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Abstract With the evolution of high-performance computing, parallel appli-
cations have developed an increasing necessity for fault tolerance, most com-
monly provided by checkpoint and restart techniques. Checkpointing tools
are typically implemented at one of two different abstraction levels: at the
system level or at the application level. The latter has become an interest-
ing alternative due to its flexibility and the possibility of operating in differ-
ent environments. However, application-level checkpointing tools often require
the user to manually insert checkpoints in order to ensure that certain re-
quirements are met (e.g. forcing checkpoints to be taken at the user code
and not inside kernel routines). This paper examines the transformations re-
quired to enable automatic checkpointing of parallel applications in the CPPC
application-level checkpointing framework. These transformations have been
implemented on two very different compiler infrastructures: Cetus and LLVM.
Cetus is a Java-based compiler infrastructure aiming to provide an easy to use
and clean IR and API for program transformation. LLVM is a low-level, SSA-
based toolchain. The fundamental differences of both approaches are analyzed
from the structural, behavioral and performance perspectives.
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2 Gabriel Rodŕıguez et al.

1 Introduction

Checkpointing has become a widely used technique to obtain fault tolerance. It
periodically saves the computation state to stable storage, so that the applica-
tion execution can be resumed by restoring such state. A number of solutions
and techniques have been proposed [9], each having its own pros and cons.

The ComPiler for Portable Checkpointing (CPPC) is a checkpointing frame-
work for message-passing applications with an emphasis on portability. It is
an open-source tool, available at http://cppc.des.udc.es under the GNU
General Public License (GPL). It consists of a runtime library containing
checkpointing-support routines and a compiler that automates the use of the
library. This work describes the implementation of the compilation techniques
for the automatic insertion of checkpointing instrumentation both using the
Cetus [8] and LLVM [12] infrastructures. The basic difference between them
is the IR level: while Cetus represents a high-level version of the code, re-
taining almost completely the original syntax, LLVM uses a low-level set of
nodes, close to assembly language. This fact causes differences in how the same
problem is solved by each infrastructure, and how easily it is done.

This paper is organized as follows. Section 2 details the design of CPPC
and motivates the use of compilation techniques. Section 3 covers related work.
Section 4 details the implementation of the compilation analyses required to
instrument checkpointing with CPPC. Section 5 presents the experimental
results comparing Cetus and LLVM, and Section 6 concludes the paper.

2 The CPPC checkpointing framework

This section summarizes various fundamental design aspects of the CPPC
framework in order to introduce the necessity for compilation techniques: the
necessity for portability; the selection of the application state that needs to
be stored into state files to achieve a correct restart; and how CPPC operates
to achieve consistent operation without runtime communications in SPMD
applications. For an in-depth description of CPPC the reader is referred to [23].

2.1 Portability

CPPC aims to achieve portable restart of high-performance applications in
heterogeneous environments. A state file is said to be portable if it can be
used to restart the computation on an architecture (or OS) different from the
one that generated the file. To achieve portability, state files should not con-
tain machine-dependent state. Rather, this state should be recovered at restart
time using special protocols. The solution used in CPPC is to recover the non-
portable state by means of the re-execution of the code responsible for creating
such opaque state in the original execution. This protocol, together with the
use of portable storage formats, enables the restart on different architectures.
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The target application code must be instrumented in order to effectively im-
plement the restart protocol, directing the control flow to the relevant code
snippets. This restart protocol is further discussed in Sections 4.4 and 4.5.

2.2 Relevant state selection

The solution of large real scientific problems requires the use of large compu-
tational resources, both in terms of CPU and memory. For this reason, many
scientific applications are developed to be run on a large number of processors.
The full checkpointing of this kind of applications, which consists in saving the
entire application state, leads to a large storage size, becoming impractical [10].
Besides, the size of the state files is one of the most significant performance-
impacting factors in checkpointing. CPPC reduces the amount of data saved
by storing only relevant user variables. The relevance of each variable is deter-
mined by a live variable analysis that identifies those values that are needed
for the correct restart of an execution. The process of marking a variable to
be included in subsequent state files is called variable registration.

2.3 Spatial coordination

When checkpointing message-passing applications, the dependencies created
by interprocess communications have to be preserved during recovery. If a
checkpoint is placed in the code between two matching communication state-
ments, an inconsistency will occur when restarting the application, since the
first one will not be executed. CPPC avoids the runtime overhead of classical
consistency protocols by focusing on simple program multiple data (SPMD)
parallel applications and using a non-blocking spatially coordinated appro-
ach [21]. Checkpoints are taken at the same relative code locations by all
processes, but not forcibly at the same time. By statically ensuring that check-
points are taken at points where no in-transit nor inconsistent messages may
exist the necessity for interprocess communications or runtime synchroniza-
tions is removed. These points will be called safe points. Opposed to this
concept, an unsafe region R will be comprised of the code in between two
communication statements.

3 Related work

Checkpointing techniques appeared in the late 70s as operating system ser-
vices, usually focused on recovery of sequential applications. Examples are
KeyKOS [11], which performed system-wide checkpointing, storing the entire
OS state, and Sentry [24], a UNIX-based implementation which performed
checkpointing and journaling for logging of non-deterministic events on single
processes. Sprite [15] dealt with the process migration aspect of checkpoint-
and-restart recovery for shared memory applications to idle machines. Being
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implemented into the OS, these checkpointing solutions were completely ad-
hoc, with a lack of emphasis on portability. Their approach to operation ef-
ficiency was based on achieving good I/O performance for storing the whole
computation state, instead of reducing the amount of data to be stored.

The first obvious disadvantage of OS-based implementations is the hard de-
pendency between fault tolerance and the operating system of choice. Check-
pointing facilities, which were a common feature in earlier operating systems,
gradually disappeared in the early 90s and were unavailable for popular envi-
ronments such as UNIX, SunOS or AIX. The desire for flexible solutions which
could operate in different environments motivated the emergence of applica-
tion level solutions (as opposed to system level solutions). In these tools, fault
tolerance is achieved by compiling the application program together with the
checkpointing code, usually found in a separate library. Checkpointing solu-
tions in this period were still transparent, storing the entire application state.
Not being implemented inside the kernel they had to solve important prob-
lems when manipulating OS-dependent state. Examples are restoring process
identifiers or tracing open files. Also, they had to figure out ways to recover
the application stack or heap. These issues made their codes still very depen-
dent on specific operating system features. Usually, this forced developers to
restrict the type of OS facilities used by the checkpointed programs. Exam-
ples of application level, transparent tools include Libckpt [18] and CATCH
GCC [13] (a modified version of the GNU C compiler).

