485 research outputs found

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    Embryonics: A path to artificial life?

    Get PDF
    Electronic systems, no matter how clever and intelligent they are, cannot yet demonstrate the reliability that biological systems can. Perhaps we can learn from these processes, which have developed through millions of years of evolution, in our pursuit of highly reliable systems. This article discusses how such systems, inspired by biological principles, might be built using simple embryonic cells. We illustrate how they can monitor their own functional integrity in order to protect themselves from internal failure or from hostile environmental effects and how faults caused by DNA mutation or cell death can be repaired and thus full system functionality restored. ©2006 Massachusetts Institute of Technology

    Evolvable Embryonics: 2-in-1 Approach to Self-healing Systems

    Get PDF
    This paper covers the authors’ recent research in the area of evolutionary design optimisation in electronic application domain (Evolvable Hardware). This will be also presented in the context of biologically inspired systems where Evolvable Hardware is concerned with evolutionary synthesis of self-healing systems and potentially hardware capable of online adaptation to dynamically changing environment. We will also illustrate how EAs can produce novel and unintuitive design solutions, and possibly new design principles. The novelty of this research project addresses this compelling change in the traditional landscape of the associated research disciplines by seeking to provide a novel biologically inspired mechanism to support the design optimisation of self-healing architectures, that is Evolvable-Embryonics

    Improving Artificial-Immune-System-based computing by exploiting intrinsic features of computer architectures

    Get PDF
    Biological systems have become highly significant for traditional computer architectures as examples of highly complex self-organizing systems that perform tasks in parallel with no centralized control. However, few researchers have compared the suitability of different computing approaches for the unique features of Artificial Immune Systems (AIS) when trying to introduce novel computing architectures, and few consider the practicality of their solutions for real world machine learning problems. We propose that the efficacy of AIS-based computing for tackling real world datasets can be improved by the exploitation of intrinsic features of computer architectures. This paper reviews and evaluates current existing implementation solutions for AIS on different computing paradigms and introduces the idea of “C Principles” and “A Principles”. Three Artificial Immune Systems implemented on different architectures are compared using these principles to examine the possibility of improving AIS through taking advantage of intrinsic hardware features

    Upravljanje otporno na kvarove modularnim prekidaÄŤko-reluktantnim strojem nadahnuto prirodom

    Get PDF
    Fault tolerance is an obligatory feature in safety critical applications (aeronautical, aerospace, medical and military applications, power plants, etc.), where loss of life, environmental disasters, equipment destructions or unplanned downtimes must be avoided. For such applications, a novel bio-inspired motion control system is proposed. All its three components (the switched reluctance machine, the power converter and the control system) are designed to be as fault tolerant as possible. This paper describes all these three fault tolerant components: the bio-inspired control system having self-healing capabilities, the power converter with an extra leg and the fault tolerant modular machine. The theoretical expectations and simulation results are validated by means of laboratory experiments.Otpornost na kvarove je nužnost u sigurnosno kritičnim aplikacijama (aeronautičke, zrakoplovne, medicinske i vojne aplikacije, elektrane itd.), gdje je potrebno izbjeći smrtne slučajeve, prirodne nepogode, uništenje opreme ili neplanirane prekide u radu. Za takve aplikacije, predložen je novi slijedni sustav nadahnut prirodom. Sve tri komponente (prekidačko-reluktantni stroj, pretvarač i sustav upravljanja) su projektirani da budu što je više moguće otporni na kvarove. Ovaj rad opisuje sve tri komponente: sustav upravljanja nadahnut prirodom sa samoliječećim svojstvima, pretvarač s dodatnom granom i modularni stroj otporan na kvarove. Teoretska očekivanja i simulacijski rezultati su provjereni laboratorijskim eksperimentima

    Toward Biologically-Inspired Self-Healing, Resilient Architectures for Digital Instrumentation and Control Systems and Embedded Devices

    Get PDF
    Digital Instrumentation and Control (I&C) systems in safety-related applications of next generation industrial automation systems require high levels of resilience against different fault classes. One of the more essential concepts for achieving this goal is the notion of resilient and survivable digital I&C systems. In recent years, self-healing concepts based on biological physiology have received attention for the design of robust digital systems. However, many of these approaches have not been architected from the outset with safety in mind, nor have they been targeted for the automation community where a significant need exists. This dissertation presents a new self-healing digital I&C architecture called BioSymPLe, inspired from the way nature responds, defends and heals: the stem cells in the immune system of living organisms, the life cycle of the living cell, and the pathway from Deoxyribonucleic acid (DNA) to protein. The BioSymPLe architecture is integrating biological concepts, fault tolerance techniques, and operational schematics for the international standard IEC 61131-3 to facilitate adoption in the automation industry. BioSymPLe is organized into three hierarchical levels: the local function migration layer from the top side, the critical service layer in the middle, and the global function migration layer from the bottom side. The local layer is used to monitor the correct execution of functions at the cellular level and to activate healing mechanisms at the critical service level. The critical layer is allocating a group of functional B cells which represent the building block that executes the intended functionality of critical application based on the expression for DNA genetic codes stored inside each cell. The global layer uses a concept of embryonic stem cells by differentiating these type of cells to repair the faulty T cells and supervising all repair mechanisms. Finally, two industrial applications have been mapped on the proposed architecture, which are capable of tolerating a significant number of faults (transient, permanent, and hardware common cause failures CCFs) that can stem from environmental disturbances and we believe the nexus of its concepts can positively impact the next generation of critical systems in the automation industry

    SABRE: A bio-inspired fault-tolerant electronic architecture

    Get PDF
    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. © 2013 IOP Publishing Ltd
    • …
    corecore