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Resumo

Resumo

A crescente preocupação com a segurança dos indivíduos tem justificado o crescimento
do número de câmaras de vídeo-vigilância instaladas tanto em espaços privados como públicos.
Contudo, ao contrário do que normalmente se pensa, estes dispositivos são, na maior parte dos
casos, usados apenas para gravação, não estando ligados a nenhum tipo de software inteligente
capaz de inferir em tempo real informações sobre os indivíduos observados. Assim, apesar de a
vídeo-vigilância ter provado ser essencial na resolução de diversos crimes, o seu uso está ainda
confinado à disponibilização de vídeos que têm que ser manualmente inspecionados para extrair
informações relevantes dos sujeitos envolvidos no crime. Como tal, atualmente, o principal
desafio da comunidade científica é o desenvolvimento de sistemas automatizados capazes de
monitorizar e identificar indivíduos em ambientes de vídeo-vigilância.

Esta tese tem como principal objetivo estender a aplicabilidade dos sistemas de reconhe-
cimento biométrico aos ambientes de vídeo-vigilância. De forma mais especifica, pretende-se
1) conceber um sistema de vídeo-vigilância que consiga adquirir dados biométricos a longas dis-
tâncias (e.g., imagens da cara, íris, ou vídeos do tipo de passo) sem requerer a cooperação dos
indivíduos no processo; e 2) desenvolver métodos de reconhecimento biométrico robustos aos
fatores de degradação inerentes aos dados adquiridos por este tipo de sistemas.

No que diz respeito ao primeiro objetivo, a análise aos dados adquiridos pelos sistemas tí-
picos de vídeo-vigilância mostra que, devido à distância de captura, os traços biométricos amos-
trados não são suficientemente discriminativos para garantir taxas de reconhecimento aceitá-
veis. Na literatura, vários trabalhos advogam o uso de câmaras Pan Tilt Zoom (PTZ) para adquirir
imagens de alta resolução à distância, principalmente o uso destes dispositivos no modo master-
slave. Na configuração master-slave um módulo de análise inteligente seleciona zonas de in-
teresse (e.g. carros, pessoas) a partir do vídeo adquirido por uma câmara de vídeo-vigilância
e a câmara PTZ é orientada para adquirir em alta resolução as regiões de interesse. Diversos
métodos já mostraram que esta configuração pode ser usada para adquirir dados biométricos
à distância, ainda assim estes não foram capazes de solucionar alguns problemas relacionados
com esta estratégia, impedindo assim o seu uso em ambientes de vídeo-vigilância. Deste modo,
esta tese propõe dois métodos para permitir a aquisição de dados biométricos em ambientes de
vídeo-vigilância usando uma câmara PTZ assistida por uma câmara típica de vídeo-vigilância. O
primeiro é um método de calibração capaz de mapear de forma exata as coordenadas da câ-
mara master para o ângulo da câmara PTZ (slave) sem o auxílio de outros dispositivos óticos. O
segundo método determina a ordem pela qual um conjunto de sujeitos vai ser observado pela
câmara PTZ. O método proposto consegue determinar em tempo-real a sequência de observa-
ções que maximiza o número de diferentes sujeitos observados e simultaneamente minimiza o
tempo total de transição entre sujeitos. De modo a atingir o primeiro objetivo desta tese, os
dois métodos propostos foram combinados com os avanços alcançados na área da monitorização
de humanos para assim desenvolver o primeiro sistema de vídeo-vigilância completamente auto-
matizado e capaz de adquirir dados biométricos a longas distâncias sem requerer a cooperação
dos indivíduos no processo, designado por sistema QUIS-CAMPI.

O sistema QUIS-CAMPI representa o ponto de partida para iniciar a investigação relacio-
nada com o segundo objetivo desta tese. A análise do desempenho dos métodos de reconhe-
cimento biométrico do estado-da-arte mostra que estes conseguem obter taxas de reconhe-
cimento quase perfeitas em dados adquiridos sem restrições (e.g., taxas de reconhecimento
maiores do que 99% no conjunto de dados LFW). Contudo, este desempenho não é corroborado

xi



Resumo

pelos resultados observados em ambientes de vídeo-vigilância, o que sugere que os conjuntos
de dados atuais não contêm verdadeiramente os fatores de degradação típicos dos ambientes de
vídeo-vigilância. Tendo em conta as vulnerabilidades dos conjuntos de dados biométricos atuais,
esta tese introduz um novo conjunto de dados biométricos (imagens da face e vídeos do tipo de
passo) adquiridos pelo sistema QUIS-CAMPI a uma distância máxima de 40m e sem a cooperação
dos sujeitos no processo de aquisição. Este conjunto permite avaliar de forma objetiva o de-
sempenho dos métodos do estado-da-arte no reconhecimento de indivíduos em imagens/vídeos
capturados num ambiente real de vídeo-vigilância. Como tal, este conjunto foi utilizado para
promover a primeira competição de reconhecimento biométrico em ambientes não controlados.
Esta tese descreve os protocolos de avaliação usados, assim como os resultados obtidos por 9
métodos especialmente desenhados para esta competição. Para além disso, os dados adqui-
ridos pelo sistema QUIS-CAMPI foram essenciais para o desenvolvimento de dois métodos para
aumentar a robustez aos fatores de degradação observados em ambientes de vídeo-vigilância. O
primeiro é um método para detetar características corruptas em assinaturas biométricas através
da análise da redundância entre subconjuntos de características. O segundo é um método de
reconhecimento facial baseado em caricaturas automaticamente geradas a partir de uma única
foto do sujeito. As experiências realizadas mostram que ambos os métodos conseguem reduzir
as taxas de erro em dados adquiridos de forma não controlada.

Palavras-chave

Sistemas de Vídeo-vigilância Automatizados, Câmaras PTZ, Configuração Master-slave,
Calibração de Câmaras, Planeamento de Câmaras, Reconhecimento Biométrico, Conjuntos de
Dados Biométricos, Reconhecimento Facial, Reconhecimento Facial à distância, Reconhecimento
facial baseado em caricaturas, Monitorização de Humanos.
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Resumo alargado em Português
A crescente preocupação com a segurança dos indivíduos tem justificado o crescimento

do número de câmaras de vídeo-vigilância instaladas tanto em espaços privados como públicos.
Contudo, ao contrário do que normalmente se pensa, estes dispositivos são, na maior parte dos
casos, usados apenas para gravação, não estando ligados a nenhum tipo de software inteligente
capaz de inferir em tempo real informações sobre os indivíduos observados. Assim, apesar de a
vídeo-vigilância ter provado ser essencial na resolução de diversos crimes, o seu uso está ainda
confinado à disponibilização de vídeos que têm que ser manualmente inspecionados para extrair
informações relevantes dos sujeitos envolvidos no crime. Como tal, atualmente, o principal
desafio da comunidade científica é o desenvolvimento de sistemas automatizados capazes de
monitorizar e identificar indivíduos em ambientes de vídeo-vigilância.

Esta tese tem como principal objetivo estender a aplicabilidade dos sistemas de reconhe-
cimento biométrico aos ambientes de vídeo-vigilância. De forma mais específica, pretende-se
1) conceber um sistema de vídeo-vigilância que consiga adquirir dados biométricos a longas dis-
tâncias (e.g., imagens da cara, íris, ou vídeos do tipo de passo) sem requerer a cooperação
dos indivíduos no processo; e 2) desenvolver métodos de reconhecimento biométrico robustos
aos fatores de degradação inerentes aos dados adquiridos por este tipo de sistemas. De forma
a alcançar estes objetivos, esta tese apresenta várias contribuições descritas ao longo de seis
capítulos.

O primeiro capítulo define o âmbito e o problema onde esta tese se enquadra. Para
além disso, são também descritos os principais objetivos do presente trabalho de investigação,
assim como as principais contribuições desta investigação no melhoramento do desempenho do
reconhecimento biométrico em ambientes de vídeo-vigilância.

O segundo capítulo apresenta uma revisão da literatura nas três áreas de investigação
necessárias ao desenvolvimento de um sistema automatizado de vídeo-vigilância capaz de re-
conhecer humanos à distância e de maneira sub-reptícia. Estas áreas são as seguintes: 1) mo-
nitorização de humanos; 2) sistemas de vídeo-vigilância; e 3) reconhecimento biométrico. No
que diz respeito à monitorização de humanos, são apresentados os trabalhos mais relevantes
com possível aplicação em ambientes de vídeo-vigilância. Em primeiro lugar, foi feita uma re-
visão dos algoritmos de subtração de fundo, dado que a deteção das zonas de movimento é
utilizada habitualmente pela maioria dos métodos de deteção e tracking. Com esta revisão foi
possível concluir que existe uma crescente preocupação em desenvolver métodos capazes de
operar em ambientes de vídeo-vigilância, e que a robustez dos algoritmos estado da arte neste
tipo de ambientes tem vindo a aumentar. De seguida, foi feita a revisão das duas principais
estratégias utilizadas na deteção de objetos: 1) deteção holística; e 2) deteção baseada em
partes. De forma semelhante à fase anterior, também existe uma preocupação crescente em
estender a aplicabilidade destes métodos para cenários sem restrições, sendo a estratégia ba-
seada em partes a mais utilizada até ao momento. Por fim, a análise aos métodos de tracking
foi feita de acordo com o tipo de estratégia adotada e com o tipo de características utilizadas.
Esta análise permitiu perceber que as características de aparência juntamente com a estratégia
tracking-by-detection são as mais utilizadas em ambientes mais dinâmicos. No que diz respeito
aos sistemas de vídeo-vigilância, foi feita uma revisão das arquiteturas utilizadas para adquirir
dados biométricos à distância e sem a cooperação dos sujeitos no processo. Em primeiro lugar,
as principais arquiteturas foram comparadas, de modo a evidenciar que o uso de câmaras PTZ
é a estratégia mais prática e eficiente para a aquisição de dados biométricos. Nas arquiteturas
baseadas em câmaras PTZ foram revistas as duas principais opções, onde foi possível perceber
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as desvantagens das estratégias baseadas numa única câmara PTZ. Pelo contrário, a combinação
de uma câmara PTZ com uma câmara típica de vídeo-vigilância é considerada a estratégia mais
adequada para obter dados de alta resolução à distância, o que justifica o fato da maioria dos
sistemas estado da arte adotarem esta configuração, designada por master-slave. De seguida,
foram analisados com particular detalhe os sistemas estado da arte que usaram câmaras PTZ
para adquirir dados biométricos à distância. Após esta revisão foi possível perceber os princi-
pais problemas deste tipo de arquitetura. No que diz respeito ao reconhecimento biométrico,
foi feita uma breve revisão da evolução das formas de reconhecer indivíduos usando diferentes
traços biométricos, das medidas usadas para avaliar um sistema biométrico, e dos modos de
operação destes sistemas. Para além disso, os métodos estado da arte foram revistos de acordo
com o traço biométrico usado. De entre os vários traços biométricos, foram apenas escolhidos
a face e o tipo de passo, por serem os mais propícios a serem adquiridos à distância.

O terceiro capítulo descreve as principais contribuições desta tese na área dos sistemas de
vídeo-vigilância, mais concretamente dois algoritmos que permitiram o desenvolvimento do sis-
tema QUIS-CAMPI, o primeiro sistema automatizado de vídeo-vigilância capaz de adquirir dados
biométricos em ambientes exteriores a longas distâncias (até 40m) e sem requerer a colabora-
ção dos sujeitos no processo. Em primeiro lugar, é apresentado um algoritmo de calibração de
câmaras para arquiteturas master-slave. Esta abordagem tem como objetivo permitir que as
coordenadas da câmara master sejam mapeadas para os ângulos da câmara PTZ sem recorrer
a dispositivos óticos adicionais ou ser necessário colocar as câmaras numa posição específica.
Para isso, este método propõe usar a altura do sujeito para resolver o sistema de equações in-
determinado que transforma as coordenadas da câmara master na orientação da câmara PTZ.
De modo a permitir uma solução completamente automatizada, a altura é também inferida em
tempo real usando os pontos de fuga da cena. As principais vantagens deste método são: 1)
permitir a instalação da arquitetura master-slave no exterior sem comprometer a exatidão do
mapeamento entre as duas câmaras; e 2) aumentar a distância máxima de captura em rela-
ção aos sistemas existentes na literatura. Em segundo lugar, é apresentado um algoritmo de
planeamento da sequência de observações que irão ser realizadas por uma câmara PTZ. Esta
abordagem tem como objetivo minimizar o tempo total de transição entre sujeitos de modo a
adquirir imagens/vídeos do maior número de sujeitos. Para isso, este método propõe usar um
MRF para acomodar várias métricas (e.g., número de observações já efetuadas, tempo restante
até sair da cena, tempo de transição entre sujeitos) úteis na decisão da ordem pela qual os sujei-
tos irão ser observados pela câmara PTZ. Como principal vantagem, esta abordagem apresenta
a capacidade de planear rotas quase ótimas em tempo real, o que é particularmente importante
em cenários com vários indivíduos.

O quarto capítulo apresenta o conjunto de dados QUIS-CAMPI, que adquirido recorrendo ao
sistema QUIS-CAMPI. Após ter sido observado que os conjuntos de dados biométricos existentes
na literatura não continham os fatores de degradação típicos dos ambientes de vídeo-vigilância,
procedeu-se à construção do conjunto QUIS-CAMPI, onde as imagens de prova foram adquiridas
de forma totalmente automatizada num cenário de vídeo-vigilância, de forma sub-reptícia, e
a distâncias entre 5 e 40 metros. Para além disso, este conjunto disponibiliza múltiplos traços
biométricos tanto no conjunto de registo (imagens do corpo inteiro, vídeos do tipo de passo,
modelos 3D da face) como no conjunto de prova (e.g., vídeos do tipo de passo e imagens da
face). Todas estas características tornam o conjunto QUIS-CAMPI bastante importante para
avaliar o desempenho dos métodos de reconhecimento biométrico estado da arte e promover o
desenvolvimento de métodos capazes de operar em ambientes não controlados. Neste capítulo
é também apresentado o desempenho obtido por métodos de reconhecimento estado da arte no
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conjunto de dados proposto, e de forma sumária concluiu-se que os métodos atuais ainda não
apresentam desempenho satisfatório neste tipo de dados.

No quinto capítulo são apresentadas três contribuições para avançar o estado da arte no
reconhecimento de indivíduos em ambientes de vídeo-vigilância. A primeira contribuição diz
respeito à competição ICB-RW, a primeira competição internacional para avaliar o desempenho
de métodos de reconhecimento biométricos em dados adquiridos sem qualquer restrição. Esta
competição foi organizada com um subconjunto de imagens faciais do conjunto de dados QUIS-
CAMPI, e teve a participação de nove grupos de investigação, tendo cada grupo submetido um
método para avaliação. Os resultados obtidos foram úteis para perceber quais as estratégias
mais promissoras e quais os fatores de degradação que mais afetam o desempenho dos méto-
dos. A segunda contribuição propõe um método de deteção de características corruptas e tem
como objetivo melhorar o desempenho de um sistema biométrico através da exclusão das ca-
racterísticas corruptas durante a fase de matching. A ideia principal por detrás deste método é
aproveitar a redundância da assinatura biométrica, ou seja, as correlações entre as caracterís-
ticas, para determinar na fase de teste a probabilidade de cada característica estar corrupta.
A avaliação em conjuntos de imagens da íris e da face evidencia as vantagens deste método. A
terceira contribuição diz respeito a um método de reconhecimento facial baseado em carica-
turas. O fato de os humanos reconhecerem mais facilmente indivíduos através de caricaturas
foi a base para desenvolver este método, sendo que o processo automático para a geração da
caricatura 2D foi baseado na estratégia usada pelos caricaturistas. Desta maneira, foi possível
obter representações onde a semelhança entre imagens de diferentes sujeitos é minimizada e
a semelhança entre imagens do mesmo sujeito é maximizada.

Por último, os principais resultados deste trabalho de investigação são resumidos no ca-
pitulo seis. Para além disso, são também apontadas as principais contribuições desta tese para
o desenvolvimento de um sistema de vídeo-vigilância capaz de identificar indivíduos de forma
automática, assim como tópicos que carecem de trabalho adicional para atingir este objetivo.
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Abstract

Abstract

The concerns about individuals security have justified the increasing number of surveil-
lance cameras deployed both in private and public spaces. However, contrary to popular belief,
these devices are in most cases used solely for recording, instead of feeding intelligent analysis
processes capable of extracting information about the observed individuals. Thus, even though
video surveillance has already proved to be essential for solving multiple crimes, obtaining rel-
evant details about the subjects that took part in a crime depends on the manual inspection
of recordings. As such, the current goal of the research community is the development of
automated surveillance systems capable of monitoring and identifying subjects in surveillance
scenarios. Accordingly, the main goal of this thesis is to improve the performance of biometric
recognition algorithms in data acquired from surveillance scenarios. In particular, we aim at
designing a visual surveillance system capable of acquiring biometric data at a distance (e.g.,
face, iris or gait) without requiring human intervention in the process, as well as devising bio-
metric recognition methods robust to the degradation factors resulting from the unconstrained
acquisition process.

Regarding the first goal, the analysis of the data acquired by typical surveillance systems
shows that large acquisition distances significantly decrease the resolution of biometric sam-
ples, and thus their discriminability is not sufficient for recognition purposes. In the literature,
diverse works point out Pan Tilt Zoom (PTZ) cameras as the most practical way for acquiring
high-resolution imagery at a distance, particularly when using a master-slave configuration. In
the master-slave configuration, the video acquired by a typical surveillance camera is analyzed
for obtaining regions of interest (e.g., car, person) and these regions are subsequently imaged
at high-resolution by the PTZ camera. Several methods have already shown that this config-
uration can be used for acquiring biometric data at a distance. Nevertheless, these methods
failed at providing effective solutions to the typical challenges of this strategy, restraining its
use in surveillance scenarios. Accordingly, this thesis proposes two methods to support the de-
velopment of a biometric data acquisition system based on the cooperation of a PTZ camera
with a typical surveillance camera. The first proposal is a camera calibration method capable
of accurately mapping the coordinates of the master camera to the pan/tilt angles of the PTZ
camera. The second proposal is a camera scheduling method for determining - in real-time -
the sequence of acquisitions that maximizes the number of different targets obtained, while
minimizing the cumulative transition time. In order to achieve the first goal of this thesis,
both methods were combined with state-of-the-art approaches of the human monitoring field
to develop a fully automated surveillance capable of acquiring biometric data at a distance and
without human cooperation, designated as QUIS-CAMPI system.

The QUIS-CAMPI system is the basis for pursuing the second goal of this thesis. The analysis
of the performance of the state-of-the-art biometric recognition approaches shows that these
approaches attain almost ideal recognition rates in unconstrained data. However, this perfor-
mance is incongruous with the recognition rates observed in surveillance scenarios. Taking into
account the drawbacks of current biometric datasets, this thesis introduces a novel dataset com-
prising biometric samples (face images and gait videos) acquired by the QUIS-CAMPI system at a
distance ranging from 5 to 40 meters and without human intervention in the acquisition process.
This set allows to objectively assess the performance of state-of-the-art biometric recognition
methods in data that truly encompass the covariates of surveillance scenarios. As such, this set
was exploited for promoting the first international challenge on biometric recognition in the
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wild. This thesis describes the evaluation protocols adopted, along with the results obtained
by the nine methods specially designed for this competition. In addition, the data acquired by
the QUIS-CAMPI system were crucial for accomplishing the second goal of this thesis, i.e., the
development of methods robust to the covariates of surveillance scenarios. The first proposal
regards a method for detecting corrupted features in biometric signatures inferred by a redun-
dancy analysis algorithm. The second proposal is a caricature-based face recognition approach
capable of enhancing the recognition performance by automatically generating a caricature
from a 2D photo. The experimental evaluation of these methods shows that both approaches
contribute to improve the recognition performance in unconstrained data.

Keywords

Automated Surveillance Systems, PTZ Cameras, Master-slave Configuration, Camera Cal-
ibration, Camera Scheduling, Biometric Recognition, Non-cooperative Biometric Recognition,
Biometric Datasets, Face Recognition, Face Recognition at a Distance, Caricature-based Face
Recognition, Human Monitoring.
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Chapter 1

Introduction

This thesis regards the problem of recognizing individuals in surveillance scenarios without
subjects cooperation, and makes two major contributions: 1) an innovative surveillance system
capable of acquiring biometric samples at a distance and on the move; 2) biometric recognition
methods for pushing forward the performance on data acquired in surveillance environments.
The focus and scope of the thesis are further described in this chapter, together with the problem
definition and objectives, the main contributions, and the document organization.

1.1 Problem Definition and Research Objectives

Surveillance is a subject undergoing intense study fostered by the increasing concerns
about national security. This interest is visible in the evolution of the number of video surveil-
lance cameras deployed worldwide (e.g., more than 4 million Closed-circuit Television (CCTV)
cameras in the UK [1]). However, the availability of surveillance recordings contrasts with the
limited recognition accuracy of the state-of-the-art algorithms on these data.

Usability

Performance

Dimension

Impossible
Difficult to use
Easy to useTransparent

102

104

106

108

80% 85% 90% 95%

QUIS-CAMPI

Biometric Recognition
SystemsVisual Surveillance

Systems

VLS

Figure 1.1: Schematic representation of the three challenges of designing a recognition system.

As depicted in figure 1.1, the complexity of designing a fully automated recognition sys-
tem can be described as function of three variables. State-of-the-art biometric recognition
systems can attain ideal performance at the expense of restrictive conditions during data ac-
quisition, but their accuracy decreases dramatically when working in unconstrained scenarios.
On the other hand, automated surveillance systems perform poorly when identifying individuals
in totally unconstrained scenarios and require a large set of constraints to work properly in a
specific scenario. To address this problem, different approaches have been proposed [2–4]. The
Verilook Surveillance System (VLS) [4] is a prominent effort aiming at combining the fields of
biometric recognition and visual surveillance. This system performs non-cooperative face iden-
tification from live video streams with satisfactory accuracy, but its usability is rather limited

1



Introduction

(e.g., works only in indoor scenarios, depends on high-resolution surveillance cameras, and re-
quires a time-consuming enrollment process). According to A. K. Jain, overcoming the trade-off
between performance and usability is the ultimate barrier to the development of a biometric
recognition system capable of working in surveillance scenarios, which is still regarded as the
grand challenge [5].

Even though the identification of humans in surveillance scenarios is still confined to
science fiction, the research community has already made significant progress towards the de-
velopment of a biometric recognition system capable of working in surveillance scenarios. Cur-
rently, it is commonly accepted that the typical architecture of surveillance systems (e.g., CCTV
systems) is not adequate for acquiring biometric samples with sufficient resolution for recogni-
tion purposes. To address this problem, several authors argue that Pan Tilt Zoom (PTZ) cameras
are the most practical and efficient solution to acquire biometric data at a distance, particularly
if configured in a master-slave architecture (refer to section 2.2 for a detailed justification).

Figure 1.2 illustrates the scope of this thesis with respect to the general processing chain
of an automated master-slave surveillance system intended for biometric recognition. Even
though the development of such a system depends on three distinct research areas, the scope
of this thesis is restricted to the areas of surveillance systems and biometric recognition. Ac-
cordingly, this thesis aims at extending the frontiers of biometric recognition to surveillance
scenarios by 1) introducing novel strategies for acquiring biometric data in these scenarios; and
2) proposing novel biometric recognition algorithms robust to the typical degradation factors
of unconstrained environments. In order to achieve the primary goal of this thesis, we defined
multiple objectives along the processing chain illustrated in figure 1.2:

• Evaluation of the performance of human detection and multi-target tracking algorithms
in surveillance scenarios. The acquisition of biometric data in surveillance scenarios de-
pends on the performance of human detection and tracking, which degrades significantly
in unconstrained scenarios. Our goal is to assess their performance in a real surveillance
scenario, and perceive the impact on the quality of the biometric data acquired.

• Proposal of a new camera calibration algorithm for master-slave surveillance systems. The
existing master-slave systems either rely on rough approximations or additional constraints
to estimate the mapping between image coordinates and pan-tilt parameters, and, as a
consequence, the workability of these systems in outdoor environments is restrained. For
this reason, we aim at creating a calibration algorithm that does not depend on stringent
configurations to accurately estimate the mapping between cameras.

• Proposal of a scheduling policy to control the PTZ camera. Real-word surveillance systems
should be capable of monitoring multiple individuals at the same time. As such, we aim
at developing a camera scheduling approach capable of determining - in real-time - the
sequence of acquisitions that maximizes the number of different targets obtained, while
minimizing the cumulative transition time.

• Development of a prototype of an automated surveillance system capable of acquiring
biometric data at a distance, and subsequent deployment in a real surveillance scenario.
This system is hereinafter designated as the QUIS-CAMPI system.

• Creation of a dataset of biometric samples acquired in a real-world surveillance scenario.
The prototype of the QUIS-CAMPI system will be used for acquiring biometric data from
subjects in an unconstrained and covert manner. Also, we these data will be made publicly
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Human Monitoring

Surveillance Systems

Biometric Recognition

Scope of this thesis

Motion
Detection

Human
Detection Tracking

Camera
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Camera
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Image
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Feature
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Feature
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Database
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Figure 1.2: General processing chain of an automated surveillance system intended for biometric
recognition. The different modules necessary for the development of an automated surveillance system
capable of recognizing individuals belong to three different research areas: 1) human monitoring; 2)

surveillance systems; and 3) biometric recognition. Nevertheless, the major contributions of this thesis
fall in the fields of biometrics and surveillance systems.

available to the research community for pushing forward the performance of biometric
recognition in the wild.

• Evaluation of state-of-the-art biometric recognition algorithms in data acquired from a
fully automated surveillance system. The biometric samples acquired with the QUIS-CAMPI
system are essential for determining the actual performance on data that truly encompass
all the singularities of surveillance environments. We aim at using the biometric samples
acquired for promoting an international competition on biometric recognition in the wild.

• Development of novel biometric recognition algorithms for improving the recognition per-
formance in data acquired by fully automated surveillance systems. By proposing novel
methods that surpass the performance of state-of-the-art biometric recognition methods
on the data acquired by the QUIS-CAMPI system, we aim at contributing to the develop-
ment of a fully automated biometric recognition surveillance system.

1.2 Main Contributions

This section describes the main scientific contributions of this thesis. Figure 1.3 provides
a graphical description of the context of our publications in the general processing chain of an
automated surveillance system intended for biometric recognition. The following paragraphs
briefly describe the main proposals of this thesis to advance the state of the art in biometric
recognition in the wild.
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Introduction

The first contribution is a comprehensive review of the state of the art in each one of
the main stages of automated surveillance systems, along with a review of the state-of-the-art
biometric recognition approaches capable of working in slightly unconstrained scenarios. This
work resulted in a survey published in the Springer Artificial Intelligence Review Journal [15].

The second contribution regards the evaluation of the state-of-the-art background sub-
traction algorithms in surveillance scenarios, resulting in a paper published in the proceedings
of the IEEE International Conference on Signal and Image Processing Applications [9].

The third contribution is a novel calibration algorithm for master-slave systems, suitable
for acquiring biometric data at a distance from non-cooperative subjects. Our solution provides
an efficient way to estimate accurately the pan-tilt angles of the PTZ camera without relying
on stringent configuration between the cameras. A preliminary version of this approach was
published in the proceedings of the Iberian Conference on Pattern Recognition and Image Analy-
sis [6], whereas the complete description of this proposal was published in the IEEE Conference
on Biometrics: Theory, Applications and Systems [7].

The fourth contribution is an extension of the proposed calibration method to work with
fish-eye lenses. This work was published in the Mathematical Problems in Engineering [8].

The fifth contribution regards a comprehensive review of the frameworks and protocols
designed for the acquisition of unconstrained biometric data, along with a description of the
state-of-the-art surveillance systems using these frameworks. This review was published as a
chapter of the book Human Recognition in Unconstrained Environments [16].

The sixth contribution introduces a camera scheduling algorithm for determining the order
whereby the subjects will be imaged by the PTZ camera. The proposed method is capable of
determining - in real-time - the sequence of acquisitions that maximizes the number of different
targets obtained, while minimizing the cumulative transition time. This method was published
in the proceedings of the IEEE Conference on Advanced Visual and Signal based Surveillance [10].

The seventh contribution regards the QUIS-CAMPI surveillance system, i.e. a fully auto-
mated surveillance system for acquiring biometric data at a distance from non-cooperative sub-
jects. This proposal was published in the proceedings of the International Workshop on Recent
Advances in Digital Security: Biometrics and Forensics, which was part of the IEEE Conference
on Image Analysis and Processing [17].

The eighth contribution is the QUIS-CAMPI dataset, comprising biometric samples auto-
matically acquired by the QUIS-CAMPI system in a fully non-cooperative and covert manner.
This is the first biometric set comprising data that truly represents the covariates of surveil-
lance environments. This proposal is in the third round of the reviewing process of the IET
Biometrics.

The ninth contribution is the International Challenge on Biometric Recognition in the Wild
(ICB-RW) competition, the first biometric challenge carried out in data that realistically result
from surveillance scenarios. The results of this competition were published in the proceedings
of the International Conference on Biometrics [11].

The tenth contribution is a method for detecting degraded features in biometric signatures
by exploiting feature correlation. The proposed approach was published in the proceedings of
the International Workshop on Biometrics in the Wild, which was part of the IEEE Conference on
Face and Gesture [14].