Also in the mid-90s some non-transparent solutions tried to apply check-
pointing to distributed platforms. Their fundamental drawback was the lack of
common ground regarding the interface for interprocess communication, which
made these solutions tied to a specific and non-standard interface. Examples of
these frameworks are Calypso [3] and extensions to Dome (Distributed Object
Migration Environment) [4]. In both cases the programming language used
was an extension of C++ with non-standard parallel constructs.

The adoption of MPI as the de-facto standard for parallel programming
motivated the appearance of many MPI-based checkpointing tools in the last
decade. At first, these used the transparent application level approach, sharing
the same drawbacks as their uniprocessor counterparts: lack of data portability
and restriction of supported environments, which here refers to the underly-
ing MPI implementation. In fact, checkpointers in this category are generally
implemented by modifying a previously existing MPI library. Examples of
these types of checkpointers are MPICH-GF [26] and MPICH-V2 [5], both
implemented as MPICH drivers, thus forcing all machines to run this specific
implementation.

More recently, heterogeneous supercomputing systems have introduced new
checkpointing constraints, requiring both data and underlying system porta-
bility. To accomplish this, checkpointing solutions must be implemented at
a higher level of abstraction and require modifications to the source code of
the application. If these modifications are manually performed an undesired
burden is placed upon users, who have to undertake tedious data flow analysis
and code reengineering. Application level checkpointers have taken to using
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Fig. 1 CPPC framework design

compilation techniques to free users from these tasks. Most of them, how-
ever, leave the actual checkpoint locations to be manually marked by the user.
Porch [19] and C3 [6] are compiler-assisted systems for sequential and parallel
applications, respectively, in which the user inserts a call to a checkpoint rou-
tine before using the compiler to insert checkpointing instrumentation. These
checkpoint calls will only trigger an actual checkpoint according to a frequency
timer. These “potential checkpoints” were originally introduced by CATCH
GCC, which automated their insertion by introducing a potential checkpoint
at the beginning of subroutines and at the first line inside a loop. This check-
point placement tried to guarantee that potential checkpoint calls were exe-
cuted often enough as to provide a checkpointing frequency reasonably similar
to the desired one. This approach cannot be followed when using a spatial
coordination protocol based on safe points such as the one used by CPPC. In
this situation, checkpointing frequencies are not defined as a function of time,
due to the need to statically coordinate all processes independently of how
long they take to progress through the application code. Instead of statically
detecting safe points, a checkpointer for parallel applications may employ a
coordinated runtime protocol, such as the distributed snapshots [7], to achieve
consistency. C3 uses information piggybacked into sent messages to articulate
such a protocol. In this way, every message being sent has to be intercepted
and modified.

4 Compilation analyses

In early stages of CPPC, the user was responsible for inserting compiler direc-
tives to guide the operation of the runtime library [20]. Currently, all analyses
and code transformations are transparently applied by a compiler that trans-
lates the application source files into derived code with added checkpointing
capabilities. The global process is depicted in Figure 1.

The most relevant transformations applied by the compiler are, in this or-
der: (1) the communications analysis required in order to automatically detect
safe points where to insert checkpoints, (2) a computational load estimation
that selects code loops for checkpoint insertion, (3) the detection of the vari-
ables that are live at selected checkpoint locations, and are therefore necessary
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during application restart, and (4) the code instrumentation to coordinate all
parts of the checkpointing runtime system.

The source distribution of CPPC includes a function catalog that contains
information about different families of functions, such as functions in the MPI
interface or POSIX functions available in most *NIX distributions. This infor-
mation will be necessary in order to inform the compiler about the particular
behavior of certain key functions in parallel applications, such as which func-
tions are related to interprocess communication (see Section 4.1); which ones
generate non-portable state that must be recovered through code re-execution
(as shown in Section 4.4); and whether a function parameter is of input, output
or input-output type (this information will be used for optimizing the amount
of state to be saved during checkpoints, as further detailed in Section 4.3).

The following subsections describe the fundamental transformations per-
formed by the compiler, the main differences between the Cetus and the LLVM
implementation, as well as Cetus extensions required for supporting Fortran
77 codes.

4.1 Communications analysis

Statically determining the communications that are performed during run-
time in an SPMD application is an undecidable problem. In the general case,
message-passing applications may present irregular communication patterns
(if sources, destinations, or communication order depend on the input data)
or nondeterministic communications (if wildcard receives are used). However,
an important subset of scientific applications employs regular communication
patterns, which makes the problem decidable by a static code analysis. First,
the solution for a regular application is presented. Later, two different solutions
for irregular/nondeterministic codes are discussed.

Without loss of generality, we can assume that SPMD applications with
regular communication patterns employ some kind of topological abstraction
to describe the virtual layout of the processes participating in the parallel
execution. Each process is identified by its set of coordinates in the virtual
topology (c1, c2, . . . , ck). These coordinates will be employed for determining
the sources and destinations of the communications required for executing
the application code. Since communications are regular, these may not be
derived from any dynamic input data or nondeterministic function call, and
must therefore be encoded into either the application code or the rank of the
process in the parallel execution. The same applies for the variables which
encode the implicit communication order (message tags). In this situation, a
constant propagation analysis can be employed to discover the specific values
used in each of the communication calls. After discovering these values, two
communications match if the following conditions hold:

1. Their sets of sources/destinations are the same: if process pi executes the
send statement using process pj as destination, then pj executes the receive
statement using pi as source.
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2. Their tags are the same or the receive uses the wildcard MPI ANY TAG and
no other receive fulfills condition 1.

