104 research outputs found

    Interoperability in a Heterogeneous Team of Search and Rescue Robots

    Get PDF
    Search and rescue missions are complex operations. A disaster scenario is generally unstructured, timeā€varying and unpredictable. This poses several challenges for the successful deployment of unmanned technology. The variety of operational scenarios and tasks lead to the need for multiple robots of different types, domains and sizes. A priori planning of the optimal set of assets to be deployed and the definition of their mission objectives are generally not feasible as information only becomes available during mission. The ICARUS project responds to this challenge by developing a heterogeneous team composed by different and complementary robots, dynamically cooperating as an interoperable team. This chapter describes our approach to multiā€robot interoperability, understood as the ability of multiple robots to operate together, in synergy, enabling multiple teams to share data, intelligence and resources, which is the ultimate objective of ICARUS project. It also includes the analysis of the relevant standardization initiatives in multiā€robot multiā€domain systems, our implementation of an interoperability framework and several examples of multiā€robot cooperation of the ICARUS robots in realistic search and rescue missions

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Todayā€™s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Advances in Human Robot Interaction for Cloud Robotics applications

    Get PDF
    In this thesis are analyzed different and innovative techniques for Human Robot Interaction. The focus of this thesis is on the interaction with flying robots. The first part is a preliminary description of the state of the art interactions techniques. Then the first project is Fly4SmartCity, where it is analyzed the interaction between humans (the citizen and the operator) and drones mediated by a cloud robotics platform. Then there is an application of the sliding autonomy paradigm and the analysis of different degrees of autonomy supported by a cloud robotics platform. The last part is dedicated to the most innovative technique for human-drone interaction in the Userā€™s Flying Organizer project (UFO project). This project wants to develop a flying robot able to project information into the environment exploiting concepts of Spatial Augmented Realit

    Developing a Framework for Semi-Autonomous Control

    Get PDF

    Mobile robotics activities in DOE laboratories

    Full text link

    Human-machine interaction for unmanned surface systems

    Get PDF
    This research investigated the human-machine interaction (HMI) technologies for human-robot teams operating as unmanned surface systems (USS). An pilot role was found to be the most prevalent in the USS-related literature but additional human roles were determined to likely be necessary (e.g., Mission Specialist} though were not documented; interface needs have not yet been determined for any role. The human interfaces used by 67 Micro and Small X, Intermediate, Harbor, Fleet, and E,F,G-Class platforms were examined and it was determined that: i) the research literature does not well characterize the human roles present in unmanned surface systems, ii) domain complexity may necessitate increased automation of the robot platform for the human team, and iii) that unmanned surface vehicles likely lay on the human-machine interaction spectrum between unmanned ground vehicles and unmanned aerial vehicles. This work is expected to serve as a reference for future design and refinement of human interfaces for USSs and as a foundation for better understanding HMI in USSs

    Network Latency in Teleoperation of Connected and Autonomous Vehicles:A Review of Trends, Challenges, and Mitigation Strategies

    Get PDF
    With remarkable advancements in the development of connected and autonomous vehicles (CAVs), the integration of teleoperation has become crucial for improving safety and operational efficiency. However, teleoperation faces substantial challenges, with network latency being a critical factor influencing its performance. This survey paper explores the impact of network latency along with state-of-the-art mitigation/compensation approaches. It examines cascading effects on teleoperation communication links (i.e., uplink and downlink) and how delays in data transmission affect the real-time perception and decision-making of operators. By elucidating the challenges and available mitigation strategies, the paper offers valuable insights for researchers, engineers, and practitioners working towards the seamless integration of teleoperation in the evolving landscape of CAVs

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    WEHST: Wearable Engine for Human-Mediated Telepresence

    Get PDF
    This dissertation reports on the industrial design of a wearable computational device created to enable better emergency medical intervention for situations where electronic remote assistance is necessary. The design created for this doctoral project, which assists practices by paramedics with mandates for search-and-rescue (SAR) in hazardous environments, contributes to the field of human-mediated teleparamedicine (HMTPM). Ethnographic and industrial design aspects of this research considered the intricate relationships at play in search-and-rescue operations, which lead to the design of the system created for this project known as WEHST: Wearable Engine for Human-Mediated Telepresence. Three case studies of different teams were carried out, each focusing on making improvements to the practices of teams of paramedics and search-and-rescue technicians who use combinations of ambulance, airplane, and helicopter transport in specific chemical, biological, radioactive, nuclear and explosive (CBRNE) scenarios. The three paramedicine groups included are the Canadian Air Force 442 Rescue Squadron, Nelson Search and Rescue, and the British Columbia Ambulance Service Infant Transport Team. Data was gathered over a seven-year period through a variety of methods including observation, interviews, examination of documents, and industrial design. The data collected included physiological, social, technical, and ecological information about the rescuers. Actor-network theory guided the research design, data analysis, and design synthesis. All of this leads to the creation of the WEHST system. As identified, the WEHST design created in this dissertation project addresses the difficulty case-study participants found in using their radios in hazardous settings. As the research identified, a means of controlling these radios without depending on hands, voice, or speech would greatly improve communication, as would wearing sensors and other computing resources better linking operators, radios, and environments. WEHST responds to this need. WEHST is an instance of industrial design for a wearable ā€œengineā€ for human-situated telepresence that includes eight interoperable families of wearable electronic modules and accompanying textiles. These make up a platform technology for modular, scalable and adaptable toolsets for field practice, pedagogy, or research. This document details the considerations that went into the creation of the WEHST design
    • ā€¦
    corecore