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Abstract: Conventionally, the engineering design process has assumed that the design team is able to 
exercise control over all elements of the design, either directly or indirectly in the case of sub-systems 
through their specifications. The introduction of Cyber-Physical Systems (CPS) and the Internet of Things 
(IoT) means that a design team’s ability to have control over all elements of a system is no longer the case, 
particularly as the actual system configuration may well be being dynamically reconfigured in real-time 
according to user (and vendor) context and need. Additionally, the integration of the Internet of Things 
with elements of Big Data means that information becomes a commodity to be autonomously traded by 
and between systems, again according to context and need, all of which has implications for the privacy of 
system users. The paper therefore considers the relationship between mechatronics and cloud-based 
technologies in relation to issues such as the distribution of functionality and user privacy. 
Keywords: Big Data, Fog Computing, Mechatronics System Design, Privacy, The Cloud 

1. MECHATRONICS, CYBER-PHYSICAL SYSTEMS, 
THE INTERNET OF THINGS & BIG DATA 

Conventional approaches to engineering design and product 
development tend to follow paths such as those of Fig. 1, 
supported by a process of requirements capture and system 
definition. This is followed by a process of system 
development founded upon appropriate testing regimes 
developed during the system definition phase to support 
validation and verification, beginning at the level of the 
individual sub-modules or modules and continuing to the full 
system level. This process is aimed at ensuring that the 
complete system is validated by reference to known, specified, 
and individually validated, components. 

This approach has evolved over many years through the 

synergetic interaction between design theory and design 
practice [1]. However, it must be recognised that the 
identification of and explanation for effective approaches to 
design must inevitably lag the approaches being taken by 
practitioners who are exploring the possibilities afforded by 
new technologies without necessarily having a full 
understanding of their capability or implications. 

As suggested in Fig. 2, Mechatronics was a major driver of the 
3rd Industrial Revolution that began around 1970 and was 
structured around computing, information technology and 
robotics. However, with the advent of a 4th Industrial 
Revolution structured around Cyber-Physical Systems (CPS) 
and the Internet of Things (IoT), the role of mechatronics has 
to a significant degree shifted to that of providing the 
intelligent or smart components which constitute the 

 
(a) Engineering design process model                                                         (b) Continuous product development model 
Fig. 1. Product design and development models 



 
 

     

 

fundamental system structure. To put this shift into context, 
consider the relationships of Table 1 which uses vehicle 
systems as an exemplar of the relationships between the 
Mechatronics layer, the CPS layer and the IoT layer within a 
complex system represented diagrammatically by Fig. 3. 

 
Fig.3. Mechatronics to the Cloud 

In doing so it supports on demand access to a range of 
resources including software and platforms with the final 
system then being a dynamic entity with smart objects and 

users entering and leaving dependent on both context and 
need. This means that both data and information can become 
commodities to be traded by the system on request. For 
instance, the knowledge that a traffic incident is resulting in 
delays is only of value for some indeterminate time interval to 
a user of a routing system if they were intending to travel on 
affected roads. The system designer is thus placed in the 
position of having to ensure functionality without definitive 
knowledge of system structure, configuration or context. 

2. THE DESIGNER 

Conventionally, the design of complex engineering systems 
has followed a structured path in which the design and 
development stages are linked to the implementation stages by 
validation and verification procedures intended to establish the 
validity of the individual system components and their 
interactions. The design process also attempts to ensure that 
where there are sub-assemblies or sub-components that are to 
be integrated at the system level then their development is 
controlled by ensuring that they are specified appropriately. 
The net result is that all system elements, hardware, software 
and firmware, are developed under the overall control and 
responsibility of the design team. 

This design pathway is increasingly being challenged by 
developments in mechatronics and Cyber-Physical Systems 
(CPSs) and their links to cloud based systems and the Internet 
of Things (IoT) in which the transition from the (mechatronic) 
component to a CPS and the IoT results in increasing levels of 
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Fig. 2.  Timeline of industrial revolutions 

Table 1. From Mechatronics to the Cloud 

System Level  Notes 

Mechatronic The individual components making up the physical structure of the system. In the case of a vehicle, these would range from 
individual sensors and actuators to smart sub-systems such as engine management, traction control, braking systems and 
environmental control incorporating significant local levels of intelligence. 