The eleventh contribution regards the first fully automated caricature-based face recog-
nition system capable of working with data acquired in the wild. This work proposes a 3D-based
caricature generation method for enhancing the performance of face recognition, and it was
submitted for revision to the IEEE Transactions on Information Forensics and Security.
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1.3 Thesis Organization

The remainder of this thesis is organized as follows: chapter 2 reviews the state-of-the-
art approaches for detecting and tracking humans in surveillance scenarios. Also, a description
of the architectures of automated surveillance systems is provided, along with a comparative
analysis of their effectiveness for acquiring biometric data from non-cooperative subjects. Addi-
tionally, this chapter gives an overview of the concepts related to the development of biometric
systems, and details the most prominent attempts for recognizing individuals in unconstrained
scenarios. Chapter 3 describes the proposed QUIS-CAMPI system, with particular attention given
to the proposed camera calibration and camera scheduling algorithms, which contribute signif-
icantly to the successful acquisition of biometric data from subjects at a distance and on the
move. Chapter 4 introduces the QUIS-CAMPI data feed, a collection of biometric samples ac-
quired by the QUIS-CAMPI system, along with a set of biometric data acquired under controlled
conditions in the enrollment phase. Chapter 5 describes the contributions of this thesis to push
forward the performance of biometric recognition in the unconstrained scenarios: 1) the ICB-RW
competition, which was the first biometric challenge carried out in data that realistically result
from surveillance scenarios; 2) a method capable of detecting degraded features in biometric
signatures by exploiting feature correlation; and 3) the first fully automated caricature-based
face recognition system capable of working with data acquired in the wild. Finally, chapter 6
presents the conclusions, summarizes our achievements and points possible directions for fur-
ther work.
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Chapter 2

State of the Art

In this chapter, we review the basic concepts related to the development of an automated
surveillance system for recognizing individuals using their biometric traits. Section 2.1 reviews
the state-of-the-art methods for detecting and tracking humans in surveillance videos, and dis-
cusses the most adequate strategies for monitoring humans in surveillance scenarios. The most
relevant frameworks and protocols for acquiring biometric data in unconstrained scenarios are
reviewed in section 2.2. Moreover, a comparative analysis between the use of existing architec-
tures in surveillance scenarios is provided. Section 2.3 introduces the basic concepts related to
biometrics, namely its main modes of functioning and the common metrics used for evaluating
biometric recognition systems. Finally, section 2.4 summarizes the most relevant conclusions
of this chapter.

2.1 Human Monitoring in Surveillance Scenarios

Automated surveillance systems usually share three main stages: pre-detection, detec-
tion, and tracking. This section provides a comprehensive review of the state of the art in these
three phases with particular focus on surveillance scenarios.

2.1.1 Motion Detection

Motion information is commonly used to prune the scene in a pre-detection phase, se-
lecting regions of interest for the detection phase. Usually, the pre-detection step relies on
background subtraction to highlight the regions of interest, but some alternatives are also pos-
sible, such as optical flow.

Background subtraction methods aim at dividing the scene into foreground and back-
ground regions using the typical appearance values of static regions of the scene. Even though
the detection of specific objects is not attained, the scene is pruned and the computational bur-
den of subsequent phases is reduced. For this reason, background subtraction has been used as
a pre-detection phase in different approaches such as human detection [18] and tracking [19].

Although most Background Subtraction (BGS) methods rely on a background model, they
differ with respect to the strategy used to construct this model. Statistical-based approaches
analyze the typical pixel intensities to distinguish between foreground and background regions.
The most simple approaches infer a background model from the median of the last N frames,
and obtain foreground regions by thresholding the difference between the observed image and
the background model [20–22]. A more robust strategy is the use of Gaussian-based approaches
where the typical values of the background are encoded by a single Gaussian [23] or a mixture of
Gaussians [24,25]. Instead of using a threshold, a confidence interval is defined to perform fore-
ground detection, ensuring the correct classification of both high and low variance background
pixels. Besides, the use of a mixture of Gaussians permits the modeling of multiple sources of
background.
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Clustering-based approaches estimate the background by grouping pixels in K different
clusters, corresponding to multiple sources of background. The codebook model [26] uses a
set of codewords to represent each cluster, while color and brightness information is used to
define the distance function. Different features are used to describe clusters, such as lumi-
nance [27, 28] and chrominance [29]. Recently, unsupervised neural networks models have
been explored to provide BGS methods with further robustness in surveillance scenarios. Mad-
dalena and Petrosino [30] exploited Self-Organizing Maps (SOM) to model the background by
storing the RGB values of each pixel in the neuron’s weights. Competitive neural networks [31]
use a similar idea by adjusting the weights of output layer neurons, however, contrary to SOM,
learning reinforcement is only applied to the winner neuron.

Contrary to BGS approaches, which compare the scene with a background model to detect
moving regions, optical flow approaches rely on displacements between consecutive frames. By
assuming small movement and brightness constancy, the displacement of each pixel can be
computed [32–34].

2.1.2 Human Detection

When compared to the pre-detection phase, detection algorithms are more specific be-
cause they aim at providing the location of a specific object in the scene. In general, detection
algorithms do not require a pre-detection phase, yet the majority of them rely on this phase
to alleviate the computational burden and ease the detection phase. Moreover, in some cases,
human detection algorithms do not use pre-detection only as an attentive filter. Instead, they
rely on the shape information that is yielded from BGS methods because it has been found that
it greatly improves performance when combined with appearance cues [35].

To achieve human detection, two different strategies are commonly employed: 1) holistic
detection, where a whole-body search is conducted; and 2) part-based detection, where the
search is oriented to locate a single body part or a combination of parts. Currently, the second
approach is attracting more attention, especially in surveillance scenarios, where the head and
shoulder regions are commonly used as discriminative features.

2.1.2.1 Holistic Approaches

Most holistic approaches train a discriminative classifier to exhaustively search for a spe-
cific object. Viola and Jones adapted their general object detector [36] to locate humans in
surveillance scenarios using motion patterns [37]. In a similar fashion, Dalal and Triggs [38]
introduced the Histogram of Oriented Gradients (HOG) features to perform human detection by
training a discriminative classifier, such as a Support Vector Machine (SVM). HOG features have
been explored in several approaches for the purpose of increasing robustness in surveillance
scenarios [39, 40]. Local Binary Patterns (LBP) features [41] have also been widely used for
human detection purposes, especially in surveillance scenarios [42, 43]. Yao and Odobez [35]
improved the performance of a cascade of detectors by including shape information that was
acquired in the pre-detection phase. In the work of Gurwicz et al. [44], moving objects were
obtained with a background estimation method. Several features were extracted, such as image
moments and horizontal and vertical projections, but only the features that were capable of
the most discrimination were retained, based on the entropy gain. The selected features were
provided to a SVM to distinguish between human regions and clutter in surveillance scenarios.

8



State of the Art

2.1.2.2 Part-based Approaches

Part-based approaches represent a solution to deal with the typical covariates of uncon-
strained scenarios (e.g., occlusion and changes in perceived 2D shape). The detection strategy is
similar to the one used in holistic approaches, but in this case different body parts are detected
by distinct classifiers. The final result is achieved by globally reasoning the score of all classi-
fiers. Regarding the type of features used for classifier training, most methods rely on gradient
features [18,45–50], whereas few approaches have exploited color information [51,52].

Mikolajczyk et al. [45] used a probabilistic assembly of parts to attain human detection.
A coarse-to-fine cascade approach was used for parts detection, and a parts assembly strategy
pruned incorrect detections by imposing geometric constraints. Lin et al. [46] focused on head
detection to estimate the number of people in a large crowd. Subburaman et al. [47] also used
head features for crowd counting, attaining state-of-the-art results in the PETS2012 dataset.
Zhao and Nevatia [18] addressed human detection by analyzing the silhouette boundaries that
were obtained from the foreground mask. Head detection was attained by checking local ver-
tical peaks on the foreground contour. Detections were filtered by cross-checking silhouette
information with human anthropometric data. Wu and Nevatia [49] used four different body
parts (full-body, head-shoulder, torso, and legs) to detect humans in non-cooperative scenarios.
Parts detectors were learned by boosting a number of weak classifiers based on edgelet features
(short segments of edge pixels). The detectors’ responses were combined to provide robustness
to occlusions. Later, this work was extended not only to improve detection performance but
also to achieve human segmentation using hierarchical body part detectors [50].

2.1.3 Human Tracking

Given an initial estimation of the object location, visual tracking approaches are expected
to determine occurrences of the same object in consecutive frames. In general, tracking ap-
proaches can be distinguished by the tracking strategy adopted and the type of information used
to model target objects, usually denoted as target representation.

2.1.3.1 Type of Features / Target Representation

Tracking algorithms should be provided with an object description that is usually obtained
from distinctive features such as motion, shape or appearance. The model comprising all the
information associated with objects of interest is denoted as the target representation.

Motion. Motion-based tracking exploits object dynamics. In the particular case of human
tracking, different cues are combined to model the target (e.g., typical human velocity, articu-
lation constraints and periodic motion). Motion models are usually related to Bayesian tracking
approaches, where temporal dynamics are used to update the target state over time [48,53,54].
However, these models can also be independently used to exploit appearance or shape infor-
mation [55, 56]. Motion information is also widely used to reduce the search space. Tracking
based on optical flow estimation, namely the Kanade–Lucas–Tomasi (KLT) tracker [57], combines
the assumption of small movement between frames with brightness constancy to follow a set of
keypoints. Tracking-by-detection approaches have also used this strategy [58, 59]. In [58] the
predicted position of the target is constrained to a predefined radius [59,60]. In [59] the opti-
cal flow is exploited to provide further robustness to discriminative classifiers. More complex
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methods have analyzed the motion relations between different regions of the scene to attain
additional robustness to occlusions [60].

Appearance. Albeit different tracking techniques can use any kind of appearance descriptor,
the literature evidences a relation between the technique and the type of descriptor. Kernel
tracking methods use a histogram of color intensities to represent the target [61]. Different
color spaces (e.g., HSV and XYZ) were also used [62–64]. Mckenna et al. [64] exploited Gaus-
sian mixture models to parametrize the objects’ color distributions in hue-saturation space.
An adaptive learning algorithm was used to update these color models and ensure robustness
under varying illumination. Since in different scenarios the performance is maximized by dif-
ferent color spaces, Stern and Efros [63] developed a method to automatically switch the color
space with respect to the ambient conditions. Tracking-by-detection approaches encode ap-
pearance information to train discriminative classifiers, using multiple descriptors such as Haar
wavelets [58,59,65], LBP [66,67] or HOG [68]. Regarding Bayesian tracking, several approaches
have exploited a large number of appearance descriptors [53, 69, 70], but, recently, a large
number of approaches [71–74] adopted the use of sparse representation.

Shape. Compared to appearance-based tracking, shape modeling is invariant to illumination
and appearance changes per se, but in turn, this cue is highly sensitive to occlusion and pose.
Although some tracking methods consider shape as a key feature [75], it is often regarded as a
pruning feature or as a way to take advantage of other cues. This holds particularly in surveil-
lance scenarios, where the limited number of pixels representing the object restrains the use of
complex shape models. Notwithstanding, the fusion of simple shape models with other features,
such as appearance and motion, proved successful in surveillance scenarios. KaewTrakulPong et
al. [19] combined shape cues with position, appearance and motion information to determine
the temporal associations between a set of blobs, corresponding to human targets in an out-
door surveillance scenario. Wu and Yu [76] used a Markov field to learn a prior shape model for
human edges. Pedestrian tracking was considered as a posterior density estimation according
to the shape model learned, where target state is propagated using a simple motion model.
Albeit edges are the most frequent shape feature used, other alternatives have been currently
exploited to track objects in dynamic scenarios (e.g., the shape context descriptor [77,78]).

2.1.3.2 Tracking Strategy

Classical approaches attempted to track an object by searching for a specific pattern in
the neighborhood of the previous location (Kernel / Model Tracking) or by evolving the state
of the target according to a motion and appearance model (Bayesian Tracking). Recently, a
new strategy - denoted as tracking-by-detection - has gained popularity as the demand for
arbitrary object tracking in unconstrained scenarios increased. The recent developments of
each technique are reviewed with particular attention given to the robustness in unconstrained
environments.

Bayesian Tracking. In a Bayesian framework, tracking is regarded as the estimation of the
target state xk given all the measurements z1:k, which is equivalent to maximize the probabil-
ity p(xk|z1:k). Bayesian filters solve this recursively using two steps: 1) prediction step infers
the next state distribution, p(xk|z1:k−1), with respect to a motion model describing the target
state over time; 2) update step uses the current observation zk to update p(xk|z1:k−1), yielding
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p(xk|zk). This process permits the estimation of the latent or unobservable variable xk through
noisy measurements zk. Regarding the type of noise, different Bayesian filters can be used.
When the system is affected by Gaussian noise and the motion model is linear, the Kalman fil-
ter [79] can be employed. Despite being based on restrictive assumptions, some approaches
used it in surveillance scenarios [48,54,80]. Zhao and Nevatia [48] used the Kalman filter with
a constant velocity model to estimate the state of humans. In [54], the combined observa-
tions of multiple cameras were provided to the Kalman filter to obtain a more accurate target
state. The Extended Kalman Filter (EKF) [81] was introduced to handle non-linear systems. Mit-
tal and Davis [82] used this technique in a multi-view approach so that severe occlusion could
be handled. Oliver et al. [83] combined the EKF predictions with appearance information to
track persons in outdoor scenes for action-recognition purposes. In general, particle filters or
sequential Monte Carlo methods are preferred in Bayesian tracking [84–88], since they can han-
dle any kind of noise and do not require the motion model to be linear. Okuma et al. [70] used
appearance cues by combining the particle filter with AdaBoost. Hu et al. [89] combined ap-
pearance, shape and motion information to track occluded people also using the particle filter.
Sparse representation was also exploited by some state-of-the-art tracking methods [71–74].
Each candidate location was represented as a combination of the training templates so that
the smallest projection error candidate was chosen. Mei and Ling [73] used this strategy in the
L1 tracker. The target motion in consecutive frames was modeled as an affine transformation
and was estimated in a particle filter framework. The importance of each transformation (i.e.,
the particle weights) was a function of the sparse reconstruction error. The MTT tracker [72]
was later introduced as a generalization of L1 since it accounted for the dependence between
transformations.

Kernel Filter. Kernel-based tracking gathers appearance information over an image patch by
constructing a weighted feature histogram. The first representative kernel-based method was
proposed by Comaniciu et al. [61], where the Mean Shift [90] technique was adapted to track
objects based on their appearance. Target location was achieved by maximizing a similarity
measure and the mean shift procedure guided the search for conditional probability maximum,
avoiding a brute force search. Although this strategy provides invariance to some pose changes,
the loss of spatial information is the primary drawback of kernel-based approaches. To address
this issue, Kang et al. [91] divided the object according to its polar representation and modeled
the typical RGB color of each part with a Gaussian distribution. Zhao and Tao [92] included
spatial information in the appearance model using the correlogram technique [93], allowing to
infer not only the objects’ trajectory but also their orientation. Recently, distribution fields [94,
95] have also been introduced to preserve the spatial information by constructing a histogram
at each pixel. Robustness to dynamic environments has also been recently proposed [96]. Chu
et al. [96] used multiple kernels to improve tracking under occlusion. Zhang et al. [69] devised
a head tracker using a kernel-Bayesian framework, where appearance and shape information
were combined. A Gaussian mixture model was used to model the appearance and the Chamfer
distance [97] was used for shape comparison. Liu et al. [98] approached human tracking using
eigenshape. The arbitrarily shaped kernel allowed the tracker to adapt to the object shape
avoiding background noise.

Model / Shape Tracking. Maximizing the similarity between the shape model and the contour-
map of the image is the rationale of shape tracking. In general, contour information is provided
by an edge-map representation and shape similarity is evaluated either with the Chamfer match-
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ing [97] or with the Haussdorf distance [99]. Both shape matching techniques are computation-
ally expensive and are not suitable to work in real-time systems. To efficiently compute the
Chamfer matching or the Haussdorf distance, Gravila et al. [100,101] proposed a solution based
on the distance transform. In a later work [102], hierarchical matching was proposed to further
increase the efficiency of shape matching. A set of training shapes were clustered so that a
tree of shape models could be constructed with the representative model of each cluster in the
first layer. Besides, a Markov transition matrix was used to encode the probabilities between
shape transitions, so that, during the tracking, the most likely poses were prioritized. These
approaches were combined in [103] to develop a complete pedestrian detection and tracking
system, where motion and appearance cues were also exploited. The tracking module used pose
clusters and a tree of pose models to efficiently search for the model that best fitted the data.
In dynamic environments, shape tracking is particularly sensitive to occlusion. For this reason,
Saber et al. [104] devised a matching strategy robust to partial occlusion, the partial shape
matching. Husain et al. [105] used this technique to track objects in surveillance scenarios.
However, even these improvements fail to produce a robust solution in surveillance scenarios,
mainly due to the reduced size of objects of interest.

Tracking-by-Detection. The use of detectors in tracking has gained wide notoriety, mainly
driven by the possibility of tracking arbitrary objects. Tracking-by-detection algorithms esti-
mate the target position by searching the location that maximizes a function F (x⃗) ∈ [−1, 1],
where F is usually determined by a classifier and x⃗ is the feature vector of the target state.
Contrary to other tracking methods, no a priori target representation is required, postponing
the learning of this representation to the online training of the classifier. Online training allows
the classifier to adapt to any kind of object and also to appearance variations. Currently, the
main research line in tracking-by-detection is focused both in improving the classifier learn-
ing scheme and in exploiting multiple cues. Regarding the learning scheme, the use of online
boosting classifiers was a common strategy in initial approaches [106,107]. At each frame, the
target location was sampled for positive examples while its neighborhood was sampled for neg-
ative examples. However, this strategy is highly sensitive to appearance changes, since small
displacements from the ground truth location may introduce incorrect positive examples in the
learning process. Babenko et al. [58] proposed a method to overcome this problem, where
examples were presented as bags containing a set of instances. Bags containing at least one
positive instance, corresponding to the instances sampled at the target location, were labeled as
positive, otherwise they were labeled as negative. Although this strategy required the classifier
to distinguish between positive and negative instances in some bags, previous results had shown
that, in fact, it was more flexible and outperformed the traditional learning strategies [108].
In a similar fashion, the Struck tracker [65] used a structured output SVM [109] to perform
learning. The TLD [66] and the PROST [59] methods found a different solution by combining an
optic flow tracker with an online learned random forest. Negative examples were only sampled
from unlikely locations of object presence based on motion constraints. Besides, new examples
required an appearance confirmation to be provided to the classifier. ConTra [67] improved
this strategy by taking in account distracters, i.e., objects sharing the same appearance as the
target.
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2.1.3.3 Multi-target Tracking

Despite multiple instances of each algorithm could be used to address multiple target
tracking, this strategy would require an additional data association module. The joint prob-
abilistic data association filter [110] and multiple hypothesis tracking [111] are two classical
approaches for this purpose, but the exponential growth of computational complexity restrains
their use when the number of targets is high. Greedy strategies have been used as an alter-
native, where correspondences are regarded as an assignment problem based on spatial dis-
tance [49,112] or appearance similarity [113].

Offline or batch techniques methods are an alternative solution for multiple target track-
ing, which, in contrast to online methods, use the complete set of detections before performing
trajectory estimation. This problem is usually regarded as an optimization problem, where
a function describes the cost of each solution [114–116]. Linear programming was employed
by several works [116–119] to solve this problem, where the possible target locations were
discretized and modeled as a graph. A continuous formulation of the problem was later in-
troduced by Andriyenko and Schindler [120–122]. The main drawback of these approaches is
the high latency required to analyze a video, which is incompatible with real-time surveillance
requirements. To address this issue, Benfold and Reid suggested the use of a small subset of
frames [123]. In [123] the most recent six seconds of video were analyzed to track multiple
pedestrians by combining information from a HOG-based detector and a KLT tracker.

2.2 Biometric Data Acquisition Frameworks

This section reviews the most relevant frameworks and protocols for acquiring biomet-
ric data in unconstrained scenarios. Section 2.2.1 provides a comparative analysis between
the most common data acquisition architectures and reviews the most relevant works proposed
in each category. In section 2.2.2, we discuss the challenges of PTZ-based approaches. Sec-
tion 2.2.3 describes the state-of-the-art surveillance systems devised for acquiring biometric
data in unconstrained scenarios.

2.2.1 Architecture of the Acquisition Systems

As illustrated in figure 2.1, surveillance systems are divided into two major categories:
1) systems using fixed-angle cameras with a Wide Field of View (WFOV); 2) systems using ori-
entable magnification devices, such as PTZ cameras. In the former, cameras are arranged in a
maximum coverage strategy to monitor multiple subjects in a surveillance area. These systems
are popular for its flexibility and reduced cost, however the limited resolution of biometric data
is regarded as their major drawback. The second group comprises systems using PTZ cameras for
acquiring high-resolution imagery of regions of interest in the scene. In spite of the vast number
of challenges, it is commonly accepted that these devices are the most efficient solution for
acquiring biometric data at a distance.

2.2.1.1 Fixed-angle Surveillance Systems

Most automated surveillance systems operate with fixed CCTV cameras. The major rea-
sons for relying on fixed-angle surveillance systems are the following: 1) the reduced cost; 2)
the large number of outdoor CCTV cameras; and 3) the effectiveness of detection and tracking
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Surveillance systems

Fixed-angle
surveillance systems

PTZ-based
surveillance systems

Single-view
PTZ camera

Master-slave
system

Figure 2.1: Taxonomy of the most common architectures of surveillance systems.

algorithms in the acquired data. However, in wide open scenarios, the obtained resolution is not
sufficient to represent the important patterns of biometric samples, restraining the recognition
of humans at a distance. With the rise of high-resolution cameras, they have been considered
the substitutes of old CCTV cameras and suggested as the solution for remote human recogni-
tion. Even though high-resolution cameras can be a practical solution for mid-term distances,
they still can not outperform PTZ-based systems. Figure 2.2 illustrates the relation between
the interpupillary distance and the stand-off distance (the distance between the front of the
lens and the subject) when using different optical devices. In this comparison, the Angle of
View (AOV) of wide-view cameras was considered as 70◦, while the AOV of the PTZ camera at
the maximum zoom was assumed to be 2.1◦. The comparison between the resolution of differ-
ent cameras demonstrates that only PTZ cameras can acquire high-resolution face imagery at a
distance, i.e., face images with an interpupillary distance greater than 60 pixels and acquired
with a stand-off distance higher than 5m. For this reason, PTZ cameras are considered as the
most efficient solution for acquiring high-resolution biometric data in surveillance scenarios.
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Figure 2.2: Relation between the interpupillary resolution and the stand-off distance when using
different acquisition devices. The number of pixels between the eyes is determined with respect to the

stand-off distance and four acquisition devices: 1) a typical surveillance camera (720p, 70◦); 2) a
high-resolution camera (4K, 70◦); 3) a high-resolution camera (4K, 70◦); 4) a PTZ camera with 15x zoom
(1080p, 4.2◦); and 5) PTZ camera with 30x zoom (1080p, 2.1◦). Note the evident advantages of using PTZ

cameras, the resolution of face traits is more than 5 times the resolution of 8K cameras.

2.2.1.2 PTZ-based Surveillance Systems

This section provides a detailed review of PTZ-based surveillance systems. These systems
can be broadly divided into two architectures: 1) master-slave; and 2) single PTZ.

Table 2.1 provides a comparison between state-of-the-art PTZ-based surveillance systems.
It must be noted that the majority of these systems were not designed specifically for the ac-
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Table 2.1: State-of-the-art PTZ-based video surveillance systems. Master-slave systems are organized
with respect to the type of master camera used, the accuracy of pan-tilt estimation, the required

camera disposal, the need for intermediate zoom states and the use of calibration marks.

System Architecture Master
Camera

Pan-Tilt
Estimation

Camera
Disposal

Int. Zoom
States

Calibration
Marks

Kumar et al. [124] Single PTZ - - - - -

Varcheie and Bilodeau [125] Single PTZ - - - - -

Yao et al. [126] Single PTZ - - - - -

Varcheie and Bilodeau [127] Single PTZ - - - - -

Tordoff and Murray [128] Single PTZ - - - - -

Yao el al. [126] Single PTZ - - - - -

Zhou et al. [129] Master-Slave PTZ Approximated Specific Yes No

Liao and Chen [130] Master-Slave PTZ Approximated Specific Yes No

Bodor et al. [131] Master-Slave Wide Approximated Specific No Yes

Del Bimbo et al. [132] Master-Slave PTZ Approximated Arbitrary Yes No

Everts et al. [133] Master-Slave PTZ Approximated Arbitrary No No

Chen et al. [134] Master-Slave Omnidirec-
tional

Approximated Arbitrary No Yes

Tarhan and Altug [135] Master-Slave Catadioptric Approximated Specific No No

Xu and Song [136] Master-Slave Wide Exact Arbitrary Yes No

Lu and Payandeh [137] Master-Slave Wide Exact Arbitrary Yes Yes

Scotti et al. [138] Master-Slave Catadioptric Exact Specific Yes Yes

Krahnstoever et al. [139] Master-Slave PTZ Exact Arbitrary No No

Yang et al. [140] Master-Slave PTZ Exact Arbitrary No Yes

quisition of biometric data. Instead, this section is devoted to review PTZ-based approaches
capable of instructing a PTZ camera to acquire high-resolution images/videos of specific parts
of scene. A detailed description of PTZ-based surveillance systems specially conceived for bio-
metric data acquisition is provided in section 2.2.3.

Single PTZ System. Single PTZ camera systems work by locating the region of interest (e.g.,
facial region) followed by increasing the zoom level for acquiring high-resolution biometric sam-
ples. When compared to multiple camera PTZ-based systems, this strategy is advantageous
because it does not depend on inter-camera calibration to accurately determine the pan-tilt
angles. However, the continuous change in the zoom level increases significantly the likelihood
of tracking failure.

Kumar et al. [124], and Varcheie and Bilodeau [125, 127] used a single PTZ device in
surveillance scenarios, where pan-tilt values were adjusted to keep the tracked subject in the
central region of the camera view. In both approaches, zoom adjustment was not implemented,
restraining the acquisition of hard biometric traits.

A common approach in single-view PTZ-based systems is the use of size preserving track-
ing algorithms [126, 128, 141]. In this strategy, the PTZ orientation and focal distance can be
adjusted using distinct strategies: 1) region-based features [142, 143]; 2) image velocity fea-
tures [141]; and 3) target depth inference [126,128]. Region-based approaches rely on features
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extracted from the object of interest to control the PTZ camera. As an example, Shah et al. [143]
incorporated the zoom level variable in the particle filter tracking algorithm by adjusting the
zoom level with respect to the visible percentage of the target. Methods based on image ve-
locity rely on the motion gradient to determine the angle displacement. Fayman et al. [141]
proposed a closed-loop feedback algorithm based on the optical flow and on the depth informa-
tion obtained from the auto-focus camera sensor. Approaches based on target depth estimation
are regarded as the most adequate, since they are capable of recovering the 3D motion of the
target, which improves the zoom level adjustment accuracy. Tordoff and Murray [128] used the
weak perspective projection model, i.e., a highly simplified representation of the real imaging
process that ignores the influence of the center offset. This approach was improved by the work
of Yao et al. [126] by using the paraperspective projection model.

Master-slave System. As illustrated in figure 2.3, themaster-slave architecture regards surveil-
lance systems where a magnification device, usually a PTZ camera, is controlled by one or more
wide-angle cameras, which are responsible for monitoring a wide surveillance area. In this ar-
chitecture, the WFOV cameras furnish the input data for detection and tracking modules, while
a control module relies on the output of these modules to point the Narrow Field of View (NFOV)
and acquire high-resolution images of the region of interest. The denomination master-slave is
justified by the fact that WFOV cameras provide the data used in the decision-making process,
while the NFOV camera depends on the all remaining modules being just used as a foveal sensor.

Figure 2.3: Overview of a typical master-slave video surveillance system.

As previously described in section 2.2.1.2, the limitations of single PTZ systems restrain
their use in outdoor surveillance scenarios, where extreme zoom levels are required for acquiring
high-resolution data. For this reason, the majority of works have focused on master-slave ap-
proaches (as evidenced by table 2.1), and is commonly accepted that they represent the most
appropriate solution to address the challenges of biometric recognition in video surveillance
scenarios. In spite of the multiple advantages of this strategy, the design of fully automated
master-slave surveillance systems is not straightforward. Inter-camera calibration is the major
bottleneck of this configuration (see section 2.2.2.4), since determining the mapping function
from image coordinates to pan-tilt parameters requires depth information. Accordingly, the
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existing master-slave systems mainly differ with respect to the accuracy of pan-tilt estimation
parameters.

The use of 2D-based approximation is the most common approach. By constructing a
mapping between the wide-view coordinates and the pan-tilt values, the inference of depth
information is avoided, but, in turn it is necessary to rely on different assumptions (e.g., simi-
lar points-of-view [144], intermediate zoom states [132,138]) to alleviate pan-tilt inaccuracies.
Zhou et al. [145] relied on manually constructed look-up tables and linear interpolation to map
pixel locations of the master camera to pan-tilt values. In a similar fashion, Liao and Cho [146]
approximated the target position as its projection in the reference plane, to which a pixel to pan-
tilt mapping had been previously constructed. To alleviate the burden of manual mapping, Liu
et al. [147] presented an automatic calibration approach by estimating an approximate relation
between camera images using feature point matching. Del Bimbo et al. [132] proposed a dual
PTZ system, where monitoring onus is interchangeable. In the offline phase, the pan and tilt pa-
rameters of the cameras are changed in a step-by-step manner for extracting appearance-based
features from the whole scene and creating a correspondence table between visual landmarks
and pan-tilt angles. At run-time, features are extracted in the current master camera view and
matched with the pre-built feature map, allowing to localize the camera with respect to the
scene and hence estimate the position of the target. Self-calibration is regarded as the major
advantage of this approach (see column ’calibration marks’ in table 2.1). On the other hand,
the dependency of stationary visual landmarks for calibration may be problematic in dynamic
surveillance scenarios (e.g., a crowded scene, moving objects that significantly change the ap-
pearance of the scene). Zhou et al. [129] and Liao et al. [130] also used dual-PTZ systems for
tracking subjects in an intermediate zoom level. An alternative approach is the use of omni-
directional [134] or catadioptric cameras1 [135,138]. The major advantage of these systems is
the possibility to observe a scene at about 360◦.

