1,930 research outputs found

    Pose Invariant Gait Analysis And Reconstruction

    Get PDF
    One of the unique advantages of human gait is that it can be perceived from a distance. A varied range of research has been undertaken within the field of gait recognition. However, in almost all circumstances subjects have been constrained to walk fronto-parallel to the camera with a single walking speed. In this thesis we show that gait has sufficient properties that allows us to exploit the structure of articulated leg motion within single view sequences, in order to remove the unknown subject pose and reconstruct the underlying gait signature, with no prior knowledge of the camera calibration. Articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The variation of motion out of this plane is subtle and negligible in comparison to this major plane of motion. Subsequently, we can model human motion by employing a cardboard person assumption. A subject's body and leg segments may be represented by repeating spatio-temporal motion patterns within a set of bilaterally symmetric limb planes. The static features of gait are defined as quantities that remain invariant over the full range of walking motions. In total, we have identified nine static features of articulated leg motion, corresponding to the fronto-parallel view of gait, that remain invariant to the differences in the mode of subject motion. These features are hypothetically unique to each individual, thus can be used as suitable parameters for biometric identification. We develop a stratified approach to linear trajectory gait reconstruction that uses the rigid bone lengths of planar articulated leg motion in order to reconstruct the fronto-parallel view of gait. Furthermore, subject motion commonly occurs within a fixed ground plane and is imaged by a static camera. In general, people tend to walk in straight lines with constant velocity. Imaged gait can then be split piecewise into natural segments of linear motion. If two or more sufficiently different imaged trajectories are available then the calibration of the camera can be determined. Subsequently, the total pattern of gait motion can be globally parameterised for all subjects within an image sequence. We present the details of a sparse method that computes the maximum likelihood estimate of this set of parameters, then conclude with a reconstruction error analysis corresponding to an example image sequence of subject motion

    Robust arbitrary-view gait recognition based on 3D partial similarity matching

    Get PDF
    Existing view-invariant gait recognition methods encounter difficulties due to limited number of available gait views and varying conditions during training. This paper proposes gait partial similarity matching that assumes a 3-dimensional (3D) object shares common view surfaces in significantly different views. Detecting such surfaces aids the extraction of gait features from multiple views. 3D parametric body models are morphed by pose and shape deformation from a template model using 2-dimensional (2D) gait silhouette as observation. The gait pose is estimated by a level set energy cost function from silhouettes including incomplete ones. Body shape deformation is achieved via Laplacian deformation energy function associated with inpainting gait silhouettes. Partial gait silhouettes in different views are extracted by gait partial region of interest elements selection and re-projected onto 2D space to construct partial gait energy images. A synthetic database with destination views and multi-linear subspace classifier fused with majority voting are used to achieve arbitrary view gait recognition that is robust to varying conditions. Experimental results on CMU, CASIA B, TUM-IITKGP, AVAMVG and KY4D datasets show the efficacy of the propose method

    Activity Representation from Video Using Statistical Models on Shape Manifolds

    Get PDF
    Activity recognition from video data is a key computer vision problem with applications in surveillance, elderly care, etc. This problem is associated with modeling a representative shape which contains significant information about the underlying activity. In this dissertation, we represent several approaches for view-invariant activity recognition via modeling shapes on various shape spaces and Riemannian manifolds. The first two parts of this dissertation deal with activity modeling and recognition using tracks of landmark feature points. The motion trajectories of points extracted from objects involved in the activity are used to build deformation shape models for each activity, and these models are used for classification and detection of unusual activities. In the first part of the dissertation, these models are represented by the recovered 3D deformation basis shapes corresponding to the activity using a non-rigid structure from motion formulation. We use a theory for estimating the amount of deformation for these models from the visual data. We study the special case of ground plane activities in detail because of its importance in video surveillance applications. In the second part of the dissertation, we propose to model the activity by learning an affine invariant deformation subspace representation that captures the space of possible body poses associated with the activity. These subspaces can be viewed as points on a Grassmann manifold. We propose several statistical classification models on Grassmann manifold that capture the statistical variations of the shape data while following the intrinsic Riemannian geometry of these manifolds. The last part of this dissertation addresses the problem of recognizing human gestures from silhouette images. We represent a human gesture as a temporal sequence of human poses, each characterized by a contour of the associated human silhouette. The shape of a contour is viewed as a point on the shape space of closed curves and, hence, each gesture is characterized and modeled as a trajectory on this shape space. We utilize the Riemannian geometry of this space to propose a template-based and a graphical-based approaches for modeling these trajectories. The two models are designed in such a way to account for the different invariance requirements in gesture recognition, and also capture the statistical variations associated with the contour data