CPS Operating under the control of the intelligent cyber component, the individual vehicle systems are brought together as a 
Cyber-Physical System. This enables the individual (e.g. mechatronic) components and sub-systems to operate together to 
facilitate and optimise system behaviour, for instance by linking the engine management, traction control and smart gear 
boxes to minimise fuel consumption. 

IoT Supports information exchange between individual vehicles as well as with other locations. For instance, direct 
communication between vehicles can be linked to traffic light control to manage traffic flow and, if required, provide clear 
path routing for emergency vehicles. 

The Cloud Provides access to a range of resources structured around Applications (Software as a Service (SaaS)), Platform (Platform as 
a Service (PaaS)) & Infrastructure (Infrastructure as a Service (IaaS)) and including Big Data analysis. 

 



 
 

     

 

abstraction, limiting the ability of the design team to maintain 
control over, or even input to, the entirety of the system.  

This means that those system elements drawn from the cloud 
will be unknown to the designers, who nevertheless are still 
required to establish and define system functionality [2]. There 
is also a growing imperative to ensure data security and user 
privacy [3,4,5,6,7] within and as part of the design process 
[8,9,10].  Further, the increasing ability to apply big data 
analysis tools to the data generated creates further issues in 
areas such as privacy [11]. While significant attention has been 
given over time to the ‘hard’ issues associated with ensuring 
data security through mechanisms such as those set out in 
Table 2, in general, less consideration has been given to the 
‘softer’ or people oriented aspects of individual privacy. 
In relation to the privacy of the individual, as opposed to the 
security of the system, the ‘always on’ society continues to 
demand greater connectivity at higher speeds. In such an 
environment, the requirement is that connection to the local 
network, and hence to the Internet of Things, is essentially 
seamless. Consequently, companies are changing their 

business models with data and/or data integration services 
becoming more important than hardware. Indeed, in 2014, 
Microsoft CEO, Satya Nadella, in an email to all employees 
signalled a shift in focus from devices and services towards 
mobile systems and cloud data. 
This shift from device management to data management 
suggests that conventional approaches to network security and 
individual privacy are no longer acceptable or viable, and that 
securing networks now requires more focus on securing what 
is important rather than trying to implement a lockdown 
approach intended to secure everything. This is particularly the 
case for cloud-based systems structured around mechatronics, 
CPS & the IoT which are autonomously communicating and 
receiving information on behalf of their user. 

The range and scope of the challenges facing the designer can 
be expressed by reference to the World Economic Forum 
Report ‘Deep Shift - Technology Tipping Points and Societal 
Impact’ [12] which identified the following major areas of 
impact upon society: 

People and the Internet – How people connect with others, 
information and the world around them is being transformed. 
Wearable and implantable technologies will enhance an 
individual’s “digital presence”, allowing them to interact with 
objects and each another in new ways. 

Universal Computing, Communications and Storage – The 
continued decline in the size and cost of computing and 
connectivity technologies is driving an exponential growth in 
the potential to access and leverage the internet. This will lead 
to the availability of ubiquitous computing power where 
everyone has access to a supercomputer in their pocket, with 
nearly unlimited storage capacity. 

The Internet of Things – Smaller, cheaper and smarter sensors 
are being introduced in homes, clothes and accessories, cities, 
transport and energy networks, as well as in manufacturing. 

Artificial Intelligence & Big Data – Exponential digitisation 
creates exponentially more data about everything and 
everyone. The sophistication of the problems that can be 
addressed, and the ability for software to learn and evolve, is 
advancing in parallel. 

Sharing Economy & Distributed Trust – The internet is driving 
a shift towards networks and platform-based social and 
economic models, creating not just new efficiencies but also 
whole new business models and opportunities for social self-
organisation. 

Digitisation of Matter – 3D printing as a process that 
transforms industrial manufacturing and allows for home 
based production. It also creates a new set of opportunities for 
human health. 