The exact inference of pan-tilt parameters is regarded as the most promising solution for
the development of a realistic surveillance system. However, the accuracy of pan-tilt estimation
requires the inference of subject depth. Xu and Song [136] relied on multiple consecutive frames
to approximate target depth, but this strategy is time-consuming, and consequently, increases
the delay between issuing the order and directing the PTZ. You et al. [148] estimated the
relationship between the master and the slave camera using a homography for each image of
the mosaic derived from the slave camera. An innovative solution for this problem is the use of
a beam splitter2. This device ensures that both the master camera and the PTZ camera have the
same scene view, which eases inter-camera calibration. Figure 2.4 illustrates the functioning
mode of the beam splitter in the context of a master-slave system. Park et al. [149] were
pioneers in exploiting this device to resolve the problem inter-camera calibration in PTZ-based
systems. In this system, the cameras were installed in a dark box for obtaining sharp images.
Also, the cameras and the beam splitter were disposed so that an incident beam is projected in
both cameras in the same sensor position, ensuring a trivial mapping between the pan-tilt angles
and the pixel position of the master camera. Regarding zoom control, a quadratic mapping
function between the size of the human silhouette in the master camera and zoom values of
the PTZ camera was inferred during system installment.

1A catadioptric optical system is one where refraction and reflection are combined in an optical system,
usually via lenses (dioptrics) and curved mirrors (catoptrics).

2A beam splitter is an optical device that splits a beam of light into two.
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Figure 2.4: Schematic view of a multi-camera system using a beam splitter. The beamer splits the light
into two so that the PTZ camera and the master camera can share the same view of the scene.

2.2.2 Typical Challenges of PTZ-based systems

As discussed in section 2.2.1.2, PTZ-based approaches are currently the best strategy for
acquiring biometric data in outdoor environments. State-of-the-art PTZ cameras can achieve
optical zoom magnifications up to 30x with an AOV of about 2◦, ensuring the acquisition high-
resolution samples at a distance. Despite these advantages, the use of a NFOV cameras also
entails several challenges.

2.2.2.1 Optics Distortions

The use of high zoom levels has a tremendous impact on the quality of the acquired
images, since optical magnification is achieved by increasing the focal distance of the camera (f)
and reducing its AOV. As a consequence, the amount of light reaching the sensor is considerably
less as the AOV decreases, which is particularly critical in outdoor scenarios where illumination
is nonstandard.

To compensate for this effect, most cameras increase the aperture of the diaphragm (D)
in the same proportion of f. The ratio between f and the aperture of the camera is denoted as F-
number (see equation (2.1)), and is commonly used in photography to maintain image brightness
along different zoom magnifications.

F-number =
f

D
(2.1)

However, its side effect is the reduction of the depth of field, which in turn increases the
likelihood of obtaining blurred images. As an alternative, it is possible to increase the exposure
time E for balancing the impact that extreme f values may have on the amount of light that
reaches the sensor. However, higher values of E also increase the motion-blur level in the
images.

A more robust solution is to adjust simultaneously both D and E, which is, in general,
the strategy adopted by PTZ devices. However, as illustrated in figure 2.5, the number of ideal
configurations for (D,E) is greatly dependent on zoom magnification.
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Figure 2.5: The spectrum of optical distortions with respect to exposure time, aperture and zoom level.
The set of (D,E) combinations that produces non-degraded images decreases significantly as the focal
distance increases. Besides, it is worth noting that the ideal set of (D,E) values (in white) varies with

respect to the illumination conditions.

2.2.2.2 Non-comprehensive view of the scene

In single PTZ systems, zooming enables the close inspection of narrow regions in the
scene, but it also inhibits scene monitoring. As a consequence, the detection and tracking of
individuals can hardly be attained when using extreme zoom levels.

To mitigate this shortcoming, some systems alternate between different zoom levels, i.e.,
subject detection and tracking is performed in minimal zoom levels, and high-resolution data
is obtained using maximum zoom levels. However, zoom transition is the most time-consuming
task of PTZ devices, which significantly restricts the efficiency of using a single PTZ camera for
biometric recognition purposes.

2.2.2.3 Out-of-Focus

As previously discussed in section 2.2.2.1, the use of extreme zoom levels reduces signif-
icantly the depth of field. To correctly adjust the focus distance to the subject position in the
scene two different strategies can be exploited: 1) auto-focus; 2) manual focusing.

In the former, focus adjustment is guided by an image contrast maximization search.
Even though this approach is highly effective in wide-view cameras, it fails at providing focused
images of moving subjects when using extreme zoom magnifications. First, the reduced width
of view perceived by the camera significantly reduces the amount of time the subject is im-
aged (approximately 1s), and the auto-focus mechanism is not fast enough (approximately 2s).
Second, the motion blur introduced in the image compromises the contrast adjustment scheme.

As an alternative, the focus lens can be manually adjusted with respect to the distance
of the subject to the camera. Given the 3D position of the subject, it is possible to infer
its distance to the camera. Then, focus is dynamically adjusted using a function relating the
subjects distance and the focus lens position. In this strategy, the estimation of 3D subject
position is regarded as the major bottleneck, since it depends on the use of stereo reconstruction
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techniques. However, this issue has been progressively addressed by state-of-the-art methods
since 3D information is critical for accurately pointing the PTZ camera.

2.2.2.4 Calibration of multi-camera systems

In a multi-camera system the cameras are, in general, supposed to cooperate and share
the acquisitions of the scene. Therefore, apart from calibrating each camera separately, in such
systems it must be defined a mapping function between the camera views that can convert a
point in the coordinate system of a camera into the one of another.

However, this is an ill-posed problem because of an important constraint of multi-camera
systems that is related to epipolar geometry. The epipolar geometry [150] is used to represent
the geometric relations of two points onto 2D images that come from two cameras when pointing
at the same location in the world coordinates (in a 3D space). Figure 2.6 shows a typical example
of epipolar geometry where a shared 3D point X is observed by both O1 and O2. We can see
that, by changing the position of X (see dots along the view-axis of O1) its projectionX1 remains
the same but it changes in X2. Only if the relative position of the two cameras is known it is
possible to estimate the match between the two image planes and therefore obtain the exact
position for both cameras. Assuming that O1 is the wide-view camera of a master-slave system
and O2 is the PTZ camera, it is not be possible to determine the pan-tilt angle necessary to
observe X by only using the information of its projection X1.

X

x
1

x2

O1 O2e1 e2

Figure 2.6: Epipolar geometry of a 3D point over two image planes. Two cameras, with their respective
centers of projection points O1 and O2, observe the point X. The projection of X onto each of the image

planes is denoted x1 and x2. Points e1 and e2 are the epipoles.

2.2.3 State-of-the-art Biometric Data Acquisition Systems

The previous sections described the principal frameworks for acquiring high-resolution
images/videos at distance, along with the typical challenges of each strategy. This section
is devoted to review the state-of-the-art systems particularly designed to acquire a specific
biometric trait using these frameworks. Similarly to section 2.2.1.2, the most relevant systems
were summarized in table 2.2 according to the type of master camera used, the accuracy of
pan-tilt estimation, the required camera disposal, the need for intermediate zoom states and
the use of calibration marks.
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2.2.3.1 Iris

Commercial iris recognition systems can identify subjects with extremely low error rates.
However, they rely on highly restrictive capture volumes, reducing their workability in less con-
strained scenarios. In the last years, different works have attempted to relax the constraints of
iris recognition systems by exploiting innovative strategies to increase both the capture volume
and the stand-off distance, i.e., the distance between the front of the lens and the subject.
Successful identification of humans using iris is greatly dependent on the quality of the iris
image. To be considered as acceptable quality, the standards recommend a resolution of 200
pixels across the iris (ISO/IEC 2004), and an in-focus image. Also, sufficient near infra-red (IR)
illumination should be ensured (more than 2 mw/cm2) without harming human health (less than
10 mw/cm2 according to the international safety standard IEC-60852-1). The volume of space
in front of the acquisition system where all these constraints are satisfied is denoted as the
capture volume of the system. Considering all these constraints, the design of an acquisition
framework capable of acquiring good quality iris images in unconstrained scenarios is extremely
hard, particularly at large stand-off distances. This section reviews the most relevant works
and acquisition protocols for iris and periocular recognition at a distance.

Current strategies to perform the acquisition of iris data in less constrained conditions
can be divided into two families, depending of whether they use (or not) magnification devices.
In terms of the approaches that make no use of magnification devices, the Iris-on-the-Move [2]
system is notable for having significantly decreased the cooperation levels required for image ac-
quisition, allowing subjects continuous movement through a portal equipped with near-infrared
illuminators. Another well known commercial device is the LG IrisAccess4000, where image is
acquired at-a-distance, provided that subjects’ gaze point at a specific direction. Magnification
devices, such as PTZ cameras, extend the system stand-off distance while providing enough res-
olution for reliable iris recognition. Wheeler et al. [151] introduced a system to acquire iris data
at a resolution of 200 pixels from cooperative subjects at 1.5 m, using a PTZ camera assisted by
two wide-view cameras. Dong et al. [152] also proposed a PTZ-based system, that images iris
data up to distances of 3 m with more than 150 pixels across the iris diameter. Yoon et al. [153]
relied on a light stripe to determine the 3D position, avoiding the use of an extra wide camera.
The Eagle Eye system [154] uses one wide-view camera and three close view cameras, for cap-
turing simultaneous images of both irises. This system has a stand-off distance of about 5 m with
a operational range of 3mx2mx3m. This system uses a bi-ocular setup, that enables to recover
the 3D world position of the subject by stereo reconstruction. Depth information cues are used
both for pan/tilt angles estimation and for getting focused data. Despite being considered more
reliable, the use of two wide-angle cameras significantly increases the system cost and limits its
flexibility. To address this problem, various commercial solutions were introduced: Mitsubishi
corporation developed a scheme where depth is estimated using the disparity between facial
features [155]. Yoo et al. [156] combined the wide-view and narrow-view cameras with a beam
splitter to simultaneously acquire facial and iris images. This integrated dual-sensor enables the
same ray to be mapped to same position in both cameras sensors, avoiding the need for depth
estimation.

2.2.3.2 Face

Face is the most popular biometric trait in surveillance scenarios when using PTZ-based
systems. This can be explained by the fact that face is the most viable trait for recognition at
a distance, due to its visibility and capability of being imaged in a covert manner.
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Table 2.2: State-of-the-art PTZ-based systems designed for acquiring biometric data. The master-slave
systems are organized with respect to the type of master camera used, the accuracy of pan-tilt
estimation, the required camera disposal, the need for intermediate zoom states and the use of

calibration marks.

System Architecture Master
Camera

Pan-Tilt
Estimation

Camera
Disposal

Int. Zoom
States

Calibration
Marks

FACE

Hampapur et al. [157] Master-Slave Wide Exact Arbitrary No Yes

Stillman et al. [158] Master-Slave Wide Approximated Specific No No

Wheeler et al. [144] Master-Slave Wide Approximated Arbitrary No Yes

Marchesotti et al. [159] Master-Slave Wide Approximated Arbitrary Yes Yes

Park et al. [149,160] Master-Slave Wide Exact Specific Yes No

Amnu et al. [161] Master-Slave Wide Exact Specific No No

Bernardin et. al [162] Single PTZ - - - - -

Mian [163] Single PTZ - - - - -

IRIS

Wheeler et. al [151] Master-Slave Wide Exact Specific Yes No

Yoon et. al [153] Master-Slave Wide Approximated Specific Yes Yes

Bashir et. al [154] Master-Slave Wide Exact Specific No No

Venug. and Savv. [164] Single PTZ - - - - -

Bernardin et al. [162] performed human detection using fuzzy rules to simulate the natural
behavior of a human operator, which ensured a smoother camera handling. A KLT tracker [33]
was used to track face keypoints over the time. Mian [163] also proposed a single PTZ-camera
system to detect and track faces over the video stream by exploiting the Camshift algorithm [165].
As already discussed in previous sections, using a single camera for detection and tracking avoids
the problems related to excessive calibration. However, especially when facing with biometrics,
multi-camera systems become necessary to deal with the problem of off-pose or occlusions.

Regarding master-slave systems, the work of Stillman et al. [158] represents one of the
first attempts where multiple cameras were combined for biometric data acquisition in surveil-
lance scenarios. Simple skin-color segmentation and color indexing methods were used to locate
multiple people in a calibrated space. Hampapur et al. [157] and Marchesotti et al. [159] used
both background subtraction techniques to extract the people silhouettes from the scene and
used appearance information to detect and track people’s faces. Appearance-based techniques
are in general computationally inexpensive but are also affected by several limitations related
to illumination and occlusions. However, in surveillance scenarios these techniques remain as
the most feasible solution to adopt. Amnuaykanjanasin et al. [161] used stereo-matching and
triangulation between a pair of camera streams to estimate the 3D position of a person. The
proposed method relies on color information of the skin to detect the faces, and the depth in-
formation from stereo-matching ensures a good estimation of the PTZ parameters to point the
camera. Wheeler et al. [144] combined a WFOV camera with a NFOV PTZ camera for acquiring
high-resolution face images at a maximum distance of 20m. However, in order to ease inter-
camera calibration, the two cameras need to be installed side-by-side and the line defined by
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the focal points of the cameras should be parallel to the ground. Park et al. [149] proposed a
very similar solution, but in this case the inter-camera calibration was obtained by relying on a
beam splitter.

2.3 Biometric Recognition in Surveillance Scenarios

This section overviews the evolution of the biometrics field over time and the main con-
cepts related to biometrics. Also, it provides a comprehensive review of the state of the art in
biometric recognition in the wild.

2.3.1 Historical Background

The term ’biometrics’ is derived from the Greek words ’bio’ meaning life and ’metric’
meaning to measure. Accordingly, biometric recognition denotes the identification/authenti-
cation of individuals based on their physical or behavioral traits.

The first recognition system using biometric data was proposed in 1883 by Bertillon where
specific lengths and widths of the head and body were used for identifying convicted criminals.
This proposal represents an important mark in the development of objective methods for iden-
tifying individuals based on their biometric traits, but it fails to provide a unique description of
an individual, as it was found that two subjects could share the same measures. The failure of
the Bertillon system allowed to conclude that a biometric should not only be easy to measure
and stable over time, but also be unique per individual. As a solution, Sir Francis Galton and Sir
Edward Henry studied the idea introduced by Henry Faulds of using fingerprints for identifica-
tion [166], and developed the first elementary fingerprint recognition system. The uniqueness
of fingerprints granted the proliferation of fingerprint recognition, being currently one the most
popular and used biometric traits used worldwide.

In spite of the good performance of fingerprint, the research community continued search-
ing for different traits (e.g., iris, face, ear, gait, keystroke, palmprint, voice, hand vein). Also,
the biometric recognition research evolved towards the development of identification/authen-
tication systems capable of working in unconstrained and non-cooperative scenarios. Among
the several proposed biometric traits, iris, periocular region, and gait are regarded as the most
promising for being acquired at a distance and without subject cooperation. These efforts have
proven to be fruitful as evidenced by the development of the Iris-On-The-Move system [2], where
subjects moving at a normal walking pace through a minimally confining portal are recognized
based on automatically acquired iris images. Currently, the focus is put on the development of
fully automated biometric recognition systems capable of operating in uncontrolled conditions,
such as the ones observed in surveillance scenarios.

2.3.2 Effectiveness Measures

The objective evaluation and comparison between biometric systems can be a hard task.
Even though it is impossible to give a single value that reflects the accuracy of a recognition
system, there are metrics that are commonly used for assessing the performance of these sys-
tems.

Let FA and N be the number of times an impostor was accepted by the system, and N

the number of recognition processes performed by impostors, respectively. The ratio between
these two metrics defines the False Acceptance Rate (FAR) of the system:
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FAR =
FA

N
, (2.2)

which measures the probability that the identity of valid users is denied.
Let FR and P be the number of times a registered user is rejected by the system, and

P the number of recognition processes performed by a registered user, respectively. The ratio
between these two metrics defines the False Rejection Rate (FRR) of the system:

FRR =
FR

P
, (2.3)

which measures the probability of a registered user be confounded with an impostor.
Both FAR and FRR vary with respect to the similarity threshold t used for accepting a

comparison between biometric signatures. By decreasing t, the number of accepted impostors
is reduced and consequently FAR diminishes, but in turn FRR increases. The inverse effect
is observed when increasing t. As such, there is an inverse correspondence between FAR

and FRR, and is the obligation of the system administrator to adjust the value of t to the
privilege the most important ratio according to the system requirements. A common approach
is to determine the threshold t that yields an equal FAR and FRR, and the value of these
ratios is denoted as the Equal Error Rate (EER). The relation between the FAR and the FRR

represents the recognition performance of the biometric system and is usually represented by
the Receiver Operating Curve (ROC), whose area under curve is commonly used to summarize
the system performance. The described measures are the most common in the evaluation of
systems working in the verification mode.

In the identification mode, the system performance is described by the relation between
the probability of observing a correct identity within the list of the most similar identities in
database, and the length of the list.

Let C(k) be the number of times that the identity of a registered user is among the
k identities retrieved by the system, and N the number of identities in the database. The
identification accuracy with respect to k is given by:

TPIR(k) =
C(k)

N
. (2.4)

The relation between TPIR and k describes the system performance and is usually rep-
resented in the Cumulative Matching Characteristic (CMC) curve.

2.3.3 Operating Modes

Independently of the used trait, biometric recognition systems follow the processing chain
illustrated in figure 2.7. First, the data acquisition module collects a biometric sample, which is
passed through the feature extraction module for producing a biometric signature of a person.
Next, the matching phase compares the signature to a set of biometric templates available in
the database and acquired during enrollment. The number of comparisons performed distin-
guishes between the two modes of performing biometric recognition: 1) verification; and 2)
identification.

In the verification mode, the system aims at answering the question: ’is this person who
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Figure 2.7: Typical stages of a biometric recognition system and the two operating modes.

he/she claims to be?’ Accordingly, the user id is provided along with the biometric sample, and
the system outputs a binary answer according to the similarity score between the biometric
signature and the biometric template available in the database.

In the identification mode, the system tries to answer the question: ’who is this person?’
For this purpose, the biometric signature is compared to the N templates of the database, and
the index of the k highest similarity scores are returned as possible user identities.

2.3.4 State-of-the-art Biometric Recognition Methods

This section reviews the most relevant biometric recognition approaches based on face or
gait. The rationale for confining the revision to these two traits is their feasibility to be acquired
at a distance. While gait can be easily acquired by any kind of surveillance camera, the face can
also be properly imaged using PTZ-based systems. However, as evidenced in section 2.2.3, the
other facial traits, such as iris, require further improvements in the resolution of the existing
frameworks to permit the acquisition of data with sufficient quality for recognition purposes.

2.3.4.1 Face Recognition

The search for algorithms that are capable of recognizing humans using the facial region
has occurred over more than 50 years. The first attempt dates back to 1964, when Bledsoe [167]
developed a facial recognition system that was based on a set of 20 distances measured from
facial keypoints. During his experiments, Bledsoe stressed that the ”great variability in head
rotation and tilt, lighting intensity and angle, facial expression and aging” make face recognition
an extremely difficult challenge. To date, these variability factors remain the primary focus of
face recognition research studies.

Turk and Pentland [168] introduced the notion of eigenfaces to represent facial features
in a low-dimensional space. Recognition was attained by projecting the new image, which is
considered to be a point in N-dimensional space, in the face space and determining the nearest
neighbor. Although the eigenfaces method is regarded as one of the first facial recognition
technologies, robustness to degradation factors, such as lighting and pose, is barely attained.
Later, Belhumeur et al. [169] improved this idea by using LDA instead of PCA to represent the
facial features. To address the pose variation, Blanz and Vetter [170] introduced morphable
models. Still images, captured at different poses, were used to build a 3D face model that
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contained shape and texture information. The model was used to generate synthetic images
under varying poses, with a view to enlarging the training set with representative images of all
possible variations.

The use of LBP [171] to encode facial features has made a significant contribution to-
ward increasing facial recognition performance in non-ideal scenarios. This strategy attained
state-of-the-art results not only in frontal faces but also in faces that were subjected to vary-
ing illumination and expression. Again, several studies used this idea to provide further ro-
bustness to unconstrained face recognition. Li et al. [172] developed an illumination-invariant
face recognition system by combining near-infrared imaging with a LBP-based face description.
Tan and Triggs [173] extended the LBP to LTP to address difficult lighting conditions. Recent
methods [174,175] have found the LPQ descriptor [176] to be more robust than LBP to specific
degradation factors, such as blur. Occlusions are another typical degradation factor of face
recognition systems, and this factor has been addressed in several studies [177]. Nevertheless,
robustness to occlusion was attained only when sparse representation techniques were intro-
duced in facial recognition [178]. These results were subsequently improved and the processing
time decreased by combining sparse coding with the ELM algorithm [179]. The advances in face
recognition performance in less constrained conditions have paved the way for face recogni-
tion in real-world scenarios, whose popularity has exponentially risen with the introduction of
LFW database [180]. The particularities of this set, such as the large variability in expression,
pose, illumination and the objective evaluation protocol, established it as the reference bench-
mark for unconstrained face recognition and fostered the development of approaches robust to
non-cooperative scenarios [181–183].

The improvement of the state-of-the-art performances of face recognition has been sup-
ported by the introduction of Convolutional Neural Networks (CNNs) [182,184–187]. Rather than
construct classification models over traditional hand-crafted features, the data-driven nature
of deep learning has successfully enhanced the robustness of learned facial features. As such,
if sufficient training data is provided, CNNs are capable of handling pose, occlusion and illumi-
nation variations of face images to a considerably high degree [188].

2.3.4.2 Gait Recognition

The way humans walk can be used for identification purposes and is usually known as
gait recognition [189, 190]. This trait is advantageous for the following reasons: 1) it can be
easily measured at a distance; 2) it is difficult to disguise or occlude; and 3) it is robust to low-
resolution images. Moreover, a recent study about the covariate factors affecting recognition
performance has found that gait is time-invariant in the short and medium term [191] thus
gaining a special attention among reliable biometric traits. On the other hand, gait strongly
depends on the control over clothing and footwear, which impacts negatively its feasibility in
surveillance scenarios.

Notwithstanding, many methods have been introduced in the literature to optimize gait
recognition systems. Ran et al. [192] created a gait signature from surveillance videos by stack-
ing the sequence in the spatiotemporal space. The symmetries of the signature patterns enable
a reliable and effective learning in the presence of imperfect gait period, self occlusion, and
clutter. Venkat and De Wilde [193] addressed the problem of low-resolution videos by combin-
ing the information from sub-gaits (a part of the silhouette of a moving body) in a probabilis-
tic approach. Moustakas et al. [194] combined the height and stride length in a probabilistic
framework to improve the accuracy of a gait recognition system. Conversely, Jung et al. [195]
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exploited gait to estimate the head pose in surveillance scenarios. In this approach, a 3D face
model was also inferred to improve recognition performance. Choudhury and Tjahjadi [196] an-
alyzed the human silhouettes inferred from gait sequences to attenuate the presence of noise
during recognition. Considering that this strategy is highly dependent on clothing, the authors
extended their approach in [197], where they introduced a strategy for handling occlusion fac-
tors caused by variations of view (e.g., subject’s clothing and the presence of a carried item).
Kusakunniran [198] introduced the space-time interest points for encoding gait. The interest
points of the walking pattern were directly estimated from raw video sequences on the spatio-
temporal feature domain, avoiding the use of pre-processing techniques (e.g., background sub-
traction, edge detection, human silhouettes and so on). The proposed method is robust to
partial occlusion caused by carrying items or variations in hair/clothes/footwear.

2.4 Summary

This chapter presented a comprehensive review of the concepts related to the stages of
automated surveillance systems intended for biometric recognition purposes. First, we reviewed
the most relevant approaches in each one of the typical stages of an automated surveillance
system. With regard to the pre-detection phase, it was interesting to note that an increasing
number of background subtraction algorithms were especially interested in providing additional
robustness to surveillance scenarios [199, 200]. This trend was confirmed by the development
of benchmarks that are specifically focused in assessing the performance of background sub-
traction in these scenarios [201]. Similarly, in the detection phase, there was an increasing
interest in extending human detection to highly challenging conditions, where a large number
of subjects move freely in outdoor scenarios. In the tracking field, in spite of the majority of
the approaches being not specifically focused on surveillance scenarios, a large effort has been
made to benchmark state-of-the-art algorithms with the VOT challenges [202], which has con-
sequently contributed to propelling forward the performance of tracking algorithms in complex
scenes. Next, we performed a comparative analysis between the most common architectures
of surveillance systems with respect to their capability of acquiring biometric samples at a
distance. Besides, we reviewed the state-of-the-art optical frameworks capable of acquiring
biometric data at a distance. Finally, we introduced the concepts related to biometrics, such
as the modes of functioning and the effectiveness measures. Also, we reviewed the state of
the art in biometric recognition in surveillance scenarios by focusing on the two most promising
traits to be acquired at a distance: face and gait.
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Chapter 3

The QUIS-CAMPI System

In this chapter, we describe the development of the QUIS-CAMPI surveillance system, an
automated surveillance system intended for acquiring biometric data at a distance from non-
cooperative subjects. As illustrated in figure 3.1, the proposed surveillance system is divided
in five major modules, broadly grouped in three main phases: 1) human monitoring; 2) inter-
camera calibration; 3) camera scheduling. The rationale behind the proposed system is to use
the PTZ camera as a foveal sensor, i.e., the video stream obtained from the wide camera is
analyzed to obtain the location of subjects’ head, so that the PTZ camera can image the facial
region at a high-magnification state. In the former phase, the master camera is responsible for
detecting and tracking multiple subjects in the surveillance area.

The methods used in each processing module are described along this chapter. First, we
detail the methods used for monitoring humans in surveillance scenarios. Then, we describe two
methods for increasing the workability of the QUIS-CAMPI system in three aspects: 1) allowing
the deployment in outdoor scenarios; 2) extending the maximum acquisition distance; and 3)
increasing the acquisition accuracy of the system. Finally, section 3.4 summarizes the major
contributions of this chapter.

Detection

Tracking

Prediction

Calibration

Scheduling

MASTER CAMERA PTZ CAMERA

Figure 3.1: Processing chain of the QUIS-CAMPI surveillance system. A master-slave architecture is
adopted for the proposed surveillance system, where the master camera is responsible for monitoring a
surveillance area and providing a set of interest regions (in this case the location of subjects face) to the

PTZ camera.

3.1 Human Monitoring

As described in section 1.1, human monitoring is beyond the scope of this thesis. Never-
theless, the detection and tracking modules are a necessary element in any surveillance system
intended for biometric recognition purposes. Accordingly, this section describes the methods
chosen for accomplishing the development of the proposed system.

3.1.1 Motion Detection

Background subtraction is typically the first phase of the processing chain of automated
surveillance systems and holds the feasibility of all the subsequent phases. Hence, it is par-
ticularly important to perceive the relative effectiveness of BGS with respect to the kind of
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Figure 3.2: The best three configurations obtained for each BGS method using an exhaustive search of
the parameter space. Blue lines denote the set of points with constant f-measure.

environment. For this reason, we performed an objective evaluation of the state-of-the-art
BGS algorithms on unconstrained outdoor environments.

For this evaluation, we selected 10 state-of-the-art background subtraction algorithms,
namely Frame Difference [20], Adaptive Median [21], Temporal Median [22], EigenBackground [83],
Single Gaussian [23], MoG [24], improved MoG [25], SOBS [199], SC-SOBS [30] and ViBe [200]. In
order to objectively distinguish between controlled and unconstrained scenarios, we introduced
the wildness metric to measure the hardness of an environment. Considering that the perfor-
mance of human detection is directly related to environment wildness, we defined the wildness
of an environment as the miss rate of a person detector:

w =
FN

TP + FN
, (3.1)

where FN and TP denote the number of false negatives and true positives yielded by the person
detector.

In our experiments, we combined two detectors to achieve human detection: 1) the
Viola-Jones detector [36], trained with human upper parts; and 2) the HOG-based person de-
tector [38]. The detectors were combined at the decision level. For evaluation, we collected
15 surveillance videos acquired from a parking lot, along with 20 videos commonly used for
BGS evaluation. The wildness metric was used to separate the test videos in two datasets:
unconstrained scenarios (w > 0.5) and controlled scenarios (w ≤ 0.5). Also, we performed
an exhaustive search through the parameter space to find the optimal configuration of each
method.

The average precision and recall were used to summarize the performance of each method
and are provided in figure 3.2. The blue curves represent constant f-measure values and improve
the visual perception of the overall performance of each method with respect to the others.

In short, the most important findings of our study were the following:

• BGS methods suffer from performance degradation in unconstrained scenarios when com-
pared to controlled environments;

• Median-based methods adapt quickly to sudden changes in the scene, maintaining an ac-
ceptable recall rate. These methods have a good trade-off between the performance in
image degradation factors and their general performance in wild scenarios;

• Although MoG has attained good performance in unconstrained scenarios, it is not adequate
for highly dynamic environments containing non-periodic changes;
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t = 7.1s

t = 8.1s

t = 8.1s

Current Head
Position

Predicted Head
Position (1s after)

Tracking Bounding
Box

PTZ View

Figure 3.3: Illustration of the importance the human path prediction in the acquisition of high-resolution
face images with a PTZ camera. The delay introduced by the mechanical operations performed by the
PTZ camera yields incorrect acquisitions when pointing the PTZ device to the current head location.

Instead, it is necessary to predict the head location for compensating this effect.

• ViBe has distinguished itself by its precision, but miss-detection of object parts represents
its major drawback;

• By maintaining a good performance in the different image degradation factors and by
attaining the best general performance, SOBS is the best method to address in-the-wild
scenarios;

• In general, BGS methods are not robust to shadows. No algorithm has stood out in the dy-
namic shadows, whereas Gaussian-based methods attained the best performance in static
shadows, mainly due to their high sensitivity to changes in the background;

• The best method (SOBS) attained an f-measure of approximately 81%, thereby we can
conclude that BGS in-the-wild remains an open problem.