Our constant propagation algorithm follows the basic iterative algorithm
for general data flow frameworks [1], with two particularities. First, it is not
necessary to propagate all known values in the application. Only variables
used for calculating message sources, destinations and tags are first-order
communication-relevant variables. Variables involved in the calculation of first-
order communication-relevant variables are second-order communication-rele-
vant variables. The discovery of all nth order communication-relevant variables
is an iterative process, and ends when the set is not modified in a given itera-
tion.

The second particularity is related to the fact that, in the general case,
an SPMD variable is multivalued, that is, it may have different values for
different processes. In this situation, each communication-relevant variable in
the original code must be considered to spawn different actual variables, one
for each process in the execution. As such, the set of data flow values to
be calculated by this constant propagation step is a product lattice with one
component for each communication-relevant variable for each process. For this
reason, the number N of processes involved in the execution of the code must
be known statically. Each variable x gives birth to N different variables:

xi, 0 ≤ i < N

Finally, it has been assumed that communications depend on the coordi-
nates of each process in the virtual topology of processors, and that, in turn,
these depend on the rank assigned to the process by the communication frame-
work. The transfer function f associated to each statement s in the program
must be modified as shown in Figure 2 to capture rank assignment operations.
In the figure fs is the transfer function for statement s, and m represents a
map which associates each variable v with its known constant value during the
execution, m(v). Given any input map, the transfer function returns a map
m′ such that m′ = f(m).

Although both Cetus and LLVM include constant propagation analysis,
due to the changes in the data flow set and the transfer function neither of
these implementations can be used off-the-shelf. A way to employ the built-in
capabilities would be to instrument the code to force the analysis to work as
shown in Figure 2 by changing calls to process identifier-returning functions
with simple assignments. However, this would require one analysis pass for
each of the N processes to execute the application.

For the aforementioned reasons, constant propagation is implemented from
scratch. There are no significant differences between the Cetus and the LLVM
versions of the code. Since constant propagation is a forward analysis, it may
be performed together with the communications matching in the same com-
piler pass, starting at the execution root and analyzing code in execution order.
It maintains a buffer to store found communications. Each time a new com-
munication statement sc is discovered, it is first matched against existing ones



8 Gabriel Rodŕıguez et al.

1. If s is not an assignment statement, then fs is the identity function.
2. If s is an assignment to variable xi, them m′(v) = m(v), for all variables v 6= xi,

provided one of the following conditions holds:
(a) If the right-hand-side (RHS) of the statement s is a constant c, then m′(xi) = c.
(b) If the RHS is of the form y + z, being + any arbitrary binary operator, then:

m′(xi) =

m(yi) + m(zi) if m(yi) and m(zi) are constant values
NAC if either m(yi) or m(zi) is NAC

UNDEF otherwise

(c) If the RHS is a call to a function returning a process identifier i in
the context of the message-passing framework, then m′(xi) = i.

(d) If the RHS is any other expression (e.g. a function call or an assignment through
a pointer), then m′(x) = NAC.

Fig. 2 Transfer function for the modified constant propagation algorithm employed for
static communication analysis. Modifications with regard to the original proposed transfer
function are shown in bold. The special values NAC and UNDEF denote, respectively, that
a given variable is Not A Constant, and that its value has not yet been defined in terms of
the constant propagation process.

in the buffer. If a match is not found, sc is added to the buffer and the anal-
ysis continues. If a match sm is found, both sc and sm are considered linked
and removed from the buffer, except when matching a pair of non-blocking
sends/receives. In this case, they remain in the buffer in an “unwaited” status
until a matching wait is found. A statement in the application code will be
considered a safe point if, and only if, the buffer is completely empty when the
analysis reaches that statement.

When presenting the modified algorithm for constant propagation it was
not discussed how to work in a general, interprocedural code. When a proce-
dure call is found, the ongoing analysis is stopped and the compiler begins an
on-demand analysis of the callee, using the same communication buffer and
adapting the map m of variable values to reflect aliases stemming from ar-
gument passing. The compiler will also cache separately the communications
issued inside the callee. If a procedure p does not modify any communication-
relevant variable, that is, the transfer function fp is the identity, then this cache
may be used when a new call to the procedure is found without re-analyzing
the procedure code, but only substituting the communication arguments with
the values present in the map m of variable values. Figure 3 presents a pseudo-
code of this analysis.

When dealing with applications featuring ambiguous communications the
solution proposed above might be unable to find suitable safe points. Although
such situations are uncommon, as shown in the experimental assessment of the
tool [22], a feasible solution is proposed in the next subsection.

4.1.1 Dealing with irregular and nondeterministic codes

If the communication patterns of an application are derived from input data,
then our assumption that communication-relevant variables may only be de-
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buffer: communications buffer
m: map of variable values
procedure communications analysis
detect communication relevant variables
buffer ← ∅
foreach variable v in p do
insert pair (v, UNDEF) into m

done
call analyze procedure( main procedure )

end procedure communications analysis

buffer cachedp : cached results for procedure p
procedure analyze procedure( p )
/* try to use previously cached results */
if buffer cachedp 6= null AND

fp is the identity function
/* this operation merges communications

issued by p into buffer */
merge buffer cachedp into buffer
return

fi

/* if not possible, analyze procedure */
buffer cachedp ← ∅
foreach statement s in p do
if buffer is empty then
mark s as a safe point

fi
if s is a communication statement then
buffer cachedp ← buffer cachedp ∪ {s}
call analyze communication( s )

elseif s is a call to a procedure p′ then
call analyze procedure( p′ )

else
m ← fs(m) /* apply transfer function */

fi
done

end procedure analyze procedure( p )

procedure analyze communication( c1 )
c2 ← match for c1 in buffer
if c2 = null then
add c1 to buffer as unmatched

elseif c1 is a wait statement
remove c2 from buffer

else /* c1 is a send or a recv */
remove c2 from buffer
foreach c in {c1, c2} do
if c is a non-blocking communication then
add c to buffer as unwaited

fi
done

fi
end procedure analyze communication( c1 )

Fig. 3 Pseudo-code of the communications analysis
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rived from constants and coordinates in a virtual topology is not applicable. It
would be necessary to have knowledge of the input data to be used, and even if
that were possible checkpointing would have to be instrumented in a different
way for each input set. Under these circumstances a conservative solution is
adopted: each communication is considered to match a set of potential peers.
For a given communication statement c, there is a set of potential matches
mi, 0 ≤ i < M . Each single match c↔ mi determines an unsafe region in the
code, Rc,mi . The unsafe region associated to communication statement c can
be informally expressed as Rc =

⋃
i Rc,mi

. Note that, since all unsafe regions
of the form Rc,mi

have at least statement c in common:

@i, j : 0 ≤ i, j < M
/
Rc,mi

∩Rc,mj
= ∅

and consequently Rc must be a continuous region. The same approach should
be followed when considering communications with wildcards. Shires et al.
proposed an algorithm for program flow graph construction capable of deter-
mining conservative relationships between communication statements [25].