 
(a)                    (b)                    (c)                    (d) 

  Three-layer         Middle-Ware Based   Service Oriented       Five-Layer 
                 Architecture 
Fig. 4.  Potential IoT architectures {after [13]} 

 
Fig. 5. Procedural and Process based system model 

 

Table 2. Hard security measures 

Measure Notes 
Cryptography Public/private key encryption, digital signatures, steganography, secret sharing, key management, escrow and public & 

private certificates. 
Firewalls Establishes a logical barrier between a trusted and secure network and any external networks. 
Passwords Security depends on passwords being difficult to guess or discover. 

 



 
 

     

 

3. WHAT DOES WHAT? 

The increasingly distributed nature of systems involving the 
IoT and the Cloud has resulted in consideration of the potential 
architectures for such systems [13,14,15,16], which are 
typically structured as suggested by Fig. 4. 

In the context of mechatronics, the associated structural 
relationships can then be illustrated by Fig. 5 from which it can 
be seen that mechatronics sits at the operational level of the 
procedural element, that of machine based systems. This 
suggests that therefore the mechatronics designer must be 
primarily concerned with achieving the required functionality 
and performance at the relevant process layer whilst providing 
the necessary information and data to feed upwards (in terms 
of the model) to the CPS, IoT and Cloud levels. This transfer 
must also include all necessary constraints related to the data 
and associated information, as for instance those related to 
privacy, both individual and global, issues. 

The translation and interpretation of this data and information 
and it moves between the process layers is then associated with 
increasing levels of design abstraction as the nature, structure 
and context of the finally system will generally be unknown at 
the mechatronics layer(s). 

Structurally, this has elements in common with the 
subsumption architecture as defined by Brooks in which 
behaviour is devolved downwards in a layered architecture of 
hierarchically organised sub-behaviours, each of which 
implements a particular level of behavioural competence. 
Higher levels then integrate or “subsume” these lower levels 
behaviours to create the overall system behaviour [17]. 

In the context of Figs 4 & 5, this means that system intelligence 
is distributed throughout the system form the mechatronics 
layer(s) to the cloud, with each layer functioning to provide its 
own specific behavioural contributions within an overall 
system context. 

 
Fig. 6. Mechatronics, The Fog & The Cloud 

3.1  Fog Computing 

These relationships have led to the development of the concept 
of Fog Computing, defined by the National Institute of 
Standards and Technology (NIST) in the US as [18]: 

“… a horizontal, physical or virtual resource paradigm that 
resides between smart end-devices and traditional cloud or data 
centres. This paradigm supports vertically-isolated, latency-
sensitive applications by providing ubiquitous, scalable, layered, 
federated, and distributed computing, storage, and network 
connectivity.” 

and embodying the relationships of Fig. 6. 

Features of Fog Computing then include [18,19,20,21,22]: 

Distribution – Supports highly distributed services. 

Cloud to Things - Fog nodes are positioned close to the 
functional smart objects so that analysis and response times are 
reduced when compared than to a dispersed and distributed 
cloud. 

Horizontal Architecture – Supports multiple application 
domains. 

Interoperability - Seamless service support requires the co-
operation of different providers which implies both 
interoperability and the federation of services across domains. 

Mobility - Many Fog applications will be directly associated 
with mobile devices. 

Real-Time Functionality – Support for the analysis in real-time 
of streamed data. 

Sensor Networks – For instance as would be associated with 
the operation of a Smart Grid and including real-time 
validation and verification. 

As mechatronic systems are the primary providers of data to 
the cloud, their design must take account of what is necessary 
to transmit the data in the form of the associated processes and 
protocols as well as the levels of translation and interpretation 
involved. In the context of Fig. 6, the initial transfer, 
translation and interpretation is likely to form a part of the Mist 
Layer, and especially the edge nodes.  

4. PRIVACY ISSUES 

The interrelationships between the Internet of Things and Big 
Data raises significant issues of privacy and has resulted in the 
development by the Information & Privacy Commissioner of 
Ontario of the concept of Privacy by Design [23] in which 
control over and management of personal data is transferred to 
the individual. 

