
Failure avoidance in MPI applications
using an application-level approach
IVÁN CORES, GABRIEL RODRÍGUEZ, PATRICIA GONZÁLEZ, MARÍA J.

MARTÍN

Computer Architecture Group, University of A Coruña, Spain
Email: {ivan.coresg,grodriguez,pglez,mariam}@udc.es

Execution times of large-scale computational science and engineering parallel applications are
usually longer than the mean-time-between-failures (MTBF). For this reason, hardware failures
must be tolerated by the applications to ensure that not all computation done is lost on machine
failures. Checkpointing and rollback recovery is one of the most popular techniques to provide
fault tolerance support to parallel applications. However, when a failure occurs, most checkpointing
mechanisms require a complete restart of the parallel application from the last checkpoint. New
advances in prediction of hardware failures have led to the development of proactive process
migration approaches, where tasks are migrated in a preventive way when node failures are
anticipated, avoiding the restart of the whole application. The work presented in this paper
extends an application level checkpointing framework to proactively migrate MPI processes when
impending failures are notified, without having to restart the entire application. The main features
of the proposed solution are: low overhead in failure-free executions, avoiding the checkpoint
dumping associated to rolling back strategies; low overhead at migration time, by means of the
design of a light and asynchronous protocol to achieve a consistent global state; transparency for
the user, thanks to the use of a compiler tool and a runtime library; and portability, since it is not

locked into a particular architecture, operating system or MPI implementation.

Keywords: Failure Avoidance, Proactive Migration, Checkpointing, Message-Passing

1. INTRODUCTION

The current trend in computer architecture is the use of
large clusters, often heterogeneous, in which the nodes
are multi/many-core systems. These are highly dynamic
systems, with an everincreasing number of processors,
which causes relatively high hardware failure rates [1]. For
parallel programs executing on a large number of processors,
this translates into frequent execution failures and a decrease
in productivity.

Many fault tolerance methods for parallel applications
on clusters exist in the literature, checkpoint and rollback
recovery [2] being the most popular. It periodically saves the
computation state to stable storage, so that the application
execution can be resumed by restoring such state. In case
of failure, most of the current checkpointing and rollback
solutions restart all the processes from their last checkpoint.
However, a complete restart is unnecessary, since most of
the nodes will still be alive. Moreover, it has important
drawbacks. First, full restart implies a job requeueing, with
the consequent loss of time. Second, since the assigned set
of execution nodes is, in the general case, different from
the original one, checkpoint data must be moved across the
cluster in order to restart the computation, usually causing
significant network contention and therefore high overheads.
These limitations can be overcome if affected processes may
be individually restarted in case of a single node failure [3].

The aforementioned approaches use the checkpoint files
to respond in the event of a failure. However, with the recent
advances in monitoring systems, and thus in the prediction
of hardware failures [4], solutions that use checkpointing
to implement proactive policies have emerged [5, 6]. In
these approaches tasks are preemptively migrated from
processors that are about to fail. Thus, only terminating
processes need to dump their state, reducing the usually
high I/O overhead associated to checkpointing solutions.
Studies show failure avoidance to be more efficient than
traditional fault tolerance [7]. Moreover, both techniques
can complement each other, reducing checkpoint frequency
when the success rate of failure prediction is high [6].

This paper presents a checkpoint-based proposal to im-
plement failure avoidance using proactive process migration
in MPI codes. The work extends the CPPC framework [8],
a portable and transparent checkpointing infrastructure for
parallel applications, to proactively migrate processes when
impending failures are notified. The work makes the follow-
ing major contributions:

• a light and asynchronous protocol to achieve a global
consistent state during the migration operation. This
protocol avoids rollback and its associated loss of
already done computation.

• lightweight checkpointing and migration techniques;
the read/write operations are overlapped with compu-
tation or other migration-related operations whenever

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/199450283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 I. CORES, G. RODRÍGUEZ, P. GONZÁLEZ, M. J. MARTÍN

Fault-Tolerant
Parallel Application

FIGURE 1. Integration of a parallel application with the CPPC
framework

possible.
• an application-level migration solution. It does not

make any assumptions about the underlying system
hardware/software characteristics (including the MPI
implementation), thus enabling portable operation.

The structure of this paper is as follows. Section 2
presents an overview of CPPC, the checkpointing tool
extended in this work. Issues related to proactive process
migration using CPPC and its implementation are discussed
in Section 3. Section 4 evaluates the performance of
the proposed solution, demonstrating its efficiency and
feasibility. Section 5 describes related work. Finally,
Section 6 concludes the paper and discusses future work.

2. THE CPPC FRAMEWORK

The proactive process migration mechanism proposed in
this paper has been implemented on top of CPPC [8–
10], an application level checkpointing tool focused on
the insertion of fault tolerance into long-running message-
passing applications. CPPC appears to the user as a
compiler tool and a runtime library. The integration between
the application and the CPPC framework is automatically
performed by the CPPC compiler, that translates the
application source files into derived files with added
checkpointing capabilities. The global process is depicted
in Figure 1. At compile time, the CPPC compiler is used
to automatically transform a parallel application into a fault-
tolerant parallel application with calls to the CPPC library.
The following subsections detail relevant design aspects of
CPPC.

2.1. The CPPC approach

There are several issues to be solved in implementing
practical checkpoint solutions for parallel applications,
such as checkpoint consistency, memory requirements and
portability.

As for checkpoint consistency, the basic difference
between sequential and parallel applications is the existence
of dependencies imposed by interprocess communications.
If a checkpoint is placed in the code between two
matching communication statements, an inconsistency
would occur upon recovery, since the first one will not

N0

N1

N2

N3

- Unsafe locations due to messages

- Checkpoint - Call to checkpoint function

FIGURE 2. Spatial coordination for checkpointing

be executed. Several solutions have been proposed to
ensure the consistency of a checkpointing scheme [2]
being coordinated approaches the most common practical
choice [11, 12], due to their recovery process being very
simple. However, an important drawback of classical
coordinated protocols is their lack of scalability [13]. CPPC
minimizes the runtime overhead of classical consistency
protocols by using a non-blocking spatially coordinated
approach [9]: checkpoints are taken at the same relative
code locations by all processes (an SPMD programming
model is assumed), but not forcibly at the same time.
The proposal implies identifying, at compile time, code
locations where it is guaranteed that no inconsistencies
due to messages may occur (see Figure 2). These
code locations are called safe points. To automatically
identify safe points, the compiler performs a static
analysis of inter-process communication. Afterward, a
heuristic analysis, based on code complexity, selects the
best safe points for checkpoint file dumping, inserting
a checkpoint function (CPPC Do checkpoint()) there.
However, not all checkpoint function calls will generate
checkpoint files. During runtime a checkpoint frequency
may be defined in terms of number of calls to the
checkpoint function. Each time this function is called an
internal CPPC parameter, touchedCheckpoints, will
be increased. This parameter will be used to number the
different checkpoint files. During restart the application
processes perform a negotiation phase to identify the
most recent valid recovery line, formed by the newest
checkpoint file available simultaneously to all processes.
By statically ensuring that checkpoints may occur only at
selected safe locations, no interprocess communications or
runtime synchronization are necessary. In this way, the
static coordination protocol achieves consistency by using
compile-time introduced constraints, improving efficiency
and scalability by transferring consistency-related actions
from runtime to both compile and restart time.

