order to
benefit from fault tolerance. It uses a non-blocking coordination
protocol piggybacking information into sent messages: a
heavier, modified version of the Chandy—Lamport algorithm
which is capable of dealing with out-of-order messages.
Reported evaluation results (the tool is not available) show
performance degradation for applications generating large state
files or with intensive communications.

More recently, checkpoint/restart support has been added to
the Open MPI project [9, 10] through a coordinated approach
supported primarily by the Berkeley Lab’s Checkpoint/Restart
(BLCR) Library [41]. Although this is a system-level approach,
and therefore the portability is not among their characteristics,
a comparison with CPPC in terms of overhead and checkpoint
sizes is presented in the following section.

4.1. CPPC vs Open MPI fault tolerance

The current version of BLCR does not support Itanium
architectures, which is another limiting factor for the fault
tolerance support in Open MPIL. For this reason, the
checkpoint/restart functionality of Open MPI could not be tested
on the Finis Terrae supercomputer. The NM cluster described in
Section 3.2 was used instead. The underlying storage system is
mounted via NFS through the Gigabit Ethernet administration
network, and is composed of four 7.200 RPM hard drives. The
NPB-MPI v3.1 applications were used for these comparison
tests using the same problem sizes as for the performance
analysis in the Finis Terrae supercomputer.

The overhead introduced by both tools was studied for each of
the NPB-MPI applications. The results were obtained working
with 32 processes, except for BT and SP that run on 36. Tables 10
and 11 show the execution times and overheads in seconds for
CPPC and Open MPI, respectively. The NFT columns represent
an execution without fault tolerance support. The FT column

TABLE 10. CPPC runtime overheads (s) for the NPB-MPI
applications on the NM cluster.

FT FT+R
NFT
NPB Time Time Overhead Time Overhead
BT 59.11 59.83 0.72 79.21 20.10
CG 27.38 27.80 0.42 48.63 21.25
EP 19.34 19.33 0.01 23.30 3.96
FT 13.81 3329 19.48 44.56 30.75
IN 377 53.81 50.04 63.40 59.63
LU 61.68 61.56 0.12 69.87 8.19
MG 433 12.58 8.25 18.85 14.52
SP 62.22 62.39 0.17 80.90 18.68

TABLE 11. Open MPI runtime overheads (s) for the NPB-
MPI applications on the NM cluster.

FT FT+R
NFT
NPB Time Time Overhead Time Overhead
BT 5720 64.26 7.06 90.47 33.27
CG 2737 5399 26.62 77.51 50.14
EP 18.83 18.36 0.47 24.92 6.09
FT 14.00 7498 60.98 101.21 87.21
IS 5.09 6426 59.17 7896 73.87
LU 60.06 89.32 29.26 104.26 44.20
MG 394 21.02 17.08 23.11 19.17
SP 60.85 75.18 14.33 102.38 41.53

shows the results with fault tolerance support for a failure-free
execution; one checkpoint file is created during the execution of
all the applications. If a failure occurs, the restart time overhead
must be taken into account in the global execution time. The
FT + R column presents the results for an execution with
one failure; one checkpoint file is generated before crash and
the applications are restarted from this checkpoint file. The
restart overhead was not measured independently, unlike in
Section 3.2.4, due to the different checkpointing approaches
in CPPC and BLCR. For this reason, to ensure accurate
comparisons, it is preferable to measure the faulty execution
and its corresponding retry as a whole. This cluster does not
exhibit the high loads nor the high variability experienced in
the Finis Terrae, and thus the minimum of 10 executions of
each version of the codes are shown in the tables.

The times shown in Table 10 are quantitatively and
qualitatively different from the ones previously shown for the
Finis Terrae supercomputer. Running times for all applications
are drastically reduced due to the difference in raw performance
by the nodes in each system (which is much better on NM).
The checkpointing overhead experiments a large relative growth
for the shorter applications, because of two different facts:
first, the storage system in the NM cluster does not achieve
the performance of the Finis Terrae high-performance storage
system; and second, because of the shorter runs multithreaded
checkpointing is not able to completely mask the file creation
overheads. In this situation, the execution is not completed
until the state files have been created, and the file creation
overhead is transferred directly to the running time of the
applications.