    Cross-domain self-supervised complete geometric representation learning for real-scanned point cloud based pathological gait analysis

    Get PDF
    Accurate lower-limb pose estimation is a prereq-uisite of skeleton based pathological gait analysis. To achievethis goal in free-living environments for long-term monitoring,single depth sensor has been proposed in research. However,the depth map acquired from a single viewpoint encodes onlypartial geometric information of the lower limbs and exhibitslarge variations across different viewpoints. Existing off-the-shelfthree-dimensional (3D) pose tracking algorithms and publicdatasets for depth based human pose estimation are mainlytargeted at activity recognition applications. They are relativelyinsensitive to skeleton estimation accuracy, especially at thefoot segments. Furthermore, acquiring ground truth skeletondata for detailed biomechanics analysis also requires consid-erable efforts. To address these issues, we propose a novelcross-domain self-supervised complete geometric representationlearning framework, with knowledge transfer from the unlabelledsynthetic point clouds of full lower-limb surfaces. The proposedmethod can significantly reduce the number of ground truthskeletons (with only 1%) in the training phase, meanwhileensuring accurate and precise pose estimation and capturingdiscriminative features across different pathological gait patternscompared to other methods

    Learning discriminative features for human motion understanding

    Get PDF
    Human motion understanding has attracted considerable interest in recent research for its applications to video surveillance, content-based search and healthcare. With different capturing methods, human motion can be recorded in various forms (e.g. skeletal data, video, image, etc.). Compared to the 2D video and image, skeletal data recorded by motion capture device contains full 3D movement information. To begin with, we first look into a gait motion analysis problem based on 3D skeletal data. We propose an automatic framework for identifying musculoskeletal and neurological disorders among older people based on 3D skeletal motion data. In this framework, a feature selection strategy and two new gait features are proposed to choose an optimal feature set from the input features to optimise classification accuracy. Due to self-occlusion caused by single shooting angle, 2D video and image are not able to record full 3D geometric information. Therefore, viewpoint variation dramatically affects the performance on lots of 2D based applications (e.g. arbitrary view action recognition and image-based 3D human shape reconstruction). Leveraging view-invariance from the 3D model is a popular idea to improve the performance on 2D computer vision problems. Therefore, in the second contribution, we adopt 3D models built with computer graphics technology to assist in solving the problem of arbitrary view action recognition. As a solution, a new transfer dictionary learning framework that utilises computer graphics technologies to synthesise realistic 2D and 3D training videos is proposed, which can project a real-world 2D video into a view-invariant sparse representation. In the third contribution, 3D models are utilised to build an end-to-end 3D human shape reconstruction system, which can recover the 3D human shape from a single image without any prior parametric model. In contrast to most existing methods that calculate 3D joint locations, the method proposed in this thesis can produce a richer and more useful point cloud based representation. Synthesised high-quality 2D images and dense 3D point clouds are used to train a CNN-based encoder and 3D regression module. It can be concluded that the methods introduced in this thesis try to explore human motion understanding from 3D to 2D. We investigate how to compensate for the lack of full geometric information in 2D based applications with view-invariance learnt from 3D models

    Structure from Recurrent Motion: From Rigidity to Recurrency

    Full text link
    This paper proposes a new method for Non-Rigid Structure-from-Motion (NRSfM) from a long monocular video sequence observing a non-rigid object performing recurrent and possibly repetitive dynamic action. Departing from the traditional idea of using linear low-order or lowrank shape model for the task of NRSfM, our method exploits the property of shape recurrency (i.e., many deforming shapes tend to repeat themselves in time). We show that recurrency is in fact a generalized rigidity. Based on this, we reduce NRSfM problems to rigid ones provided that certain recurrency condition is satisfied. Given such a reduction, standard rigid-SfM techniques are directly applicable (without any change) to the reconstruction of non-rigid dynamic shapes. To implement this idea as a practical approach, this paper develops efficient algorithms for automatic recurrency detection, as well as camera view clustering via a rigidity-check. Experiments on both simulated sequences and real data demonstrate the effectiveness of the method. Since this paper offers a novel perspective on rethinking structure-from-motion, we hope it will inspire other new problems in the field.Comment: To appear in CVPR 201