Regarding memory requirements, CPPC works at the
variable level (i.e. storing user variables only) and performs
a live variable analysis that identifies which variable values
are needed for the correct restart of the execution. Live
variables are automatically detected by the CPPC compiler
and marked using a CPPC function (CPPC Register())

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

FAILURE AVOIDANCE IN MPI APPLICATIONS USING AN APPLICATION-LEVEL APPROACH 3

int main(int argsc,
char ** argsv) {

// Variable definitions
...

MPI Init(&argsc, &argsv);

// Matrix data input and distribution
...

for(i=0; i < niters; i++) {
// Matrix diagonalization
...

}

...

MPI Finalize();
}

FIGURE 3. Skeleton of an example of MPI code: a matrix
diagonalization

to provide such information to the CPPC controller. This
process is referred to as “variable registration”. Besides,
CPPC applies other snapshot size reduction technique, zero-
blocks exclusion [14], which consists in avoiding the storage
of memory blocks that contain only zeros. Working at
the variable level allows both to reduce the amount of
data to be saved, which is one of the most performance
impacting factors in checkpointing, and to store only
portable data, hence making restart possible on different
architectures. Using liveness information and zero-blocks
exclusion further reduces snapshot sizes. Storing only
portable data on state files introduces the need for some
kind of recovery mechanism, capable of regenerating the
nonportable state that is not stored into state files. This
mechanism is further described in the next subsection.

2.2. CPPC Operation

For illustrative purposes, Figure 3 shows the C code of an
MPI application (a matrix diagonalization) and Figure 4
details the fault-tolerant version of the same code obtained
by using the CPPC source-to-source compiler.

CPPC has two operation modes: checkpoint and restart.
Checkpoint mode is used during regular execution. Pro-
cesses execute the code sequentially and create checkpoints
according to their specified checkpoint frequency. Restart
mode is used after the original execution has aborted to re-
cover the computation state of all processes from a previ-
ously saved snapshot. CPPC uses code re-execution to re-
cover the application state. A section of code is defined as
Required-Execution Code (REC) if it must be re-executed
during a process restart to ensure correct state recovery.
Each REC recovers some part of the original application
state. The fundamental REC types are nonportable calls,
variable registrations, and checkpoint calls. A typical exam-
ple of a nonportable call is a call to a function manipulating
opaque library state, such as an MPI function which creates

int main(int argsc,char ** argsv){

// Variable definitions
...

MPI Init(&argsc, &argsv);

CPPC Init(&argsc, &argsv);
// Conditional jump to CPPC EXEC 1
if(CPPC Jump next()) {

goto CPPC EXEC 1;
}

// Matrix data input and distribution
...

CPPC EXEC 1:
CPPC Register(&i, ...);
...
//Conditional jump to CPPC EXEC 2

for(i=0; i < niters; i++){
CPPC EXEC 2:

CPPC Do checkpoint(0);
//Conditional jump to CPPC EXEC 3

// Matrix diagonalization
...

}

...
CPPC Shutdown();

}

FIGURE 4. CPPC-instrumented matrix diagonalization example
code

or modifies a communicator.
The CPPC compiler divides applications into pieces

formed by: a block of non-relevant code, a jump target
(CPPC EXEC labels in the figure), a block of restart-relevant
code (REC), and a conditional jump to the next jump
target, which will be placed right before the following REC.
Conditional jumps will only be taken when in restart mode.
In this way, after a failure, CPPC is able to re-execute only
relevant parts of the code, skipping the non-relevant ones.

Following the example, during checkpoint operation the
MPI environment is initialized, then the CPPC controller;
matrix data are read and distributed; relevant variables are
registered by every process (loop index, loop limit and
matrix data); next the core computation of the application
begins with calls to the checkpoint function in every iteration
and actual checkpoint dumping every n iterations depending
on the specified checkpoint frequency; and, finally, the
results are written and CPPC is shut down.

In restart operation the execution starts normally. Upon
calling the CPPC initialization function the restart is
detected, and a negotiation phase is performed to identify
the most recent recovery line, that is, the set of checkpoint
files to be used for restart. These files are verified and read,
and restart mode is entered, which activates the conditional
jumps that direct the execution through the identified RECs
and skip nonrelevant sections of code. In the example, the
matrix data input will be skipped. The variable registration

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

4 I. CORES, G. RODRÍGUEZ, P. GONZÁLEZ, M. J. MARTÍN

Restart
NP

N0

N1

N2

N3

- Call to checkpoint functions

- Signal reception - Migration point

m
sg

 1

m
sg 2

m
sg

 3

m
sg4

FIGURE 5. Inconsistent global state after migration in processes
that are running asynchronously

REC recovers variable values. Finally, the execution reaches
the checkpoint inside the computational loop, the library
is reconfigured to checkpoint mode and the application
continues regular execution.

3. APPLICATION-LEVEL MIGRATION

The basic idea behind dynamic migration in parallel
applications is to spawn new processes that will be in charge
of continuing the work of the terminating processes on other
computation nodes. Migration is preferably performed to
spare nodes, although the use of already allocated ones
is also possible. In a checkpoint-based solution, when a
signal with a migration request is received, the terminating
processes need to write their state to checkpoint files, while
newly spawned processes need to read these files and recover
the state of the terminating processes. Besides, before
resuming the execution, communication groups must be
rebuilt to exclude terminating processes and include the
newly spawned ones.

The reconstruction of the communication groups is a
critical step, since replacing communicators may lead to
an inconsistent global state: messages sent/received using
the old communicators cannot be received/sent using the
new ones. A possible solution to this problem is to
make the reconstruction of the communicators, and thus
the migration, in locations where there are no pending
communications, i.e. safe points. The CPPC compiler
automatically detects safe points, thus facilitating the
implementation of this approach. Besides, based in a
heuristic evaluation of computational cost, it places calls
to the checkpoint function in selected safe locations.
These calls could be used as migration points. However,
conducting the migration from different checkpoint calls
in different processes may lead to inconsistencies, since
messages may be sent in the code executed in between the
two calls. The communication labeled msg. 3 in Figure 5
is an example of such a situation. In order to implement
proactive process migration processes need to dynamically

- Negotiation and migration- Signal reception

- Checkpoint - Call to checkpoint functions

Restart
NP

N0

N1

N2

N3

FIGURE 6. Backward negotiation

- Negotiation and migration

RestartNP

N0

N1

N2

N3

- Signal reception

- Checkpoint - Call to checkpoint functions

FIGURE 7. Forward negotiation

engage in a negotiation to decide which checkpoint call to
select as migration point.

Summarizing, there are two main phases on process
migration using CPPC: a negotiation to reach consensus on
the migration point; and the process migration itself, which
includes the communicator reconstruction.

3.1. Negotiation protocol

The negotiation protocol must ensure that, when a migration
is initiated, all processes are able to converge to a single
selected checkpoint location to achieve global coordination.
There are different approaches that can be used towards
this end. A first possibility is backward negotiation,
shown in Figure 6. Using this strategy all processes agree
to restart their execution from the most recent recovery
line [15]. Another solution is forward negotiation, detailed
in Figure 7, in which processes agree to coordinate at
the next checkpoint call to be reached by the process that
has advanced the farthest in the execution. Backward
negotiation uses previously created checkpoint files. As
such, its greatest advantage is avoiding the overhead of

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

FAILURE AVOIDANCE IN MPI APPLICATIONS USING AN APPLICATION-LEVEL APPROACH 5

creating new snapshots during migration. This, in turn,
incurs higher overheads during a failure-free execution,
given that processes need to checkpoint often. Backward
negotiation can be thought of as being roughly equivalent to
a stop and restart approach but avoiding the job requeueing.
All processes need to recover a previous state, causing a
loss of computation and higher total execution overhead.
Due to these shortcomings of backward negotiation, forward
negotiation will be the approach followed in this work.