Regarding direct comparisons between both tools, the
overhead of CPPC is always lesser than the one introduced by
Open MPI (the improvement being in the 15-99% range). This is
in part due to the coordination protocol used by CPPC and in part
due to the smaller size of the checkpoint files. Table 12 shows the
sizes of the checkpoint files generated for each application. This
table aggregates the sizes for processes executing an application

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

PERFORMANCE-IMPACTING FACTORS ON CHECKPOINTING FRAMEWORKS: THE CPPC CASE STUDY 15

TABLE 12. Aggregate sizes (in MB) of the checkpoint-
ing files generated by CPPC and Open MPL

NPB CPPC Open MPI
BT 623.83 752.92
CG 633.38 1205.90
EP 33.51 147.41
FT 1284.76 2033.32
IS 2309.88 1774.64
LU 264.88 390.20
MG 500.89 461.57
Sp 711.74 752.85

in order to easily display the total differences between the two
checkpointing tools. It could be expected that CPPC checkpoint
files were always smaller than the ones generated by Open MPI,
given that CPPC follows a variable level approach with a live
variable analysis included in the compiler. However, this is not
the case for the MG and IS benchmarks. The reason is that
BLCR optimizes state saving by omitting zero pages, i.e. those
that contain only Os. This optimization happens to be especially
useful for some applications, and thus its implementation is an
ongoing work to be incorporated into CPPC.

5. DISCUSSION AND CONCLUDING REMARKS

In the last decade, there has been a fair amount of research
directed toward adapting sequential checkpointing techniques
to develop tools able to work in parallel environments. More
recently, some efforts have focused on checkpointing for
heterogeneous environments. However, most of this research
has produced theoretical approaches that were ultimately
implemented as academic prototypes that were never made
available to the general public. Moreover, the experimental
validation of most of these approaches has shown scalability
limitations imposed by the solutions adopted for interprocess
consistency.

CPPC has been designed to improve on the traditional
bottlenecks of checkpointing for message-passing applications.
The first and foremost are the performance and scalability issues
derived from the coordination of processes. The approaches in
the literature solve this problem through process coordination
and message logging, two well-established techniques that are
applicable to any message-passing application. The approach
taken in CPPC requires SPMD codes containing safe points at
the critical computation locations. It then solves interprocess
consistency by statically placing checkpoints at detected safe
points. The experiments have shown that, when applicable, the
spatially coordinated approach solves the scalability bottleneck
created by the consistency requirements of the checkpointing
of message-passing applications. Thus, the improvement over

other approaches is significant when using an increasing number
of processors. The experimental validation performed in this
paper has also shown that CPPC’s approach is valid for a wide
range of applications.

Another factor impacting checkpointing performance is the
size of the generated state files. As shown in the related work, the
memory size of applications is a limiting factor in the efficiency
of checkpointing. CPPC improves this situation by carefully
selecting those parts of application runtime memory that are
needed when recovering the application state. Moreover, instead
of taking non-portable solutions for storing opaque state, these
concerns are transferred to restart time and solved via code
re-execution. In this way, state files contain only variables and
recovery-related metadata, achieving an important reduction of
state file sizes in relation to application memory footprints. Our
current efforts focus on the reduction of checkpoint file sizes.
As mentioned in the previous section, checkpoint files could
be further reduced by not storing zero pages into state files
in the same way as BLCR. Another technique to reduce file
sizes is incremental checkpointing, proposed by Plank et al. [42]
and recently addressed in different works [43, 44]. Incremental
checkpointing involves using the operating system’s page
protection mechanisms to detect which pages have changed
since the last checkpoint, saving only those. During a restart, the
state is restored by using the first checkpoint file, and applying
in an orderly manner all the differences before resuming
the execution. Although incremental checkpointing techniques
have been typically applied to system-level approaches, a
similar idea could also be incorporated to the variable level
approach used by CPPC.

Both the feasibility and the performance of the CPPC
framework have been tested using a large number of very
different applications. Experimental tests have shown adequate
automatic processing by the compiler in all cases. The
performance of the compilation process has been shown to be
acceptable. We are currently undertaking the implementation of
the compiler analyses on top of the plugin interface available
since GCC v4.5. This will improve both their performance and
usability.