    QUIS-CAMPI: Biometric Recognition in Surveillance Scenarios

    Get PDF
    The concerns about individuals security have justified the increasing number of surveillance cameras deployed both in private and public spaces. However, contrary to popular belief, these devices are in most cases used solely for recording, instead of feeding intelligent analysis processes capable of extracting information about the observed individuals. Thus, even though video surveillance has already proved to be essential for solving multiple crimes, obtaining relevant details about the subjects that took part in a crime depends on the manual inspection of recordings. As such, the current goal of the research community is the development of automated surveillance systems capable of monitoring and identifying subjects in surveillance scenarios. Accordingly, the main goal of this thesis is to improve the performance of biometric recognition algorithms in data acquired from surveillance scenarios. In particular, we aim at designing a visual surveillance system capable of acquiring biometric data at a distance (e.g., face, iris or gait) without requiring human intervention in the process, as well as devising biometric recognition methods robust to the degradation factors resulting from the unconstrained acquisition process. Regarding the first goal, the analysis of the data acquired by typical surveillance systems shows that large acquisition distances significantly decrease the resolution of biometric samples, and thus their discriminability is not sufficient for recognition purposes. In the literature, diverse works point out Pan Tilt Zoom (PTZ) cameras as the most practical way for acquiring high-resolution imagery at a distance, particularly when using a master-slave configuration. In the master-slave configuration, the video acquired by a typical surveillance camera is analyzed for obtaining regions of interest (e.g., car, person) and these regions are subsequently imaged at high-resolution by the PTZ camera. Several methods have already shown that this configuration can be used for acquiring biometric data at a distance. Nevertheless, these methods failed at providing effective solutions to the typical challenges of this strategy, restraining its use in surveillance scenarios. Accordingly, this thesis proposes two methods to support the development of a biometric data acquisition system based on the cooperation of a PTZ camera with a typical surveillance camera. The first proposal is a camera calibration method capable of accurately mapping the coordinates of the master camera to the pan/tilt angles of the PTZ camera. The second proposal is a camera scheduling method for determining - in real-time - the sequence of acquisitions that maximizes the number of different targets obtained, while minimizing the cumulative transition time. In order to achieve the first goal of this thesis, both methods were combined with state-of-the-art approaches of the human monitoring field to develop a fully automated surveillance capable of acquiring biometric data at a distance and without human cooperation, designated as QUIS-CAMPI system. The QUIS-CAMPI system is the basis for pursuing the second goal of this thesis. The analysis of the performance of the state-of-the-art biometric recognition approaches shows that these approaches attain almost ideal recognition rates in unconstrained data. However, this performance is incongruous with the recognition rates observed in surveillance scenarios. Taking into account the drawbacks of current biometric datasets, this thesis introduces a novel dataset comprising biometric samples (face images and gait videos) acquired by the QUIS-CAMPI system at a distance ranging from 5 to 40 meters and without human intervention in the acquisition process. This set allows to objectively assess the performance of state-of-the-art biometric recognition methods in data that truly encompass the covariates of surveillance scenarios. As such, this set was exploited for promoting the first international challenge on biometric recognition in the wild. This thesis describes the evaluation protocols adopted, along with the results obtained by the nine methods specially designed for this competition. In addition, the data acquired by the QUIS-CAMPI system were crucial for accomplishing the second goal of this thesis, i.e., the development of methods robust to the covariates of surveillance scenarios. The first proposal regards a method for detecting corrupted features in biometric signatures inferred by a redundancy analysis algorithm. The second proposal is a caricature-based face recognition approach capable of enhancing the recognition performance by automatically generating a caricature from a 2D photo. The experimental evaluation of these methods shows that both approaches contribute to improve the recognition performance in unconstrained data.A crescente preocupação com a segurança dos indivíduos tem justificado o crescimento do número de câmaras de vídeo-vigilância instaladas tanto em espaços privados como públicos. Contudo, ao contrário do que normalmente se pensa, estes dispositivos são, na maior parte dos casos, usados apenas para gravação, não estando ligados a nenhum