We are assuming that the mpirun process receives
a migration request from a user or batch scheduler and
propagates it by sending a signal to each of the spawned
MPI processes. This external signal triggers a handler
which activates a migration flag in the CPPC controller
to change to migration mode, a new operation mode
added to CPPC besides checkpoint and restart, explained
in Section 2.2. In migration mode each MPI process
has to coordinate with the others to find out the farthest
checkpoint location that has been reached by any of them.
As the touchedCheckpoint CPPC parameter stores the
number of times this function is called for each process,
a direct and simple solution is to use an MPI reduction
operation inside the signal handler to calculate the maximum
touchedCheckpoint value. Unfortunately, according to
the MPI standard, implementations may prohibit the use of
MPI calls from within signal handlers. Thus, for the sake of
robustness and portability an alternative negotiation protocol
was built outside of the signal handler.

One-sided MPI communications are used so that pro-
cesses may continue running asynchronously during the ne-
gotiation. Prior to invoking a one-sided MPI communication
operation, each process has to specify the memory region
(window) that it exposes to others. The window for the pro-
posed negotiation algorithm comprises two values for each
process: flag and touched. The flag value indicates
whether a process is actively engaged in the negotiation. It is
activated when a checkpoint function is reached after migra-
tion mode has been enabled. It will not be deactivated until
the migration is finished. The touched value is kept up to
date throughout the execution when in checkpoint mode, to
contain the value of the touchedCheckpoints parame-
ter. When in migration mode this value is not updated, and
contains the value it had when the migration mode was en-
abled by the external signal.

Algorithm 1 shows the pseudocode of the negotiation
algorithm. This code is included inside the checkpoint
function and executed only when in migration mode.
Each process p reads the exposed flag and touched
values of every other process q (GetRemoteWindow()
in the figure). In this way, all processes have a global
picture of the execution status. As explained before, each
process must advance up to the farthest reached checkpoint
location. If process q is more advanced than process p
(i.e. touchedq > touchedp), then p must continue its
execution until the next checkpoint location, regardless of
the value of flagq . Otherwise, a deadlock would occur
if process q were waiting for a message from process p
sent in the application code in between the checkpoint call

number touchedp and the one number touchedq (hence
unable to reach the next checkpoint location and activate its
flag). If process q has not yet advanced beyond checkpoint
touchedp, then p waits for q to enable its flag value.
This indicates that q is aware that a migration is to take
place. Once all processes are verified to be aware of the
negotiation process and not more advanced than process p a
consensus migration point has been discovered, and process
p has arrived at it. Note that other processes may be behind
in their execution, and will arrive later at the same migration
location in an asynchronous way.

value[2];
for allRemoteProcesses do

flag = 0;
while !flag do

LockWindow();
GetRemoteWindow(&value);
UnlockWindow();

if value.touched > touchedCheckpoints then
return; %continue to next checkpoint

end
flag = value.flag;

end
end

Algorithm 1: Pseudocode for the negotiation protocol

Local updates to the window values use exclusive
locks (MPI LOCK EXCLUSIVE) to guarantee consistency,
whereas remote reads (Get operations on Figure 1)
use shared locks (MPI LOCK SHARED), which allow for
concurrent read accesses.

3.2. Process migration

At this point, a migration spot has been agreed upon and
processes begin arriving at that location independently. Still,
several issues remain to be solved: saving the terminating
processes state; spawning new processes to continue the
computation done by the terminating ones; updating and
managing the communication groups; and restoring the
terminating processes state in the newly spawned processes.
Whenever possible, these actions will be taken by each
process without coordination. All the required steps are fully
explained below.

The state of the terminating processes is saved using
native CPPC capabilities. Checkpoint file creation begins
once the terminating process reaches the migration point.
Note that, due to the spatial coordination protocol employed
by CPPC, there is no need to coordinate processes at the
migration point before the state dump can start. Checkpoint
creation is managed by a new ad-hoc thread, which allows
for the reconfiguration to occur concurrently.

The newly spawned processes are created using the
MPI Comm spawn multiple() MPI-2 function. This
call is collective over the communicator, that is, it must
be performed by all the processes in the communication

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

6 I. CORES, G. RODRÍGUEZ, P. GONZÁLEZ, M. J. MARTÍN

Old intra-communicator

Inter-communicator

Old group (A) Spawned group (B)

A2

A3 A1

A0
Terminating

B0
Spawned

1. Merge inter- and intra-communicator
and extract group

MPI_Intercomm_merge()
MPI_Comm_group()

A2

A3 A1

A0
Terminating

B0
Spawned

New group (C)

C0C2

C3 C4C1

2. Reorder processes
MPI_Group_incl()

A2

A3 A1

A0
Terminating

B0
Spawned

C0

C2

C3
C4

C1

3. Exclude terminating process
MPI_Group_range_excl()

A2

A3 A1

A0
Terminating

B0
Spawned

C0

C2

C3 C1

4. Create new world communicator
MPI_Comm_create()

A2

A3 A1

A0
Terminating

B0
Spawned

C0

C2

C3 C1

FIGURE 8. World communicator reconfiguration. Process A0,
in the world communicator A, migrates to a new execution node.
B0 is the newly created process to support the migration. The
old world communicator A is reconfigured into a new world
communicator C

group involved in the migration (that is, the world
communicator). Depending on the implementation,
MPI Comm spawn multiple() may not return until
MPI Init() has been called in the spawned processes.

Similarly, MPI Init() in the spawned processes may
not return until all processes in the original communicator
have called MPI Comm spawn multiple(). As such,
MPI Comm spawn multiple() in the original processes
and MPI Init() in the spawned ones form a collective
operation over the union of parent and child processes that
may imply a synchronization during the migration operation.

Spawning new processes creates an inter-communicator
between the original and the newly created processes.
Old communicators should be reconstructed, replacing ter-
minating processes with the newly created ones. The
approach used is to reconfigure the world communica-
tor (MPI COMM WORLD) using the dynamic communicator
management facilities provided in MPI-2. Other communi-
cators, which derive from MPI COMM WORLD, will be re-
constructed by re-executing the MPI calls used for creat-
ing them in the original execution. Figure 8 details the
reconfiguration phase for the world communicator for an
example where four processes take part of the migration
operation and only one process is migrated to a new exe-
cution node. First, the two intra-communicators that con-
tain the original and the new processes need to be merged
into a single one. The MPI Intercomm merge() func-
tion is used for this purpose. Afterward, the group of pro-
cesses that form the new intra-communicator is extracted via
MPI Comm group(). Ranks in this group are reordered
using MPI Group incl(), in such a way that the spawned
processes will take over the ranks of the terminating pro-
cesses. Afterward, terminating processes are excluded from
the group using MPI Group range excl(). Finally,
MPI Comm create() is used to build the new world com-
municator from the reconfigured group.

