21,487 research outputs found

    Specification and implementation of mapping rule visualization and editing : MapVOWL and the RMLEditor

    Get PDF
    Visual tools are implemented to help users in defining how to generate Linked Data from raw data. This is possible thanks to mapping languages which enable detaching mapping rules from the implementation that executes them. However, no thorough research has been conducted so far on how to visualize such mapping rules, especially if they become large and require considering multiple heterogeneous raw data sources and transformed data values. In the past, we proposed the RMLEditor, a visual graph-based user interface, which allows users to easily create mapping rules for generating Linked Data from raw data. In this paper, we build on top of our existing work: we (i) specify a visual notation for graph visualizations used to represent mapping rules, (ii) introduce an approach for manipulating rules when large visualizations emerge, and (iii) propose an approach to uniformly visualize data fraction of raw data sources combined with an interactive interface for uniform data fraction transformations. We perform two additional comparative user studies. The first one compares the use of the visual notation to present mapping rules to the use of a mapping language directly, which reveals that the visual notation is preferred. The second one compares the use of the graph-based RMLEditor for creating mapping rules to the form-based RMLx Visual Editor, which reveals that graph-based visualizations are preferred to create mapping rules through the use of our proposed visual notation and uniform representation of heterogeneous data sources and data values. (C) 2018 Elsevier B.V. All rights reserved

    Drawing OWL 2 ontologies with Eddy the editor

    Get PDF
    In this paper we introduce Eddy, a new open-source tool for the graphical editing of OWL~2 ontologies. Eddy is specifically designed for creating ontologies in Graphol, a completely visual ontology language that is equivalent to OWL~2. Thus, in Eddy ontologies are easily drawn as diagrams, rather than written as sets of formulas, as commonly happens in popular ontology design and engineering environments. This makes Eddy particularly suited for usage by people who are more familiar with diagramatic languages for conceptual modeling rather than with typical ontology formalisms, as is often required in non-academic and industrial contexts. Eddy provides intuitive functionalities for specifying Graphol diagrams, guarantees their syntactic correctness, and allows for exporting them in standard OWL 2 syntax. A user evaluation study we conducted shows that Eddy is perceived as an easy and intuitive tool for ontology specification

    MEdit4CEP-CPN: An approach for complex event processing modeling by prioritized colored petri nets

    Get PDF
    Complex Event Processing (CEP) is an event-based technology that allows us to process and correlate large data streams in order to promptly detect meaningful events or situations and respond to them appropriately. CEP implementations rely on the so-called Event Processing Languages (EPLs), which are used to implement the specific event types and event patterns to be detected for a particular application domain. To spare domain experts this implementation, the MEdit4CEP approach provides them with a graphical modeling editor for CEP domain, event pattern and action definition. From these graphical models, the editor automatically generates a corresponding Esper EPL code. Nevertheless, the generated code is syntactically but not semantically validated. To address this problem, MEdit4CEP is extended in this paper by Prioritized Colored Petri Net (PCPN) formalism, resulting in the MEdit4CEP-CPN approach. This approach provides both a novel PCPN domain-specific modeling language and a graphical editor. By using model transformations, event pattern models can be automatically transformed into PCPN models, and then into the corresponding PCPN code executable by CPN Tools. In addition, by using PCPNs we can compare the expected output with the actual output and can even conduct a quantitative analysis of the scenarios of interest. To illustrate our approach, we have conducted an air quality level detection case study and we show how this novel approach facilitates the modeling, simulation, analysis and semantic validation of complex event-based systems

    ODESWS, A Semantic Web Service Development

    Get PDF
    ODE SWS is a development environment to design Semantic Web Services (SWS) at the knowledge level. ODE SWS describe the service following a problem-solving approach in which the SWS are modeled using tasks, to represent the SWS functional features, and methods, to describe the SWS internal structure. In this paper, we describe the ODE SWS architecture and the capabilities of its graphical interface, which enables users to design SWS independently of the semantic markup language used to represent them