3.1.2 Human Detection/Tracking

After the background modeling phase, the detection search space was confined to fore-
ground regions, ensuring real-time human detection. Considering the reduced number of pixels
representing a person when entering the surveillance area, we opted for using a holistic ap-
proach based on gradient features (refer to section 2.1 for a comprehensive review of the de-
tection strategies). Accordingly, we trained a cascade classifier using Haar-like features for de-
tecting the human full-body. Next, the detections were used to instantiate a tracking algorithm.
Multi-person tracking was achieved by using multiple instances of the Camshift algorithm [165]
running simultaneously.

The tracking record of each subject was stored both for controlling the number of times
that a person had been imaged by the PTZ camera and for inferring its position some seconds
ahead. As illustrated in figure 3.3, the latter task is particularly important to counterbalance the
time offset introduced by the mechanical delay of PTZ devices. For human position prediction,
a regression neural network was trained using 10,000 paths automatically acquired from the
tracking algorithm. At the end, this processing chain outputs a set of pixel locations at each
frame, hereinafter designed as S(t) = (xi(t), yi(t)), i ∈ N, t ∈ R, containing the coordinates of
subjects face in the next t seconds.
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Figure 3.4: Illustration of the principal bottleneck of master-slave systems and the proposed strategy to
address this problem. The same image pixel (xs, ys) corresponds to different 3D positions and

consequently to different pan-tilt {θp, θt} values. Our work is based on the premise that human height
can be exploited to infer depth information and avoid that ambiguity.

3.2 Proposed Master-slave Calibration Method

As previously discussed in section 2.2, the use of a PTZ camera assisted by a wide-view
camera (master-slave configuration) is the most effective strategy for acquiring biometric data
at a distance in surveillance scenarios. However, as illustrated in figure 3.4, the calibration
between the cameras is the major bottleneck of this approach. To address this problem, most
master-slave systems use 2D-based approximations, but, in turn, they are compelled to rely on
different assumptions (e.g., similar points-of-view [144], intermediate zoom states [132, 159])
to alleviate pan-tilt inaccuracies. The use of multiple optical devices has been pointed as a
solution to infer depth information through triangulation [149, 160], but the highly stringent
disposal of the cameras restrains its use in outdoor environments and its operating range (up to
15m). A comparative analysis between the most relevant master-slave systems is provided in
section 2.2.1.2.

Considering the drawbacks of the state-of-the-art master-slave systems, we propose a
calibration algorithm capable of accurately estimating pan-tilt parameters without resorting
to intermediate zoom states, multiple optical devices or highly stringent configurations. Our
approach exploits geometric cues, i.e., the vanishing points available in the scene, to automat-
ically estimate subjects height and thus determine their 3D position. Furthermore, we have
built on the work of Lv et al. [203] to ensure robustness against human shape variability during
walking. Considering that the proposed calibration algorithm is intended to be integrated in an
automated surveillance system, we have also assessed the performance of the proposed algo-
rithm using two challenging scenarios: 1) automatic estimation of head and feet locations using
a tracking algorithm; and 2) incorrect vanishing point estimation.

3.2.1 Our Method

We start by introducing the notation used in our description:

• (X,Y, Z) : the 3D world coordinates;

• (Xs, Ys, Zs) : the 3D coordinates in the static camera world referential;

• (Xp, Yp, Zp) : the 3D coordinates in the PTZ camera world referential;
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• (xs, ys) : the 2D coordinates in the static camera image referential;

• (xt, yt) : the 2D coordinates of a head in the static camera image referential;

• (xp, yp) : the 2D coordinates in the PTZ camera image referential;

• (θp, θt, θz) : the pan, tilt and zoom parameters of the PTZ camera.

In the pin-hole camera model, the projective transformation of 3D scene points onto the
2D image plane is governed by:

λ

 xt

yt

1

 = K [R |T ]︸ ︷︷ ︸
P


X

Y

Z

1

 , (3.2)

where λ is a scalar factor, K and [R |T ] represent the intrinsic and extrinsic camera
matrices, which define the projection matrix P.

Let pt = (xt, yt). Solving equation 3.2 for (X,Y, Z) yields an under-determined system,
i.e., infinite possible 3D locations for the face. As such, we propose to solve equation 3.2 by
determining one of the 3D components previously.

By assuming a World Coordinate System (WCS) where the XY plane corresponds to the
reference ground plane of the scene, the Z component of a subject’s head corresponds to its
height (h). The use of height information reduces the equation (3.2) to:

λ

(
pt

1

)
= [p1 p2 hp3 + p4]

 X

Y

1

 , (3.3)

where pi is the set of column vectors of the projection matrix P. As such, our algorithm works
on the static camera to extract (xt, yt) and infer the subject position in the WCS using its height.

3.2.1.1 Height Estimation

To perform height estimation, we rely on the insight that surveillance scenarios are typ-
ically urban environments with useful geometric information that can be exploited, such as
vanishing points and vanishing lines.

As in [204], three vanishing points (vx,vy,vz) are used for the X, Y and Z axis, in order
to infer the height of a subject, which is vertical to a planar surface. vx and vy are determined
from parallel lines contained in the reference plane, so that the line l defined by these points
represents the plane vanishing line.

Given l, vz, the head (pt) and feet (pb) points in an image, the height of a person can be
obtained by:

h = − ∥pb × pt∥
α(l.pb)∥vz × pt∥

, (3.4)

where α = −∥prb ×prt∥/(hr(l.prb)∥vz ×prt∥), whereas prt and prb are the top and base points
of a reference object in the image with height equal to hr.
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3.2.1.2 Pan-Tilt Angle Estimation

Considering the referential depicted in figure 3.4 and assuming θip = 0, the center of
rotation of the PTZ camera is given by C = (0, ρ sin θit,−ρ cos θit), being θit and θip the initial
pan and tilt angles,respectively, and ρ the displacement between the mechanical rotation axis
and the image plane. In general, ρ can be approximated by the camera focal distance f.

Given the 3D coordinates (X,Y, Z) of a point of interest in the WCS, the location of that
point in the PTZ referential is obtained by:

 Xp

Yp

Zp

 = [R |T ]


X

Y

Z

1

 , (3.5)

and the corrected coordinates are given by:

 X ′
p

Y ′
p

Z ′
p

 =

 Xp

Yp − ρ sin θit

Zp + cos θit

 . (3.6)

The corresponding pan and tilt angles are given by:

θp = arctan

(
X ′

p

Z ′
p

)
, (3.7)

and

θt = arcsin

 Y ′
p√

(X ′
p)

2 + (Y ′
p)

2 + (Z ′
p)

2

 . (3.8)

3.2.2 Experimental Results

To validate the proposed approach, the following procedure was adopted: given (xs, ys)

and its corresponding (xp, yp) point, the algorithm error ∆θ was determined by the angular dis-
tance between the estimated (Xp, Yp, Zp) and the 3D ray associated with (xp, yp). As compared
to the typical reprojection error, this strategy was advantageous in the sense that it allowed a
direct comparison with the PTZ Field of View (FOV). Additionally, the height estimation per-
formance in surveillance scenarios was also assessed by determining the deviation ∆h from the
true height of the subjects.

The performance of our approach was assessed by carrying out three distinct evaluations:
1) height estimation performance; 2) independent performance analysis; 3) integration in an
automated surveillance system.

In all evaluations, we used videos of ten different persons - comprising more than 1,000
frames - acquired both by the static and the PTZ camera while walking throughout an outdoor
parking lot. Each pair of corresponding frames was annotated to mark the pixel location of the
head and feet, in order to determine the performance of the proposed method with respect to
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Figure 3.5: Height estimation performance in surveillance scenarios. Two distinct evaluations were
carried out: an independent analysis (using manually annotated data) and the integration in an

automated surveillance system (using data automatically obtained from a tracking module). Also, the
accuracy of height estimation for vertical poses is presented, as well as the impact of noisy vanishing

points.

∆h and ∆θ, which, in this case, corresponds to the angular distance between the estimated
face location and its real position.

Besides, it is worth noting that in all evaluations a comparative analysis between inferring
intrinsic and extrinsic camera parameters from Calibration Patterns (CB) and Vanishing Points
(VP) was performed.

Furthermore, the inherent difficulties in accurately estimating vanishing points locations
were taken into account. To assess the impact of incorrect vanishing point estimation, the
previous experiments were replicated and the vanishing points location corrupted by a zero
mean, Gaussian noise with standard deviation of 10px.

Finally, the feasibility of our approach in surveillance scenarios was determined by con-
fronting ∆θ with the PTZ FOV at different zoom magnifications (figure 3.8). The percentage
of faces successfully acquired summarizes the overall performance of the proposed calibration
algorithm. The attained results for the several evaluations described are presented in table 3.1
and compared with the work of Senior et al. [205].

3.2.2.1 Height Estimation Performance

The obtained results for height estimation in surveillance scenarios are presented in fig-
ure 3.5. With regard to the type of data used, the distribution of ∆h evidences that, in average,
automatic height estimation is accurate (∆h ≈ 0 and σ∆h = 6 cm) for manually annotated data,
while, it tends to overestimate the subjects height when using automatic annotations. We
believe that a more robust tracker is likely to provide closer approximations to the manual an-
notations. Figure 3.6 illustrates three examples of incorrect height estimation due to the output
of the tracking algorithm.

Furthermore, the approximately similar distribution of the second and third quantiles for
correct and noisy vanishing points suggest that in the majority of the cases the aggregated noise
did not significantly affect the height estimation performance. Only strong deviations in the
vanishing points - typically more than 10px (the standard deviation used in our experiments) -
severely affect height estimation performance.

Finally, it is worth noting that, by building on [203], it is possible to narrow the height
estimation error by relying solely on vertical poses. This result constitutes the basis of our
future work, since the method accuracy may be improved by correcting height estimation on

35



The QUIS-CAMPI System

(a) Feet and head marked manually

(b) Feet and head marked automatically

Figure 3.6: Examples of height estimation in surveillance scenarios using manually annotated data and
automatic annotations obtained from a tracking algorithm. Note that the true height is 168 cm.
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Figure 3.7: Overall performance of the proposed system. Two distinct evaluations were carried out: an
independent analysis (using manually annotated data) and the integration in an automated surveillance

system (using data automatically obtained from a tracking module). Additionally, two calibration
strategies are compared, as well as the impact of noisy vanishing points.

non-vertical poses with information obtained from the vertical ones.

3.2.2.2 Independent Performance Evaluation

To assess the performance of the proposed calibration algorithm apart from the errors
induced by the preceding phases of a surveillance system, the test videos were manually anno-
tated, as described in section 3.2.2. The attained results are presented in figure 3.7.

Regarding the strategy used for determining the camera projection matrix, it is evident
that the use of vanishing points is advantageous in surveillance scenarios. The failure of typical
calibration algorithms using planar calibration patterns can be explained by the arduousness
in estimating the extrinsic parameters in outdoor scenarios. Ground irregularities and the re-
duced size of calibration patterns, when compared to the extent of surveillance environments,
are the principal factors of inaccurate estimation of the rotation and translation matrices. On
the contrary, in such scenarios, vanishing points are straightforward to determine using pairs
of parallel lines. Also, small inaccuracies in their estimation do not affect severely the perfor-
mance of our approach (compare the differences in the average of ∆θ when using VP), which
provides additional support to the idea that a calibration based on vanishing points is preferred
in surveillance scenarios.
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Table 3.1: Percentage of faces successfully acquired. The performance of our method is compared for
different calibration strategies (CB and VP) with [205], when using manual and automatic annotations.

Evaluation Method Without Noise (%) With Noise (%)

Manual
Senior et al. [205] 30.3 -
Our approach (CB) 58.4 57.2
Our approach (VP) 89.4 89.1

Automatic
Senior et al. [205] 4.8 -
Our approach (CB) 54.0 52.12
Our approach (VP) 87.6 87.5

Finally, the overall performance of the proposed algorithm has been summarized as the
percentage of faces successfully acquired. This analysis was performed by comparing ∆θ to the
PTZ FOV at a given distance and the attained results are presented in table 3.1. A comparative
analysis with the results presented in [205], which also used height information to determine the
3D location of subjects, evidences a great improvement in the success rate, when considering
the independent performance of the calibration module (manual data).

3.2.2.3 Integration in an Automated Surveillance System

Contrary to the previous evaluations, this experiment aims at analyzing the impact of
inaccuracies yielded by a tracking algorithm. For this purpose, the test videos were provided
to an adaptive background subtraction algorithm [25] to automatically obtain head and feet
locations through morphological operations.

The attained results are presented in figure 3.7 and, as in section 3.2.2.2, it is clear that
the use of vanishing points is advantageous in surveillance scenarios when compared to typical
calibration approaches. With regard to the type of data used, it is interesting to note that the
integration of the proposed algorithm in an automated surveillance system does not severely
degrade the accuracy of the method (note the small differences in the average of ∆θ). Also,
the same conclusion holds when comparing the use of correct and noisy vanishing points. These
conclusions are also supported by the attained results presented in table 3.1. An automated
surveillance system using the proposed method achieves an 87% success rate in capturing facial
images at a distance using the maximum camera zoom, which outperforms the 4.8% success rate
attained in [205].

In order to provide further insights about the success rate of the proposed approach with
respect to the zoom magnification used, we compare the pan ∆θp and tilt ∆θt displacements
with the PTZ FOV for different zoom magnifications in figure 3.8. Notice the extremely narrow
FOV when using large zoom magnifications, and consequently, the importance of an accurate
estimation of pan-tilt parameters.

3.2.3 Conclusion

In the previous sections, we described the proposed master-slave calibration algorithm
to accurately estimate the pixel to pan-tilt mapping using 3D information. Our work was based
on the premise that inverse projective transform was feasible if one of the 3D components
was known. Accordingly, we have shown that subjects height - which can be estimated from
geometric available in the scene - is a valid information to solve this problem.

The workability of the proposed system was evidenced by the following results: 1) au-
tomatic height estimation is feasible in surveillance scenarios, particularly if combined with
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Figure 3.8: Accuracy of the proposed calibration algorithm. The pan and tilt errors are presented for two
distinct calibration strategies (CB and VP). Notice the large difference between the FOV of the minimum
(1x) and maximum (30x) zoom magnifications, and the importance of accurate pan-tilt estimation (at the
maximum zoom the tilt error cannot exceed 0.5◦ to ensure a successful capture). Even so, our method

has a success rate of 89% when provided with manual data.

a vertical pose filter; 2) the typical displacement between the estimated 3D position and the
actual face location enables face acquisition in 89% of the cases and in 87% of the cases when
integrating the calibration algorithm in automated surveillance system; 3) the system perfor-
mance is not severely affected by small deviations in vanishing point locations (up to 10 px).

3.3 Proposed PTZ Scheduling Method

In real surveillance scenarios, it is quite common that the number of targets exceeds
the available PTZ cameras, and the surveillance system should be capable of autonomously
deciding the best sequence of observations. For this purpose, we propose a camera scheduling
approach capable of determining - in real-time - the sequence of acquisitions that maximizes
the number of different targets obtained, while minimizing the cumulative transition time. Our
approach models the problem as an undirected graphical model Markov Random Field (MRF),
which energy minimization can approximate the shortest tour to visit the maximum number of
targets. A comparative analysis with the state-of-the-art camera scheduling methods evidences
that our approach is able to improve the observation rate while maintaining a competitive tour
time.

3.3.1 Camera Scheduling Methods

Camera scheduling in PTZ-based systems can be broadly divided in coverage and saccade
approaches. In the former, the cameras are set in an intermediate zoom state so that multiple
targets are observable by the same device. The goal is to maximise the number of targets seen
by the complete set of cameras [136,206,207].

On the contrary, in a saccade approach each camera just observes one target at a time.
A sequence of saccades is planned, in real-time, to maximize the number of different targets
observed and minimize the cumulative transition time. Some works have presented solutions to
variants of this problem [208], but Costello et al. [209] were the first to explicitly define and
propose a solution to this problem. Considering the similarities with the network packet routing
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problem, the authors proposed the use of the current minloss throughput optimal to schedule a
set of observations. Targets weights were determined by their residual time to exit the scene
and the observation sequence was constructed by minimizing the expected weighted loss, i.e
the sum of targets weights not observed. Bimbo and Pernici [210] addressed the problem by
modeling it as the kinetic traveling salesman problem, an extension of the classical traveling
salesman problem where the cities positions change over time. However, this problem has not
a known solution that runs in polynomial time, which restrains its use in real-time scenarios.
To address this issue the kinetic traveling salesman problem is solved, by exhaustive search, for
the six targets with the shortest deadlines. A similar strategy was used in [211], where a greedy
best-first search was employed to determine the optimal plan. Qureshi and Terzopoulos [212]
relied on greedy algorithms such as the shortest elapsed time first and weighted round robin.
The weighted round robin is able to efficiently distribute targets to different cameras, however,
at each camera, the waiting list was scheduled based on a multi-class First-come, First-served
(FCFS) policy, i.e. the class was determined by the number of times the person had been imaged.
In [139] the best-first heuristic was advocated as a good approximation to dynamically estimate
new observation plans. Targets were modeled as graph nodes and transition costs were defined
according to their distance to the camera and expected time to exit the scene. Lim et al. [213]
constructed a directed acyclic graph based on the starting time of ’task visibility intervals’,
which were inferred by prediction. The scheduling problem was formulated as a maximal flow
problem and a dynamic programming scheme was proposed to solve it. Ilie and Welch [214]
relied on a greedy algorithm to determine a plan based on geometric reasoning.

3.3.2 Our Method

As figure 3.9 illustrates, the proposed model is composed of N vertices, which represent
the position of each target in the sequence of saccades. Also, each vertex can be assigned to N

different labels, corresponding to theN targets in the scene. This structure allows to determine
the order that each target will be observed by taking into account both the temporal constraints
(vertex information) and the transition costs (pairwise relations between vertices).

LetG = (V,E) be a graph representing a MRF, composed of a set of tv vertices V , linked by
te edges E. The MRF is a representation of a discrete latent random variable L = {Li},∀i ∈ V ,
where each element Li takes one value lu from a set of labels.

In this problem, a MRF configuration l = {l1, ..., ltv}, determines an acquisition sequence
of N targets. Besides, we define G to be a complete graph, whose edges encode the cost of
assigning the target lu to the ith position and the the target lv to the jth position. The edges
between consecutive vertices correspond to the transition cost of moving the camera from the
target u to v, whereas the edges of non-consecutive vertices are used to avoid repetitions in the
sequence of observations. The energy of a configuration l of the MRF is the sum of the unary
θi(lu) and pairwise θi,j(lu, lv) potentials:

E(l) =
∑
i∈V

θi(lu) +
∑

(i,j)∈E

θi,j(lu, lv). (3.9)

According to this formulation, determining the best tour is equivalent to infer the random

39



The QUIS-CAMPI System

variables in the MRF by minimizing its energy:

l̂ = argmin
l

E(l), (3.10)

where l̂1, ..., ˆltp are the targets index. As an example, if four targets are considered, the
configuration {2, 3, 1, 4} determines p2 as the first subject to be visited, p3 as the second, and
so on.

The MRF was optimized according to the Loopy Belief Propagation [215] algorithm. Even
though it is not guaranteed to converge to global minimums on loopy non-submodular graphs
(such as our MRF), we concluded that the algorithm provides good approximations (refer to
section 3.3.3).

θ1,2(li, lj)
1st 2nd

3rd4th

l1 l1

l1l1

l2 l2

l2l2

l3 l3

l3l3

l4 l4

l4l4

1

θ 1
,4
(1
, 3
)

θ1(2)

Figure 3.9: Illustrative example of the MRF used in our approach when four targets are in the scene.
Labels encode the set of targets in the scene, whereas the nodes correspond to the order that they will

be imaged.

3.3.2.1 Unary and Pairwise Potentials

We first define the notation used to describe the proposed approach.

• pu(t) = (xu(t), yu(t), zu(t)) : the 3D position of the uth target at time t;

• α(pu) : the pan angle corresponding to the cartesian coordinates of pu;

• β(pu) : the tilt angle corresponding to the cartesian coordinates of pu;

• Λu(t) : expected time to target pu leave the scene;

• τ : average time required to acquire a target.

In this problem the unary costs of the first vertex have been modelled as the transition
cost to move the camera from the actual position to each target. Besides, targets deadline (Λi)
is also taken into account by greatly penalizing sequences with Λi(t) < ε in last vertices:

θi(lu) =


K
(
α(C)− α(pu(t)), β(C)− β(pu(t))

)
, if Λi(t) > ε,

0, Λi(t) < ε and i = 1,

∞, otherwise,

(3.11)
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Figure 3.10: Illustration of the discrete grid used to model human transitions with respect to angular
direction and velocity module. Adapted from [216].

where C is the ground cartesian coordinate to which the camera is pointing, whereas
K : (α, β) → ∆ is a camera dependent function that determines the consumed time ∆ to change
pan and tilt values by α and β, respectively. The pairwise potential between two adjacent
vertices θi,j(lu, lv) is defined as the time required to point the camera to pv assuming that is
pointing to pu:

θi,j(lu, lv) =


K(a, b), if u ̸= v and c(u, v) = 1,

0, if u ̸= v and c(u, v) = 0,

∞, otherwise,

(3.12)

where a = α(pu(t+ τ ∗ i))−α(pv(t+ τ ∗ j)) and b = β(pu(t+ τ ∗ i))− β(pv(t+ τ ∗ j)). The
logical function c determines if u and v are two consecutive vertices. Besides, the estimation
of pu(t+ τ ∗ i) is attained by predicting targets position using a constant velocity model.

3.3.2.2 Virtual Path Generation

The assessment of camera scheduling performance can be carried out using two distinct
strategies: 1) integration in a running automated surveillance system; 2) performing an inde-
pendent evaluation using pre-acquired human walks from the tracking module of a calibrated
camera. In the former case, the results may be misleading, since it is difficult to separate
the performance of the control module from the overall system. On the other hand, relying
on pre-acquired human walks greatly limits the number of available paths. The use of ran-
domly generated walks can overcome dataset size limitations, but it is highly prone to generate
non-plausible paths.

Consequently, we used a virtual human walk generator to perform an independent eval-
uation of camera scheduling algorithms. Rather than assume constant direction and velocity
model [210] - which restricts data variability - we built on the works [216, 217] to generate a
virtually unlimited number of synthetic human walks.

Let (x(t), y(t), z(t)) be the position of a target p at the time t and v(t) the velocity vec-
tor, targets movement is discretized into a grid with eleven possibilities in angular direction
and three possibilities in acceleration ratio, as illustrated in figure 3.10. Path generation is
performed by iteratively sampling the P (θ, r) distribution to determine p(t + 1). In order to
capture the typical behavior of humans in surveillance scenarios, the distribution P is inferred
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Figure 3.11: Examples of three virtual paths generated using the conditional distribution
p({θt, rt}|({θt−1, rt−1}, ..., {θt−n, rt−n}) for different values of n. Note the increasingly linear shape of

paths with respect to n.

from a set pre-acquired human walks. Additionally, we adopt the ’toward destination’ behavior
- described in [217] - by dynamically re-weighting P with respect to the desired destination.

However, this strategy is memoryless, i.e., it does take in account the previous (θ, r)

transitions to decide the next state, which, again, may yield non-plausible paths. To address
this issue we rely on the conditional distribution p({θt, rt}|({θt−1, rt−1}, ..., {θt−n, rt−n}).

In our experiments, we have acquired ten paths from ten persons walking through a park-
ing lot of 20 m by 40 m at ten frames per second - corresponding to more than 30,000 human
path positions - to infer P (θ, r).

Figure 3.11 illustrates the effect of n on path irregularities, such as small loops. Even
though higher values could improve path reality, it would also require a higher number of training
data to accurately infer the distribution p. As such, we use n = 3 in the evaluation of the camera
scheduling algorithms.

3.3.3 Experimental Results

In this section, we evaluate the proposed approach using a virtual simulation. To replicate
the conditions of a common surveillance scenario, the scene size used was similar to a typical
parking lot (20 x 40 m) and the camera was assumed to be located at (0,0,5m). Also, targets
paths were generated using the method described in section 3.3.2.2 and their initial positions
were randomly selected. A Hikvision DS-2DF PTZ camera was used to estimate the function K
in a similar fashion as in [210]. All experiments were performed in an Intel Core i7-2700K @
3.50GHz.

Considering that we were interested in evaluating the time required to observe all the
targets and the number of targets successfully acquired, the simulation S was defined as S : P →
{Γ,Θ}, where P = {p1(t), p2(t), ..., pn(t)} defines the targets positions with respect to time,
Γ = {t1, t2, ..., tk} defines the consumed time during the kth acquisition tour when all the targets
were in the scene, and Θ = {c1, c2, ..., ck} the number of targets successfully acquired in each
acquisition tour. To avoid disparate values of k in the same simulation for different algorithms,
we opted to restrain the simulation to a single tour, i.e. k = 1. Algorithm 1 presents the
pseudocode of the proposed simulation.

Our approach was compared to typical schedule routines adopted in [209, 212, 218],
namely the FCFS and the Earliest Deadline First (EDF). Moreover, a comparison with the works [210]
and [139], hereinafter designated as TDO and Krahn et al., was also performed.
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Data: P , camera schedule algorithm F , service time s
Result: t1,c1
t=0;
t1=0,c1=0;
waitList={1, 2, ...,#P};
while !isempty(waitList) do

select next target p = F (P );
compute transition cost ∆;
remove p from waitList;
if Λa(t) < ε then

t1 : t1 + ∆ + s;
c1 : c1 + 1;

end
end

Algorithm 1: Pseudocode for the simulation used to evaluate the performance of camera
scheduling approaches.
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Figure 3.12: Comparative analysis of the consumed time (Γ) required to observe N persons in the scene.
a) Our approach is compared with common scheduling routines previously used in PTZ-based

systems [209,212,218]. b) The comparison with the most competitive state-of-the-art methods is
presented separately for visualization purposes.

3.3.3.1 Cost Time

The analysis of Γ with respect to N furnishes insight about the algorithms efficiency to
acquire a set of N targets. Figure 3.12 depicts the results attained using 100 simulations for
up to 15 targets. Regarding the comparison with naive schedule approaches - figure 3.12a) -
it is evident that the MRF-based algorithm can acquire a set of N persons faster, allowing the
camera to repeat the acquisition sooner and thus collect more pictures. When considering the
comparison with the work of Bimbo and Pernici [210] - figure 3.12b) - it is worth noting that our
approach is unable to improve TDO results up to N = 6. This is explained by the six element
queue used to prioritize targets with the shortest deadlines and the use of an exhaustive search
to determine the best solution for this subset. As compared to the algorithm of Krahnstoever et
al. [139], the improvements can be explained by the assumption that the best target is the one
with the lowest transition cost. Even though this solution can provide good approximations, it
can be improved by taking into account the positions of the remaining targets as performed in
our MRF model.

3.3.3.2 Observation Rate

Additionally, we have also evaluated the average observation rate (ΘN ) with respect to
the number N of targets in the scene. The results presented in figure 3.13 clearly evidence an
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improvement in the number of successfully observed targets as compared to the most compet-
itive alternatives regarding the Γ performance. This difference can be explained by the fact
that the remaining approaches are mainly concerned with the minimization of tour cost.
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Figure 3.13: Comparative analysis of the average observation rate of the proposed algorithm with the
most competitive alternatives regarding the Γ performance.

3.3.3.3 Run-time Analysis

Considering the real-time requirement of the camera scheduling problem, we have esti-
mated the average speed of the proposed algorithm with respect to the number of targets in
the scene. For this purpose, 100 simulations were used to estimate the average running time
for up to twenty targets, as illustrated in figure 3.14. Our approach is capable of planning a
sequence of saccades in less than 30 ms for up to 15 targets, which is residual when compared
to the average time (600 ms) that the PTZ camera takes to move and acquire a shot of a target.
Moreover, it is worth noting that for N = 15, the proposed algorithm is 108 times faster than an
exhaustive search.
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Figure 3.14: Average running time.

3.3.4 Conclusion

In the latter sections, we were concerned about the time costs of dynamic camera schedul-
ing algorithms, which are prohibitive for crowded scenes, i.e., with over 15 subjects in the
scene. Accordingly, we modeled the dynamic camera scheduling problem using a MRF model.
By denoting each vertex as the position of a target in the sequence plan, our approach can take
into account temporal constraints (targets deadlines) and transitions costs between consecutive
vertices. The energy minimization of the MRF model yields - in real-time - a tour to acquire the
maximum number of different targets while minimizing the total travel time.
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Additionally, a realistic virtual simulation was proposed to assess the performance of cam-
era scheduling algorithms. The use of realistic human walk generator - trained from real human
paths - permitted to overcome dataset size constraints while maintaining the plausibility of
human walks. A comparative performance analysis with state-of-the-art approaches evidences
that the proposed model is able to improve the observation rate while maintaining a competitive
tour time.

3.4 Summary

In this chapter, we described the necessary modules for the development of an automated
acquisition system capable of acquiring high-resolution biometric data at a distance from non-
cooperative subjects, the QUIS-CAMPI system.

Having concluded that the master-slave architecture is the most practical configuration
for ensuring that the acquired biometric samples have a sufficient resolution to be used for
recognition purposes, we focused our research on developing new strategies to address the
drawbacks of this architecture.

Accordingly, we proposed a master-slave calibration algorithm capable of accurately es-
timating the correspondence between the master camera coordinates and the orientation angle
of the PTZ camera. When compared to the state-of-the-art master-slave systems, this proposal
is advantageous because it avoids the use of extra optical devices for ensuring an accurate map-
ping. Besides, our approach does not depend on stringent configurations, which is beneficial
for increasing the working distance of the acquisition system.