As described, this process only reconfigures the world
communicator. However, in order for the migration
to succeed, communicators which include any migrating
process have to be rebuilt as well. Using the same approach
for reconfiguring these communicators would require the
participation of the terminating processes, which would in
turn require the soon-to-fail nodes to be up for a longer
time, reducing the chances of successful migration. In
order to avoid this, the CPPC restart capabilities are used.
MPI calls that result in the creation of new communicators
(such as split operations) are identified and logged by CPPC
both into memory and created checkpoint files. The set
of communicators in an MPI application can be seen as a
tree in which each node is created from another one by
using a certain MPI operation (i.e. MPI Comm split(),
MPI Comm dup(), etc.). The root of this tree is the
world communicator. Taking advantage of the operation log
provided by CPPC, this communicator tree is reconstructed
from its root by orderly re-executing the logged operations.
Regular processes (those that do not migrate) read the
log from memory and re-execute its contents right after
the reconfiguration of the world communicator. Spawned
processes do so after reading the checkpoint file contents
during their restart phase. Note that if these MPI operations
are blocking, a synchronization between the processes
involved will be imposed.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

FAILURE AVOIDANCE IN MPI APPLICATIONS USING AN APPLICATION-LEVEL APPROACH 7

Terminating processes, in turn, participate in the
reconfiguration of the world communicator and wait
until the creation of their checkpoint file is com-
pleted. When this happens, they notify the spawned
processes (using the inter-communicator created by
MPI Comm spawn multiple()) that checkpoints may
now be read (assuming a shared file system). Finally, they
safely finish their execution.

Spawned processes still have to recover the terminating
processes state from their snapshots contents. This involves
reading the appropriate checkpoint file and executing the
necessary RECs to regenerate non-portable state. This is
achieved by delegating to CPPC and employing its native
capabilities.

4. EXPERIMENTAL RESULTS

Experiments were performed to evaluate both the scalability
of the proposed solution and the total overhead associated
to the migration. A multicore cluster was used to carry out
these experiments. It consists of 8 nodes powered by two
quad-core Intel Xeon E5620 CPUs with 16 GB of RAM. The
cluster nodes are connected through an Infiniband network.
The front-end is powered by one quad-core Intel Xeon
E5502 CPU with 4 GB of RAM. The connection between the
front-end and the execution nodes is an Infiniband network
too. The working directory is mounted via NFS and is
connected to the cluster by a Gigabit Ethernet network. All
the checkpoint files were stored into this working directory.

The application testbed was comprised of six out of the
eight applications in the MPI version of the NAS Parallel
Benchmarks v3.1 [16] (NPB from now on) compiled with
the OpenMPI library version 1.5.4. The IS and MG
benchmarks were discarded due to their low execution times.

The experimental results obtained are classified in two
subsections. The first one evaluates the scalability of the
solution, analyzing the duration of the different phases of a
migration operation in relation to different impacting factors.
The second subsection evaluates the migration overhead of
the proposed approach, and compares it with other different
solutions.

4.1. Scalability

The scalability of the solution can be analyzed from three
points of view: the impact of the total number of processes
in the execution, the effect of the number of migrating
processes, and the influence of the application memory
footprint. In all these experiments the migration time is
broken down into 5 parts (see Figure 9):

• Negotiation: execution time between the mpirun
migration request and the call to the spawn function.
This time is measured in the worst possible case, that
is, when the signal is received by at least one of the
processes just after a checkpoint function call.

• Spawn&Rec: execution time of the spawn function and
the reconfiguration of the world communicator.

Spawn&Rec

Spawn&Rec

RestartReadCkptReconf.

checkpoint

Spawn&RecNegotiation

Negotiation

Negotiation

Spawn&Rec

R
ec

S
ig

na
l (

ha
nd

le
r)

Terminating process

Regular process

Spawned process

Resume exec.

Resume exec.

Regular process

Resume exec.

Negotiation

Regular process

Resume exec.

N0

N1

N2

N3

NP

S
pa

w
n

WaitCkpt

m
pi

ru
n

m
ig

ra
tio

n
re

qu
e

st

R
ec

S
ig

na
l

R
ec

S
ig

na
l

R
ec

S
ig

na
l

FIGURE 9. Actions and temporal sequence for four processes
involved in a migration operation. Process N0 migrates to a new
execution node. NP is a newly created process to support the
migration. N1−N3 are regular processes that passively participate
in the migration

• WaitCkpt: average execution time between the end
of the reconfiguration phase in the newly spawned
processes, and the start of the checkpoint file read.

• ReadCkpt: average time it takes to read the checkpoint
file from disk in the newly spawned processes.

• Restart: average time for restarting the application
once the checkpoint file has been read. It includes the
execution of the RECs.

4.1.1. Impact of the number of processes
These tests measure the scalability of the migration solution
when increasing the number of total processes. Experiments
were carried out using 4, 8, 16 and 32 processes, except for
BT and SP that need a square number of processes, thus
using 4, 9, 16 and 36. Although each node was running at
least 4 processes, in this experiment only one process was
migrated each time (equivalent to what would occur if an
imminent failure was predicted in one node with one process
running on it). In all the cases the terminating process was
migrated to a spare node. The results obtained using the
NPB applications using class B are shown in Figure 10.

The Negotiation time depends on how often the CPPC
checkpoint function is called, the inherent synchronization
between the processes during the execution of the applica-
tion, and the overhead introduced by the negotiation pro-

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

8 I. CORES, G. RODRÍGUEZ, P. GONZÁLEZ, M. J. MARTÍN

Negotiation Spawn&Rec WaitCkpt ReadCkpt RestartHoja1

Página 1

4p 9p 16p 36p

0

1

2

3

4

5

6

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

Evacuation

4p 8p 16p 32p

0,0

0,5

1,0

1,5

2,0

2,5

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(b) BT

Hoja1

Página 1

4p 9p 16p 36p

0

1

2

3

4

5

6

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

Evacuation

4p 8p 16p 32p

0,0

0,5

1,0

1,5

2,0

2,5

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(c) CG

Hoja1

Página 1

4p 8p 16p 32p

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(d) EPHoja1

Página 1

4p 8p 16p 32p

0

2

4

6

8

10

12

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

4p 8p 16p 32p

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(e) FT

Hoja1

Página 1

4p 8p 16p 32p

0

2

4

6

8

10

12

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

4p 8p 16p 32p

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

4p 9p 16p 36p

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(f) LU

Hoja1

Página 1

4p 8p 16p 32p

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Execution processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

4p 9p 16p 36p

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

Execution processes
M

ig
ra

tio
n

 ti
m

e
 (

in
 s

)

(g) SP

FIGURE 10. Scalability impact when increasing the number of total processes. NPB class B migrating one process

TABLE 1. Negotiation times and iteration times, running 16
processes

NPB. Class B Negotiation (s) Iteration time (s)
BT 0.64 0.56
CG 0.21 0.20
EP 0.03 0.01
FT 1.00 1.00
LU 0.40 0.39
SP 0.33 0.28

tocol. Given that the migration signal is received just af-
ter a checkpoint call, the Negotiation time will be at least
the time between two consecutive checkpoint calls. In all
NPB, the CPPC checkpoint function is called once in each
iteration of the main computational loop. The Negotiation
time, as well as the execution time per iteration, for 16 pro-
cesses and class B, are shown in Table 1. Except for EP,
the processes of all the NPB applications are inherently syn-
chronized in every internal iteration of the application. This
means that, during the negotiation phase, one process will
never advance more than one iteration before reaching the
migration point. Results in Table 1 prove that in these cases
the overhead associated to the negotiation protocol is almost
negligible, being the Negotiation time mainly determined by
the iteration time. As the number of processes increases, the
iteration time decreases, thus achieving a reduction in the
Negotiation time. Table 2 shows the execution time per iter-

TABLE 2. Iteration times (in s) for different number of total
processes

NPB. Class B 4p 8/9p 16p 32/36p
BT 2.05 0.94 0.56 0.28
CG 0.73 0.38 0.20 0.15
EP 0.01 0.01 0.01 0.01
FT 3.59 1.85 1.00 0.61
LU 1.46 0.73 0.40 0.24
SP 1.14 0.50 0.27 0.14

ation for different number of processors. However, when the
processes are not synchronized, such as in EP, it may take
several checkpoint calls to reach the migration point.