Many of the devices and systems associated with the IoT have 
the capability to rapidly accumulate large volumes of personal 
data, much of which is likely to be held in locations and ways 
unknown to the user. This data is then subject to the possibility 
of analysis using the techniques and methods of Big Data 
[24,25,26], with a significant risk of impacting on the privacy 
of individuals [27]. Of concern is the potential to use inference 
to suggest personal details and behaviour. A simple instance 
of this is the recommender systems used as a marketing tool 
by companies such as Amazon [28] which use information 
derived from past customer purchases and search profiles to 
generate focused advertising. Other examples include: 

• The potential to use information derived from, say, traffic 
routing apps or vehicle systems linked to domestic 
environmental controls to identify if a house is currently 
occupied. 

• The potential use of information derived from eHealth 
systems to determine an individual’s ability to access or 
purchase elements of healthcare provision. 

The ability to analyse large volumes of data to extract 
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potentially beneficial knowledge, particularly within the 
context of IoT based applications such as eHealth, for instance 
to provide an early warning of an impending outbreak of an 
infectious disease based on consolidated eHealth data, presents 
a major challenge to the concepts of individual privacy, and 
hence to system designers. 

And of course, there is also the potential for other, more 
nefarious, activities and actions based on accumulated 
individual data. These concerns have led to the concept of 
‘Digital or Algorithmic Discrimination’ [11,29,30,31,32] 
where the use of an individual’s personal data within a Big 
Data algorithm leads to their being in some significant degree 
being discriminated against, for instance by being denied 
access to specific services, or being unreasonably targeted in 
some way. In illustration O’Neill [11] provides (from among 
others) the following examples: 

• For profit colleges in the US used algorithms to generate 
advertising targeted at poorer and disadvantaged 
households to enable the college to access government 
funding at 90%. 

• The use of geographically oriented law enforcement 
management programs such as PredPol and CompStat led 
to an emphasis on nuisance crimes in poorer 
neighbourhoods rather than on more serious crimes 
elsewhere. 

In broad terms, discrimination is defined as the unfair 
treatment of an individual because of their membership of a 
particular group and in this context, algorithmic profiling for 
the allocation of resources can be considered as inherently 
discriminatory when data subjects are grouped into categories 
according to selected variables, and decisions made on the 
basis of subjects falling within defined groups. 

In this context, machine learning can reinforce existing 
patterns of discrimination. If these are embodied in the training 
dataset, then they will be reproduced by the classifier with 
biased decisions presented as derived from an ’objective’ 
algorithm. It is a requirement that data controllers act to 
prevent such discriminatory effects when processing sensitive 
data which can include or encompass a wide range of personal 
information as for instance [32]: 

• Racial or ethnic information. 
• Religious or other beliefs. 
• Membership of organisations such as trade-unions. 
• Genetic or biometric data. 

Whatever the ultimate outcome of the continuing legislative 
debate over privacy, it is clear that there is an increasing 
burden on system designers to place privacy at the core of their 
work, and that this must be reflected in changes to the design 
process and the associated methods and tools used to support 
this [33]. This brings with it concerns in relation to the ability 
of current best practice to accommodate the intent of 
legislation, and hence to meet guidelines. 

 
Fig. 7. Percentage of individuals trusting a technology, site or 
service {after [34]} 

4.1  Public Confidence 

Studies by the World Economic Forum [34] have suggested a 
general lack of confidence in the way in which the internet, 
and by implication the Internet of Things and Cloud-based 
systems are both structured and operated. In this context, Fig. 
7 shows the results of a survey on the levels of trust that users 
assign to a range of features, with none achieving a trust level 
above 50%. 

Figure 8 then shows user responses to questions as to how their 
levels of trust could be increased with respect to the way in 
which their persona data is managed at the level of the system. 
Here, the leading areas for change are associated with the ways 
in which their personal data might be accessed, either by 
security breaches or by some form of data sharing and the ways 
in which such data might be used. When taken together with 

50 50Internet-connected Wearable Devices

52 48Internet-connected Home Appliances/Monitors

52 48Professional Networking

60 40Web-Browsers & Search Engines

61 39Online Communities & Forums

61 39Internet-connected Media Players

TRUSTDO NOT TRUST

Table 3. Distribution of eHealth system activities 

Area Notes 

People An eHealth system provides support for individuals, or groups of individuals, in living independently through the provision 
of support based around biometric and activity monitoring. 