4.2 Checkpoint insertion

Application-level checkpointing tools often require users to mark places where
checkpoint calls are to be inserted. The “potential checkpoints” approach was
introduced in Section 3. Not only should checkpoints be placed at locations in
the code where calls are executed frequently. It is also important that check-
pointing is triggered from the user code, and not when the execution is inside
an external library call. This tries to ensure that no opaque, internal state to
the library is left unsaved, causing restart errors. When using runtime con-
sistency protocols it is only necessary to insert frequent calls to the potential
checkpoint call to ensure that the state is saved with the specified frequency.
This is not possible using static coordination: checkpoint calls where the state
will be effectively saved need to be previously agreed upon by all processes. In
this context, a valid approach consists in statically detecting those loop nests in
the code that perform the core of the computation, statically inserting poten-
tial checkpoint calls inside them. During runtime, a checkpointing frequency
may be defined in terms of number of loop iterations. This frequency may be
dynamically adapted by means of lightweight, asynchronous protocols during
runtime.

Statically selecting the loop nests that perform the core of the computation
raises several challenges. The main one is that it is not possible to accurately
predict the execution time of a section of code without precise knowledge of
the hardware which is to execute it. To overcome this issue, heuristic cost anal-
yses are employed, using computational metrics to discover critical sections of
code. The sections of code are considered relevant depending not on the time
they will take to execute, but on how much computational load they pose
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when compared to other parts of the application. Thus, the problem of actu-
ally estimating execution time is abstracted and converted into a comparison
between estimated computational loads of all the loop nests in the application.

The most simple computational metric for a loop nest is the number of
instructions it contains. However, this does not take into account the data
access pattern of the loop. For instance, the computational load of a loop
performing an irregular reduction on a sparse array cannot be compared to
that of a loop initializing an array to zero, even if they might contain the same
approximate number of instructions. For this reason, the developed heuristic
function also takes into account the number of variables a statement accesses.
A formal definition of the heuristic function in use by CPPC follows.

Let l be a loop in L, the loop population of the application P , and i and a
two functions that return the number of instructions and variable accesses in
a given block of code, respectively. Let us define I(l) = i(l)/i(P ) and A(l) =
a(l)/a(P ) the total proportion of statements and accesses, in that order, that
exist inside a given loop l. The heuristic computational load value associated
to each loop l is calculated as:

h(l) = −log(I(l) ·A(l)) (1)

Equation 1 multiplies I(l) and A(l) to ensure that the product is bigger for
loops that are significant for both metrics. It applies a logarithm to make
variations smoother. Finally, it takes the negative of the value to make h(l)
strictly positive. The closer to zero the value, the higher the computing time
estimated for the loop. After calculating h(l), ∀l ∈ L, thresholding methods
are applied to select the set of loop nests where checkpointing is required [21].
These methods are based on both the shape of the h(l) function and its first
and second derivatives.

The cost estimation is performed interprocedurally and traversing the IR.
First, an estimated cost value is assigned to leaf nodes (simple statements).
Then, the IR is traversed upwards, estimating the cost for executing a parent
node by looking at the estimated costs of its children nodes. For the Cetus IR,
the transfer functions i(s) and a(s) involved in the calculation of h(s) for a
given statement s are as follows:

1. If s is a declaration statement, i(s) = a(s) = 0.
2. If s is a simple statement (leaf node in the IR):

– i(s) = 1
– a(s) = #variable accesses in s

3. If s is a call statement to function f ; let x ∈ {i, a}:

x(s) = x(sf )

where sf is the compound statement that represents the body of f .
4. If s is a conditional statement gating the execution of n statements sj , 0 ≤

j < n; let x ∈ {i, a}:
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x(s) =

∑n
j=0 x(sj)

n

5. If s is a compound statement with children statements sj , 0 ≤ j < m; let
x ∈ {i, a}:

x(s) =

m∑
j=0

x(sj)

When implementing this analysis in LLVM, the fact that LLVM IR uses
three-address code has to be taken into account. In this kind of IR, the num-
ber of accesses per instruction remains constant for most instructions. In this
situation, a(l) ' 3 · i(l), and considering memory accesses in the loop is un-
necessary. In this situation, the heuristic computation value h(l) is a constant
displacement away from the value h′(l) defined as:

h′(l) = −log(I(l))

Note that if a(l) ' 3, h′(l) has approximately the same shape and first and
second derivatives than h(l), and therefore is a good and simpler substitute for
h(l). The LLVM analysis is implemented following the same basic principles
than the Cetus one, but using h′(l) instead. As such, it is only necessary
to calculate the number of instructions i(l) inside each loop nest applying
the transfer functions previously described. A qualitative comparison between
both implementations can be found in Section 5.

This technique can also be used to detect adequate checkpoint locations
when using other application-level checkpointing approaches (e.g. uncoordi-
nated, distributed snapshots, etc.).

Once the loops in which checkpoints are to be inserted are identified, the
results of the communications analysis are used to insert a checkpoint at the
first available safe point in each selected loop nest.