The Spawn&Rec time increases slightly with the total
number of processes, since this phase involves different
collective communications. However, as it can be observed
in Figure 10, this time is at most 0.5 seconds in these
experiments.

As it can be seen in the figure, in most of the cases, the
biggest contribution to the migration overhead is due to the
write and read of checkpoint files. In these experiments
checkpoint files are stored to shared disk via NFS, using a
Gigabit Ethernet network. In this situation, checkpoint file
sizes are critical to minimize the I/O time. CPPC applies
live variable analysis and identification of zero-blocks to
decrease checkpoint file sizes [14]. These sizes, as well
as the checkpoint write and read times, for NPB class B

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

FAILURE AVOIDANCE IN MPI APPLICATIONS USING AN APPLICATION-LEVEL APPROACH 9

TABLE 3. Checkpoint file size per process (in MB) and checkpoint
write and read times (in s)

NPB. Class B Size Write T. Read T.
BT 30.69 0.51 0.58
CG 14.23 0.33 0.25
EP 1.10 0.04 0.03
FT 48.10 0.87 0.79
LU 14.49 0.25 0.24
SP 30.93 0.52 0.53

TABLE 4. Checkpoint file sizes per process (in MB) for different
number of total processes

NPB. Class B 4p 8/9p 16p 32/36p
BT 106.61 52.10 30.69 17.27
CG 47.48 24.79 14.23 7.64
EP 1.10 1.10 1.10 1.10
FT 192.12 96.11 48.10 24.10
LU 48.79 26.62 14.49 8.24
SP 96.35 50.19 30.93 18.24

and 16 processes, are shown in Table 3. When the number
of processes grows, the checkpoint files use to become
smaller and, thus, the time to write or read the file from disc
decreases. Table 4 shows the checkpoint file sizes for the
different number of processes. Again, the EP application is a
special case, since the checkpoint file sizes does not decrease
when the number of processes grows. Thus, the checkpoint
write and read times for EP remains constant in Figure 10.
Note that the write of the checkpoint file is overlapped with
the spawn and reconfiguration phase (see Figure 9), and the
time shown in these figures is the one consumed in the non
overlapped part (WaitCkpt).

Finally, the Restart time is very small for all the tested
applications. It depends on the amount of state recovered
using code re-execution (RECs) on the newly spawned
processes. As it happens for the checkpoint file sizes, by
increasing the total number of processes, the amount of state
to be recovered usually decreases, and so does the Restart
time.

Note that the sum of Negotiation, Spawn&Rec and
WaitCkpt corresponds to the evacuation time, that is, the
time needed after the migration request to free the nodes
that are about to fail. This time is represented with a line
in Figure 10. Evacuation time decreases when scaling the
number of processes, except for EP. Although the evacuation
time in EP increases slightly with the number of processes,
its variance in absolute value is lower than 0.1s. This
behavior can be explained by the negative impact of the
scaling in the Negotiation time for the EP application.

In order to make the proposed solution practical, the
evacuation time should be smaller than the lead-time (time
ahead of the potential occurrence of a failure) of the
prediction mechanism. In all the experiments the evacuation
time was only of a few seconds. In [17] lead-times between
tens of seconds and several minutes are reported. Thus, the
evacuation time observed in these experiments proves the

viability of the solution.

4.1.2. Impact of the number of terminating processes
When a node is about to fail, all the processes running
on it have to be migrated to a new location. The
previous subsection shows experimental results obtained
assuming only one terminating process. In this subsection
experiments were carried out varying the number of
terminating processes (from 1 to 8) and maintaining the
number of total processes in 16. In these experiments each
node runs 2 processes and the terminating processes are
migrated to spare cores of nodes that are not going to fail.
The results are shown in Figure 11.

As expected, the Negotiation time remains constant, as the
execution time between two consecutive calls to the CPPC
checkpoint function does not change.

The Spawn&Rec time increases with the number of
migrating processes. It is particularly low for mi-
grating a single process and augments significatively
when going from 1 to 2 migrating processes. This is
probably due to internal OpenMPI optimizations of the
MPI Comm spawn multiple() function when spawn-
ing only one process.

The checkpoint write and read times also grow because
the number of checkpoint files dumped to the NFS shared
directory increases. Note that, in most cases, the WaitCkpt
time is negligible because the time needed to dump the
checkpoint files is overlapped by the increase in the time
spent in the Spawn&Rec phase.

Finally, the Restart time increases with the number of
migrating processes for those applications that recover non-
world communicators during their restart phases (BT, FT,
and SP). The reason for this is that, as mentioned in
Section 3.2, the collective operations executed during this
recovery are blocking. As such, these operations impose a
synchronization that becomes more costly as the number of
migrated processes increases.

4.1.3. Impact of the application size
In this subsection NPBs of classes A, B and C are used
to evaluate the impact in the migration time of different
application memory footprints. Figure 12 depicts the
experimental results obtained when scaling the problem size,
using 16 processes and migrating only one.

As expected, for most cases an increase in the migration
duration is observed, since the problem scaling results in
larger data per process. The Negotiation time grows due
to the increase of the iteration time. The Spawn&Rec time
remains almost constant, since it does not depend on the
memory footprint of the application. Both the checkpoint
write and read times and the Restart time augment due to
the increase in the checkpoint file sizes and in the amount of
state to be recovered, respectively.

Though the problem scaling leads to an increase in the
migration duration, considering the total execution time of
the application, a decrease in percentage terms is observed
when the problem size increases.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

10 I. CORES, G. RODRÍGUEZ, P. GONZÁLEZ, M. J. MARTÍN

Negotiation Spawn&Rec WaitCkpt ReadCkpt RestartHoja1

Página 1

1p 2p 4p 8p

0

1

2

3

4

5

6

Migrated processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

Evacuation

(b) BT

Hoja1

Página 1

1p 2p 4p 8p

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

Migrated processes
M

ig
ra

tio
n

 ti
m

e
 (

in
 s

)

(c) CG

Hoja1

Página 1

1p 2p 4p 8p

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

Migrated processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(d) EPHoja1

Página 1

1p 2p 4p 8p

0

1

2

3

4

5

6

7

8

9

10

Migrated processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(e) FT

Hoja1

Página 1

1p 2p 4p 8p

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Migrated processes

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(f) LU

Hoja1

Página 1

1p 2p 4p 8p

0

1

2

3

4

5

6

Migrated processes
M

ig
ra

tio
n

 ti
m

e
 (

in
 s

)

(g) SP

FIGURE 11. Scalability impact when increasing the number of migrating processes. NPB class B and 16 processes

Negotiation Spawn&Rec WaitCkpt ReadCkpt Restart
Hoja1

Página 1

A B C

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

Benchmark class

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

Evacuation

(b) BT

Hoja1

Página 1

A B C

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Benchmark class

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(c) CG

Hoja1

Página 1

A B C

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

Benchmark class

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(d) EP
Hoja1

Página 1

A B C

0

1

2

3

4

5

6

7

Benchmark class

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(e) FT

Hoja1

Página 1

A B C

0,0

0,5

1,0

1,5

2,0

2,5

Benchmark class

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(f) LU

Hoja1

Página 1

A B C

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

Benchmark class

M
ig

ra
tio

n
 ti

m
e

 (
in

 s
)