Data While the data associated with a single individual is directly and specifically related to the wellbeing of that individual, 
aggregated data over large numbers of individuals can be used both to identify trends and outcomes, and improve the 
interpretation of individual specific data. 

Mechatronics Mechatronic systems and sub-systems are responsible for the collection and distribution of source data. 

CPS The home environment can be considered as forming a cyber-physical system structured around an individual’s personal 
wellbeing and encompassing factors such as comfort and environmental control. 

IoT The IoT provides both the connectivity between the individual and the wider network as well providing the mechanisms for 
feedback to the individual and the recalibration and resetting of their systems based on analysis of aggregated data. 

The Cloud Provides access to the necessary Big Data analysis tools used to assess and evaluate aggregated data. 

 



 
 

     

 

issues such as digital (algorithmic) discrimination, this again 
indicates the need for system designers to have consider 
privacy issues from the very beginning of the design process. 

 
Fig. 8. User perception of changes intended to improve trust of 
technologies and service providers {after [34]} 

5. eHEALTH EXEMPLAR 

Consider the schematic of an eHealth system shown in Fig. 9 
along with the functional distribution related to the aspects of 
People, Data, Mechatronics, CPS, the IoT and the Cloud as 
described by Table 3. The aim is to detect behavioural and 
related changes indicative of a change of status in the 
monitored individual and to respond accordingly [35]. The 
system inputs at the level of the user would typically be 
derived from a suite of environmental and behavioural sensors 
along with associated and appropriate biometric sensors and 
would include mobile (mHealth) sensors such as activity 
monitors [36,37] with a future potential for implantable 
sensors [38]. 

In the model considered, the individual specific source data 
would first be subject to analysis within their home 
environment to support short term responses to specific events 
such as falls.  Only agreed and relevant behaviour related 
information would then be passed on to the care provider 
where it would be used to inform and modify the individual’s 
care plan and electronic health record appropriately. 
Individually data would be held in the electronic health record 
with privacy protection incorporated at the level of the 
individual. 

However, working at the level of the individual often means it 
is the case that changes can only be made retrospectively; i.e. 

after an incident has occurred, as individuals are not in general 
presently considered as members of a much larger 0data 
community connected by and through the IoT. By integrating 
data across and between large numbers of individuals, and 
utilising data mining and knowledge discovery as applied to 
Big Data, additional knowledge can be established which can 
then be propagated to all individuals to enhance the user 
specific analysis for that individual. This however introduces 
additional questions of privacy in that data is now being 
aggregated across large numbers of individuals to support 
enhanced responses across all monitored individuals. 

There is also a potential further requirement to release user 
specific information in relation to specific health related 
situations. For instance, in the case of an accident, responders 
are unable to target treatment if they are unaware of the 
patient’s medical status including their current treatment 
profile. Similarly, emergency units are restricted in their 
capability until the patient’s medical records are available. 
This suggests a requirement for a secure access procedure 
which does not rely on the patient being able to authorise and 
validate such access but which still ensures privacy. 

This implies that knowledge about individuals, even when 
they are not of themselves specifically identified within the 
data set, is in danger of being revealed by a process of 
inference across the reference data set, something which 
relates back to issues of anonymisation of data and digital 
discrimination. 

This then leads to questions as to how to design into the system 
appropriate protection for individual privacy while 
recognising the availability of a resource of much wider 
potential benefit, and how then to best exploit that resource for 
the benefit of the individual? 

6. REVISING DESIGN METHODS AND PROCESSES 

Based on the foregoing, the following key issues can be 
identified as being associated with a revision of mechatronics 
design methods and processes to accommodate the demands 
of both the IoT and The Cloud: 
• Privacy issues and concepts must be embedded within the 

design from the beginning and not treated as an add-on. 
• Specific privacy issues must be identified at the start of the 

design process so protected data is never accessible 
without the permission of the owner of that data. 

• Interface requirements must be defined and the nature of 
the data transfer established early in the design process. 