The other proposal concerns the time costs of PTZ camera scheduling algorithms, which
are prohibitive for crowded scenes, i.e., with over 15 subjects in the scene. We described a
method to determine - in real-time - the tour that maximizes the number of different targets
observed and minimizes the total travel time.

In short, it is our belief that the proposals described in this chapter contribute to im-
prove the workability of biometric data acquisition systems, not only by extending the stand-off
distance of the system, but also by increasing the number of biometric samples acquired.

45



The QUIS-CAMPI Data Feed

46



The QUIS-CAMPI Data Feed

Chapter 4

The QUIS-CAMPI Data Feed

Biometric datasets are an important asset to push forward the state-of-the-art recog-
nition performance. As an example, we highlight the evolution of face recognition datasets,
which have moved towards more challenging conditions (e.g., the Labeled Faces in the Wild
(LFW) [180]), as novel algorithms surpass the challenges of the hardest sets. The LFW dataset
has paved the way for biometric recognition in the wild, and fostered the development of even
more challenging datasets. Nonetheless, as noted by Klare et al. [219], one explanation for un-
constrained face recognition being still far from solved is that the LFW and similar datasets are
not fully unconstrained. To close this gap, Klare et al. [219] introduced the IJB-A dataset, which
follows the spirit of LFW but includes high variability in pose. However, even this challenging
dataset does not encompass the complete set of covariate factors present in real surveillance
scenarios, as the majority of the images were not acquired on the move and in an automated
manner. For this reason, the levels of blur caused either by motion or incorrect focusing are
reduced.

Considering that none of the existing datasets is suitable for the evaluation of biometric
recognition in surveillance scenarios, we propose the QUIS-CAMPI data feed, whose acronym
derives from Latin and summarizes its goals: ’Quis’ stands for ’Who is’ and ’Campi’ refers to
a delimited space. Hence, this set aims at fostering the development of biometric recognition
systems that work outdoors, in fully unconstrained and covert conditions. To this end, we relied
on the QUIS-CAMPI system (described in section 3) to capture both full body video sequences and
high-resolution face images of subjects in a parking lot. The particularities of the surveillance
system permit the continuous acquisition of novel biometric samples that are supplied to the
dataset after being manually screened and associated to the corresponding gallery subjects.

The remainder of this chapter is organized as follows: section 4.1 overviews the datasets
for assessing the recognition performance in these environments. A detailed description of the
proposed dataset is given in section 4.2. Section 4.3 describes the evaluation protocol and
compares the results attained by state-of-the-art face recognition algorithms in the QUIS-CAMPI
and LFW datasets, and the major conclusions are summarized in section 4.4.

4.1 Biometric Datasets

About 25 years ago, biometric recognition emerged as an interesting topic, leading to
the development of many novel algorithms, usually validated in small, non-representative and
proprietary databases, according to distinct evaluation protocols. To meet the growing demands
for objective evaluation tools, sets of biometric samples comprising different covariate factors
were introduced as a solution. The ORL database of faces [233], the AR face database [234]
and the Yale face database were pioneer sets on face recognition, while FERET [235] was the
first benchmark on this topic. Despite their valuable contribution in providing objective and
trustworthy tools for assessing recognition performance, these sets soon became outdated as
novel algorithms reported almost ideal accuracy on these data.
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Table 4.1: Comparative analysis between the datasets particularly devised for studying unconstrained
biometric recognition. Datasets are compared with respect to the number of subjects available and the
key covariate factors of recognition in the wild: expression (E), occlusion (O), illumination (I), pose (P),
motion-blur (M) and out-of-focus (F). Also, the key aspects to ensure that the data realistic result from
real-world scenarios are also included. The abbreviations of these aspects refer to non-cooperative (NC),

on the move (OM), at a distance (AD), outdoor (OU) and automated image acquisition (AA).

Number of
subjects

Covariate
Factors NC OM AD OU AA Observations

XM2VTS
[220] 295 E, I, P 3

A multi-modal database comprising face images, video sequences and
speech recordings acquired at one month intervals.

BANCA
[221] 26 E, I, P 3

A database of face videos comprising twelve recordings per subject
were acquired under controlled, uncontrolled and adverse conditions.

FRGC [222] 688 E, I 3
Four controlled still images, two uncontrolled still images and a 3D

face model.

FRVT
2006 [223] > 35 000 E, I 3

The first independent performance benchmark for 3D face recognition
technology. Also, it comprises still frontal face images acquired under

controlled and uncontrolled illumination.

GBU [224] 437 E, I 3

A subset of images from FRVT 2006 was divided in three distinct
groups (good, bad and ugly) according to the recognition error

obtained by the best algorithms of FRVT 2006.

MBGC [225] 570 (still)
147 (video)

E, I 3

This set was used to promote two distinct face recognition challenges:
1) the still face challenge problem, comprising frontal and off angle

still face images taken under uncontrolled indoor and outdoor
lighting; 2) the video challenge problem containing videos acquired in

unconstrained environments.

SC-
FACE [226] 130 E, I, P 3 3

Facial imagery acquired in an indoor surveillance scenario using five
video surveillance cameras of various qualities.

LDHF-
DB [227] 100 I, F 3 3

This set comprises both visible and near-infrared face images at
distances of 60m, 100m, and 150m acquired outdoors.

LFW [180] 5749 E, O, I, P 3 3
The first database of face photographs designed for the study of

unconstrained face recognition.

PubFig [228] 200 E, O, I, P 3 3
Similar in spirit to the LFW dataset, but the number of images per

person is higher.

FaceScrub
[229] 530 E, O, I, P 3 3

A dataset with over 100,000 face images automatically retrieved from
the internet taken under real-world situations.

IJB-A [219] 500
E, O, I,

P,M 3 3
Similar in spirit to the LFW dataset, but containing high-variability in

pose.

YouTube
Faces [230] 1595

E, O, I, P,
M 3 3

A database of face videos designed for the study of unconstrained
face recognition in videos.

Choke
Point [231] 25

E, O, I, P,
M 3 3 3

A database of face videos acquired indoors in a non-cooperative
manner.

PaSC [232] 293 E, I, P, M 3 3 3

This dataset comprises still images acquired with varying sensors,
locations, pose and distance from the camera. Also, a subset of

subjects was recorded carrying out simple actions.

QUIS-
CAMPI 268 (v1)

320 (v2)

E, O, I, P,
M, F 3 3 3 3 3

The first data feed of biometric samples automatically acquired by an
outdoor surveillance system, with subjects on the move and at a

distance.
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These improvements fostered the development of more challenging datasets, such as the
CMU PIE [236], the Multi-PIE [237], the XM2VTS [220] and the BANCA [221] databases, comprising
biometric samples with significant variations in illumination, pose and expression. Also, differ-
ent challenges were introduced for assessing the accuracy of state-of-the-art face recognition
methods in less constrained scenarios (e.g., the Face Recognition Grand Challenge [222] and the
Face Recognition Vendor Test (FRVT) 2006)).

Aiming at providing more realistic data, the research has advanced towards the acquisition
of unconstrained samples along the diverse biometric traits, such as iris [238], periocular [239,
240] and face [241]. Regarding face recognition, LFW was the first database particularly devised
for studying face verification in the wild and was, therefore, responsible for promoting the
development of more robust algorithms (an increment of 10% in the recognition accuracy in last
years), as well as for fostering the emergence of more challenging collections of data (e.g.,
PubFig [228], FaceScrub [229], IJB-A [219] and Disguise and Makeup Faces Database [242]).

Simultaneously, still to video modality has also gained increasing attention leading to the
development of novel datasets and biometric challenges on this topic. The video challenge por-
tion of the Multiple Biometrics Grand Challenge (MBGC) contained subjects walking towards the
camera and non-frontal footage of subjects performing an activity. Later, the Point and Shoot
Face Recognition Challenge (PaSC) was introduced, comprising unconstrained video sequences
of subjects performing multiple activities outdoors. The YouTube Faces database [230] contains
unconstrained recordings obtained from the internet, and it was particularly designed for study-
ing the problem of unconstrained face recognition in videos. On contrast, the SC-FACE [226]
and the ChokePoint [231] datasets were originally intended to provide data acquired in realistic
indoor surveillance scenarios. Regarding surveillance scenarios, the PETS [243], i-LIDS [244],
CAVIAR [245] datasets and the VISOR [246] repository comprise video sequences of pedestrians
in realistic surveillance scenarios. Even though the low resolution of data inhibits its use for
face recognition purposes, it has been showed that the fusion of face with gait information can
significantly increase the recognition performance [247,248]. However, these results have been
obtained in gait datatsets where subjects walk in a cooperative and predefined pose [249,250].

A comparative analysis between state-of-the-art databases concerning unconstrained face
recognition is given in table 5.1. It is interesting to note that despite these sets comprise highly
challenging biometric data, most of them were manually captured by human operators and they
still lack several crucial covariate factors of surveillance environments, such as motion-blur.

4.2 Description of the QUIS-CAMPI Dataset

When planning the QUIS-CAMPI dataset, we had two main concerns: 1) to acquire bio-
metric data of subjects in a real surveillance scenario, covertly, on the move and at a distance;
and 2) to provide multiple biometric enrollment data to perceive the advantages of using media
collection [251] for identifying humans in the wild. For that purpose, we collected multiple
biometric samples that where organized into two distinct groups: 1) enrollment data; 2) probe
data. In the former, we have enrolled volunteers who have provided written authorization
for image acquisition and distribution. The enrollment was conducted in an indoor controlled
scenario and the following samples were collected: soft biometrics, full-body imagery, gait
sequences and a 3D face model. Before the enrollment, each subject signed the informed con-
sent provided in appendix A to provide written authorization for the acquisition of enrollment
and probe data. In the latter, the data were acquired by the system described in chapter 3,
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Figure 4.1: Illustrative example of the biometric data available in QUIS-CAMPI. For each subject of the
database distinct biometric traits are acquired during enrollment, comprising soft biometrics, full body
imagery (a), gait sequences (b) and a 3D model (c). Subsequently, non-cooperative biometric data are

automatically collected each time a subject enters the surveillance area, comprising high-resolution face
images (d), gait sequences and their corresponding foreground (e). Note that these data are acquired
under varying lighting and weather conditions, at different times of the day, while subjects are on the

move and at a distance.

Table 4.2: List of the soft biometric traits collected during enrollment.

Trait Labels

Age N
Height N
Weight N
Sex Male, Female

Ethnicity Caucasian, African, Hispanic, Asian, Indian
Skin Color White, Tanned, Oriental, Black
Hair Color None, Black, Brown, Red, Blond, Grey, Dyed
Hair Length None, Shaven, Short, Medium, Long

Facial Hair Color None, Black, Brown, Red, Blond, Grey
Facial Hair Length None, Stubble, Mustache, Goatee, Full beard

Hair Style None, Straight, Curly, Wavy, Frizzy

while subjects walked throughout a surveillance area. Probe samples comprise high-resolution
face images automatically captured by the PTZ camera and the corresponding gait sequences
recorded by the master camera. It is important to note that the large majority of subjects
use this area in their normal routine, which ensures a faithful representation of surveillance
covariates.

Figure 4.1 illustrates the biometric data available for each subject.

4.2.1 Enrollment Data

Enrollment data provide good quality samples acquired indoor: soft biometrics, full-body
imagery, gait sequences and a 3D face model.
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Figure 4.2: QUIS-CAMPI statistics. A set of statistics was collected for distinct types of biometric
samples: 1) distribution of the soft traits along the enrollment data (denoted as gallery) and probe data;

2) distribution of the interpupillary distance in the probe images; 3) distribution of the tracking
sequences width collected outdoors; and 4) distribution of the number of days elapsed between the

acquisition of probe data and the enrollment process.

Soft biometrics. Eleven types of soft biometric labels were registered for each subject. The
full list is presented in table 4.2 and the rationale behind the choice of these features was
their discernibility at a distance and the discrimination power reported in the study of Tome
et al. [252]. The distribution of each trait with respect to the labels adopted is depicted in
figure 4.2.

Full-body shots. A high-resolution image of the person body was acquired at three different
angles (frontal, left-side and right-side). Also, the intrinsic and extrinsic parameters of the
camera were registered, along with five keypoints of the body in the frontal view. These data can
be used to infer real-world measurements of body components (e.g., height and face metrology).

Gait sequences. Persons were asked to walk naturally during 5m while being filmed at three
different angles. This was performed twice to obtain six different viewing angles of the gait
sequence.

3D face model. A set of images acquired at different viewing angles was used to construct a
textured 3D model of face using Visual-SFM [253].

4.2.2 Probe Data

Fully unconstrained biometric samples are the key novelty of the QUIS-CAMPI dataset and
comprehend two main components: 1) face images automatically acquired by the PTZ camera
and 2) gait sequences. Additionally, the foreground regions, obtained from a background sub-
traction algorithm, are also recorded.
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High-resolution facial shots. The master-slave surveillance system described in chapter 3 is
used to automatically acquire high-resolution face images of the enrolled subjects, while they
walk throughout the surveillance area. Considering that not all the acquired data contain the
facial region (e.g., incorrect human detection or tracking) and that the surveillance rig is not
able to distinguish between enrolled and non-enrolled subjects, the data are manually screened
before being supplied to the database. Also, the face location of the subject of interest in the
image is provided as metadata. These annotations are determined by a state-of-the-art face
detection algorithm [254] and cross-verified manually. On average, the interpupillary distance
of a face image is 116 px with a standard deviation of 35 px, and about 99% of the images have
an interpupillary distance higher than 60 px (the minimum resolution required for commercial
face recognition engines).

Tracking Sequences. A set of videos automatically acquired by the master camera while the
person is passing in the surveillance area. On average, each sequence has a resolution of
73 x 114 px with a standard deviation of 43 px for both dimensions.

Background Subtraction Sequences. The output of the background subtraction algorithm for
each tracking sequence.

4.2.3 Database Versioning

The automated acquisition of biometric samples and their regular deployment to the
dataset is the reason for denoting QUIS-CAMPI as a data-feed and at the same it is one of the key
novelties of this tool. Moreover, this singularity is the rationale to argue that QUIS-CAMPI is the
first open dataset, which is particularly advantageous to avoid inappropriately fitting classifiers
to the final test data. Despite the advantages of this choice, it also introduces significant
challenges that have to be carefully addressed to ensure that the performance reported in this
dataset can be compared in a practical and fair manner.

To this end, we relied on git - one of the most commonly used version control systems -
to organize the QUIS-CAMPI data feed in two distinct types of branches: 1) the master branch
comprises the most updated version of the entire biometric data; 2) the evaluation branches
encompass a former snapshot of the master branch plus the evaluation files defined according
to the evaluation protocol of QUIS-CAMPI (refer to section 4.3.1). This structure is depicted in
figure 4.3, where the advantages of this strategy can be easily perceived. First, the version
control capabilities allow users to navigate through any state of the QUIS-CAMPI data feed using
the master branch, which is useful to obtain new biometric samples without the burden of
redownloading the entire set. Second, the evaluation branches are static and independent of
any updates on master branch, allowing researches to compare their approaches by referring to
a specific evaluation branch.

4.2.4 Database Availability

Regarding the dataset structure, the file names correspond to the acquisition date in the
following format: Y<a>M<b>D<c>h<d>m<e>s<f>, where a, b, c, d, e, and f denote the acquisition
year, month, day, hour, minute and second, respectively. The correspondences between the files
and enrolled subjects, as well as the soft biometric traits, are provided in a relational database,
which is deployed as a backup SQL file. For convenience, we include a view in the database
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master

New subjects and probe images added.
commit 1
commit 2

QUIS-CAMPI: Most recent version.

QUIS-CAMPI.v1
Evaluation set released.

QUIS-CAMPI.v2
Evaluation set released.

Figure 4.3: History graph of the QUIS-CAMPI data feed using a version control software. A git repository
was used to deploy new samples acquired by the data feed (represented by the master branch), while
maintaining static evaluation sets released at much lower rate (represented by branches). This strategy
permits researchers to access any state of the QUIS-CAMPI data feed for development purposes, while it
also ensures that algorithms can be compared by reporting performance on the different evaluation set

versions.

that eases the access to biometric data using simple SQL queries. For additional information on
how to get and use the dataset, please refer to the QUIS-CAMPI web site 1.

4.3 Experimental Evaluation

In this section, we introduce the evaluation protocols that should be adopted for reporting
the algorithms performance in the QUIS-CAMPI set. We believe that the proposed guidelines for
the different recognition modalities are adequate for the majority of biometric recognition
algorithms. However, as in the recent case of the updated guidelines of LFW [241], additional
protocols may be included in the future to meet novel requirements.

Table 4.3: Description of the performance metrics adopted for the different evaluation paradigms.

Paradigm Setting Performance Metric

Verification

Image-restricted
ROC plot

AUC
ACC

Unrestricted
ROC plot

AUC
ACC

Identification

Closed-set
CMC plot

AUC
Rank-1 accuracy

Open-set
ROC plot

AUC
ACC

4.3.1 Evaluation Protocol

Having in mind the main purpose of QUIS-CAMPI, i.e., to provide an objective tool for
assessing the performance of biometric recognition algorithms in surveillance scenarios, we

1http://quiscampi.di.ubi.pt
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Table 4.4: Description of the QUIS-CAMPI evaluation protocols under the verification paradigm. As in
LFW [241], the protocols are defined according to the use of the image-restricted or unrestricted setting,

and to the use of additional training data.

Unrestricted, No
Outside Data

Image-restricted,
Label Free

Outside Data

Unrestricted,
Label Free

Outside Data

Unrestricted, With
QUIS-CAMPI

Biometric Data

Unrestricted, With
Labelled Outside

Data

Identity information in
training images 3 3 3 3

Annotations in training
images 3 3 3 3

External images 3 3 3 3

Binary label for external
image pairs 3 3

Identity label for
external images 3 3

introduce two evaluation protocols for the two recognition modalities: 1) verification and 2)
identification.

4.3.1.1 Verification

Regarding the verification paradigm, we adopt the protocol defined in LFW [180, 241],
which is an objective, simple and well established way of assessing face verification algorithms.
Accordingly, the PTZ face images are used to form pairs of matched images (positive pairs) and
mismatched images (negative pairs) organized in two groups: 1) model selection and algorithm
development; and 2) performance reporting. In the first group, random pairs are used as training
(2200 pairs) and test (1000 pairs) sets. This group is particularly intended for tuning algorithm
parameters, and thus, preventing the bias introduced by adjusting the method to the final
evaluation set. In the second group, 10 splits - containing 300 positive and negative pairs of PTZ
face images - are built for evaluating algorithms performance using leave-one out validation.
In the training phase, two distinct paradigms are available: image-restricted, where only the
training split pairs can be used, and unrestricted, where identity information is provided, which
allows forming additional training pairs. In addition, one can increase the algorithms robustness
by exploiting metadata from outside of QUIS-CAMPI or external training images. The ensemble
of training paradigms for face verification in the QUIS-CAMPI dataset is listed in table 4.4. During
the test phase, algorithms must be evaluated using mean classification accuracy (ACC) over the
10 splits. If possible, the ROC curve and its corresponding Area Under Curve (AUC) should be
also reported. The metrics that shall be adopted under the different recognition paradigms are
described in table 4.3.

4.3.1.2 Identification

Under the identification paradigm, a probe image must be matched against all gallery
subjects. This task can be approached in two distinct manners: 1) assuming that all probe
images correspond to one subject in the gallery (closed-set recognition); and 2) assuming that
not all the probe identities are represented in the gallery (open-set recognition).

Probe data comprise the PTZ face images, while the frontal mugshots acquired during
enrollment are used as gallery. Probes are divided in two mutually exclusive sets: 1) training
(containing 70% of the subjects); and 2) test (containing 30% of the subjects). Besides, two
distinct sets of gallery subjects are provided. One comprising all the available subjects of the
dataset (closed-set) and the other containing just 80% of the subjects. At last, in order to avoid
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Figure 4.4: Recognition performance in the QUIS-CAMPI dataset. At left: verification performance
attained in the QUIS-CAMPI dataset under the unrestricted setting with no outside data. At right:
identification performance attained in the QUIS-CAMPI dataset under the closed-set setting with no

outside data.
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Figure 4.5: Comparison between the recognition performance observed per algorithm in the QUIS-CAMPI
and LFW datasets, under the unrestricted setting.

bias in the subject separation, this process is repeated 10 times defining 10 independent evalua-
tion sets. At the training phase three distinct paradigms can be exploited: 1) no outside data; 2)
QUIS-CAMPI biometric data; and 3) biometric data from external sources. At the test phase, al-
gorithms must be evaluated using leave-one out validation and the average performance should
be reported according to the metrics listed in table 4.3.

4.3.2 Results and Discussion

In order to perceive the robustness of state-of-the-art face recognition algorithms to the
QUIS-CAMPI degradation factors, we report results for six face recognition algorithms under
the unrestricted setting with no outside data (for verification) and under the closed-set setting
with no outside data (for identification) using QUIS-CAMPI.v1 . The tests are conducted using
three metric learning based approaches (ITML [255], LDML [256] and KISSME [257]), the Fisher
Vector Faces (FVF) [258], a SVM and the L2 distance between SIFT features. The justification
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for choosing these methods is twofold: 1) they are well established face recognition methods
with competitive performance reported on LFW; and 2) the source code is freely available,
which ensures a reliable assessment of their performance. In these experiments, the QUIS-
CAMPI metadata are used to provide the algorithms with 256x256 cropped images of the facial
region. Considering that, apart from FVF, all the evaluated algorithms expect pre-processed
face descriptors, we adopt the widely used strategy of Guillaumin et al. [256], which exploits
the SIFT descriptors [259] of nine automatically detected face landmarks [260].

In accordance with the QUIS-CAMPI evaluation protocol, the methods are optimized using
the first group of pairs, i.e., the parameters are determined based on maximum recognition
accuracy obtained. Subsequently, the performance of each method is determined using leave
one-out validation in the 10 splits of the second group. Aiming at providing a comparative
performance analysis between QUIS-CAMPI and state-of-the-art benchmarks, the performance
of these algorithms is also assessed in LFW.

The results are reported using the ROC curves (for verification) and CMC curves (for iden-
tification), as well as its corresponding AUC. Figure 4.4 depicts the ROC curves and CMC curves
obtained in the QUIS-CAMPI dataset under the unrestricted setting and the closed-set setting,
respectively. The comparison between the ROC curves in the QUIS-CAMPI and LFW sets is given
in figure 4.5. Additionally, these results are summarized in table 4.5 with respect to the AUC
values.

Regarding the algorithms performance, it is important to note that FVF clearly outper-
forms the remaining approaches, whereas the use of L2 norm on the SIFT descriptors - without
using any additional learning metric - is clearly behind the remaining methods. While the latter
is not surprising, the performance gap of the former can be explained by the use of automatic
keypoint detection. Due to the large variation in pose, it is likely that the use of such strategy
in completely unconstrained environments fails, yielding thus, incorrect face descriptors. On
contrast, holistic approaches, such as FVF, may be a more adequate solution for addressing
these challenging conditions.

Regarding the comparison of the recognition performance per dataset, the results ob-
tained sustain our claim that QUIS-CAMPI is much more challenging than LFW. This is partic-
ularly evident in figure 4.5, since none of the state-of-the-art algorithms was able to improve
the results obtained in the LFW when addressing the QUIS-CAMPI dataset.

Besides, the verification accuracy achieved for QUIS-CAMPI justifies the need for such a
dataset, since much more has to be done to close the gap between surveillance and biometric
recognition.

4.4 Summary

In this chapter, we described the QUIS-CAMPI data feed, comprising biometric samples
automatically acquired outdoors, at a distance, on the move and in a fully non-cooperative
manner. A key difference between QUIS-CAMPI and related sets is that samples are automat-
ically acquired in a real surveillance scenario, i.e., in a covert way and without any human
intervention in the process. This assures that the collected data completely encompass the set
of covariate factors of real-world scenarios. Additionally, to the best of our knowledge, QUIS-
CAMPI is the first open biometric data feed, i.e., new probes and subjects are continuously
being added as the system automatically acquires more data. This fact is beneficial for inhibit-
ing bias introduced by the complete knowledge of the entire dataset, particularly in the case of
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Table 4.5: Recognition performance on the QUIS-CAMPI and LFW datasets under the verification and
identification modalities. Algorithms performance was determined on both datasets according to the
QUIS-CAMPI evaluation protocol under the unrestricted setting (verification) and the closed-set setting
(identification). The comparative analysis between the results of QUIS-CAMPI and LFW confirms the

additional challenges of the proposed dataset. Performance was assessed using AUC of the ROC curve and
its corresponding standard deviation.

Verification Identification

QUIS-CAMPI LFW QUIS-CAMPI LFW

Algorithm AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) Rank-1
(%)

AUC (%)
Rank-1
(%)

FVF [258] 89.9 ± 2.8 81.7 ± 3.0 97.1 ± 0.8 90.2 ± 1.6 88.5 26.4 86.8 37.7

ITML [255] 74.9 ± 4.0 68.4 ± 2.9 85.7 ± 1.8 77.5 ± 2.0 93.9 4.9 80.3 6.4

KISSME [257] 88.0 ± 3.9 79.2 ± 4.0 88.2 ± 1.7 80.9 ± 2.0 95.8 10.7 86.8 14.3

LDML [256] 76.4 ± 3.1 69.1 ± 2.2 88.1 ± 1.4 79.7 ± 2.0 96.9 3.9 85.6 12.2

SVM [261] 80.2 ± 2.8 72.8 ± 2.6 85.8 ± 1.3 78.1 ± 1.0 94.9 9.4 87.3 12.7

L2 65.6 ± 4.3 62.5 ± 3.6 73.7 ± 1.5 67.3 ± 1.8 70.5 3.0 66.7 1.3

open-set recognition. Moreover, QUIS-CAMPI comprises multi-biometric traits, permitting the
exploitation of multi-modal recognition strategies. To objectively justify the need for this set,
six face verification algorithms were evaluated both in QUIS-CAMPI and LFW under the image-
restricted and unrestricted settings. The conclusions were twofold: 1) the algorithms accuracy
in the QUIS-CAMPI set is much lower than in LFW, which confirms that the proposed dataset is
more challenging; 2) the state-of-the-art algorithms are still far from optimal recognition rates,
and substantial improvements in the recognition technology should be made before saturating
the announced set.
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Chapter 5

Biometric Recognition in Surveillance Scenarios

This chapter regards the recognition of individuals from biometric data acquired without
restrictions, i.e., in an unconstrained and non-cooperative manner. The contributions of this
thesis to advance the recognition performance in this kind of data are described in the following
sections. Section 5.1 introduces the ICB-RW competition and reports the performance achieved
by the nine methods specially designed for this challenge. In section 5.2, we describe our
proposal for detecting corrupted features in biometric signatures by relying on the correlation
between subsets of features. Section 5.3 describes a novel face recognition approach based on
caricatures, and section 5.4 summarizes the major conclusions of the chapter.

5.1 Performance Evaluation of Biometric Recognition in Surveil-

lance Scenarios

The ICB-RW competition was promoted to support this endeavor, being the first biometric
challenge carried out in data that realistically result from surveillance scenarios. The competi-
tion relied on an innovative master-slave surveillance system for the acquisition of face imagery
at a distance and on the move. This section describes the competition details and reports the
performance achieved by the participants algorithms.

5.1.1 ICB-RW Competition

The ICB-RW competition took place from September to December, 2015. The website
had more than 700 visitors from 24 countries. There was a total of 19 registrations in the
competition. Most of the registered users were members of academic institutions, whereas a
smaller number was from and private companies. At the end, nine participants submitted their
executable to be evaluated in the ICB-RW sequestered data.

5.1.2 ICB-RW Dataset

5.1.2.1 Data Summary

The ICB-RW evaluation set comprises biometric data from 90 volunteers who have provided
written authorization for image acquisition and distribution. The data were organized into two
sets: 1) gallery data; and 2) probe data. Gallery data comprise 3 images of the subject’s
head acquired in a controlled scenario: 1) frontal image; 2) left-side image; and 3) right-side
image. Probe data were automatically acquired by the QUIS-CAMPI surveillance in a covert
and non-cooperative manner while subjects walk throughout the surveillance area. For each
subject, ten probe images were selected aiming at preserving the following degradation factors
throughout the dataset: 1) variations in pose; 2) variations in expression; 3) varying illumination;
4) occlusions; and 5) blur.
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Figure 5.1: Example of the gallery and probe data of two subjects in the ICB-RW dataset. Gallery data
comprise one frontal view and two side view images of the subject (left), while five probe images were

provided to the participants for algorithm training (right).

Moreover, the face location of the subject of interest in both probe and gallery images
was provided as a bounding box. These data were automatically inferred from a state-of-the-
art head-landmark localization method [254] and corrected manually. The annotations were
provided in the dataset as metadata. Figure 5.1 illustrates the gallery and probe images of two
subjects in the dataset.

5.1.3 ICB-RW Protocol

For evaluation purposes, the probe images were randomly divided into two subsets com-
prising five images each. Participants were provided with gallery data and one probe data
subset, while the other subset was kept as sequestered data. During the competition period,
participants were expected to build and train their algorithms using the publicly available data,
while the final evaluation would be performed by the competition organizers upon algorithm
submission.

5.1.3.1 Evaluation Metrics

The algorithm performance was determined by the AUC of the CMC curve. For each probe
image Pi , a rank-K list was constructed by selecting the K most similar gallery subjects ac-
cording to the algorithm scores. The CMC curve relates the percentage of correct identification
for all probe images with the size K of the rank-K list.

It is worth noting that the evaluation was conducted using the sequestered subset of
probe images, which are disjoint from the ones used by the participants and ensure a non-biased
evaluation.

5.1.4 Results and Discussion

In this section, we report the results attained in the ICB-RW challenge. The performance
of the nine algorithms submitted to ICB-RW is presented in figure 5.2 and summarized in table 5.1
with respect to the rank-1 and rank-5 identification rate and the AUC of the CMC curve. Also, a
brief description provided by the authors is included.