Statistical techniques were employed for the accurate
estimation of all the parameters measured. The majority of
the experiments shown in this paper were executed on a
supercomputer in operation. This represents a typical machine
with a realistic load, and demonstrates that the framework can
be used in a computing infrastructure on which the user has no
superuser access or administration privileges.

Experiments have been conducted to establish the mathemat-
ical relationship between state file sizes and checkpoint times
in CPPC. When not using compression, linear models explain
up to 99% of the variability of the checkpoint file creation
times. In order to reduce the overhead introduced by the file
creation step, CPPC uses a multithreaded dumping algorithm.
The global overhead introduced in the test applications using
this approach was also determined. The results have shown

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

16 G. RODRIGUEZ et al.

very low checkpoint overheads, even when the presented num-
bers were the worst case ones and a better behavior is to be
expected in the majority of the executions. The overhead of
the restart process has been analyzed and shown to be negligi-
ble in reasonable execution scenarios (i.e. with standard failure
rates).

Regarding checkpoint file portability, the CPPC application-
level approach constitutes a major advantage over system-
level checkpointing approaches, which are very sensitive to the
architecture and operating systems. The platform independence
feature of CPPC has been assessed by running it on different
systems, regardless of the hardware/software configuration.
This paper has shown cross-restart results obtained using the
Finis Terrae supercomputer and a local cluster, demonstrating
low overheads for data conversions and the portability of the
generated state files.

Summarizing, the checkpointing techniques evaluated in this
paper improve on the two most important overhead factors in
other checkpointing approaches: state file sizes and process
coordination. Sections 3 and 4 have shown that this approach
achieves considerable performance gains, while maintaining the
transparency of less efficient solutions and adding the portability
of both the tool and the generated checkpoint files.

To our knowledge, CPPC is the only publicly available
portable checkpointer for message-passing applications. CPPC
is an open-source project, available at http://cppc.des.udc.es
under GPL license.

ACKNOWLEDGEMENTS

We gratefully thank CESGA (Supercomputing Center of
Galicia, Santiago de Compostela, Spain) for providing access
to the Finis Terrae computer.

FUNDING

This research was supported by the Ministry of Science and
Innovation of Spain and FEDER funds of the European Union
(Project TIN2010-16735).

REFERENCES

[1] Gibson, G., Schroeder, B. and Digney, J. (2007) Failure tolerance
in petascale computers. CTWatch Quart., 3, 4-10.

[2] Elnozahy, E.N., Alvisi, L., Wang, Y.M. and Johnson, D.B. (2002)
A survey of rollback-recovery protocols in message-passing
systems. ACM Comput. Surv., 34, 375-408.

[3] Gelenbe, E. and Derochette, D. (1978) Performance of rollback
recovery systems under intermittent failures. Commun. ACM, 21,
493-499.

[4] Gelenbe, E., Tripathi, S. and Finkel, D. (1986) On the availability
of a distributed computer system with failing components. Acta
Inform., 23, 643-655.

[5] Wong, K.F. and Franklin, M. (1996) Checkpointing in distributed
systems. J. Parallel Distrib. Comput., 35, 67-75.

[6] Plank, J.S. and Thomason, M.G. (2001) Processor allocation
and checkpoint interval selection in cluster computing systems.
J. Parallel Distrib. Comput., 61, 1570-1590.

[7]1 Rodriguez, G., Martin, M.J., Gonzélez, P., Tourifio, J. and
Doallo, R. (2010) CPPC: a compiler-assisted tool for portable
checkpointing of message-passing applications. Concurrency.
Comput. Pract. Exp., 22, 749-766.

[8] Cardoso, M.C. and Costa, EM. (2010) MPI support on
opportunistic grids based on the InteGrade middleware. Concurr:
Comput. Pract. Exp., 22, 343-357.

[9] Hursey, J., Mattox, T.I. and Lumsdaine, A. (2009) Interconnect
Agnostic Checkpoint/Restart in Open MPIL. Proc. HPDC 09,
Munich, Germany, June 11-13, pp. 49-58. ACM, New York.

[10] Hursey, J., Squyres, J.M., Mattox, T.I. and Lumsdaine, A. (2007)
The Design and Implementation of Checkpoint/Restart Process
Fault Tolerance for Open MPI. Proc. IPDPS 07, Long Beach,
CA, USA, March 26-30, pp. 415-422. IEEE Computer Society
Press, Los Alamitos.