4.3 Registration of restart-relevant variables

As described in Section 2.2, the compiler identifies the variables that will be
relevant upon restart and marks them for storage in subsequent checkpoints.
It is easy to see that, for a checkpoint statement ci, these variables can be
identified by calculating the set LVin(ci) of variables that are live upon execu-
tion of statement ci. This is a complementary approach to memory exclusion
techniques used in sequential checkpointers to reduce the amount of memory
stored, such as the one proposed in [17].

This section is organized as follows: Section 4.3.1 details how live vari-
ables are intraprocedurally calculated by the CPPC compiler, and why this
calculation is different from the traditional one; Section 4.3.2 explains how the
intraprocedural live variable analysis is used to insert variable registrations in
an interprocedural context.
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generated: set of generated variables
consumed: set of consumed variables
foreach statement s in {ci . . . send} do
consumed ← consumed ∪ (s.consumed− generated)
generated ← generated ∪ s.generated

done
LVin(ci) = consumed

Fig. 4 Pseudo-code of the live variable analysis

4.3.1 Live variable analysis

A variable x is said to be live at a given statement s in a program if there is a
control flow path from s to a use of x that contains no definition of x prior to
its use. The set LVin of live variables at a statement s can be calculated using
the following expression:

LVin(s) = (LVout(s)−DEF (s)) ∪ USE(s)

where LVout(s) is the set of live variables after executing statement s, and
USE(s) and DEF (s) are the sets of variables used and defined by s, respec-
tively. This analysis is traditionally performed backwards, being LVout(send) =
∅, and send the last statement of the code. This computation calculates the
set of input and output live variables for every basic block in the code.

For the purpose of checkpointing, it is not required to compute the set
of live variables for the entire application, but only for those code regions
that are executed after restarting from a previously stored checkpoint. Thus,
finding live variables on demand only for the relevant regions of code improves
performance.

The Cetus version of the compiler does not use the basic block abstraction,
but works directly on Cetus IR instead. The LLVM version takes advantage
from the identification of statements and references to their results in LLVM
to perform a fast traversal of the code. CPPC annotates each statement s with
its corresponding USE(s) and DEF (s). When it needs to obtain the set of
live variables at a statement s it traverses all statements from s up to send.
The pseudo-code for the live variable calculation is shown in Figure 4.

The LLVM version of this analysis works exactly in the same way as the
Cetus one. No advantages are obtained from the lower-level representation in
SSA form.

4.3.2 Variable registration

Before each checkpoint statement ci, the compiler inserts annotations to reg-
ister the variables that must be stored in the checkpoint file, which are those
contained in the set LVin(ci). The data type for the register is automatically
determined by checking the variable definition. Variables registered or defined
at previous checkpoints are not registered again. Also, before each checkpoint
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ci, the compiler inserts “unregister” annotations for the variables in the set
LVin(ci−1)− LVin(ci), the set of variables that are no longer relevant.

Checkpoints can be placed inside any given procedure. For a checkpoint
statement ci, let us define:

Bci = {s1 < s2 < . . . < send}

as the ordered set of statements contained in all control flow paths from ci
(excluding ci) and up to the last statement of the program code, where the <
operator indicates the precedence relationship between statements. Note that,
if a checkpoint is placed inside a procedure f , not all statements in the set
Bci will be inside f . Let us denote by Bf

ci = {s1 < . . . < sn} the ordered
set of statements contained inside f , and Lf

ci = Bci − Bf
ci the ordered set of

statements left to be analyzed outside f .
The interprocedural analysis and register insertion is performed according

to the following algorithm:

1. For a checkpoint statement ci contained in a procedure f , the live variable
analysis is performed for the set Bf

ci , and registers for locally live variables
are inserted before ci.

2. For the set Lf
ci , containing the statements that are left unanalyzed in the

previous step, let us consider g to be the procedure containing the state-
ment sn+1. The statement executed immediately before sn+1 must be a
call to f . Note that Lf

ci = Bg
ci tL

g
ci . The live variable analysis is performed

for the set Bg
ci , and registers for locally live variables are inserted before

the call to f .
3. The process is repeated for the statements contained in the ordered set

Lg
ci .

This algorithm ensures that, upon application restart, all variables will be
defined before being used, and thus the portable state of the application will
be correctly recovered.

Proof of Correctness: Let us consider a variable v which appears in the
statements contained in Bci , and let sv ∈ Bci be the statement where it first
appears. There are three different cases to analyze: v can either be an input,
an output, or an input-output variable for sv. Using the definition of the live
variable analysis:

– input: v ∈ USE(sv) ∧ v /∈ DEF (sv)

USE(sv) ⊂ LVin(sv)⇒ v ∈ LVin(sv)

Since sv was the first appearance of v in Bci , there is no previous statement
which defines its value, meaning that v belongs to the live variable set for
every statement before sv:

@i/(v ∈ DEF (si)) ∧ (si < sv)⇒ v ∈ LVin(sj),∀j/sj < sv

In particular, since ci < sv: v ∈ LVin(ci).
A register will be inserted before sv when analyzing its containing proce-
dure. This register will generate v’s value when restarting the application.
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– output: v /∈ USE(sv) ∧ v ∈ DEF (sv)
In this case, it is guaranteed that v /∈ LVin(sv).
Since sv was the first appearance of v in Bci , there is no previous statement
which uses its value, meaning that v does not belong to the live variable
set for every statement before sv:

@i/(v ∈ USE(si)) ∧ (si < sv)⇒ v /∈ LVin(sj),∀j/sj < sv

In particular, since ci < sv: v /∈ LVin(ci).
No register will be inserted; v’s value will be generated upon reaching sv,
therefore defining it.

– input-output: v ∈ USE(sv) ∧ v ∈ DEF (sv)
This case is similar to the input one.

Proof of Termination: The algorithm terminates if all statements con-
tained into Bci are analyzed. Bci is a finite set, since its maximum number
of elements is equal to the total number of statements in the code being ana-
lyzed. The evolution of the cardinality of the unanalyzed set of statements is
as follows:

– In the first phase of the algorithm (the analysis of procedure f), the state-
ments in Bf

ci are analyzed. Either s1 ∈ f and #Lf
ci < #Bci , or ci is the

last statement in f and #Lf
ci = #Bci .

