1,456 research outputs found

    Architecture and Implementation of a Trust Model for Pervasive Applications

    Get PDF
    Collaborative effort to share resources is a significant feature of pervasive computing environments. To achieve secure service discovery and sharing, and to distinguish between malevolent and benevolent entities, trust models must be defined. It is critical to estimate a device\u27s initial trust value because of the transient nature of pervasive smart space; however, most of the prior research work on trust models for pervasive applications used the notion of constant initial trust assignment. In this paper, we design and implement a trust model called DIRT. We categorize services in different security levels and depending on the service requester\u27s context information, we calculate the initial trust value. Our trust value is assigned for each device and for each service. Our overall trust estimation for a service depends on the recommendations of the neighbouring devices, inference from other service-trust values for that device, and direct trust experience. We provide an extensive survey of related work, and we demonstrate the distinguishing features of our proposed model with respect to the existing models. We implement a healthcare-monitoring application and a location-based service prototype over DIRT. We also provide a performance analysis of the model with respect to some of its important characteristics tested in various scenarios

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    Towards MANET-based Recommender Systems for Open Facilities

    Get PDF
    Nowadays, most recommender systems are based on a centralized architecture, which can cause crucial issues in terms of trust, privacy, dependability, and costs. In this paper, we propose a decentralized and distributed MANET-based (Mobile Ad-hoc NETwork) recommender system for open facilities. The system is based on mobile devices that collect sensor data about users locations to derive implicit ratings that are used for collaborative filtering recommendations. The mechanisms of deriving ratings and propagating them in a MANET network are discussed in detail. Finally, extensive experiments demonstrate the suitability of the approach in terms of different performance metrics. © 2021, The Author(s)

    Mechatronics & the cloud

    Get PDF
    Conventionally, the engineering design process has assumed that the design team is able to exercise control over all elements of the design, either directly or indirectly in the case of sub-systems through their specifications. The introduction of Cyber-Physical Systems (CPS) and the Internet of Things (IoT) means that a design team’s ability to have control over all elements of a system is no longer the case, particularly as the actual system configuration may well be being dynamically reconfigured in real-time according to user (and vendor) context and need. Additionally, the integration of the Internet of Things with elements of Big Data means that information becomes a commodity to be autonomously traded by and between systems, again according to context and need, all of which has implications for the privacy of system users. The paper therefore considers the relationship between mechatronics and cloud-basedtechnologies in relation to issues such as the distribution of functionality and user privacy

    Privacy-Preserving Crowdsourcing-Based Recommender Systems for E-Commerce & Health Services

    Get PDF
    En l’actualitat, els sistemes de recomanació han esdevingut un mecanisme fonamental per proporcionar als usuaris informació útil i filtrada, amb l’objectiu d’optimitzar la presa de decisions, com per exemple, en el camp del comerç electrònic. La quantitat de dades existent a Internet és tan extensa que els usuaris necessiten sistemes automàtics per ajudar-los a distingir entre informació valuosa i soroll. No obstant, sistemes de recomanació com el Filtratge Col·laboratiu tenen diverses limitacions, com ara la manca de resposta i la privadesa. Una part important d'aquesta tesi es dedica al desenvolupament de metodologies per fer front a aquestes limitacions. A més de les aportacions anteriors, en aquesta tesi també ens centrem en el procés d'urbanització que s'està produint a tot el món i en la necessitat de crear ciutats més sostenibles i habitables. En aquest context, ens proposem solucions de salut intel·ligent (s-health) i metodologies eficients de caracterització de canals sense fils, per tal de proporcionar assistència sanitària sostenible en el context de les ciutats intel·ligents.En la actualidad, los sistemas de recomendación se han convertido en una herramienta indispensable para proporcionar a los usuarios información útil y filtrada, con el objetivo de optimizar la toma de decisiones en una gran variedad de contextos. La cantidad de datos existente en Internet es tan extensa que los usuarios necesitan sistemas automáticos para ayudarles a distinguir entre información valiosa y ruido. Sin embargo, sistemas de recomendación como el Filtrado Colaborativo tienen varias limitaciones, tales como la falta de respuesta y la privacidad. Una parte importante de esta tesis se dedica al desarrollo de metodologías para hacer frente a esas limitaciones. Además de las aportaciones anteriores, en esta tesis también nos centramos en el proceso de urbanización que está teniendo lugar en todo el mundo y en la necesidad de crear ciudades más sostenibles y habitables. En este contexto, proponemos soluciones de salud inteligente (s-health) y metodologías eficientes de caracterización de canales inalámbricos, con el fin de proporcionar asistencia sanitaria sostenible en el contexto de las ciudades inteligentes.Our society lives an age where the eagerness for information has resulted in problems such as infobesity, especially after the arrival of Web 2.0. In this context, automatic systems such as recommenders are increasing their relevance, since they help to distinguish noise from useful information. However, recommender systems such as Collaborative Filtering have several limitations such as non-response and privacy. An important part of this thesis is devoted to the development of methodologies to cope with these limitations. In addition to the previously stated research topics, in this dissertation we also focus in the worldwide process of urbanisation that is taking place and the need for more sustainable and liveable cities. In this context, we focus on smart health solutions and efficient wireless channel characterisation methodologies, in order to provide sustainable healthcare in the context of smart cities

    Context-aware Knowledge-based Systems: A Literature Review

    Get PDF
    Context awareness systems, a subcategory of intelligent systems, are concerned with suggesting relevant products/services to users' situations as smart services. One key element for improving smart services’ quality is to organize and manipulate contextual data in an appropriate manner to facilitate knowledge generation from these data. In this light, a knowledge-based approach, can be used as a key component in context-aware systems. Context awareness and knowledge-based systems, in fact, have been gaining prominence in their respective domains for decades. However, few studies have focused on how to reconcile the two fields to maximize the benefits of each field. For this reason, the objective of this paper is to present a literature review of how context-aware systems, with a focus on the knowledge-based approach, have recently been conceptualized to promote further research in this area. In the end, the implications and current challenges of the study will be discussed
    corecore