The competition results are useful for two major reasons: 1) perceive how far research
has come in fully automated human recognition; 2) provide insight into which strategies are the
most adequate for extracting discriminant information from extremely degraded images.
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Figure 5.2: Left: Algorithms performance in the ICB-RW competition. Algorithms were evaluated in the
sequestered probe data and the CMC curves were used to assess the identification performance. Right:
Correlation between the nine algorithms submitted to ICB-RW. The similarity scores obtained during the
evaluation phase were used to determine the correlation between the different algorithms submitted to

ICB-RW.

In the former, it is interesting to note that the best performing approaches reach relatively
high levels of accuracy, particularly if more than one match is considered (85.3% accuracy by
retrieving 5% of the database). Despite these results suggest that biometrics has come quite
close to recognizing humans in completely unconstrained scenarios in an immediate future,
there exist some issues that should be taken into account. First, it would be important to study
the impact of gallery size on the algorithms performance, as the number of gallery subjects of
ICB-RW was rather limited when compared with real-world scenarios. Second, it is worth noting
that in this challenge, a closed-set identification was adopted. Again, it is important to study
the impact on the performance when considering open-set identification.

In the latter, we use the general description of the methods, their performance in the
ICB-RW competition and the correlation between the similarity scores (figure 5.2) to conclude
about the most valuable strategies to address highly degraded biometric data. Regarding the
best performing approaches, it is interesting to note that all of them rely on deep learning, in
particular they use deep convolutional neural networks. The similarity between them is also cor-
roborated by high correlation values presented in figure 5.2. On the other hand, the approaches
using typical descriptor-based features such as SIFT [259] and LBP [41] have attained poor identi-
fication rates. Even though these approaches compensated for illumination variations, it is likely
that these descriptors are not invariant to the extreme variations in blur, occlusion, and expres-
sion of unconstrained scenarios. Regarding the high variability in pose, this factor is addressed
in most approaches with the use of face landmark localization and frontalization techniques,
whose performance in unconstrained scenarios has been significantly improved [254,262].

In addition, we analyzed the most easy-to-identify and hard-to-identify probes and sub-
jects to provide additional insight into the most discriminant and confounding factors of un-
constrained biometric recognition. For this purpose, we relied on the similarity scores of the
three best performing approaches to determine the percentage of gallery subjects that have to
be retrieved for correctly identifying a probe image. The percentages of methods were fused
using the maximum value and some of the best and worst performing images are depicted in
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a) Easy-to-identify probe images.

b) Hard-to-identify probe images

Figure 5.3: The most easily and hardly identifiable probe images according to the methods performance.
The percentage of gallery subjects necessary to correctly identify a probe image was used to rank probe

images. The first and last four images are depicted in a) and b), respectively. Note that in a) the
subjects are almost frontal, the expression is neutral and the face is not occluded, whereas in b) there
exists extreme variation in pose, the expressions are not standard, and the facial region is degraded by

shadows or self-occlusion.

a) Easy-to-identify subjects.

b) Hard-to-identify subjects

Figure 5.4: The most easily and hardly identifiable subjects according to the methods performance. The
percentage of gallery subjects necessary to correctly recognize the probe images of each subject was
used to rank subjects. The first and last four subjects are depicted in a) and b), respectively. Note that
in a) the subjects are significantly different regarding hair, age and face structure, whereas in b) subjects

share age and facial structure.

figure 5.3a) and figure 5.3b), respectively. By averaging the results per subject we also deter-
mined the most easy-to-identify and hard-to-identify subjects, which are depicted in figure 5.4.
It is interesting to note that high variability in pose greatly affects the methods performance,
whereas almost frontal poses with neutral expression provided the best results. On the other
hand, it is worth noting that the subjects sharing the same age group and facial features, such
as facial hair style, were the most likely to be incorrectly classified.

5.1.5 Conclusion

The limitations of state-of-the-art unconstrained biometric datasets and the lack of bench-
mark tests on biometric recognition in surveillance scenarios were the rationale behind the
ICB-RW challenge. The use of a fully automated surveillance system capable of covertly imaging
subjects at a distance and on the move allowed to assess how far research has come in human
recognition in totally unconstrained scenarios. The results were relatively positive, however
much more has to be done to consider biometric recognition in the wild as solved, particularly
when considering scenarios where the number of gallery subjects is much higher. We hope that
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Table 5.1: Final results for the ICB-RW competition. The nine valid submissions of ICB-RW are listed
according to their rank in the challenge. Methods are ranked according to the AUC of the CMC curve.
Also, both rank-1 and rank-5 identification rate (IR) are presented, along with a brief description

provided by the authors.

Method Description
Rank-1
IR (%)

Rank-5
IR (%)

AUC
(CMC
curve)

H. Ekenel, G.
Özbulak, E. Ghaleb

Istanbul Technical
University

The probe and gallery face images are aligned with respect to eye
centers. Only the frontal images are used as gallery. Face
representation is extracted from a CNN with a VGG face

model [185]. In the test phase, the nearest neighbour classifier is
used with the correlation distance as the similarity score. 69.8 85.3 0.954

K. Grm, S.
Dobrisek, V. Struc

University of
Ljubljana

An augmented dataset was generated through oversampling the
training images via bounding box noise and horizontal flipping. The
pre-trained VGG face deep convolutional network [185] was used to

extract features from the images. Then, a softmax classifier was
trained on the features. 62.0 78.7 0.952

H. Shi, X. Zhu, S.
Liao, Z. Lei, S. Li

Institute of
Automation, Chinese
Academy of Sciences

Features are extracted from a deep convolutional network model
trained on the CASIA-Webface database and the cosine similarity is

used as score. Ten models learned from different facial parts are
fused, and the gallery images of different poses are synthesized to

ease the matching phase. 57.6 75.8 0.921

W. Gutfeter

NASK, Warsaw
University of
Technology

The algorithm builds similarity scores by merging results obtained
from a set of convolutional neural networks trained for recognizing

faces from different angles. 42.9 64.4 0.918

J. Brogan

University of Notre
Dame

Gallery and probe images are frontalized using a modified version
of [262]. Data features are extracted from a SLMSimple Neural

Network [263] and four bins are created containing different versions
of the gallery images. Probe descriptors are matched with one of

the four bins according to yaw angle of the head, and the resulting
pairs of feature vectors are input into an SVM trained with

LFW [241] data. 11.6 30.4 0.755

E. Gonzalez-Sosa,
R. Vera-Rodriguez,

J. Fierrez

University Autonoma
de Madrid

The LBP [41] of nine facial regions are extracted from a frontalized
image [254] followed by illumination normalization. A fused distance
score is determined by only considering the five best individual facial

regions at each trial. 24.0 39.1 0.725

D. Riccio, M.
Nappi

University of Salerno

The algorithm locates facial points through an extended Active
Shape Model and remaps the face region to a 64x100 image. It

applies a local normalization process to correct illumination
variations, and the matching is performed with an optimized

localized version of the spatial correlation index. 11.1 25.1 0.694

R. Vareto, R.
Prates, W.

Schwartz

University Federal de
Minas Gerais

A set of facial components are obtained by performing face
landmark localization, and these components are described by a

variant of LBP. In the learning phase, a binary classifier based on
the partial least squares model is inferred for each gallery subject.

During the test phase, the identity of the probe samples is
determined by the classifier with the highest score. 10.4 25.3 0.688

J. Monteiro

University of Porto

During enrolment, an universal background model is used to infer a
model per individual describing the statistical distribution of each

feature (SIFT/GIST). In the recognition phase, features are
projected onto both the UBM and the individual specific models. A

likelihood-ratio between both projections outputs the final
recognition score. 4.9 14.9 0.613
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the results obtained from this contest can contribute to the understanding of the challenges of
biometric recognition in the wild, and further advance the research in this field.

5.2 Proposed Feature Quality Assessment Method

Biometric systems work by extracting distinctive sets of features from body traits, which
subsequently fed a classifier to determine the subject identity. Usually, the feature encoding
process is performed using handcrafted descriptors yielding a compact representation, but still
highly redundant [264,265].

The use of data redundancy is a key assumption in Error-correcting Codes (ECC). In these
approaches, redundant data are generated and added to the encoded representation in a de-
terministic manner using pre-built models. As an illustration, figure 5.5 depicts the operation
mode of convolutional codes, where it can be observed the main insight of ECC: an observed
variable ot can be determined to be noisy by analyzing the previous observations o1, o2, ..., ot−1

to which the ot is dependent. In this context, an error is defined as an impossible observed
value given a set of past observed values.

Motivated by the fact that most biometric methods rely on redundant descriptors to per-
form classification, we follow the principles of ECC to develop a method capable of detecting
corrupted features in biometric signatures by relying on the correlation between subsets of
features.

Original Message: {11,10,10,00}

Received Message:{11,10,11,00}
Ψu,v,w = cost(Sk = u|[Ok = v, Sk−1])
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a) State Transition Diagram b) Trellis Diagram

Figure 5.5: Graphical representation of the decoding process used in convolutional codes. a) The state
transition diagram defines the valid transitions according to the observed encoded pair of bits. b) The
trellis diagram illustrates the cost of all valid Sk → Sk+1 transitions for a given observation Ok (for
displaying purposes not all the valid transitions are represented). The Viterbi algorithm is used to

determine the most likely sequence of states visited by the transmitter, allowing to recover the original
encoded message. Note that this model can detect that an error has occurred in the transition to S3 by

exploiting the dependence between S3 and (S2, O3).

Unlike the existing biometric cryptosystems, the proposed method works directly on the
biometric signatures. This is advantageous for highly-degraded signatures but introduces dif-
ferent challenges. First, feature vectors obtained from different biometric traits do not follow
deterministic relations between their components as in the case of ECC methods. Second, fea-
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tures dependencies greatly vary with respect to the type of data. To address these problems,
our approach infers feature correlations from training data and a relaxed error definition is in-
troduced: the soft assignment of the ith to a corrupted state is modeled by the likelihood of
observing oi given {oj , j ∈ D}, being D the indices of the features to which i is dependent. The
proposed model operates in two phases: 1) redundancy analysis; and 2) state inference. While
the former determines the dependent pairs of features, the latter analyzes these relations to
decide - at test time - the most likely set of corrupted components given an observed probe
descriptor. In this phase, inference is performed with a MRF because it is straightforward to
encode both unary costs and pairwise constraints between features.

To illustrate the usefulness of the proposed method, we assess the performance improve-
ment of different biometric recognition methods when coupled with the proposed error detec-
tion method. Also, we report the performance in an image classification dataset using CNNs
descriptors, in order to show the flexibility of the proposed approach.

5.2.1 Error Detection in Biometric Signatures

Error control techniques operate either by adding check bits to the original message (sys-
tematic scheme) or encoding the message in a specific representation (non-systematic). The
rationale behind both approaches is the augmentation of the transmitted message size by adding
redundant data. The deterministic relations between the new representation and the original
data allow the decoder to check if an encoded message is valid, locate the corrupted compo-
nents, and in some techniques recover the original data.

Linear ECC are one kind of systematic schemewidely used in biometric cryptosystems [266–
268]. Let H be a N-dimensional Hamming space, linear ECC methods work by mapping input
data to elements of H, denoted as codewords. The set of valid codewords, usually denoted as
C, are chosen such that they are separated at least by a Hamming distance of d. Correction is
performed by transforming an encoded sequence to the its nearest codeword in C. This strategy
ensures a correct assignment if no more than ⌊d−1

2 ⌋ bit errors occur [269].

In [267, 270–274], different linear ECC methods, such as the Hadamard codes, Reed-
Solomon codes and the low-density parity-check codes, are used to correct errors in iris codes.
However, these methods are highly limited by the number of errors than can be corrected in the
original feature vector, restraining their applicability to data with large intra-class variations.

As an example, the work of Kanade et al. [272] introduces a novel way to use ECC to reduce
the variabilities in biometric data by using Hadamard codes in a block-wise manner. Even though
these codes ensure successful regeneration up to 25% of bit corruptions in the encoded message,
this percentage is reduced exponentially in the original feature vector.

Aiming at extending the applicability of ECC methods, the Error-Correcting Output Codes
were introduced as a machine learning ensemble method [275]. This approach is believed to
improve performance both by decomposing the multi-class problem into a number of two-class
problems, as well as by correcting errors in the decision-making stage. Different biometric
recognition methods exploit variations of this technique [276,277]. A prominent example is the
face verification method of Kittler et al. [277], where the authors assume that multiple images
of the same client identity are available, and the verification score is determined by a statistical
test using first order Minkowski distance.
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Figure 5.6: Schematic representation of the phases involved in the proposed method. a) In the
redundancy analysis phase, redundant pairs of features are determined by measuring linear correlations.

b) The likelihood of each feature component being corrupt is encoded by a MRF, whose energy
minimization yields the maximum-likelihood sequence of states. Note that only the redundant features
are connected in the MRF, allowing to discard irrelevant evidence when determining the state of a

component.

5.2.2 Our Method

We first define the notation used to describe the proposed approach.

• Fc : the set of feature vectors obtained from non-degraded data;

• Fd : the set of feature vectors obtained from degraded data;

• F = Fc ∪ Fd;

• fi : the ith component of a feature vector;

• ci = {0, 1} : the state of fi determining if the component is corrupted (1) or not (0).

As illustrated in figure 5.6, the proposed model is composed of two phases: 1) redundancy
analysis and 2) state inference. The first aims at determining the pairs of features that are
correlated, allowing the latter phase to exploit this information to infer the sequence of states
that best explains the observed data.

5.2.2.1 Redundancy Analysis

Contrary to ECC methods, where bit dependence is pre-determined using handcrafted
state transition models, the proposed method requires the inference of data redundancies from
training data. For this purpose, we rely on the Pearson correlation to determine the pairwise
dependence between all feature pairs. This produces the correlation matrix M that is used to
determine the indices to which the ith is connected:

L(i) = {j|M(i, j) ≥ ν}, (5.1)

where ν ∈ [0, 1] denotes the minimum confidence degree for considering two components
as dependent.
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Subsequently, L is used to determine the pairs that influence each other during the in-
ference phase, reducing the inference complexity.

5.2.2.2 State Inference

The proposed model is depicted in the figure 5.6 and is composed of nv vertices, repre-
senting the components of the feature vector. Also, to each vertex can be assigned one label
{0, 1}, denoting whether a component of the feature vector is corrupted or not. The rationale
behind this structure is threefold: 1) the dependence between features can be modeled with
the existence of edges between vertices; 2) the probability of a feature being corrupted given
a subset of observed features can be modeled by pairwise costs; 3) the probability of a feature
being corrupted given its observed value can be represented by the unary potentials.

Let G = (V,E) be a graph representing a MRF, composed of a set of nv vertices V , linked
by ne edges E. The MRF is a representation of a discrete latent random variable L = {Li},∀i ∈
V , where each element Li takes one value lu from a set of labels.

In this problem, a MRF configuration l = {l1, ..., lnv
}, determines the set of corrupted

components of the feature vector. The number of edges in G is determined by the pairwise
dependence between features, i.e., the vertices are connected if and only if the feature pair
(i, j) is redundant (discussed in section 5.2.2.1). Each edge encodes the cost of assigning the
class lu to the ith feature vector component and the class lv to the jth feature vector component.

The energy of a configuration l of the MRF is the sum of the unary θi(lu) and pairwise
θi,j(lu, lv) potentials:

E(l) =
∑
i∈V

θi(lu) +
∑

(i,j)∈E

θi,j(lu, lv). (5.2)

According to this formulation, determining the corrupted components of the feature vec-
tor is equivalent to infer the random variables in the MRF by minimizing its energy:

l̂ = argmin
l

E(l), (5.3)

where l̂1, ..., ˆltp are the labels of the nv feature vector components. As an example, if a
five length feature vector is considered, the configuration {0, 1, 0, 0, 1} determines f2 and f5 as
being corrupted.

The loopy belief propagation [215] algorithm was used to optimize the MRF. Even though
it is not guaranteed to converge to a global minimum on loopy non-submodular graphs (such
as our MRF), we concluded that the algorithm provides good approximations (refer to section
5.2.3).

5.2.2.3 Unary and Pairwise Potentials

Let Xc ∈ Fc and X ∈ F be samples acquired during the training phase. These data can
be used to determine the posterior probability of fi being corrupt given an observed value of
this component, which according to the Bayes theorem is defined as:

P (ci | fi) =
P (fi | ci).P (ci)

P (fi)
. (5.4)
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a)

b)

c)

Figure 5.7: Comparison between the iris noise mask obtained from [278] and the degraded regions
inferred from our approach. a) Original iris code. b) Iris noise mask of [278]. c) Degraded components
identified by our method reshaped to the original iris code size. Note that our approach was able to
identify non-iris regions, whereas the geometric-based approach used in [278] overestimated the

boundaries of non-iris regions.

Considering that during the training phase it may be cumbersome to obtain a sample from
Fd, it is not possible to obtain P (fi | ci = 1) in a straightforward way. Consequently, we use X

to estimate P (fi) and subsequently derive P (ci = 1 | fi) from its complement. The unary costs
are thus defined as θi(lu) = 1− P (ci = lu | fi).

While the unary potentials disregard any information from neighbors and are meant to
emphasize the necessity of each observation being coherent with the typical distribution of the
ith feature vector component, the pairwise potentials model if the observation of fi is coherent
with the observed value of fj, to which fi depends. Again, this can be measured using the
posterior probability of fi being corrupt given an observed value of fi and fj, which according
to the Bayes theorem is defined as:

P (ci | [fi, fj ]) =
P ([fi, fj ] | ci).P (ci)

P (fi, fj)
. (5.5)

The pairwise costs between two adjacent vertices θi,j(lu, lv) are then defined as:

θi,j(lu, lv) =


P (lu, lv | [fi, fj ]), if lu = 0 and lv = 0,

0.5, if lu ̸= lv,

1− P (lu, lv | [fi, fj ]), otherwise.

(5.6)

Similarly to the unary costs, P ([fi, fj ]) is directly estimated from X.

5.2.2.4 Feature Matching

After obtaining the corrupted component mask my of the probe descriptor y, feature
matching should be modified to allow disregarding degraded components when determining
the scores between y and training samples x using a classifier Φ. Accordingly, the score is
determined by:

s(xi, y) = Φ(my.xi , m
y.y). (5.7)
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5.2.3 Results and Discussion

The proposedmethod was validated in three distinct datasets, namely, the CASIA-Thousand [279],
the AR-Database [234] and the ILSVRC [280]. While the first and the second regard biometric
traits (iris and face, respectively), the latter was designed for use in visual object recognition.
The rationale to include this set was to evidence the flexibility of the proposed approach. It
should be stressed that no particular concerns were taken in optimizing the recognition methods
for the used datasets, meaning that the focus was put in the performance gap between both
recognition schemes than in the recognition errors in absolute values, which are out of the scope
of this contribution.

a) Iris Recognition Performance b) Face Recognition Performance

Figure 5.8: Comparison between the original performance of the recognition methods and the
performance obtained by disregarding degraded components of the image descriptor during the matching
phase. a) ROC curves obtained when using the iris code from Masek’s algorithm, the error mask inferred
from our approach, the error mask from the original method, and the combination of both masks. The
CMC curves reporting the results for face recognition and image classification obtained with a CNN

descriptor are depicted in b). The AUC (in parentheses) is also provided for each approach.

5.2.3.1 Iris Recognition Performance

To exemplify the usefulness of the proposed method for iris recognition, we compared the
performance of Masek’s algorithm [278] using four strategies: 1) the original iris code (baseline);
the masked iris code obtained from our error detection approach; 3) the noise free iris code
obtained from the original recognition method; and 4) the masked noise free iris code obtained
by combining the second and third strategies.

The experiments were carried out in a subset of the CASIA-Thousand database that was
obtained by manually discarding images segmented incorrectly. These data were subsequently
separated into training and test sets, comprising 600 and 400 different eyes, with about 6000
and 4000 images, respectively. Additionally, we screened, through visual inspection, the training
images to obtain a sample of Fc, i.e., a set of images where iris is not heavily occluded by eyelids,
eyelashes, shadows, or specular reflections. At the end, 244 images were kept as a sample of
Fc, while the 6000 training images were considered as a sample of F (figure 5.9 show exemplars
of these two sets).

The ROC curves and the corresponding AUC for the described variants are compared in
figure 5.8 and evidence the benefits of withdrawing corrupted features from the matching phase
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(0.97 vs 0.96 regarding AUC). However, the proposed method was not able to overcome the
original method when coupled with its noise iris mask.

The comparison between the corrupted bit locations obtained from our method and the
noise iris mask inferred from the Masek’s method is depicted in figure 5.7. It can be seen that
our approach failed to identify some corrupt components. This can be explained by the fact
that the iris noise mask was derived using mainly geometric-based information, which is not
available to our method. Nevertheless, it should be noted that combining both masks - using
bit intersection - outperforms the remaining variants, suggesting that noise regions identified
by the method of Masek were overestimated.

Xc ∼ Fc X ∼ F
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Figure 5.9: Representative examples of the data used in the experiments. The first column illustrates
images assigned to Fc for being considered as non-degraded, while the remaining columns comprises

both degraded and non-degraded images available in F .

5.2.3.2 Face Recognition Performance

Regarding face recognition, we used the AR database to determine the usefulness of the
proposed method, since the design of this set ensured a clear distinction between the degra-
dation factors of each image. In the experiments, non-degraded frontal images were used as
training data, while images corrupted by varying illumination, occlusion and facial expression
served as test data. For feature extraction, we relied on the VGG Face Descriptor [185], a CNN
implementation based on the VGG-Very-Deep-16 architecture adapted for the task of face ver-
ification. In accordance to [185], data was fed to a pre-trained CNN and the 4,096-dimensional
descriptor of the final fully connected layer was used as image descriptor. Figure 5.8 depicts
the CMC curves for baseline and the proposed method.

70



Biometric Recognition in Surveillance Scenarios

The explanation for this improvement lies in the fact that the state of a component is
inferred in a consensual manner. For example, degradation factors affecting a particular region
of the image (e.g., occlusions) may induce large deviations in some components of the image
descriptor. In an unary-based approach, each component would only be classified as degraded in
case of an extreme variation. On contrast, in our method the value of a degraded component is
considered incongruent with a subset of non-degraded observations, whose pairwise potentials
force the component state to be corrupt in the final MRF configuration.

5.2.3.3 Image Classification Performance

In order to demonstrate the flexibility of our approach, we also assessed its performance
in the field of image classification. For this purpose, we used the data available from the
ILSVRC [280] - a state-of-the-art image classification challenge - containing 150,000 validation
and test images of 1000 object categories. For each category, 75 images were corrupted to
serve as test set, while the remaining images were used for training. Corruption was performed
using synthetic occlusions (80 random patches of variable size), as illustrated in figure 5.9.

The image descriptors were extracted using one of the best performing methods on the
ILSVRC 2014 challenge [281]. Again, we used the last fully connected layer of the pre-trained
CNN, and the descriptors were compared with the L2 distance. The comparison between the
CMC curves of figure 5.10 shows a performance improvement when correcting descriptors of
images degraded by synthetic occlusions. Even though these occlusions are not realistic, it
should be noted that the experiments on the ILSVRC set aimed only at evidencing the flexibility
of the proposed approach.

Figure 5.10: Comparison between the original performance of the recognition methods and the
performance obtained by disregarding degraded components of the image descriptor during the matching
phase. The image classification performance obtained with a CNN descriptor was assessed using CMC

curves and the corresponding AUC (in parentheses).

5.2.4 Conclusion

In this section, a method for determining degraded components of biometric signatures
was introduced. Unlike ECC-based biometric cryptosystems, our approach works directly on the
visual descriptor, providing additional robustness to high-magnitude errors and highly degraded
feature vectors. The proposed method assumes that data redundancy in biometric signatures
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resulting from unconstrained scenarios can be used for the detection of degraded components.
Though it seems a limiting assumption, the experiments show an improvement in the recognition
performance when disregarding the degraded components during the matching phase. These
results not only evidence the feasibility of the proposed method, but also suggest that visual
descriptors actually contain redundant and low-entropy features.

As further directions for this work, we are currently investigating ways to simultaneously
perform detection and correction of the degraded components.

5.3 Proposed Face Recognition Method
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Figure 5.11: Advantages of using caricatures for face recognition. Both humans and automated systems
find difficult to distinguish between visually similar subjects (e.g., Katy Perry and Zooey Deschanel).
Familiarized observers overcome this problem by focusing on the most distinguishable features of each
face, and several studies suggest that this task is carried out in the brain by creating a caricatured
representation of the original image. Our method aims at mimicking this process by analyzing face

proportions and exaggerating the most salient ones. The proposed approach is capable of producing 2D
caricatures where inter-subject similarity is minimized and intra-subject similarity is preserved.

Humans have an astonishing capability of recognizing familiar faces in totally uncon-
strained scenarios. However, this performance decreases significantly in case of unfamiliar
faces [282]. The question of how an unfamiliar face becomes a familiar face is not consen-
sual, but there is evidence that this process is carried out in a caricatured manner [283, 284].
According to this theory, familiarization works by analyzing the most significant physical devi-
ations of a face with respect to a mental representation of the average face, followed by the
creation of a modified description of the face, where the most distinctive features are exag-
gerated and average features are oversimplified (similar to drawing a caricature). Moreover,
different studies concluded that humans perform better at recognizing individuals from carica-
tures [285–288] than veridical faces, supporting the idea that the human brain encodes familiar
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faces as a caricatured version of the original face.
Inspired by the idea that distinctive feature exaggeration may be the key for the incredible

performance of humans on recognizing familiar faces, we introduce a fully automated face
recognition approach based on a 3D caricature generation method capable of creating 2D face
representations, where likeness is preserved and the inter-class separation is enlarged. The
rationale behind our idea is illustrated in figure 5.11, where an unfamiliar observer perceives
incorrectly figure 5.11a) and figure 5.11b) as photos from the same identity. On the contrary,
it is straightforward to discern between Katy Perry and Zooey Deschanel when observing their
caricatures.

For automated caricature generation, the proposed method attempts to mimic the three
main stages of the caricature drawing process:

1. Caricaturists infer 3D face structure from either a single or multiple views of the face.
This phase is replicated by estimating a 3D morphable model from an input image and a
set of facial landmarks. The accuracy of the landmarks decreases significantly in uncon-
strained data, and for that reason, we combine multiple state-of-the-art face alignment
algorithms in an ensemble learning strategy. In addition, we use a model with a reduced
number of vertices to account for model stability while maintaining the dominant features
of the face.

2. The caricaturist analyzes facial features for determining the deformation applied to
each one. After inferring the 3D structure, our method compares a set of face regions with
a reference 3D model regarding translation, scale and orientation. The region deviations
are then normalized and exaggerated using a ’measure locally, weight globally’ strategy.

3. The artist redraws the original face using the deformed proportions. After determin-
ing the positions of the deformed vertices, the mesh is warped with a Laplacian mesh
editing technique for preserving local detail and guaranteeing smooth transitions between
vertices. The final 2D caricature is obtained by projecting the 3D model in the original
camera-view.

In the learning and classification phase, we replicate the strategy introduced in [185] but
using caricatures rather than veridical face images. Accordingly, the VGG-Face architecture is
trained from scratch on caricatures automatically generated from the VGG dataset, whereas
the features produced by the ’fc6’ layer are used as face descriptor.

The performance of the proposed face recognition approach is assessed on three state-of-
the-art face recognition datasets (LFW [180,289], IJB-A [219], and MegaFace [290]). To demon-
strate the improvements due to the use of caricatures, we measure the relative performance
between using caricatures and using original images for network training.

In summary, this method makes two major contributions: 1) a 3D-based caricature gen-
eration method for producing 2D caricatures that enhance the performance of face recognition;
and 2) the first fully automated caricature-based face recognition system capable of working in
real-time with data acquired in the wild.

5.3.1 Caricature-based Face Recognition

The internal process behind recognizing faces has been studied extensively during the
last decades [285] and several studies suggest that the brain encodes faces with respect to

73



Biometric Recognition in Surveillance Scenarios

Input
Image

Facial
Alignment 3DMM

Exaggeration
Inference

3D Model
Deformation

Caricature CNN

. . .

Figure 5.12: Overview of the processing chain of the proposed method. The 3D face structure of probe
images is inferred by a 3DMM method coupled with a set of automatically detected facial landmarks. This
three-dimensional model permits the replication of the caricature drawing process by: 1) measuring the
deviation of face regions to a reference prototype; and 2) using a ’measure locally, weight globally’
strategy for inferring the exaggeration of each region. Using the modified regions as constraints, the

original mesh is deformed with the Laplacian mesh editing algorithm, and the 2D caricature is obtained
by projecting the deformed model in the original camera-view. At the end, the caricature is passed

through a CNN to obtain a caricature-based face descriptor.

a general face prototype [291]. Also, for encoding, the brain emphasizes the most deviated
physical traits and disregards average features, contributing to increase the inter-class separa-
tion while retaining the stability of intra-class separation. These results explain why humans
can recognize better caricatures than veridical faces [285, 288, 292, 293] and indicate that, in
fact, the brain encodes faces in a caricatured manner [294]. These findings evince that auto-
mated face recognition may also benefit from the use of caricatures. However, few works have
exploited this idea, and to the best of our knowledge, our work introduces the first fully auto-
mated caricature-based face recognition system. Below, we review the existing approaches for
generating caricatures from 2D images, and caricature-based face recognition methods.

5.3.1.1 Caricature Generation

Creating face models in a caricatured style is a popular topic in computer graphics and can
be broadly divided in two families: 1) rule-based approaches; and 2) example-based approaches.