– In each of the subsequent phases, the set of unanalyzed statements can be
written as:

Lpn
ci = {spn

1 , . . . , spn
m } = Bci − (

n⊔
j=1

Bpj
ci )

where each pj is the procedure being analyzed in phase j. In phase n, the
algorithm analyzes the procedure containing the statement spn

1 . Therefore,
at least one statement is analyzed, and #L

pn+1
ci < #Lpn

ci .

Since all the statements must be contained in a procedure in order to be
in the initial Bci and this is a finite set, the termination of the algorithm in a
finite number of steps is guaranteed.

The live variable analysis takes into account interprocedural data flow.
Upon finding a call to a procedure h, the compiler performs an on-demand
analysis of the code of h. The data flow effects on procedure parameters and
global variables are then cached to be used in subsequent calls to h. When
dealing with calls to precompiled procedures located in external libraries, the
conservative behavior is to assume all parameters to be of input type. This
forces all variables passed as procedure parameters to be generated before the
call, either as part of the execution of the code or by means of a variable regis-
tration. To avoid this default behavior data flow information may be included
in the function catalog.

In this way, the set of locally live variables in each procedure is recov-
ered inside the procedure itself. Further details about state recovery during
application restart are given in Section 4.5.
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CPPC JUMP LABEL
REGISTER ’COLOR’ PARAMETER
REGISTER ’KEY’ PARAMETER
COMMIT REGISTERS
MPI Comm split( comm, color, key,

comm out );
CONDITIONAL JUMP TO NEXT RRB

Fig. 5 Pseudo-code of a non-portable procedure call transformation

4.4 Identification of non-portable functions

As stated in Section 2.1, CPPC recovers non-portable parts of the application
state through the re-execution of the code creating such opaque state (e.g.
MPI communicators). Since the compiler will not have access to the code of
external library functions, the only way in which information of non-portable
calls may be provided is through the use of the function catalog. The catalog
includes, among others, information about which function calls must be re-
executed when restarting the application. Upon discovery of a non-portable
call, the CPPC compiler performs the transformation depicted in Figure 5.
It inserts a parameter registration for each input or input-output parameter
passed to the call. The data flow information is also available through the
function catalog. The basic functional difference between a regular variable
registration and a parameter registration is that, in the former, the variable
address is saved and its contents stored when the control flow reaches a check-
point. The parameter value, however, is stored in volatile memory when the
COMMIT REGISTERS operation is invoked, and included in all subsequent check-
point files. Upon restart, the call will be re-executed using the same parameter
values as in the original execution. The compiler also adds flow control code
to ensure that the program executes the non-portable block and is directed to
the next restart-relevant block (RRB, see Section 4.5) after executing it.

When the flow of control reaches the non-portable block shown in the
figure, values for color and key will be recovered through the parameter reg-
istrations inserted. The comm variable will be either a basic MPI communicator
or will have been previously recovered through a re-execution of non-portable
code. Note that the specific MPI implementation used in the application re-
execution could be different from the one used in the original run, but the
outcome communicator will be semantically correct in the new execution en-
vironment.

This analysis is conceptually equivalent in both the Cetus and LLVM ver-
sions of the compiler, and differs only in basic implementation details.

4.5 Putting it all together: restarting an execution

As previously mentioned, the code inserted by the CPPC compiler does not
only create checkpoints during a regular execution, but is also in charge of con-
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Fig. 6 Basic structure of CPPC-instrumented code

sistently recovering the application state should a failure occur. Every CPPC
application is divided into blocks of code that are relevant during application
restart and blocks which are not. State recovery is accomplished through the
sequential execution of restart-relevant blocks (RRBs), starting at the appli-
cation entry point and up to the checkpoint location where the state file used
for restarting the execution was created during the original run. Execution of
blocks of code that are not restart-relevant is skipped.

Figure 6 shows the typical structure of a CPPC application. Without loss
of generality, the figure assumes that there is a single checkpoint in the appli-
cation, inserted into function f n. The fundamental restart-relevant constructs
are non-portable calls, variable registrations, and checkpoints. The CPPC com-
piler divides the application into structures formed by a block of non-relevant
code, a jump target, a block of restart-relevant code, and a “conditional jump”
to the next jump target, which will be placed right before the following RRB.
A conditional jump is also inserted at the beginning of each instrumented
function to correctly direct the execution flow when that function is reached.
Conditional jumps are only taken during an application restart. In this way,
after a failure, CPPC is able to re-execute only relevant parts of the code, skip-
ping the non-relevant bits. The pieces of application code that are executed
during a restart are marked in gray in the figure.

The skeleton shown in Figure 6 illustrates the concepts here described.
It consists of n + 1 nested functions such that main calls f 1, and each f i

performs a call to f (i+1) in turn. A checkpoint is placed inside f n. Upon
restart, the conditional jump at the beginning of main would execute the RRBs
up to the call to f 1, which would be performed as in a regular execution,
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portably recovering a part of the original application stack. Previous to the call,
values of live variables in scope will be recovered through variable registration
calls. In the figure dashed lines are drawn between each block of registers and
the section of the code which is analyzed to determine the variables to be
registered. Variable registrations and the stack areas they affect are marked
with a striped background. Once inside f 1, the initial conditional jump would
direct the execution towards its first RRB. Execution would eventually arrive
at the call to f 2. The process repeats until, in the end, control reaches the
checkpoint in f n. At this point, CPPC detects that the execution is at the
location where the original state file was created. The stack structure has
been recovered, as well as all live variables. CPPC deactivates the conditional
jumps, and thus execution resumes normally.

Note that this approach is generalizable to any number of checkpoints
arbitrarily spread among any number of (potentially nested) functions. The
restart protocol for a CPPC application remains the same for both the Cetus
and LLVM versions of the CPPC compiler.

4.6 Dealing with Fortran 77 codes

Besides C codes, the CPPC framework also targets scientific codes written in
Fortran 77 (F77), not natively supported by the Cetus infrastructure. There
are already available frontends that translate an F77 application into LLVM
IR. This section describes the required Cetus extensions for supporting F77
applications. The first step was to write an F77 parser to generate the Cetus
IR for these applications. The basic idea behind this extension was to reuse
as much as possible the original Cetus IR, which enables the reuse of the C
transformation codes. After transformations are performed to the IR, a back-
end is in charge of rewriting the IR back to F77 code.