(g) SP

FIGURE 12. Impact of increasing application size via the NPB classes. Running on 16 processes

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

FAILURE AVOIDANCE IN MPI APPLICATIONS USING AN APPLICATION-LEVEL APPROACH 11

TABLE 5. Execution times (in s) using 16 processes, with and without migration
CPPC Ckpt& MVAPICH

NPB. Class C Orig. Instr. Migr. Rollback Orig. Migr.
BT 449.94 450.55 459.63 482.27 471.48 486.39
CG 43.91 43.87 45.93 53.75 47.32 59.04
EP 33.27 33.29 34.59 33.70 34.35 36.01
FT 99.49 99.42 109.56 150.73 152.38 184.95
LU 418.41 419.17 425.47 433.39 435.47 444.47
SP 518.74 520.17 532.18 547.37 548.52 568.72

4.2. Overhead

The overhead was studied for each of the NPB codes by
running class C with 16 processes divided in 8 nodes. In
this configuration, when a node is about to fail, 2 processes
are migrated. Class C was chosen to get a more realistic
execution time. The results are shown in Table 5 where
the column labeled Orig. shows the execution time of
the original application in a fault-free execution and the
Instr. one the time of the application instrumented with
CPPC, again in a fault-free execution. In most cases the
instrumentation overhead is minimal, generally less than
1%. The application execution times when a failure is
imminent and the migration of a node is performed are
shown in the Migr. column. As seen in the previous sections,
the migration time is mainly dominated by the times to read
and write the checkpoint files. Thus, FT is the application
with the highest relative overhead (10% with respect to
the original code) due to their larger checkpoint files (see
Table 3).

Table 5 also includes the execution time of the
checkpoint and rollback solution using CPPC. Checkpoint
files are periodically dumped and, in case of failure,
the complete execution is restarted in new nodes. The
Checkpoint&Rollback times shown in this table are the
optimal ones for this approach, that is, only one checkpoint
file is dumped before the failure occurs, thus avoiding
additional overhead due to useless dumps; and the rollback
is performed just after the checkpoint, thus avoiding loss
of work on restart. The overhead associated to proactive
migration is lower than the overhead associated to the
checkpoint and rollback solution, the only exception being
EP. The relatively high overhead of the EP benchmark
(1.21%) is due to the high number of MPI window updatings
as a consequence of the high number of internal iterations
(more than 500 iterations in approximately 5.5 seconds).
Fortunately it is rather improbable to find this behavior in
a real application. It can be concluded that the proactive
migration approach can significantly decrease the cost to
survive a node failure.

For comparative purposes, Table 5 also shows the
execution time using MVAPICH version 1.8. MVAPICH
provides process migration based on BLCR (Berkeley Lab’s
Checkpoint/Restart Library) [18] and FTB (Fault Tolerant
Backplane) [19] libraries for Infiniband, iWAPP and RoCE
architectures [20]. The table shows the MVAPICH original
execution time, that is, a fault-free execution, and the

TABLE 6. Checkpoint sizes (in MB) per process (running in 16
processes) for CPPC and BLCR

NPB. Class C CPPC BLCR
BT 110,23 111.04
CG 27.74 72.19
EP 1.04 2.36
FT 192.12 450.36
LU 50,89 51.60
SP 103,14 100.61

execution time when one node needs to be migrated.
Currently the MVAPICH process migration support is only
available for Mellanox Infiniband adapters. Unfortunately,
cluster Pluton has a QLogic card, and the Mellanox interface
over the QLogic cards does not achieve its top performance,
resulting in a MVAPICH fault-free execution slower than the
OpenMPI execution. Regardless, the solution proposed in
this paper results advantageous for all the NPB applications
also in percentage terms as shown in Figure 13. This figure
shows the overhead with respect to a fault-free execution.
In order to provide a fair comparison, the MVAPICH
overhead is calculated with respect to the MVAPICH fault-
free execution. The benefit obtained using CPPC versus
MVAPICH can be in part explained due to the smaller size
of the checkpoint files. Table 6 shows the sizes of the
checkpoint files per process generated for each application
using CPPC and BLCR. Those applications where CPPC
achieves significant reductions in checkpoint sizes (CG and
FT) also present lower overhead under migration.

In Section 4.1.1 it can be seen that EP migration time
with 32 processes is negatively affected by an increase in
the Negotiation time. Results in Figure 13 evidence that
the coordination between processes to perform the migration
operation is a bottleneck for EP, since for this application the
best performance is obtained by the checkpoint and rollback
approach, that avoids the coordination during execution
time.

When comparing MVAPICH with the CPPC-based
proposal it must be noted that one of the most important
features of the latter, besides its efficiency, is its portability,
as it does not need any specific architecture, operating
system (OS), MPI implementation or system file to work.

Finally, results in Figure 13 also provide an idea of
the impact that false-positives associated with the failure
prediction may have on system performance. The overhead
of migration is, for most of these benchmarks, less than 3%

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

12 I. CORES, G. RODRÍGUEZ, P. GONZÁLEZ, M. J. MARTÍNHoja1

Página 1

BT CG EP FT LU SP

0

5

10

15

20

25

30
52

CPPC MVAPICH Ckpt&Rollback

Benchmark

M
ig

ra
tio

n
 ti

m
e

 o
ve

rh
e

a
d

 (
in

 %
)

FIGURE 13. Overhead (in %) for NPB applications (class C - 16
processes) when a node is preemptively migrated (case of CPPC
and MVAPICH) and when a node fails (case of Ckpt&Rollback)

when migrating only one process. In [21] a percentage of
false positives smaller than 10% is reported. Thus, we can
conclude that the overhead due to this issue will not be very
significant.

5. RELATED WORK

Process migration may be implemented either through
dynamic migration or based on the simple stop-and-restart
approach [22,23]. In this section we will focus on proposals
that, like the one proposed in this work, address dynamic
process migration.

Some existing approaches rely on operating system
virtualization techniques. Hacker et al. [24] investigate the
use of OpenVZ to perform dynamic migration of parallel
applications. Chackravorty et al. [5] use Charm++ [25]
and Adaptive MPI (AMPI) [26] to implement a transparent
proactive fault tolerance approach. In [27] the live migration
mechanism in Xen [28] is exploited to implement a live
migration solution. However, the same authors reported in
a later work [29] that, in HPC, solutions at the process level
are more widely accepted than those based on virtualization,
mainly due to the lower penalty in performance.

In [30] a process level solution through checkpointing
using the previously mentioned system level checkpointing
tool BLCR is presented. The proposal extends both BLCR
and LAM/MPI to allow process migration. Although
the authors do not present experimental results, the paper
explicitly states that the checkpoint file writing has a high
overhead. Wang et al. [6] reduce this overhead through a
live migration solution (execution proceeds while a process
image is asynchronously transferred to a spare node) at
the expenses of an increase in evacuation time. The
migration mechanism implemented in MVAPICH2 [20] also
relies on BLCR. It takes advantage of the Remote Direct
Memory Access (RDMA) in Infiniband to reduce the I/O
overhead [31]. Other proposal that uses a different migration
mechanism is MPI Mitten [32], an MPI library implemented
on the HPCM (High Performance Computing Mobility)
middleware [33] which achieves some independence from

the underlying MPI implementation. All these solutions are
based on a coordinated checkpointing approach to reach a
consistent global state.