[11] Bosilca, G. et al. (2002) MPICH-V: Toward a Scalable Fault
Tolerant MPI for Volatile Nodes. Proc. SC 02, Baltimore, MD,
USA, November 16-22. IEEE Computer Society Press, Los
Alamitos.

[12] Buntinas, D., Coti, C., Hérault, T., Lemarinier, P., Pilard, L.,
Rezmerita, A., Rodriguez, E. and Cappello, F. (2008) Blocking
vs. non-blocking coordinated checkpointing for large-scale fault
tolerant MPI protocols. Futur. Gener. Comput. Syst., 24, 73-84.

[13] Walters, J. and Chaudhary, V. (2006) Application-Level
Checkpointing Techniques for Parallel Programs. Proc. ICDCIT
2006, Bhubaneswar, India, December 20-23, pp. 221-234.
Springer, Berlin.

[14] The HDF Group. HDF-5: File format specification. http://www.
hdfgroup.org/HDF5 (last accessed December 2010).

[15] Strumpen, V. (1998) Portable and fault-tolerant software systems.
IEEE Micro, 18, 22-32.

[16] Elnozahy, E.N. and Plank, J.S. (2004) Checkpointing for
peta-scale systems: a look into the future of practical
rollback-recovery. IEEE Trans. Dependable Secur. Comput., 1,
97-108.

[17] Chen, Y., Plank, J.S. and Li, K. (1997) CLIP: A Checkpointing
Tool for Message-Passing Parallel Programs. Proc. SC 97, San
Jose, CA, USA, November 16-21. IEEE Computer Society Press,
Los Alamitos.

[18] Schulz, M., Bronevetsky, G., Fernandes, R., Marques, D., Pingali,
K. and Stodghill, P. (2004) Implementation and Evaluation of
a Scalable Application-Level Checkpoint-Recovery Scheme for
MPI Programs. Proc. SC 04, Pittsburgh, PA, USA, November
6-12. IEEE Computer Society Press, Los Alamitos.

[19] Stellner, G. (1996) CoCheck: Checkpointing and Process
Migration for MPIL. Proc. IPPS 96, Honolulu, HI, USA, April 15—
19, pp. 526-531. IEEE Computer Society Press, Los Alamitos.

[20] Rodriguez, G., Martin, M.J., Gonzdlez, P. and Tourifio, J. (2009)
A heuristic approach for the automatic insertion of checkpoints
in message-passing codes. J. Univers. Comput. Sci., 15,
2894-2911.

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

PERFORMANCE-IMPACTING FACTORS ON CHECKPOINTING FRAMEWORKS: THE CPPC CASE STUDY 17

[21] Rodriguez, G., Martin, M.J., Gonzélez, P. and Tourifio, J. (2006)
Controller/precompiler for portable checkpointing. IEICE Trans.
Inf. Syst., E89-D, 408—417.

[22] Plank, J.S., Beck, M. and Kingsley, G. (1995) Compiler-
assisted memory exclusion for fast checkpointing. IEEE Techn.
Committee Oper. Syst. Appl. Environ., 7, 10-14.

[23] Lee, S.I., Johnson, T.A. and Eigenmann, R. (2004) Cetus —
An Extensible Compiler Infrastructure for Source-To-Source
Transformation. Proc. LCPC 03, College Station, TX, USA,
October 2—4, pp. 539-553. Springer, Berlin.

[24] National Aeronautics and Space Administration. The NAS
Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB.
(last accessed December 2010).

[25] CESGA-2005-003 (2005). CalcuNetw: Calculate Measurements
in Complex Networks. Supercomputing Center of Galicia,
Santiago de Compostela, Spain.

[26] Carmona, A., Encinas, A.M. and Gesto, J.M. (2007) Estimation
of Fekete points. J. Comput. Phys., 225, 2354-2376.

[27] Gonzalez, P., Pena, T.F. and Cabaleiro, J.C. (2000) Dual BEM for
crack growth analysis on distributed-memory multiprocessors.
Adv. Eng. Softw., 31, 921-927.