Cetus IR, however, is not 100% Fortran-compatible. Some F77 constructs
can be directly mapped to existing IR classes, while others require new ones
to be added. In particular, the following F77 constructs are represented using
IR extensions:

– Descendants of cetus.hir.Declaration: COMMON blocks; DATA, DIMENSION,
EXTERNAL, INTRINSIC, PARAMETER, and SAVE declarations.

– Descendants of cetus.hir.Literal: DOUBLE literals.
– Descendants of cetus.hir.Specifier: COMPLEX, DOUBLE COMPLEX, ARRAY(

lbound, ubound), and CHARACTER*N (string) specifiers.
– Descendants of cetus.hir.Statement: Computed GOTOs, FORMAT state-

ments, Fortran-style DO loops, and Implied DO loops.
– Descendants of cetus.hir.Expression: Expressions appearing in FORMAT

statements, substring expressions, IO function calls.
– Extensions to cetus.hir.UnaryOperator: LABEL ADDRESS operator (&&).
– Extensions to cetus.hir.BinaryOperator: F POWER (**), and F CONCAT

(//) operators.
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Application SLOCs #L Checkpoint (file:line)

BT 3650 25 bt.f:179
CG 1044 13 cg.f:441
EP 180 4 ep.f:189
FT 1269 20 ft.f:159
IS 672 6 is.c:976
LU 3086 35 ssor.f:78
MG 1618 12 mg.f:245
SP 3148 25 sp.f::150

Table 1 Summary of test applications

In order to reuse transformation code as much as possible, all analyses are
written using a template method design pattern. The transformation steps
that differ depending on the source code are implemented in subclasses.

5 Experimental results

This section compares the performance and results of the two implementa-
tions of the analyses presented in this paper: the Cetus- and the LLVM-based
implementation. For this purpose, the eight applications of the NPB-MPI v3.1
benchmarks [14] were used. The NPB are well-known and widespread applica-
tions that provide a de-facto test suite. All the NPB applications are Fortran
codes, except for IS which is written in C. Table 1 shows a summary of the
characteristics of the test applications, including the number of source lines of
code (SLOCs), number of loop nests in the code (#L), and place (file and line
number of the source code) where a checkpoint was manually inserted during
the assessment of the test applications.

Besides providing performance figures, this section intends to compare the
relative performance of Cetus (based on Java) and LLVM (a C++ infrastruc-
ture) for the different stages of the compilation pipeline. It is to be expected
that a low-level, SSA representation such as LLVM IR will adapt better to
the data flow analyses that are required in order to instrument checkpointing.
Experiments were performed on a desktop computer, an Intel Core2 Duo at
3 GHz with 2 GB of RAM. Cetus 1.3 was ran on Sun JDK 1.6.0.26, using
512 MB of memory allocation pool. LLVM 2.9 was used for the LLVM tests.
The performance results for the compilation analyses are provided in Table 2.
Besides the times employed for the checkpointing analyses, this table includes
the parsing and linking times, which will be taken into account to compare
the total processing time of both toolchains. The remainder of this section is
dedicated to a discussion of the obtained performance figures. When relevant,
the qualitative results of the analyses are also discussed.

The first step in the compilation process is the parsing of the source code
in order to generate the IR. The Fortran parser for Cetus was written by
the authors (see Section 4.6), while the C parser is already included in the
Cetus bundle. Clang 2.9 and llvm-gfortran 2.9 were used as parsers for LLVM.
Given that parsing is a more or less straightforward operation of scanning the
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Parsing Communications Checkpoints
Application Cetus LLVM Cetus LLVM Cetus LLVM

BT 5828 724 2713 200 916 40
CG 803 101 6762 104 70 2
EP 292 27 106 12 13 1
FT 1816 218 910 60 253 9
IS 766 33 1842 20 73 1
LU 2596 661 1518 200 416 123
MG 1821 364 7865 152 387 15
SP 2239 695 1718 348 778 51

Registration Instrumentation Linking
Application Cetus LLVM Cetus LLVM Cetus LLVM

BT 1839 2 1366 2 1364 7564
CG 433 1 145 3 200 3924
EP 222 1 48 2 80 88
FT 508 1 281 1 400 384
IS 119 1 131 1 80 96
LU 929 2 380 3 1180 3924
MG 702 2 420 2 604 1508
SP 2736 1 357 2 1304 13109

Table 2 Runtimes (ms) for the CPPC compiler analyses

source code and creating an IR to represent it, the faster LLVM processing is
a consequence of a fundamental difference between the toolchains: the Cetus
parsers are written using ANTLR [16] and executed by a Java VM, while
Clang and llvm-gfortran are C/C++ code that runs directly on the operating
system. Judging by parsing time, it is to be expected that the Java execution
will be an order of magnitude slower than the native one.

After parsing the code, the CPPC compiler proceeds to statically match
communications. The results of this analysis will be later used during check-
point insertion. The LLVM implementation tries to take advantage of the
use-def chains available in LLVM to find more directly the statements in the
code that need to be analyzed. The result is that the LLVM version is an or-
der of magnitude faster. Qualitatively, the results are correct and the same for
both implementations, even for IS, which presents an irregular communication
pattern.