The main contribution of our work is a proactive
process migration mechanism through the extension of
a checkpointing tool, the CPPC framework [8]. The
main difference with previous work is that our approach
is implemented at the application level, and thus it is
independent of the hardware architecture, the OS, the MPI
implementation used and the job submission framework.
Besides, using CPPC for the implementation introduces
performance advantages: checkpoint file sizes are reduced
thanks to the live variable analysis and zero-blocks exclusion
performed by the CPPC compiler, which implies less
memory requirements and a smaller checkpoint read/write
overhead; a consistent global state is achieved through a
light and asynchronous protocol based on the safe points
previously identified by the CPPC compiler, which allows
some overlap between state files creation and process
migration. Both features lead to a migration solution with
a reduced overhead cost. Besides, unlike in system-level
approaches, the new processes do not need to be completely
restarted in the new nodes before the nodes that are about
to fail may be freed. The terminating processes can safely
finalize their execution once the reconfiguration of the
communicators is finished and the checkpoint dumping is
complete.

To be effective, this solution requires that failures
can be anticipated accurately. However, this issue
should not be seen as a limitation nowadays. Health
monitoring has become a common feature in servers and
HPC components. Such monitors range from processor
temperature sensors to baseboard cards with a variety of
sensing capabilities, including fan speeds, voltage levels and
chassis temperatures. Recent studies show that, assisted by
such capabilities, node failures may be predicted in large-
scale systems with a high degree of accuracy [17,21,34–36].

6. CONCLUSIONS AND FUTURE WORK

The approach presented in this work extends CPPC
to proactively migrate processes from processors when
impending failures are notified, without having to restart the
entire application. It has been proved to be more efficient
than the classical checkpoint and rollback solution. Besides,
the proposed approach makes improvements on the two most
important overhead factors in other migration solutions:
process coordination and I/O overhead.

A light and asynchronous protocol has been designed
to achieve a global consistent state during the migration
operation, avoiding, when possible, operations that lead to
stalls in the processes execution.

The approach improves efficiency through the reduction
of the checkpoint read/write overhead, since the use of
CPPC allows for reduction in the checkpoint file sizes,
and the dumping of the terminating processes state is
overlapped to a certain extent with other stages of the
migration operation. The experimental validation performed

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

FAILURE AVOIDANCE IN MPI APPLICATIONS USING AN APPLICATION-LEVEL APPROACH 13

has shown the efficiency and scalability of the proposal.
Another remarkable feature is that the solution is

implemented at the application level, and thus it is
independent of the hardware architecture, the OS or
the MPI implementation used, and of any higher-level
frameworks, such as job submission frameworks. Despite
being implemented at the application level, the solution is
transparent to the programmer, thanks to the compiler tool
that automatically transforms the application source files
into a fault-tolerant version with migration capabilities.

Despite the reduced checkpoint file size, write/read of the
processes state continues to be the main cause of overhead
of our approach. For this reason, future work will focus
on the reduction of I/O cost. There exist in the literature
several works that try to minimize I/O overhead. In [37]
a pipelined process migration with RDMA is presented.
The proposed protocol pipelines checkpoint writing, and
checkpoint transfer and read using data streaming through
RDMA transport. Other recent solutions focus on the use
of non-volatile memory technology, like solid-state disks
(SSDs), to store checkpoint data [38]. SSDs offer excellent
read/write throughput when compared to secondary storage
and thus they can help reduce disk I/O load.

In all the experiments we have assumed that checkpoint
dumping is only performed upon a migration request due
to the notification of an imminent failure. In a practical
scenario additional checkpoints should be included in order
to cope with unpredicted failures in a traditional reactive
way. The determination of optimal checkpointing intervals
for reactive approaches has been studied extensively in the
past [39–41]. Proactive approaches, however, improve the
reliability of the application, allowing to reduce checkpoint
frequency. In [39] a mathematical model is used to
determine the optimal intervals in distributed systems
subject to failures. Extending this model to consider
the combination of reactive and proactive approaches is a
promising research line.

ACKNOWLEDGEMENTS

This research was supported by the Ministry of Science and
Innovation of Spain (Project TIN2010-16735) and by the
Galician Government (10PXIB105180PR).

REFERENCES

[1] Iosup, A., Jan, M., Sonmez, O., and Epema, D. (2007) On
the dynamic resource availability in Grids. Proceedings of
GRID 07, Austin, TX, USA, 19–21 September, pp. 26–33.
IEEE Computer Society Press, Los Alamitos.

[2] Elnozahy, E., Alvisi, L., Wang, Y.-M., and Johnson, D. (2002)
A survey of rollback-recovery protocols in message-passing
systems. ACM Comput. Surv., 34, 375–408.

[3] Wang, C., Mueller, F., Engelmann, C., and Scott, S. L. (2007)
A job pause service under LAM/MPI+BLCR for transparent
fault tolerance. Proceedings of IPDPS 07, Long Beach, CA,
USA, 26–30 March, pp. 1–10. IEEE Computer Society Press,
Los Alamitos.

[4] Salfner, F., Lenk, M., and Malek, M. (2010) A survey of

online failure prediction methods. ACM Comput. Surv., 42,
10:1–10:42.

[5] Chakravorty, S., Mendes, C. L., and Kale, L. V. (2006)
Proactive fault tolerance in MPI applications via task
migration. Proceedings of HiPC 06, Bangalore, India, 18–
21 December, pp. 485–496. Springer, Berlin.

[6] Wang, C., Mueller, F., Engelmann, C., and Scott, S. L. (2012)
Proactive process-level live migration and back migration in
HPC environments. J. Parallel Distrib. Comput., 72, 254–
267.

[7] Cappello, F., Casanova, H., and Robert, Y. (2010) Check-
pointing vs. migration for post-petascale supercomputers.
Proceedings of ICPP 10, San Diego, CA, USA, 13–16
September, pp. 168–177. IEEE Computer Society Press, Los
Alamitos.

[8] Rodrı́guez, G., Martı́n, M. J., González, P., Touriño, J.,
and Doallo, R. (2010) CPPC: A compiler-assisted tool
for portable checkpointing of message-passing applications.
Concurr. Comput.-Pract. Exp., 22, 749–766.

[9] Rodrı́guez, G., Martı́n, M. J., González, P., and Touriño, J.
(2009) A heuristic approach for the automatic insertion of
checkpoints in message-passing codes. J. Univers. Comput.
Sci., 15, 2894–2911.

[10] Rodrı́guez, G., Martı́n, M. J., González, P., and Touriño,
J. (2011) Analysis of performance-impacting factors on
checkpointing frameworks: the CPPC case study. Comput.
J., 54, 1821–1837.

[11] Chen, Y., Plank, J., and Li, K. (1997) CLIP: A checkpointing
tool for message-passing parallel programs. Proceedings of
SC 97, San Jose, CA, USA, 15–21 November, pp. 1–11. IEEE
Computer Society Press, Los Alamitos.

[12] Hursey, J., Squyres, J. M., Mattox, T. I., and Lumsdaine, A.
(2007) The design and implementation of checkpoint/restart
process fault tolerance for Open MPI. Proceedings of IPDPS
07, Long Beach, CA, USA, 26–30 March, pp. 1–8. IEEE
Computer Society Press, Los Alamitos.

[13] Elnozahy, E. and Plank, J. (2004) Checkpointing for peta-
scale systems: a look into the future of practical rollback-
recovery. IEEE Trans. Dependable Secur. Comput., 1, 97–
108.