[28] Martin, M.J., Singh, D.E., Mourifio, J.C., Rivera, F.F., Doallo,
R. and Bruguera, J.D. (2003) High performance air pollution
modeling for a power plant environment. Parallel Comput., 29,
1763-1790.

[29] Zandy, V. CKPT [library home page. http://www.
cs.wisc.edu/~zandy/ckpt (last accessed December 2010).

[30] Tukey, J.W. (1977) Exploratory Data Analysis. Addison-Wesley,
Reading, MA.

[31] Gelenbe, E. (1979) On the optimum checkpoint interval. J. ACM,
26, 259-270.

[32] Toueg, S. and Babaoglu, O. (1984) On the optimum checkpoint
selection problem. SIAM J. Comput., 13, 630-649.

[33] Vaidya, N.H. (1997) Impact of checkpoint latency on overhead
ratio of a checkpointing scheme. IEEE Trans. Comput., 46,
942-947.

[34] Chabridon, S. and Gelenbe, E. (1995) Failure Detection
Algorithms for a Reliable Execution of Parallel Programs. Proc.
SRDS 95, Bad Neuenahr, Germany, September 1315, pp. 229—
238. IEEE Computer Society Press, Los Alamitos.

[35] Litzkow, M.J., Livny, M. and Mutka, M. (1988) Condor — A
Hunter of Idle Workstations. Proc. ICDCS 88, San Jose, CA,
USA, June 13-17, pp. 104-111. IEEE Computer Society Press,
Los Alamitos.

[36] Ramkumar, B. and Strumpen, V. (1997) Portable Checkpointing
for Heterogeneous Architectures. Proc. FTCS 97, Seattle, WA,
USA, June 24-27, pp. 58-67. IEEE Computer Society Press,
Los Alamitos.

[37] ECE-96-6-1 (1996). Portable Checkpointing and Recovery in
Heterogeneous Environments. University of Iowa, Iowa City, IA,
USA.

[38] Agbaria, A. and Friedman, R. (2003) Starfish: fault-tolerant
dynamic MPI programs on clusters of workstations. Cluster
Comput., 6, 227-236.

[39] Bouteiller, A., Capello, F., Hérault, T., Krawezik, G., Lemarinier,

P. and Magniette, F. (2003) MPICH-V2: A Fault-Tolerant MPI

for Volatile Nodes Based on Pessimistic Sender Based Message

Logging. Proc. SC 03, Phoenix, AZ, USA, November 15-21.

ACM, New York.

Bronevetsky, G., Marques, D., Pingali, K. and Stodghill, P. (2003)

Automated Application-Level Checkpointing of MPI Programs.

Proc. PPoPP 03, San Diego, CA, USA, June 11-13, pp. 84-94.

ACM, New York.

[41] LBNL-54941 (2003). The Design and Implementation of
Berkeley Lab’s Linux Checkpoint/Restart. Lawrence Berkeley
National Laboratory, Berkeley, CA, USA.

[42] CS-95-302 (1995). Compressed Differences: An Algorithm
for Fast Incremental Checkpointing. University of Tennessee,
Knoxville, TN, USA.

[43] Agarwal, S., Garg, R. and Gupta, M.S. (2004) Adaptive
Incremental Checkpointing for Massively Parallel Systems. Proc.
ICS 04, Saint Malo, France, June 26-July 01, pp. 277-286. ACM,
New York.

[44] Gioiosa, R., Sancho, J.C., Jiang, S. and Petrini, F. (2005)
Transparent, Incremental Checkpointing at Kernel Level: A
Foundation for Fault Tolerance for Parallel Computers. Proc. SC
05, Seattle, WA, USA, November 12—-18. IEEE Computer Society
Press, Los Alamitos.

[45] Smale, S. (1998) Mathematical problems for the next century.
Math. Intell., 20, 7-15.

[40

—

THE COMPUTER JOURNAL, 2011

T1T0Z ‘v Yole uo 1sanb Ag Bio speuinolployxo’julwod woly papeojumoq

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 The CPPC Framework
	2.1 Portability
	2.2 State file sizes
	2.3 Coordination protocol
	2.4 CPPC compiler

	3 Performance evaluation
	3.1 Compiler performance
	3.2 Runtime performance

	4 Related Work
	4.1 CPPC vs Open MPI fault tolerance

	5 Discussion and concluding remarks