Rule-based approaches amplify the divergence between a probe face and a reference face
by modifying the point-to-point distance of a set of fiducial points marked on both images. The
first representative work of this family used 165 feature points to control deformations [295].
Liao et al. [296] introduced an automated caricature generation method that detects and an-
alyzes facial features without human assistance. In [297], the normalized deviation from the
average model was used to exaggerate the distinctive features, while Tseng et al. [298] used the
inter and intra correlations of size, shape and position features for exaggeration. These works
are 2D-based and most of them provide semi-automated systems that depend on user input to
define the regions to be deformed. With the advent of 3D face databases, 3D-based carica-
ture generation became the most popular approach. Lewiner [299] introduced an innovative 3D
caricature generation tool by measuring the face deviations in the harmonic space. Clarke et
al. [300] proposed an automatic 3D caricature generator based on a pseudo stress-strain model
for representing the deformation characteristics at each feature point. Sela et al. [301] intro-
duced a general approach for deforming surfaces based on the local curvature. However, by
disregarding the use of a reference model for guiding region deformation, this method decreases
likeness when applied to faces.

Data-driven approaches learn a mapping between the features of original face images
to its corresponding caricature [302]. Liu et al. [303] proposed a machine learning method
to map 2D feature points detected in face images to the coefficients of a PCA model learned
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from a dataset of 200 3D caricature models. An interactive technique was proposed in [304],
where each mouse operation on vertices caused the inference of the PCA coefficients of the
individual face components. Han et al. [305] introduced the first system capable of creating
3D face caricatures from 2D sketches by training a CNN with 2D sketches and the correspond-
ing subspace of 3D shape and expression variations. For a detailed description of automated
caricature generation refer to the survey of Sadimon et al. [306].

5.3.1.2 Face Recognition

The performance of face recognition in the wild has significantly increased, mainly due
to the advent of deep learning [182, 184, 307]. Nevertheless, the majority of face recognition
approaches focused on improving performance via new learning strategies, augmenting training
data or learning an embedding in the descriptors space, instead of adjusting the input data to a
more suitable representation to address this problem (e.g., using face caricatures). Regarding
caricature-based face recognition, there is limited work in the literature. Klare et al. [308]
used qualitative features from face images and the corresponding caricatures to train a logistic
regression model that predicted the similarity score between a caricature and a photo. How-
ever, these features were manually annotated via Amazon’s Mechanical Turk, restraining the
usability of this approach in a real-world scenario. Abaci and Akgul [309] proposed a method to
automatically extract facial attributes from photos, but the attributes of caricatures were man-
ually labeled. On contrary, Ouyang et al. [310] introduced a completely automated approach
to match photos with caricatures by using a classifier ensemble for estimating facial attributes
in both domains.

5.3.2 Our Method

For comprehensibility, we use the following notation: matrices are represented by capi-
talized bold fonts, vectors appear in bold, and subscripts denote indexes. The proposed method
is divided in six main phases, which are depicted in figure 5.12 and define the structure of this
section.

5.3.2.1 Facial Alignment

The localization of facial landmarks, also known as facial alignment, is a key step in the
3DMM phase of our approach. Besides, spurious landmarks affect significantly the likeness of
the caricature, as the inferred 3D face structure does not portray correctly the facial features
of the subject. Despite the astonishing increase in performance of face alignment algorithms,
the localization of landmarks in totally unconstrained data remains an open problem. For this
reason, we combine k state-of-the-art facial alignment algorithms [254,311–313] in an ensemble
strategy for predicting the most accurate set of landmarks obtained from these methods. Let
q = [x1, y1, · · · , xn, yn]

T be a vector with the locations of n face landmarks in a 2D image,
and Q = [q(1), · · · ,q(k)] the matrix with the locations of the facial landmarks of k distinct
face alignment methods. Assuming that the k face alignment methods produce uncorrelated
outputs, the way they correlate in a particular image may provide insight about the correct
set of landmarks, i.e., methods producing landmarks in very close locations are more likely
to be correct. Accordingly, the output of the facial alignment algorithms is used to obtain
Q(i), i ∈ {1, · · · , N} for N annotated images, and for each image, the vector ŷ(i) ∈ {0, 1}k is
determined by:
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ŷ
(i)
j =

1 if |q(j)−g(i)|
d(i) < ε

0 otherwise,
(5.8)

where g(i) and d(i) are the manually annotated landmarks, and the inter-ocular distance
for the ith image, respectively, whereas ε is a hard threshold controlling the maximum amount
of inter-ocular distance that a set of landmarks q can differ from the ground truth. Each binary
vector ŷ(i) denotes the methods that produced the correct landmarks for the ith image, and the
vectors of all training images are used to infer the function Ψ : Nk×n 7→ {0, 1}k by minimizing
the following loss function:

N∑
i=1

∥∥∥Ψ(Q(i);W)− ŷ(i)
∥∥∥
2
, (5.9)

where W are the weights of the neural network used for inference. Given a probe image
and the respective landmarks of the k facial alignment methods, y = Ψ(Q;W) provides the
likelihood of each method being correct, and we choose the landmarks of the method with
maximum likelihood.

5.3.2.2 3D Morphable Model

Blanz and Vetter introduced the 3D morphable models for the synthesis of 3D faces [314].
The main insight behind this approach is assuming that any face can be constructed using a
linear combination of M registered face models. A face is represented by a vector s(o) ∈ R3N

and a vector to ∈ R3N , containing the x, y and z components of the shape, and the RGB
color information, respectively. N is the number of mesh vertices. Considering the correlation
between the components of so, each face is actually represented in a more compact version using
the principal components (PC) of the shape and texture space, denoted by s and t, respectively.
Given a set of shape exemplars S = {s1, ..., sM} and texture exemplars T = {t1, ..., tM}, a new
fitted model (sf ,tf ) is expressed as:

sf =

M∑
i=1

αi.si +

K∑
j=1

λj .bj tf =

M∑
i=1

βi.ti, (5.10)

where α and β are vectors with the weights assigned to each exemplar, whereas B =

{b1, ...,bK} is a set of deviations components of K different facial expressions and λ is the
vector with the weight of each expression. Given an input image I and a set of landmarks q,
the variables α, β and λ are estimated by minimizing the following energy function:

E =
∑

(x,y)∈N2

|I(x, y)− If (x, y)|+
∑
k=1

|qk − pk|, (5.11)

where If is the image obtained by projecting the fitted model, and pk is the projected
position of the vertex corresponding to the kth landmark.

Inferring a 3D surface from a face image is an ill-posed problem, and thus, different
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HPEN [183] (v = 53490) EOS [319] (v = 3448)

Figure 5.13: Examples of 3D models obtained by different 3DMM methods in low-resolution data. The use
of low-resolution data hinders the process of recovering the latent parameters of the 3D model,

particularly when using dense models. The comparison between HPEN (a common 3DMM method coupled
with a dense model) and EOS (3DMM particularly adapted for low-resolution data coupled with a sparse
model) evidences two major drawbacks of the first approach: 1) the models do not correspond to the

face structure of the subject; and 2) they are not consistent in data of the same individual.

constraints have been proposed to ease the energy minimization (e.g., features extracted from
the input image [315] and facial symmetry [316]). Despite these modifications, the energy
function E remains highly non-convex in low-resolution images, and thus, it is unfeasible to
build a statistical model of the facial texture that generalizes well in wild data and is, at the
same time, in correspondence with the shape model. Accordingly, we opt for using a 3D face
reconstruction methodology that relies solely on fitting a statistical 3D facial shape prior on a
sparse set of landmarks [317–319]. Moreover, we use the Surrey Face Model [319] (a sparse 3D
model with 3,448 vertices) instead of the commonly used Basel Face Model [320] with 53,490
vertices. The rationale for this choice is twofold: 1) images acquired in totally unconstrained
scenarios increase the likelihood of spurious landmarks, which in turn may induce aberrations
in isolated parts of models with many degrees of freedom (as illustrated in figure 5.13); and
2) the computational cost of the minimization algorithm increases significantly with number of
vertices, and the proposed method is intended for real-time applications.

5.3.2.3 Exaggeration Inference

The correct assessment of which facial features should be exaggerated is the key for
drawing recognizable caricatures. This process occurs internally in the human brain and is
commonly accepted that is guided by the comparison to a reference model [321] or average
model [322], which in our case is the Surrey Face Model.

Let π = [x, y, θ, s] be the attributes of a face region, where (x, y) is the mass center in
the frontal model version, θ is the region orientation in the xy-plane and s the region size.
r = [π(1), ...,π(n)] is the vector obtained by concatenating the attributes of n face regions,
whereas r′ = r−r(f) is the element-wise difference between r and the regions of the reference
model r(f). The difference operator ⊖ between regions is defined as:

π(1) ⊖ π(2) = {x(1) − x(2), y(1) − y(2), θ(1) − θ(2),
s(1)

s(2)
}. (5.12)

The vector r′ is a compact description of the differences between a face and a reference
model. However, each component is derived from attributes with distinct scales and variances.
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Figure 5.14: Schematic representation of the exaggeration inference phase. The key for drawing
recognizable caricatures is the correct assessment of the exaggeration degree that should be applied to
each facial feature. Aiming at replicating the internal brain process that guides caricature drawing, we
proceed by measuring the differences between the attributes of the inferred model and a reference

model, followed by standardizing these deviations using z-score normalization. The normalized
deviations are subsequently deformed using a ’measure locally, weight globally’ strategy, allowing to
determine the exaggeration degree of each attribute not only by its the individual deviation but also

from its global importance in the face context.

As such, we normalize r′ using the standard score:

zi =
r′i − µi

σi
, (5.13)

where µi and σi are the sample mean and sample standard deviation of the ith attribute
(estimated from the training data). This normalization provides a comparable description of
how each attribute deviates from the mean.

We believe that a very similar representation is inferred internally by caricaturists, and
that they exploit it for emphasizing the most distinguishable features of the whole face in a
holistic manner, i.e., determine the exaggeration degree of each feature not only by its the
individual deviation but also from its global importance in the face context. Inspired by this
observation, we introduce a two-step process for inferring the exaggeration degree of the nor-
malized deviation of each attribute.

The proposed inference strategy works in a ’measure locally, weight globally’ manner. In
the first step, the maximum displacement in the normalized space∆

◦
z is individually determined

by applying a transfer function to the cumulative probability of zi (denoted by Φµi,σi
(zi)):

∆
◦
zi = κ log(

Φµi,σi
(zi)

1− Φµi,σi(zi)
)− zi, (5.14)

where κ is a parameter controlling the level of exaggeration applied to each attribute.

In the second step, the relative importance of each attribute is determined by measuring
the absolute distance of zi to the mean of the observed attributes (z̄i), and the weight of each
attribute is given by:

γi =
|zi − z̄i|∑
i=1 |zi − z̄i|

. (5.15)

78



Biometric Recognition in Surveillance Scenarios

Both steps are then combined to produce the deformed deviation in the normalized space:

◦
zi = zi + γi∆

◦
zi. (5.16)

Figure 5.14 provides a summary description of the proposed deformation inference process.
Recovering the regions attributes from the deformed deviations ◦

z is attained by reversing
the normalization process:

◦
ri = (

◦
zi.σi + µi)⊕ r

(f)
i , (5.17)

where ⊕ is the sum operator between regions. At the end, the 3D position of the region
vertices is adjusted to comply with new region properties, i.e., regarding π(x), π(y), and π(θ)

the vertices are simply translated or rotated, whereas for π(s) the position of each vertex is
adjusted by the vector πs(vi − v

(f)
i ), being vi and v

(f)
i the vertices of the ith region in the

observed and reference model, respectively.

5.3.2.4 3D Model Deformation

Given the updated positions of the face regions vertices, it is necessary to deform the
mesh to satisfy these constraints. The deformation applied should, at the same time, comply
with the constraints and preserve local details, i.e., produce smooth deformations by varying
the position of each vertex with respect to its neighbors. Laplacian mesh editing [323,324] is a
classical algorithm to address this problem. It represents vertices with respect to its neighbors
using differential coordinates, denoted as Laplacian coordinates. The Laplacian coordinates are
defined as L(vi) = vi − 1

di

∑
j∈Ni

vj, where di is the degree of the ith vertex and Ni is the set
of neighbors of the ith vertex. Given a subset of vertices C and their updated positions u (user
constraints), the Laplacian mesh editing algorithm determines the deformed vertex positions v̂
by minimizing the following function:

v̂ = argmin
v′

n∑
i=1

||L(vi)− L(v′
i)||2 +

∑
i∈C

||v′
i − ui||. (5.18)

The model given in the right side of figure 5.14 depicts a deformed mesh obtained with the
Laplacian mesh editing algorithm, where can be observed the smoothness of the deformation.

5.3.2.5 Caricature Synthesis

The synthesis of the 2D caricature in the original pose is achieved by projecting each
vertex with the camera parameters previously determined in the 3DMM phase. For maintaining
the original image resolution, we adapt the number of vertices using interpolation.

5.3.2.6 Feature Encoding and Matching

After generating the caricature from a veridical photo, the VGG-Face architecture is
trained to identify individuals from caricatures (refer to section 5.3.3.2 for further details).
Feature encoding is attained using the learned filters, and caricatures are described by the
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Figure 5.15: Examples of the data sets used in the empirical validation of the proposed face recognition
method. The upper row regards the LFW data set, whereas the bottom rows are from the IJB-A and

MegaFace sets, respectively.

4096-dimensional features produced in the ’fc6’ layer of the VGG-Face architecture. During the
matching phase, the L2 distance between the descriptors is used as dissimilarity score.

5.3.3 Results and Discussion

Five well-known data sets were selected for our experimental evaluation. The Annotated
Facial Landmarks in the Wild (AFLW) [325] set was used to evaluate the results of the face
alignment phase. The VGG dataset [185] was chosen for its large quantity and diversity of face
images (more than 2M images from 2622 celebrities), providing an excellent tool for tuning a
CNN to the task of face recognition. Finally, the LFW [289], IJB-A [219] and MegaFace datasets
were used for assessing the performance of our approach in data acquired in the wild. All these
sets comprise images of celebrities, except for AFLW and Megaface, which contain images of
Flickr users. Figure 5.15 shows some images from the data sets considered for performance
evaluation.

In addition, this section describes the modifications performed in the proposed approach
for generating the caricature version of the VGG dataset in less than 4 days, and details the
parameters used for training the VGG-Face network.

5.3.3.1 Facial Alignment

The AFLW dataset has 25,993 color images, each one annotated with a 21-point markup
on visibility. This set was used to compare the performance of the ensemble learning strat-
egy introduced in section 5.3.2.1 with the individual performance of four state-of-the-art face
alignment methods [254,311–313]. These methods are compliant with the popular 68 landmark
format [326], while AFLW only provides a maximum of 21 landmarks depending on visibility. For
evaluation, we selected a subset of 11 landmarks that share the same semantic positions in the
two formats. Also, we considered exclusively samples with pose angles in the intervals yaw ±π

4 ,
pitch ±π

2 and roll ±π
5 , according to the plausibility of observing such poses in visual surveillance

scenarios. In accordance with the standard evaluation protocol [327], the average point-to-
point Euclidean distance normalized by the inter-ocular distance was used as error metric, and
the overall accuracy is reported by the cumulative errors distribution curve in figure 5.16. The
comparative performance between the ensemble strategy and the best performing approach
shows an increase of 5% in the proportion of images with an inter-ocular normalized error less
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Figure 5.16: Cumulative error distribution curves for a subset of the AFLW dataset. Four state-of-the-art
facial alignment methods (DLIB [311],TCDCN [313],TCDCN+MTCNN [312] and Zhu and Ramanan [254]) and
their fusion were evaluated in AFLW for evidencing the advantages of combining their results with an

ensemble learning strategy.

Original

Caricature

Figure 5.17: Comparison between the performance of the VGG-Face network trained on veridical images
and on caricatures. The improvements in the CMC curve of the network trained on caricatures evidence
the benefits of using this representation for automated face recognition. This improvement is justified
by the fact that caricatures enhance the distinctive features of subjects, easing the recognition task.

than 10%. Even though these improvements seem irrelevant, they represent a significant de-
crease in the number of distorted caricatures caused by spurious landmarks, which in turn ease
CNN training and improve the performance of the network.

5.3.3.2 CNN Training

This section details the architecture, the parameters and the training data chosen for
optimizing the network to the caricature recognition task. Our goal is to show that, similarly to
humans, a CNN attains higher face recognition rates if trained with caricatures than with the
original face images. The approach of Parkhi et al. [185] has been found particularly useful for
this endeavor because of two major reasons: 1) the authors show that is possible to obtain state-
of-the-art face recognition results on different datasets solely by training from scratch a CNN
with millions of images automatically retrieved from the web; and 2) the network architecture
(the VGG-Face) and the set of images used for training (the VGG dataset) are publicly available,
allowing to replicate the experiments of [185], and measure the performance gap between the
use of veridical photos and caricatures.

Accordingly, we trained the VGG-Face architecture from scratch on two distinct types of
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Table 5.2: Training configuration used for adjusting the weights of the CNN from scratch.

• Batch-size 64

• Momentum 0.9

• Weight-decay 5× 10−4

• Dropout Rate 0.5

• Learning Rate 10−2

• Weight Initialization X ∼ N (0, 10−4)

data: 1) original images of the VGG dataset (baseline); and 2) caricature images of the VGG
dataset. The original VGG set contained 2.6M images (2622 identities with 1000 images), but
at the time of our experiments, only 2.1M images were available on the web. Next, 90% of
the images of each subject were randomly selected for training and the remaining were kept
aside for performance evaluation. The configuration used and the regularization parameters
for model optimization are described in table 5.2. For augmenting training data, a 224×224
pixel patch was randomly cropped from the image and horizontal flipping was applied with 50%
probability. The model was implemented in the MATLAB toolbox MatConvNet and linked against
the NVIDIA CuDNN libraries to accelerate training. All the experiments were carried on a NVIDIA
Titan X Graphics Processing Unit (GPU) with 12GB of onboard memory, and each epoch took
about 13h to run.

The comparative performance obtained by evaluating the trained models in 10% of the
VGG set is depicted in figure 5.17. The results evidence the benefits of using caricatures for
automated face recognition, and we argue that this improvement is justified by the fact that
caricatures enhance the distinctive features of the subject, easing the recognition task. As an
example, figure 5.17 also provides the two representations of an identity of the VGG set, where
it is easier to identify the well-known actor Rowan Atkinson by its caricature than by its veridical
image.

5.3.3.3 Running Time

The average running time of the caricature generation phase is a crucial variable for two
major reasons: 1) evaluating the applicability of the proposed method in a real-time system;
and 2) determining the time required for generating the caricatures of the training set, which
can be prohibitive in the case of VGG dataset (2.1M images). The extensive processing chain
and the use of off-the-shelf implementations affect substantially the processing time, and, as
such, some phases of the proposed approach were modified either by using approximations or
memoization.

In the 3DMM phase, the maximum number of iterations for inferring the 3D model was
changed from 50 to 5, as we noticed marginal differences in the obtained models. Regarding
model deformation, the off-the-shelf implementation of the Laplacian mesh editing algorithm
was optimized with memoization, while caricature synthesis was speedup by using triangulation
hierarchy during texture rendering. Table 5.3 provides a comparison between the original and
optimized average running time of each phase on a single core of an i7-4790 CPU, as well as,
the total running time per image and the total time required for processing the whole VGG set.
The results show that, after the optimization, training images can be generated in few days by
distributing the data into multiple computers and exploit all the cores of the CPU.
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Table 5.3: Comparison between the original and optimized running time of the phases of the proposed
caricature generation method.

Phase
Running Time (ms/img)
Original Optimized

Face Alignment 160 ±120 160 ±120

3DMM 800 ±93 200 ±52

Face Analysis 95 ±26 95 ±26

3D Model Deformation 2 500 ±155 500 ±120

Image Synthesis 740 ±37 330 ±16

Total 4295 ±431 1290 ±334

VGG ≈ 114 days ≈ 31 days

5.3.3.4 Face Recognition Performance: Improvements due to Caricatures

To assess the performance of the proposed approach in highly unconstrained data, three
state-of-the-art face recognition datasets were used, namely the LFW [289], IJB-A [219], and
MegaFace [290]. The rationale for using multiple sets was twofold: 1) ensuring a non-biased
evaluation of face recognition in the wild (the particularities of a single set could inadvertently
overestimate the recognition rate of the proposed method); and 2) showing that the proposed
approach can cope with large variations in data.

Method 100%-EER
aCNN [186] 98.00

Caricature (proposed) 97.25
VGG-Face (baseline) 95.10
3DMM-CNN [328] 92.33

Figure 5.18: Face verification performance for the LFW dataset. The ROC curves of caricature-based
face recognition (our method) and original image face recognition (baseline) show the advantages of
using this representation. Also, the results show that the obtained performance is competitive with

state-of-the-art algorithms.

During encoding, the metadata of the evaluation sets were used to crop each probe image
to a 256x256 sub-image containing the facial region and maintaining aspect ratio. Then, five
patches of 224x224 pixels were sampled from each face image (from the four corners and cen-
ter), and each region was duplicated with horizontal flipping. The ten resulting patches were
subsequently input to the network and the obtained descriptors were averaged to produce the
face descriptor of the probe image.

Experiments on the LFW dataset. LFW is a de facto benchmark for evaluating face recognition
in the wild, comprising 13,233 images from 5,749 subjects. The evaluation protocol provides
3000 pairs of images organized in 10 splits for assessing the verification performance of face
recognition algorithms. Also, each method should report the results under a specific setting
with respect to the type of training data used. In our case, even though the descriptor obtained
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Negative Pairs Positive Pairs
Original Caricature

Score:0.177 Score:-0.163

Original Caricature

Score:0.017 Score:-0.253

Original Caricature

Score:-0.097 Score:0.193

Original Caricature

Score:-0.037 Score:0.053

Figure 5.19: Successful cases of the proposed approach. The advantages of using caricatures for face
recognition are represented by four pairs of the LFW and IJB-A sets where our approach produced a

correct score, while the use of veridical photos produced an incorrect output.

Negative Pairs Positive Pairs
Original Caricature

Score:-0.103 Score:0.087

Original Caricature

Score:-0.183 Score:0.117

Original Caricature

Score:0.083 Score:-0.127

Original Caricature

Score:0.023 Score:-0.097

Figure 5.20: Failure cases of the proposed approach. The major causes of failure in the LFW and IJB-A
sets are represented by four pairs where our approach produced an incorrect score, while the use of
veridical photos produced a correct output. Occlusions, facial expressions and the failure of facial

alignment are the major reasons for incorrect caricature generation.

is not tuned in the LFW training data, we should report our results under the ’unrestricted with
labeled outside data’ setting due to the use of the VGG dataset during model training.

Regarding the comparison with state-of-the-art methods, the works of Tran et al. [328]
and Masi et al. [186] were selected for sharing similarities with our approach. In [186], the 3D
face structure was inferred from a single 2D image to augment the number of training samples
by rendering the original face in a distinct pose, shape and expression. In [328], the authors
introduced a regression network for estimating the 3D structure from a single 2D image and used
this representation for face recognition.

Results are summarized in the ROC curves of figure 5.18. When compared to the baseline,
our approach achieved a significant decrease in the EER, supporting the claim that automated
face recognition benefits from the use of caricatures (refer to figure 5.19 for some examples).
Regarding the comparison to similar approaches, our approach performed significantly better
than 3DMM-CNN [328], while it produced competing results with respect to aCNN [186]. The
results of [328] suggest that texture plays a decisive role in the face recognition task, while
the comparison between the performance of our method with [186] indicates that the empha-
sis of distinctive facial features is as effective as generating multiple views of the original image.
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Table 5.4: Summary of the face recognition performance on IJB-A.

Method
Trained on

IJB-A
Verification Identification

FAR 0.1 FAR 0.01 Rank-1 Rank-5

GOTS [219] Yes 62.7 ±1.2 40.6 ±1.4 44.3 ±2.1 59.5 ±2.0

OpenBR [329] Yes 43.3 ±0.6 23.6 ±0.9 24.6 ±1.1 37.5 ±0.8

Wang et al. [330] Yes 89.5 ±1.3 73.3 ±3.4 82.0 ±2.4 92.9 ±1.3

Chen et al. [331] Yes 96.7 ±0.9 83.8 ±4.2 90.3 ±1.2 96.5 ±0.8

aCNN [186] Yes 88.6 72.5 90.6 96.2

VGG-Face [185] No 85.4 ±1.2 61.1 ±2.3 87.6 ±1.6 92.8 ±0.9

Caricature No 86.0 ±1.4 63.5 ±2.7 88.9 ±1.1 94.1 ±0.7

Experiments on the IJB-A dataset. The IJB-A dataset represents an advance over LFW, by
comprising data with a wider range of variations, particularly in pose. It contains 500 subjects
with 5,397 images and 2,042 videos split into 20,412 frames, 11.4 images and 4.2 videos per
subject. Regarding the evaluation protocol, it differs from LFW by considering template-to-
template comparisons rather than image-to-image comparisons, where each template contains
a combination of images or frames sampled from multiple image sets or videos of a subject.
Algorithms can be evaluated in the verification (1:1 matching) or identification (1:N search)
protocol over 10 splits. In the verification protocol, each split contains around 11,700 pairs of
templates (15% positive and 85% negative pairs) on average, whereas the identification protocol
also consists of 10 splits, each containing about 112 gallery templates and 1763 probe templates.
During evaluation, each template is described by the average of image descriptors. Table 5.4
reports the performance of the baseline, the proposed approach, and competing approaches
with respect to the standard accuracy metrics of IJB-A.

Regarding the comparison with the baseline, the improvements of our approach were
not statistically significant, contrasting with the performance increase attained in LFW. In our
view, the principal cause for this outcome was the failure of facial alignment, rather than the
ineffectiveness of caricatures. The particularities of IJB-A (extreme variations in pose, face
resolution, and illumination) affect significantly the accuracy of the landmark detector, which
in turn distorts the generated caricature (figure 5.20 depicts some examples).

With respect to the comparison to other approaches, our method outperformed the base-
lines of IJB-A (GOTS and OpenBR), but it fell behind the remaining state-of-the-art face recog-
nition methods. However, it should be stressed that, unlike the other approaches, no particular
effort was made to optimize our method for this dataset (e.g., fine-tuning with IJB-A training
data), since our major concern is measuring the relative performance between caricatures and
original images.

Experiments on the MegaFace dataset. MegaFace [290] is a recent and very challenging
dataset for evaluating face recognition at scale. The gallery set comprises more than 1 million
images from 690K different individuals, while the probe set was sampled from the FaceScrub
dataset. The evaluation protocol provides code for testing algorithms in the verification and
identification scenarios.

Figure 5.21 compares the verification and identification performance of our approach
with the baseline, and with commercial systems that took part of the MegaFace challenge,
whereas table 5.5 summarizes the methods performance according to the standard metrics of
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Table 5.5: Summary of the face recognition performance on MegaFace with 1M distractors.

Method Rank-1 TAR@FAR=10−6

Vocord-DeepVo1 75.13 67.32
NTechLAB-facenx 73.30 85.08
Shanghai Tech 74.05 86.34
Google-FaceNet v8 70.50 86.47
Beijing FaceAll-Norm-1600 64.80 67.12

SIAT-MMLAB 65.23 76.72
Barebones FR 59.36 59.04

VGG-Face (baseline) 75.08 74.78
Caricature (proposed) 75.10 76.49

Figure 5.21: Face recognition performance on MegaFace. Left: Verification performance on MegaFace
with 1M distractors. Middle: Identification performance on MegaFace with 1M distractors. Right: Rank-1

performance as a function of the number of distractors on the probe set.

the dataset. The results show that the proposed approach outperformed the baseline on both
recognition settings when using 1M distractors. Improvements in performance are also observed
with a variable number of distractors, as evidenced in the right plot of figure 5.21. Regarding
the comparison with commercial approaches and the baseline methods of MegaFace (LBP [171]
and Joint Bayes), it is interesting to note that, in the majority of the cases, caricature-based
face recognition attained better performance than these systems.

5.3.4 Conclusion

In this section, we introduced the first fully automated caricature-based face recogni-
tion system capable of working in real-time with data acquired in the wild. A 3DMM method
coupled with a set of automatically detected facial landmarks was used for inferring the 3D
face structure of probe images. Next, the inferred model was compared to a reference proto-
type for determining the divergence between facial regions, and the exaggeration applied to
each region was determined by a ’measure locally, weight globally’ strategy. The modified re-
gions were given as constraints to a Laplacian mesh editing algorithm for deforming the original
mesh, and the 2D caricature was obtained by projecting the deformed model in the original
camera-view. During the learning phase, the VGG-Face architecture was trained from scratch
on 2.1M caricatures automatically generated from the VGG dataset, whereas classification was
performed with the features from the ’fc6’ layer.

To assess the advantages of using caricatures for automated face recognition, we used
three state-of-the-art face recognition datasets for measuring the relative performance be-
tween our approach and the VGG-Face trained on the original images of the VGG dataset. The
results revealed significant improvements in the recognition performance when using caricatures
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rather than veridical images, confirming the usefulness of using caricature-based face recog-
nition. Regarding the comparison with state-of-the-art methods, our approach was capable of
obtaining competitive results even without being particularly tuned for any of the evaluation
sets. Nevertheless, it should be noted that our goal was not to attain the best performing results
on these sets, but measure the performance gap between the use of caricatures and veridical
images.

5.4 Summary

This chapter was devoted to the description and experimental evaluation of the contri-
butions made for improving the performance biometric recognition in surveillance scenarios.

Before attempting the development of novel recognition algorithms to deal with the
degradation factors of the data, we organized the ICB-RW competition in order to gauge the
performance of state-of-the-art approaches and perceive the major causes for the algorithms
failure. Also, this competition provided important insights for the development of our biometric
recognition approaches.

Next, we described our two proposals. The first approach regards an algorithm for de-
tecting degraded features in biometric signatures, which later constraints the features that are
taken into account in the matching phase. The second proposal is a caricature-based face recog-
nition approach for mimicking the caricature drawing process of caricaturists and producing 2D
representations where inter-subject similarity is minimized and intra-subject similarity is pre-
served. We concluded that both proposals increase the robustness of biometric recognition to
the degradation factors inherent to surveillance environments. However, it should be noted
that these results are dependent on the successful acquisition of biometric samples, and, even
though this issue has been addressed in the previous chapters, there is room for improvement
in the acquisition rate of the proposed surveillance system.