[14] Cores, I., Rodrı́guez, G., Martı́n, M. J., and González,
P. (2012) Reducing application-level checkpoint file sizes:
towards scalable fault tolerance solutions. Proceedings of
ISPA 12, Madrid, Spain, 10–13 July, pp. 371–378. IEEE
Computer Society Press, Los Alamitos.

[15] Cores, I., Rodrı́guez, G., González, P., and Martı́n, M. J.
(2011) An application level approach for proactive process
migration in MPI applications. Proceedings of PDCAT
11, Gwangju, Korea, 20–22 October, pp. 400–405. IEEE
Computer Society Press, Los Alamitos.

[16] National Aeronautics and Space Administration. The NAS
Parallel Benchmarks. http://www.nas.nasa.gov/
publications/npb.html. Last accessed July 2012.

[17] Tan, Y., Gu, X., and Wang, H. (2010) Adaptive system
anomaly prediction for large-scale hosting infrastructures.
Proceedings of PODC 10, Zurich, Switzerland, 25–28 July,
pp. 173–182. ACM, New York.

[18] Laurence Berkeley National Laboratory. Berkeley
Lab Checkpoint/Restart. https://ftg.lbl.gov/
CheckpointRestart/. Last accessed July 2012.

[19] Gupta, R., Beckman, P., Park, B. H., Lusk, E., Hargrove, P.,
Geist, A., Lumsdaine, A., and Dongarra, J. (2009) CIFTS:

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

14 I. CORES, G. RODRÍGUEZ, P. GONZÁLEZ, M. J. MARTÍN

A coordinated infrastructure for fault-tolerant systems.
Proceedings of ICPP 09, Vienna, Austria, 22–25 September,
pp. 237–245. IEEE Computer Society Press, Los Alamitos.

[20] MVAPICH: MPI over InfiniBand, 10GigE/iWARP and
RoCE. http://mvapich.cse.ohio-state.edu.
Last accessed July 2012.

[21] Gu, J., Zheng, Z., Lan, Z., White, J., Hocks, E., and Park,
B.-H. (2008) Dynamic meta-learning for failure prediction
in large-scale systems: A case study. Proceedings of ICPP
08, Portland, OR, USA, 8–12 September, pp. 157–164. IEEE
Computer Society Press, Los Alamitos.

[22] UW-CS-TR-1346 (1997). Checkpoint and migration of
UNIX processes in the Condor distributed processing system.
University of Wisconsin-Madison, Madison, WI, USA.

[23] Cao, J., Li, Y., and Guo, M. (2005) Process migration for MPI
applications based on coordinated checkpoint. Proceedings
of ICPADS 05, Fukuoka, Japan, 20–22 July, pp. 306–312.
IEEE Computer Society Press, Los Alamitos.

[24] Hacker, T. J., Romero, F., and Nielsen, J. J. (2012) Secure
live migration of parallel applications using container-based
virtual machines. Int. J. Space-Based and Situated Comput.,
2, 45–57.

[25] Kale, L. V. and Krishnan, S. (1996) Charm++: Parallel
programming with message-driven objects. In Wilson, G. V.
and Lu, P. (eds.), Parallel Programming using C++, pp. 175–
213. MIT Press, Cambridge, MA, USA.

[26] Huang, C., Lawlor, O., and Kalé, L. V. (2003) Adaptive MPI.
Proceedings of LCPC 03, College Station, TX, USA, 2–4
October, pp. 306–322. Springer, Berlin.

[27] Nagarajan, A. B., Mueller, F., Engelmann, C., and Scott,
S. L. (2007) Proactive fault tolerance for HPC with Xen
virtualization. Proceedings of ICS 07, Seattle, WA, USA, 17–
21 June, pp. 23–32. ACM, New York.

[28] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A., Neugebauer, R., Pratt, I., and Warfield, A. (2003) Xen and
the art of virtualization. Proceedings of SOSP 03, Bolton,
NY, USA, 19–22 October, pp. 164–177. ACM, New York.

[29] Engelmann, C., Vallee, G. R., Naughton, T., and Scott, S. L.
(2009) Proactive fault tolerance using preemptive migration.
Proceedings of PDP 09, Weimar, Germany, 18–20 February,
pp. 252–257. IEEE Computer Society Press, Los Alamitos.

[30] Singh, R. and Graham, P. (2008) Performance driven partial
checkpoint/migrate for LAM-MPI. Proceedings of HPCS
08, Québec City, Canada, 9–11 June, pp. 110–116. IEEE
Computer Society Press, Los Alamitos.

[31] Ouyang, X., Marcarelli, S., Rajachandrasekar, R., and Panda,
D. K. (2010) RDMA-Based job migration framework for MPI
over InfiniBand. Proceedings of CLUSTER 10, Heraklion,
Greece, 20–24 September, pp. 116–125. IEEE Computer
Society Press, Los Alamitos.

[32] Du, C. and Sun, X.-H. (2006) MPI-Mitten: Enabling
migration technology in MPI. Proceedings of CCGRID 06,
Singapore, 16–19 May, pp. 11–18. IEEE Computer Society
Press, Los Alamitos.

[33] Du, C., Sun, X.-H., and Chanchio, K. (2003) HPCM: A
pre-compiler aided middleware for the mobility of legacy
code. Proceedings of CLUSTER 03, Hong Kong, China, 1–4
December, pp. 180–187. IEEE Computer Society Press, Los
Alamitos.

[34] Liang, Y., Zhang, Y., Xiong, H., and Sahoo, R. (2007) Failure
prediction in IBM BlueGene/L event logs. Proceedings of
ICDM 07, Omaha, NE, USA, 28–31 October, pp. 583–588.
IEEE Computer Society Press, Los Alamitos.

[35] Sahoo, R. K., Oliner, A. J., Rish, I., Gupta, M., Moreira, J. E.,
Ma, S., Vilalta, R., and Sivasubramaniam, A. (2003) Critical
event prediction for proactive management in large-scale
computer clusters. Proceedings of KDD 03, Washington, DC,
USA, 24–27 August, pp. 426–435. ACM, New York.

[36] Hacker, T. J., Romero, F., and Carothers, C. D. (2009)
An analysis of clustered failures on large supercomputing
systems. J. Parallel Distrib. Comput., 69, 652–665.

[37] Ouyang, X., Rajachandrasekar, R., Besseron, X., and Panda,
D. K. (2011) High performance pipelined process migration
with RDMA. Proceedings of CCGRID 11, Newport Beach,
CA, USA, 23–26 May, pp. 314–323. IEEE Computer Society
Press, Los Alamitos.

[38] Li, M., Vazhkudai, S. S., Butt, A. R., Meng, F., Ma, X., Kim,
Y., Engelmann, C., and Shipman, G. M. (2010) Functional
partitioning to optimize end-to-end performance on many-
core architectures. Proceedings of SC 10, New Orleans, LA,
USA, 13–19 November, pp. 1–12. IEEE Computer Society
Press, Los Alamitos.

[39] Gelenbe, E., Finkel, D., and Tripathi, S. K. (1986) Availability
of a distributed computer system with failures. Acta Inform.,
23, 643–655.

[40] Gelenbe, E. and Hernández, M. (1989) Optimum checkpoints
with age dependent failures. Acta Inform., 27, 519–531.

[41] Vaidya, N. (1997) Impact of checkpoint latency on overhead
ratio of a checkpointing scheme. IEEE Trans. Comput., 46,
942–947.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