    A comprehensive part model and graphical schema representation for object-oriented databases

    Get PDF
    Part-whole modeling plays an important role in the development of database schemata in data-intensive application domains such as manufacturing, design, computer graphics. text document processing, and so on. Object-oriented databases (OODBs) have been targeted for use in such areas. Thus, it is essential that OODBs incorporate a part relationship as one of their modeling primitives. In this dissertation, we present a comprehensive OODB part model which expands the boundaries of OODB part-whole modeling along three fronts. First, it identifies and codifies new semantics for the OODB part relationship. Second, it provides two novel realizations for part relationships and their associated modeling constructs in the context of OODB data models. Third. it, provides an extensive graphical notation for the development of OODB schemata. The heart of the part model is a part relationship that imposes part-whole interaction on the instances of an OODB. The part relationship is divided into four characteristic dimensions: (1) exclusive/shared. (2) cardinality/ordinality, (3) dependency. and (A) value propagation. The latter forms the basis for the definition of derived attributes in a part hierarchy. To demonstrate the viability of our part model, we present two novel realizations for it in the context of existing OODBs. The first realizes the part relationship as an object class and utilizes only a basic set of OODB constructs. The second realization, an implementation of which is described in this dissertation, uses the unique metaclass mechanism of the VODAK Model Language (VML). This implementation shows that our part model can be incorporated into an existing OODB without having to rewrite a substantial subsystem of the OODB, and it also shows that the VML metaclass facility can indeed support extensions in terms of new semantic relationships. To facilitate the creation of part-whole schemata, we introduce an extensive graphical notation for the part relationship and its associated constructs. This notation complements our more general OODB graphical schema representation which includes symbols for classes, attributes. methods. and a variety of relationships. OO-dini, a graphical schema editor that employs our notation and supports conversion of the graphical schema into textual formats, is also discussed

    Managing contextual information in semantically-driven temporal information systems

    Get PDF
    Context-aware (CA) systems have demonstrated the provision of a robust solution for personalized information delivery in the current content-rich and dynamic information age we live in. They allow software agents to autonomously interact with users by modeling the user’s environment (e.g. profile, location, relevant public information etc.) as dynamically-evolving and interoperable contexts. There is a flurry of research activities in a wide spectrum at context-aware research areas such as managing the user’s profile, context acquisition from external environments, context storage, context representation and interpretation, context service delivery and matching of context attributes to users‘ queries etc. We propose SDCAS, a Semantic-Driven Context Aware System that facilitates public services recommendation to users at temporal location. This paper focuses on information management and service recommendation using semantic technologies, taking into account the challenges of relationship complexity in temporal and contextual information

    Treo: Textual Syntax for Reo Connectors

    Get PDF
    Reo is an interaction-centric model of concurrency for compositional specification of communication and coordination protocols. Formal verification tools exist to ensure correctness and compliance of protocols specified in Reo, which can readily be (re)used in different applications, or composed into more complex protocols. Recent benchmarks show that compiling such high-level Reo specifications produces executable code that can compete with or even beat the performance of hand-crafted programs written in languages such as C or Java using conventional concurrency constructs. The original declarative graphical syntax of Reo does not support intuitive constructs for parameter passing, iteration, recursion, or conditional specification. This shortcoming hinders Reo's uptake in large-scale practical applications. Although a number of Reo-inspired syntax alternatives have appeared in the past, none of them follows the primary design principles of Reo: a) declarative specification; b) all channel types and their sorts are user-defined; and c) channels compose via shared nodes. In this paper, we offer a textual syntax for Reo that respects these principles and supports flexible parameter passing, iteration, recursion, and conditional specification. In on-going work, we use this textual syntax to compile Reo into target languages such as Java, Promela, and Maude.Comment: In Proceedings MeTRiD 2018, arXiv:1806.0933
    corecore