tipo de software inteligente capaz de inferir em tempo real informações sobre os indivíduos observados. Assim, apesar de a vídeo-vigilância ter provado ser essencial na resolução de diversos crimes, o seu uso está ainda confinado à disponibilização de vídeos que têm que ser manualmente inspecionados para extrair informações relevantes dos sujeitos envolvidos no crime. Como tal, atualmente, o principal desafio da comunidade científica é o desenvolvimento de sistemas automatizados capazes de monitorizar e identificar indivíduos em ambientes de vídeo-vigilância. Esta tese tem como principal objetivo estender a aplicabilidade dos sistemas de reconhecimento biométrico aos ambientes de vídeo-vigilância. De forma mais especifica, pretende-se 1) conceber um sistema de vídeo-vigilância que consiga adquirir dados biométricos a longas distâncias (e.g., imagens da cara, íris, ou vídeos do tipo de passo) sem requerer a cooperação dos indivíduos no processo; e 2) desenvolver métodos de reconhecimento biométrico robustos aos fatores de degradação inerentes aos dados adquiridos por este tipo de sistemas. No que diz respeito ao primeiro objetivo, a análise aos dados adquiridos pelos sistemas típicos de vídeo-vigilância mostra que, devido à distância de captura, os traços biométricos amostrados não são suficientemente discriminativos para garantir taxas de reconhecimento aceitáveis. Na literatura, vários trabalhos advogam o uso de câmaras Pan Tilt Zoom (PTZ) para adquirir imagens de alta resolução à distância, principalmente o uso destes dispositivos no modo masterslave. Na configuração master-slave um módulo de análise inteligente seleciona zonas de interesse (e.g. carros, pessoas) a partir do vídeo adquirido por uma câmara de vídeo-vigilância e a câmara PTZ é orientada para adquirir em alta resolução as regiões de interesse. Diversos métodos já mostraram que esta configuração pode ser usada para adquirir dados biométricos à distância, ainda assim estes não foram capazes de solucionar alguns problemas relacionados com esta estratégia, impedindo assim o seu uso em ambientes de vídeo-vigilância. Deste modo, esta tese propõe dois métodos para permitir a aquisição de dados biométricos em ambientes de vídeo-vigilância usando uma câmara PTZ assistida por uma câmara típica de vídeo-vigilância. O primeiro é um método de calibração capaz de mapear de forma exata as coordenadas da câmara master para o ângulo da câmara PTZ (slave) sem o auxílio de outros dispositivos óticos. O segundo método determina a ordem pela qual um conjunto de sujeitos vai ser observado pela câmara PTZ. O método proposto consegue determinar em tempo-real a sequência de observações que maximiza o número de diferentes sujeitos observados e simultaneamente minimiza o tempo total de transição entre sujeitos. De modo a atingir o primeiro objetivo desta tese, os dois métodos propostos foram combinados com os avanços alcançados na área da monitorização de humanos para assim desenvolver o primeiro sistema de vídeo-vigilância completamente automatizado e capaz de adquirir dados biométricos a longas distâncias sem requerer a cooperação dos indivíduos no processo, designado por sistema QUIS-CAMPI. O sistema QUIS-CAMPI representa o ponto de partida para iniciar a investigação relacionada com o segundo objetivo desta tese. A análise do desempenho dos métodos de reconhecimento biométrico do estado-da-arte mostra que estes conseguem obter taxas de reconhecimento quase perfeitas em dados adquiridos sem restrições (e.g., taxas de reconhecimento maiores do que 99% no conjunto de dados LFW). Contudo, este desempenho não é corroborado pelos resultados observados em ambientes de vídeo-vigilância, o que sugere que os conjuntos de dados atuais não contêm verdadeiramente os fatores de degradação típicos dos ambientes de vídeo-vigilância. Tendo em conta as vulnerabilidades dos conjuntos de dados biométricos atuais, esta tese introduz um novo conjunto de dados biométricos (imagens da face e vídeos do tipo de passo) adquiridos pelo sistema QUIS-CAMPI a uma distância máxima de 40m e sem a cooperação dos sujeitos no processo de aquisição. Este conjunto permite avaliar de forma objetiva o desempenho dos métodos do estado-da-arte no reconhecimento de indivíduos em imagens/vídeos capturados num ambiente real de vídeo-vigilância. Como tal, este conjunto foi utilizado para promover a primeira competição de reconhecimento biométrico em ambientes não controlados. Esta tese descreve os protocolos de avaliação usados, assim como os resultados obtidos por 9 métodos especialmente desenhados para esta competição. Para além disso, os dados adquiridos pelo sistema QUIS-CAMPI foram essenciais para o desenvolvimento de dois métodos para aumentar a robustez aos fatores de degradação observados em ambientes de vídeo-vigilância. O primeiro é um método para detetar características corruptas em assinaturas biométricas através da análise da redundância entre subconjuntos de características. O segundo é um método de reconhecimento facial baseado em caricaturas automaticamente geradas a partir de uma única foto do sujeito. As experiências realizadas mostram que ambos os métodos conseguem reduzir as taxas de erro em dados adquiridos de forma não controlada
    corecore