Improved security to prevent data breaches

Transparency as to which companies could access my data

Reduced sharing of personal data with other companies

New or improved privacy-enhancing tools for users to manage their personal data

Reduced use of personal data for secondary purposes such as targeted advertising

Easier-to-find & easier-to-understand terms & conditions of use

More regulation or government oversight of technology & service providers

Improving my own understanding of how to better manage my online presence

Improved communications after data breaches

Increasing own level of familiarity or experience with each technology & service provider

Improved reputation of my technology & service providers among my contacts

40%

Percentage of respondents selecting option 

20%

 
Fig. 9. eHealth system schematic and the associated functional distribution 
 



 
 

     

 

• The role of the user in specifying the functioning of the 
system needs to be better understood while ensuring the 
transparency of the technology to the user. 

Taken together, the above suggest that the main modification 
to the design process is in the conceptual definition and idea 
generation phases of the overall design process rather than in 
the detailing phases. Referring again to Figs 4 & 5, this first 
implies that at the point of data capture the user can specify the 
level(s) of privacy to be associated with the generated data, 
thus defining the limitations on its access and use, while level 
of The Fog, itself a Process Layer in the context of Fig. 4, there 
needs to be some form of Privacy Buffer in which these 
privacy constraints are applied before the further upward 
translation of the data. From the perspective of the 
mechatronic system designer this requires the identification of 
such data for which there are privacy issues and for which the 
user must be able to set the level(s) of privacy to be associated 
with that data as suggested by Fig. 10.  

 
Fig. 10. Conceptualised data transfer model incorporating 
user control over private data and a privacy buffer 

Following from the definition, identification, establishment 
and encoding of privacy issues within the designed context of 
the system structure, it is essential to ensure that all individual 
system elements have embedded within them the requisite 
capacity and intelligence to ensure that data integrity and 
privacy is maintained whilst supporting all necessary 
connectivity and transparency. 

Based on strategic approaches to design structured around 
requirements analysis this implies the introduction of a 
function or feature-based approach to concept development in 
relation to the conceptualised data transfer model of Fig. 10 as 
follows: 

Requirements - Identifies all potential privacy issues and their 
relationships with system operation. In the case of eHealth 
sensors, this would be associated with the collection, 
verification, validation and onward transmission of data. This 
in turn implies identification of both the source and destination 
of the data. 

Specifications - Defines how data is to be handled in relation 
to individual privacy issues. 

Concept Development - Establishes how the data is handled to 
meet the requirements of user privacy. 

Data Validation & Verification – With the increasing 
deployment of distributed wireless networks there is a need to 

incorporate means for validating and verifying the derived 
data, particularly in relation to personal data and privacy issues 
[39,40]. 

Such a function based approach is not of itself new, and such 
representations to support concept development were under 
consideration over 20 years ago [41]. However, at the time 
they proved to be non-viable as the necessary processing 
power, and hence computer-based intelligence, to support the 
underlying decision making processes was not available, 
something which is no longer the case. Similarly, the 
modelling and descriptive design support tools now available 
can effectively facilitate and support the translation from a 
functional representation into a realisable form. 

What is still required however is the development of 
underlying intelligent designer support methods and tools 
focused on the identification and mitigation of privacy related 
issues.  

7. CONCLUSIONS 

The paper has looked at some of the challenges facing a 
mechatronics oriented design team in the era of Cyber-
Physical Systems, the Internet of Things and Big Data and has 
attempted to isolate issues of concern and challenge facing 
systems designers, practitioners and legislators regarding 
privacy concerns in relation to the interaction between such 
systems. Specific concerns over the ability to utilise data from 
multiple sources to enhance the ability to provide an effective 
response in areas are identified, with the case of eHealth being 
used as an exemplar of some of these. Also identified are 
concerns over the ability of design innovators working with 
evolving technologies to meet the requirements of future 
privacy oriented legislation. 

In this context, a modification to the conceptual design process 
using a function-based approach is suggested as a means of 
supporting the identification of points of interaction between 
Cloud-based functions and other system components to 
support the integration of the precepts of privacy by design 
within the overall structure of engineering design throughout 
the conceptual design stages of the design process. 

What is also clear is that many current mechatronic design 
guides [42,43] are lacking in any significant reference to 
privacy issues, and that this needs to be remedied [44].   
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