After identifying safe points in the code, loop nests are ranked and those
with higher estimated computational loads are selected for checkpoint inser-
tion. While the running times for the LLVM analysis remain an order of magni-
tude lower (see column labeled as “Checkpoints” in Table 2), the results of the
analyses differ in this case. The LLVM version matches the desired checkpoint
results shown in Table 1. The Cetus one inserts some extra checkpoints for loop
nests in IS and SP, detailed in Table 3. These results are conceptually correct,
meaning that all relevant checkpoints are identified, but not optimal, since
non-relevant nests are checkpointed as well. This difference emerges from the
abstraction levels of the two IRs. The heuristic computational load function
h(l) defined in Equation 1 is derived from the number of statements, I(l), and
memory accesses, A(l). Using Cetus IR, I(l) is closely related to the number of
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Application Extra checkpoints (file:line)

IS
is.c:425
is.c:396

SP
exact rhs.f:23
initialize.f:45

error.f:26

Table 3 Extra checkpoints inserted by Cetus-CPPC

Checkpoint size (KB)
Application Cetus LLVM

BT 1441.02 1550.68
CG 3050.48 3061.77
EP 1211.13 1238.07
FT 6225.75 14548.48
IS 1269.29 1243.38
LU 884.95 1052.61
MG 1251.64 1235.93
SP 1221.70 1243.38

Table 4 Size (KB) of the checkpoint files generated by the CPPC library for class ’S’ NPB
applications instrumented by the Cetus and LLVM versions of the CPPC compiler

SLOCs, a measure of code complexity in terms of programmer effort. SLOCs
do not necessarily provide a good estimation of computational effort. When us-
ing LLVM IR, much closer to assembly code, I(l) is more related to the actual
number of machine instructions involved in the execution of the loop code. As
such, LLVM IR constitutes a more natural support for the calculation of h(l).
The authors are currently working on developing techniques for checkpointing
insertion based on automatic recognition of computational kernels [2]. Kernel
recognition benefits from working with a high-level IR such as Cetus IR, and
may be used to estimate more accurately the relative computational load of a
section of code.

For analyses which are purely data flow oriented, such as variable regis-
tration and code instrumentation, LLVM is two to three orders of magnitude
faster than Cetus according to the results of Table 2. Besides the faster execu-
tion of C++, LLVM IR identifies statements and the addresses containing their
results, also providing use-def and def-use chains. These functionalities enable
faster data flow analyses. During runtime, however, checkpoint files generated
by Cetus are smaller than those generated by LLVM. The reason is that the
llvm-gfortran frontend introduces extra low-level variables to handle Fortran
COMMON blocks that cannot be identified as non-live by the data flow analyses
in CPPC. These get conservatively registered and stored into checkpoint files.
The exception is IS, which is a C application. In this case, LLVM generates
slightly smaller checkpoints due to scalar optimizations. Generated checkpoint
sizes for the ‘S’ version of the NPB applications are shown in Table 4. The
difference in size remains constant for different problem sizes.

After running the compilation analyses, the last step is to generate ex-
ecutable files from the instrumented codes. Measurements for this step are
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Total time
Application Cetus LLVM

BT 13911 8559
CG 1713 546
EP 788 168
FT 3548 725
IS 1252 1683
LU 5919 5120
MG 4209 2119
SP 7929 14437

Table 5 Total processing times (ms)

shown in Table 2 and labeled as “Linking”. The output of the CPPC Cetus
compiler are Fortran or C files instrumented for fault tolerance. The linking
time was calculated as the time it takes GCC 4.5.3 to generate an executable
from these modified source files. For LLVM, the linking time is measured as
the time for the execution of the llvm-ld command that takes the modified
LLVM IR and converts it into a native executable. This is a costly operation,
particularly for applications which span several source files. When the entire
toolchain is taken into consideration, processing times for Cetus and LLVM
are generally of the same order, with the fastest tool depending on the se-
lected application. For reference, the total accumulated times are summarized
in Table 5.

6 Concluding remarks

This work has focused on the implementation of the transformations performed
by the CPPC compiler to provide fault tolerance for message-passing appli-
cations. The required analyses involve a communication analysis, a heuristic
computational load estimation to determine places in the code that are ap-
propriate for checkpoint insertion, a liveness analysis to discover the data that
will be required when restarting an application, and the insertion of constructs
to guide the execution flow during this operation.

Two equivalent implementations of these analyses have been studied, one
using Cetus and the other on top of LLVM. Cetus is a compiler infrastruc-
ture characterized by its high-level IR and ease of implementation. It was
developed to provide a portable compiler infrastructure, multi-language sup-
port and to be extensible. LLVM was born as a research project to provide
SSA-based compilation capabilities. By design, these tools have very differ-
ent approaches, advantages and capabilities. Throughout the paper, several of
these characteristics have been highlighted. A brief summary is included in
this section for reference.

Cetus is an attractive choice which sports the following competitive advan-
tages:

– It is implemented in Java. This provides almost limitless portability of the
developments made.
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– Its front-end is based on an open parser, ANTLR. This enhances the cre-
ation of new front-ends by following the same design principles used in the
original C parser.

– The IR-API is simple and consistent. The learning curve of Cetus is pur-
posely very steep, and is an ideal tool for people with little compiler expe-
rience to write compiler passes.

– Cetus uses a high-level representation, which closely resembles the origi-
nal code. This allows for the implemented analyses to access information
which is lost in lower-level IRs, such as the original array/pointer represen-
tations. Additionally, the resulting code is similar to the source program,
making it easy for a user to review and understand the steps involved in
the transformations made.

In contrast, LLVM presents the following advantages:

– It presents good performance due to its C++ implementation.
– The IR is closer to the hardware. While this makes it very difficult to

relate it to source code, it simplifies some analyses and makes it easy to
relate the IR to what will be ultimately executed. The SSA representation,
particularly the availability of use-def and def-use chains greatly simplifies
data flow analyses.

– LLVM makes no difference between statements and values at the IR level.
The same memory address may be used in dominated statements to in-
dicate a def-use relationship. This results in a lightweight and very fast
IR.

The disadvantages of both infrastructures are readily identifiable as the ad-
vantages of each other. On the one hand, some data flow and dependency anal-
yses are hard to implement in Cetus, due to its high-level nature. On the other
hand, LLVM decomposes some concepts to the point of making them nearly ir-
recoverable (e.g. array indexes are translated to a series of displacements from
the array’s base address). While LLVM provides very fast ways of traversing
dependencies, it is also very easy to execute an instruction that leaves the IR in
an inconsistent state, something that Cetus avoids by design. To summarize,
LLVM may be better suited for implementing production-oriented compiler
passes. Cetus is a good choice for rapid prototyping and experimentation with
compilation techniques in research environments.
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