In short, we are convinced that the proposals described in this chapter contribute to
extend the range of biometric recognition to more challenging data, and thus they constitute a
step towards biometric recognition in the wild.
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Chapter 6

Conclusion and Future Work

Throughout this thesis, several contributions were made to enable the acquisition of bio-
metric samples in unconstrained scenarios and to push forward the performance of biometric
recognition in these data. This chapter presents the main conclusions that resulted from the
research work performed during the 4 years of this doctoral program. Furthermore, it provides
directions for further research topics.

6.1 Conclusion

The major goal of this thesis was the development of an automated surveillance system
capable of recognizing subjects at a distance and without their cooperation in the acquisition
process. As described along this thesis, the successful development of such a system requires the
knowledge of three distinct research domains, but the scope of this thesis was limited to two of
these areas: surveillance systems and biometric recognition. Nevertheless, we believe that the
contributions presented represent a step-forward towards biometric recognition in surveillance
scenarios.

Regarding the surveillance area, we introduced a novel calibration algorithm for master-
slave surveillance systems that avoids the use of extra optical devices and stringent configura-
tions between cameras. As a consequence, the acquisition of high-resolution biometric data can
be performed outdoors and at a wider range of distances. The second significant contribution
was a camera scheduling approach that minimizes the cumulative transition time when imaging
multiple subjects. This method is of particular importance for ensuring that the biometric data
of each subject are acquired at least once. These contributions were then used in combination
with the state-of-the-art approaches of the human monitoring field to develop a fully automated
surveillance capable of acquiring biometric data at a distance and without human cooperation,
designated as QUIS-CAMPI system.

The analysis of the state-of-the-art biometric databases showed that these sets do not
faithfully represent the complete set of degradation factors of surveillance scenarios. For this
reason, we introduced the QUIS-CAMPI dataset, comprising both full body video sequences and
high-resolution face images acquired by the QUIS-CAMPI system from non-cooperative subjects
in a real surveillance scenario. The acquisition process ensures that data truly encompass the
covariates of surveillance environments. Moreover, this set provides multiple biometric traits
in the enrollment set (full-body images, gait sequences, 3D model of the face), which makes it
particularly useful for assessing the performance of biometric recognition methods in completely
unconstrained environments.

In the biometrics field, we organized the ICB-RW competition, which was particularly
important to assess the performance of the state of the art in biometric recognition in totally
unconstrained scenarios, as well as also to provide insight about the most adequate strategies
for addressing the typical degradation factors of these scenarios. Second, we devised a method
for detecting corrupted features in biometric signatures. This method works at the final stage
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of the biometric systems processing chain, i.e. the feature matching phase, and for that reason
this approach is not specific to a particular trait, which is regarded as a strong point. The
last contribution regards a caricature-based face recognition method capable of working with
data acquired in the wild. Our approach is capable of creating 2D face representations, where
likeness is preserved and the inter-class separation is enlarged. The advantages of our method
are confirmed by the results obtained in three state-of-the-art datasets, where the recognition
performance increased when using caricatures rather than veridical images.

To conclude, we believe that the contributions presented in the thesis contribute to bridge
the gap between biometric recognition and surveillance. However, it should be stressed that, in
spite of these achievements, the automated recognition of humans in surveillance scenarios is
still to be accomplished. This is justified by the fact that the recognition rate is highly sensitive
to the failure of any of the stages of the processing chain, and according to our experiments
there is room for improvement in modules related to human monitoring in surveillance scenarios.

6.2 Future Work

We are currently attempting to increase the success rate of the biometric data acquisition
process by studying novel strategies for detecting and tracking humans in surveillance scenarios.
In spite of the successful acquisition of the QUIS-CAMPI dataset, we observed that the perfor-
mance of state-of-the-art human detectors and tracking algorithms decreases significantly in
surveillance scenarios, particularly in crowded scenes.

Also, we are interested in finding innovative solutions to address some particularities
of the implementation of the QUIS-CAMPI prototype, which affect significantly the quality of
biometric data acquired, and in turn the recognition accuracy. As an example, we aim at inves-
tigating alternative solutions for obtaining focused images from the PTZ camera, and improving
the accuracy of human path prediction by automatically analyzing the constraints of the scene,
i.e., perceive the locations where is unlikely to observe subjects. These improvements would
significantly improve the rate of acquisitions and the data quality. This avoids the development
of recognition methods capable of addressing these issues, which is a more challenging problem
than these improvements.
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Informed consent for obtaining the subjects
permission to acquire biometric samples

  

 

 

UNIVERSIDADE da BEIRA INTERIOR 
Departamento de Informática 

 

 

  

  

Consentimento para recolha de dados biométricos 
 

 

 
No âmbito do projeto de investigação QUIS-CAMPI solicitamos a vossa participação 
para a recolha de um conjunto de dados biométricos, utilizados no desenvolvimento 
de métodos de reconhecimento biométrico em ambientes não cooperativos. 
 
A recolha de dados consiste em duas fases: 
 
FASE 1: O registo é efectuado no laboratório SOCIA (Sala 6.12) do Pólo I da 
Universidade da Beira Interior, sendo guardados os seguintes dados:  

• Informação biométrica auxiliar (exemplo: idade, sexo, altura, peso, cor da 
pele, características faciais, características do cabelo); 

• Foto corpo completo; 

• Imagens da face sob diferentes poses. 

• Vídeos de sequência de passo. 
 
FASE 2: O reconhecimento será feito com base em dados capturados a partir de 
câmaras de videovigilância instaladas no parque de estacionamento adjacente ao 
laboratório SOCIA.  
 
A participação considera-se válida após recolha de dados em ambas as fases. Todos 
os dados recolhidos serão utilizados exclusivamente para efeitos de investigação, 
bem como serão partilhados com a comunidade científica para efeitos de 
comparação objectiva de resultados.   
 
A equipa de investigação agradece a sua participação neste estudo. Obrigado!  
 
 
Em caso de dúvidas contactar o responsável do estudo, Prof. Hugo Proença, através do e-mail 
hugomcp@di.ubi.pt. A recolha será realizada pelo Doutorando João Neves 
(jcneves@penhas.di.ubi.pt). 
 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
Eu, ____________________________________, cartão de cidadão n.º ___________ 
consinto a recolha de dados biométricos no âmbito do projecto QUIS-CAMPI, de 
acordo com o acima enunciado. 
 

Universidade da Beira Interior, Covilhã, ____ de _________________ de 20 ____  

 

 

        Assinatura 

 

     _______________________________________________  

                  REF:  
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Other publications resulting from this doctoral
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Abstract

Using the periocular region for biometric recognition is
an interesting possibility: this area of the human body is
highly discriminative among subjects and relatively stable
in appearance. In this paper, the main idea is that improved
solutions for defining the periocular region-of-interest and
better pose / gaze estimates can be obtained by segment-
ing (labelling) all the components in the periocular vicin-
ity. Accordingly, we describe an integrated algorithm for
labelling the periocular region, that uses a unique model
to discriminate between seven components in a single-shot:
iris, sclera, eyelashes, eyebrows, hair, skin and glasses. Our
solution fuses texture / shape descriptors and geometrical
constraints to feed a two-layered graphical model (Markov
Random Field), which energy minimization provides a ro-
bust solution against uncontrolled lighting conditions and
variations in subjects pose and gaze.

1. Introduction

Motivated by the pioneering work of Park et al. [14],
the concept of periocular recognition has been gaining rel-
evance in the biometrics literature, particularly for uncon-
trolled data acquisition setups. For such cases, the idea is
that - apart the iris - additional discriminating information
can be obtained from the skin and sclera textures, and the
shape of eyelids, eyelashes and eyebrows.

Most of the relevant periocular recognition algorithms
work in a holistic way, i.e., they define a region-of-interest
(ROI) around the eye and apply a feature encoding strat-
egy independently of the biological component at each po-
sition. The exceptions (e.g., [17] and [6]) regard the iris
and the sclera components, for which specific feature en-
coding / matching algorithms are used. This observation
leads that some components (e.g., hair or glasses) might be

úThis work was supported by FCT project PEst-OE/EEI/LA0008/2013

erroneously taken into account and bias the recognition pro-
cess.

The automatic labelling (segmentation) of the compo-
nents in the periocular region has - at least - two obvious
advantages: it enables to define better ROIs and conducts to
more accurate estimates of subjects’ pose and gaze. Hence,
this paper describes an image labelling algorithm for the
periocular region that discriminates between seven com-
ponents (iris, sclera, eyelashes, eyebrows, hair, skin and
glasses), according to a model composed of two phases:

1. seven non-linear classifiers running at the pixel level
are inferred from a training set, and provide the poste-
rior probabilities for each image position and class of
interest. Each classifier (neural network) is specialized
in detecting one component and receives local statis-
tics (texture and shape descriptors) from the input data;

2. the posteriors based on data local appearance are com-
bined with geometric constraints and components’ ad-
jacency priors, to feed a hierarchical Markov Ran-
dom Field (MRF), composed of a pixel and a com-
ponent layer. MRFs are a classical tool for vari-
ous computer vision problems, from image segmenta-
tion (e.g., [10]), image registration (e.g., [8]) to object
recognition (e.g., [5]). Among other advantages, they
provide non-causal models with isotropic behavior and
faithfully model a broad range of local dependencies.
The model proposed in this paper inherits some in-
sights from previous works that used shape priors to
constraint the final model (e.g., [3]) and multiple lay-
ered MRFs (e.g., [19]).

To illustrate the usefulness of the proposed algorithm,
we compare the effectiveness of the Park et al.’s [14] recog-
nition method, when using the ROI as originally described
and according to an improved version, that considers
the center of mass of the cornea as reference point (less
sensitive to gaze) and avoids that hair and glasses inside
the ROI are considered in feature encoding / matching. The



observed improvements in performance anticipate other
benefits that can be attained by labelling the periocular
region before recognition: pose / gaze estimates based in
the labelled data and development of component-specific
feature encoding / matching strategies.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the most relevant periocular recognition
algorithms. Section 3 provides a description of the proposed
model. Section 4 regards the empirical evaluation and the
corresponding results. Finally, the conclusions are given in
Section 5.

2. Periocular Recognition: Literature Review

The first work in this field was published in 2009, due
to Park et al. [14]. They characterised the periocular re-
gion by local binary patterns (LBP), histograms of ori-
ented gradients (HOG) and scale-invariant feature trans-
forms (SIFT), fused at the score level. Subsequently, the
same authors [13] described additional factors that affect
performance, including segmentation inaccuracies, partial
occlusions and pose. Woodard et al. [20] observed that fus-
ing the responses from periocular and iris recognition mod-
ules improves performance with respect to each system con-
sidered individually. Bharadwaj et al. [4] fused a global
descriptor based on five perceptual dimensions (image nat-
uralness, openness, roughness, expansion and ruggedness)
to circular LBPs. The Chi-square distances from both types
of features were finally fused at the score level. Ross et
al. [16] handled challenging deformed samples, using prob-
abilistic deformation models and maximum-a-posteriori es-
timation filters. Also concerned about robustness, Woodard
et al. [21] represented the skin texture and color using sep-
arate features, that were fused in the final stage of the pro-
cessing chain. Tan et al. [18] proposed a method that got the
best performance in the NICE: Noisy Iris Challenge Evalu-
ation1. contest. This method is actually a periocular recog-
nition algorithm: texton histograms and semantic rules en-
code information from the surroundings of the eye, while
ordinal measures and color histograms encode the iris data.
Oh et al. [9] combined sclera and periocular features: direc-
tional periocular features were extracted by structured ran-
dom projections, complemented by a binary representation
of the sclera. Tan and Kumar [17] fused iris information
(encoded by Log-Gabor filters) to an over-complete repre-
sentation of the periocular region (LBP, GIST, HOG and
Leung-Malik Filters). Both representations were matched
independently and fused at the score level.
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Figure 1. Structure of the MRF that segments the periocular re-
gion.

3. Proposed Method
As Fig. 1 illustrates, the proposed MRF is composed of

two layers: one works at the pixel level, with a bijection
between each image pixel and a vertex in the MRF. The
second layer regards the major components in the perioc-
ular vicinity, with six vertices representing the eyebrows,
irises and corneas from both sides of the face. The insight
behind this structure is that the pixels layer mainly regards
the data appearance, while the components layer represents
the geometrical constraints in the problem and assures that
the generated solutions are biologically plausible.

Let G = (V, E) be a graph representing a MRF, com-
posed of a set of t

v

vertices V , linked by t

e

edges E . Let
t

p

be the number of vertices in the pixels layer and let t

c

be
the number of vertices in the components layer, such that
t

v

= t

p

+ t

c

. Let C(x, y) denote the biological component
at position (x, y) of an image and T

j

be the component’s
type of the jth component node: either ’iris’, ’cornea’ or
’eyebrow’.

The MRF is a representation of a discrete latent ran-
dom variable L = {L

i

}, ’i œ V , where each element
L

i

takes one value l

i

from a set of labels. Let l =

{l

1

, . . . , l

tp , l

tp+1

, . . . , l

tp+tc} be one configuration of the
MRF. In our model, every component node is directly con-
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nected to each pixel node and the pixel nodes are connected
to their horizontal / vertical neighbors (4-connections).
Also, the edges between component nodes correspond to
geometrical / biological constraints in the periocular region:
the nodes representing both irises, corneas and eyebrows are
connected, as do the iris, cornea and eyebrow nodes of the
same side of the face. Note that the proposed model does
not use high-order potentials. Even though there is a point
in Fig. 1 that joins multiple edges, it actually represents
overlapped pairwise connections between one component
and one pixel vertex.

The energy of a configuration l of the MRF is the sum of
the unary ◊

i

(l

i

) and pairwise ◊

i,j

(l

i

, l

j

) potentials:

E(l) =

ÿ

iœV
◊

i

(l

i

) +

ÿ

(i,j)œE

◊

i,j

(l

i

, l

j

). (1)

According to this formulation, labelling an image is
equivalent to infer the random variables in the MRF by min-
imizing its energy:

l̂ = arg min

l
E(l), (2)

where {ˆ

l

1

, . . . ,

ˆ

l

tp} are the labels of the pixels and
{ˆ

l

tp+1

, . . . ,

ˆ

l

tp+tc} specify the components’ parameteriza-
tions. In this paper, the MRF was optimized according to
the Loopy Belief Propagation [7] algorithm. Even though
it is not guaranteed to converge to global minimums on
loopy non-submodular graphs (such as our MRF), we con-
cluded that the algorithm provides visually pleasant solu-
tions most of the times. As future work, we plan to evaluate
the effectiveness of our model according to more sophisti-
cated energy minimization algorithms (e.g., sequential tree-
reweighed message passing [11]).

3.1. Feature Extraction

Previous works reported that the hue and saturation
channels of the HSV color space are particularly power-
ful to detect the sclera [15], whereas the red / blue chroma
values provide good separability between the skin and non-
skin pixels [1]. Also, the iris color triplets are typically dis-
tant from the remaining periocular components and there is
a higher amount of information in patches of the eyebrows
and hair regions than in the remaining components. Ac-
cordingly, a feature set at the pixel level is extracted, com-
posed of 34 elements (Fig. 2): {red, green and blue channels
(RGB); hue, saturation and value channels (HSV); red and
blue chroma (yCbCr); LBP and entropy in the value chan-
nel}, all averaged in square patches of side {3, 5, 7} around
the central pixel. Also, the convolution between the value
channel and a set of Gabor kernels G complements the fea-
ture set:

G[x, y, Ê, Ï, ‡] = exp

Ë≠x

2 ≠ y

2

‡

2

È
exp[2fiÊi�] (3)

being � = x cos(Ï) + y sin(Ï), Ê the spatial frequency, Ï

the orientation and ‡ the standard deviation of an isotropic
Gaussian kernel (Ê œ { 3
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Figure 2. Illustration of the discriminating power of the features
extracted, for the seven classes considered in this paper.

3.2. Unary Potentials

Let “ : N2 æ R34 be the feature extraction func-
tion, that for each image pixel (x, y) returns a feature vec-
tor “(x, y) œ R34. Let � = [“(x
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, y
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), . . . , “(x
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)]

T

be a n ◊ 34 matrix extracted from a training set, that is
used to learn seven non-linear binary classification models,
each one specialized in detecting a component (class) Ê
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œ
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The unary potentials of each vertex in the pixels layer are
defined as ◊
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Each label in the components layer represents a param-
eterisation of an ellipse (found by the Random Elliptical
Hough Transform (REHT)) [2] that roughly models the eye-
brows, corneal or iris regions. Starting from images la-
belled by the index of the maximum posterior probability
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Fig. 3), a binary version per component can be obtained
(bottom images in Fig. 3):
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Figure 3. (Upper row) Example of an image labelled by the
maximum of the posteriors given by the classification models
÷i
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"
. The red ellipses in the bottom images represent the

parameterisations returned by the REHT algorithm for the left iris,
cornea and eyebrow.

3.3. Pairwise Potentials

There are three types of pairwise potentials in our model:
1) between two pixel nodes; 2) between two component
nodes; and 3) between a pixel and a component. The
pairwise potential between pixel nodes spatially adjacent
◊
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) is defined as the prior probability of observing
labels l

i

, l

j

in adjacent positions of a training set (e.g., it is
much more probable that an ”eyebrow” pixel is adjacent to
a ”skin” pixel than to an ”iris” one):
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terms below are regularization terms).
The pairwise potentials between component nodes con-

sider the geometrical constraints in the periocular area, i.e.,
enforce that the irises are inside the cornea, and below

the eyebrows. Also, both irises, corneas and eyebrows
should have similar vertical coordinate and similar size. Let
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the rotation. For pairs of nodes of the same type
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), similar vertical coordinates and similar sizes are
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For edges connecting the cornea (ith node) and the eye-
brow (jth node) we privilege similar horizontal coordinates
and locations having the eyebrow above the cornea:
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Regarding the iris / cornea pairwise potentials, we pe-
nalize parameterizations with portions of the iris outside the
cornea:
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) a pixel labelled as iris and
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) an indicator function that
verifies if that position is inside the ellipse defined by the
jth parameterisation (7). Overall, the pairwise potentials in
the components layer are defined as:
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Lastly, the pairwise potentials between pixels and com-
ponents enforce that pixels inside a component parameter-
isation are predominantly labelled by the value that cor-
responds to that type of node, whereas pixels outside that
parameterisation should have label different of the compo-
nent’s type. Let (x

jk

, y

jk

) be the coordinates of the ellipse
defined by the jth parameterization. The pairwise cost be-
tween the ith pixel node and the jth component node is
given by:
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where ||.|| is the Euclidean distance.
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4. Experiments
Our experiments were carried out in a data set com-

posed of 5,551 visible-light images (with resolution 800 ◊
300) containing the periocular regions from both sides of
the face. These images were the source for the UBIRIS.v2
dataset: they were collected in indoor unconstrained light-
ing environments and feature significant variations in scale,
subjects’ pose and gaze. For learning / evaluation purposes,
200 images were manually labelled, covering the seven
classes we aim to deal with. This set was divided into two
disjoint parts: 1) one used to learn the classification models
and to estimate the prior unary / pairwise costs of the MRF;
and 2) the complementary part served for quantitative per-
formance evaluation.

To obtain the seven classification models, we used feed-
forward neural networks with three layers and {34 : 17 : 1}
topology, with tan-sigmoid transfer functions in the input
and hidden layers and linear transfer functions in the out-
put layer. The learning sets were always balanced (ran-
dom sampling) and the Resilient Back-propagation algo-
rithm used to learn the classifiers. Regarding the MRF opti-
mization, every image was resized to 200 ◊ 75 pixels, i.e.,
t

p

= 15, 000 in our MRFs. Also, – = {0.01, 1, 2, 10, 10}.

4.1. Segmentation Performance

Fig. 4 illustrates the results typically attained by the pro-
posed model. Their visual coherence is evident, where
regions labelled as hair appear in pink, eyebrows in yel-
low, irises in green, eyelashes in black, sclera in blue and
glasses in blueberry color. Also, solutions were biologi-
cally plausible in the large majority of the cases, for vari-
ous hairstyles, and different subjects poses / gazes. A par-
ticularly interesting performance was observed for glasses,
where the algorithm attained remarkable results for various
types of frames. This was probably due to the fact that
glasses were the unique non-biological component among
the classes considered, which might had increased their dis-
similarity with respect to the remaining components.

In opposition, the most concerning cases happened when
the eyebrows and the hair were overlapped (bottom-right
image in Fig. 4) . Also, for heavily deviated gazes, the
sclera was sometimes under-segmented (typically, by non-
detecting the less visible side). In opposition, eyelashes
tended to be over-segmented, with isolated eyelashes be-
ing grouped in large eyelash regions, which might be due
to excessive pairwise cost for observing different labels in

Labeling Error NN (%) MRF (%)

Component FP FN FP FN

Iris 1.12 ± 0.29 9.06 ± 1.80 0.17 ± 0.03 2.61 ± 0.51

Sclera 1.61 ± 0.49 5.17 ± 0.83 0.19 ± 0.03 3.60 ± 0.82

Eyebrows 2.20 ± 0.40 6.93 ± 0.95 0.79 ± 0.28 2.25 ± 0.46

Eyelashes 1.47 ± 0.38 5.12 ± 1.13 0.93 ± 0.23 0.62 ± 0.53

Hair 3.16 ± 0.56 6.74 ± 1.27 1.26 ± 0.30 3.09 ± 0.88

Skin 4.10 ± 1.03 4.09 ± 0.69 2.63 ± 0.43 3.86 ± 1.01

Glasses 1.08 ± 0.22 5.03 ± 1.45 0.06 ± 0.01 0.60 ± 0.09

Table 1. Average pixel labelling errors per component, when con-
sidering exclusively the arg maxj p

1
Êj |÷j

!
“(x, y)

"2
value (NN

column) and with the proposed MRF model (MRF column).

adjacent positions of the pixels layer.
It should be noted that –

i

were found in an empirical
and independent way, i.e., no exhaustive evaluation of com-
bined configurations was carried out, nor any parameter op-
timization algorithm was used, which also points for the ro-
bustness of the proposed model against sub-optimal param-
eterizations. Table 1 gives the error rates per class, when
considering exclusively the first phase of our model (maxi-
mum of the posterior probabilities, column ”NN”) and the
full processing chain (MRF optimization, column ”MRF”).
In this table, FP stands for the false positives rate, whereas
FN refers to the false negatives rate. In all cases, it is evi-
dent that the MRF substantially lowered the labeling error
rates, essentially by imposing smoother responses and con-
straining the range of biologically acceptable solutions.

As the machine learning algorithm described in this pa-
per is supervised, it is important to perceive its variations
in performance with respect to the amount of learning data
used to create the classification models and the prior unary
/ pairwise potentials. To this end, performance was com-
pared while varying the number of images used in learn-
ing, and keeping constant the number of images used in
performance evaluation (to assure comparable bias / vari-
ance scores). Figure 5 expresses the results: the horizontal
axis gives the number of learning images used and the verti-
cal axis is the corresponding pixel classification error, with
the corresponding 95% confidence intervals. We observed
that when more than 35 images were used in learning, the
pixel classification errors tend to converge. This is evident
in terms of the absolute error values and of the narrowness
of the confidence intervals.



Figure 4. Examples of the segmented periocular regions. ”Hair” class is represented by the pink color, ”Eyebrows” appear in yellow, ”Iris”
in green, ”Sclera” in blue, ”Glasses” in blueberry and ”Eyelashes” in gray. Pixels classified as ”Skin” are transparent.
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Figure 5. Variations in labelling errors with respect to the number
of images used in the learning phase of the algorithm.

4.2. Periocular Biometrics Performance

To exemplify the usefulness of periocular segmentation
algorithms, one all-against-all matching experiment was
designed, using the method of Park et al. [13] and two dif-
ferent strategies to define the ROI: as baseline, the iris center
was the unique reference for the ROI (upper-left image in
Fig. 6). Next, according to the labels provided by the MRF,
the center of mass of the cornea was used to define the ROI,
which is obviously less sensitive to changes in gaze. Also,
regions labelled as hair and glasses were disregarded from
the recognition phase, considering that they likely suffer of
significant variations among samples of a subject (upper-
right image in Fig. 6). The Receiver Operating Character-
istic curves for both variants are compared in the bottom

plot of Fig. 6 and turn evident the benefits attained due to
data segmentation (Equal error rate of 0.128 for the clas-
sical ROIs and 0.095 for the improved ROIs configuration).
The improvements were substantial in all regions of the per-
formance space, having at some operating points increased
the system sensitivity over 10%. It should be stressed that
no particular concerns were taken in optimizing the recog-
nition method for the used data set, meaning that the focus
was putted much more in the performance gap between both
recognition schemes than in the recognition errors in abso-
lute values, which are out of the scope of this paper.

5. Conclusions and Further Work

In this paper we have proposed an algorithm for one-
shot labelling of all the components in the periocular region:
iris, sclera, eyelashes, eyebrows, hair, skin and glasses. Our
solution is composed of two major phases: 1) a group of
local classification models gives the posterior probabilities
for each pixel and class considered; 2) this appearance-
based information is fused to geometrical constraints and
shape priors to feed a two-layered MRF. One layer repre-
sents pixels, and analyzes the local data appearance while
enforcing smoothness of the solutions. The second layer
represents components, and assures that solutions are bio-
logically plausible. By minimizing the MRF energy, the
label of each pixel is found, yielding solutions that are ro-
bust against changes in scale, subjects’ pose and gaze and
dynamic lighting conditions.

As further directions for this work, our efforts are fo-
cused in estimate gaze / pose from the labelled data, in order
to compensate for deviations before the recognition process.
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Abstract—Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this

paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology

of the human head. Starting by considering a set of pose hypotheses, we use a learning set of head shapes synthesized from

anthropometric surveys to derive a set of 3D head centroids that constitutes a metric space. Next, representing queries by sets of 2D

head landmarks, we use projective geometry techniques to rank efficiently the joint 3D head centroids/pose hypotheses according to

their likelihood of matching each query. The rationale is that the most likely hypotheses are sufficiently close to the query, so a good

solution can be found by convex energy minimization techniques. Once a solution has been found, the 3D head centroid and the query

are assumed to have similar morphology, yielding the soft label. Our experiments point toward the usefulness of the proposed solution,

which can improve the effectiveness of face recognizers and can also be used as a privacy-preserving solution for biometric recognition

in public environments.

Index Terms—Soft biometrics, visual surveillance, homeland security, privacy-preserving recognition

Ç

1 INTRODUCTION

IN biometrics research, one of the most challenging goals is
the development of recognition systems that work in

unconstrained (outdoor) scenarios and do not assume the
subjects’ willingness to be recognized. In such conditions,
the acquired data has poor quality, with faces partially
occluded, blurred, or misaligned (Fig. 1).

The idea behind soft biometrics is to obtain ”characteristics
that provide some information about the individual, but lack the
distinctiveness and permanence to sufficiently differentiate any
two individuals” [16]. These characteristics not only comple-
ment strong biometric traits, but they also prune the set of
identities for a query. Soft biometrics can also be regarded as
a response to privacy/ethical issues in using biometrics in
public places: it makes it possible to ignore the largemajority
of the identities in the scene and attempt positive recognition
(e.g., with a face recognizer) only for the subjects with soft
labels similar to the identities on awatch-list.

This paper describes an algorithm to infer jointly human
head poses and soft labels in an efficient way based on
poor-quality data. During the learning phase, anthropomet-
ric head surveys feed a stochastic process that generates a
set of synthetic 3D head meshes representing the major fea-
tures of a population. Such elements are the input of a self-
organizing map that obtains a discretized representation of

the feature space, i.e., a matrix of centroid heads with a key
property; it preserves the topological properties of the input
space and enables us to define the closeness of its elements
(i.e., the similarity of head shapes). Considering the wild-
ness of the data, we also generate a set of pose hypotheses.
Next, all combinations of joint poses/head shape hypothe-
ses are grouped and indexed using as a criterion the prox-
imity of their projected head landmarks.

In classification, having a query represented by a set of
head image landmarks (detected as described in [18] or [8]),
we rank the set of hypotheses in approximate logarithmic
time according to the similarity between the query and the
joint pose/head shape 2D projections. The idea is that the
most likely hypothesis is sufficiently close to the solution so
that only slight changes in its parameterization are required
to match the query faithfully. This way, local minima are
neglected and convex optimization techniques are used to
reach acceptable solutions. A convergence test determines
whether the process stops or the next hypothesis is consid-
ered. Themethod described here uses some insights from [37]
and [30], namely in the generation of the set of hypotheses
and in using projective geometry techniques to evaluate them.

The remainder of this paper is organized as follows:
Section 2 summarizes the related work. Sections 3 and 4
give a detailed description of the learning and classification
phases of the proposed algorithm. Section 5 describes the
experiments carried out and discusses the corresponding
results. Finally, Section 6 concludes the paper.

2 RELATED WORK

2.1 Soft Biometrics

According to [40], soft biometric traits are classified into
three families: 1) global traits, which regard demographic
information (e.g., age, gender, and ethnicity); 2) body traits,
which are concerned with the subject~os somatotype, i.e.,
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their overall appearance (height or body volume); and 3)
head traits, which analyze the regions that humans instinc-
tively use to identify others (e.g., hair or eye color, nose or
neck thickness, and ear shape/size).

Regarding global traits, Heckathorn et al. [11] measured
lengths of wrists and forearms. Using the concept of inter-
changeability of indicators, they argued that combiningmultiple
low accuracy measurements yields a highly accurate indica-
tor. Jain and Park [17] used demographic information (gender
and ethnicity) and facial marks (scars, moles and freckles) to
improve face image matching and retrieval performance. An
extended version of thiswork can be found in [32].

In terms of body traits, Lucas and Henneberg [23] con-
cluded that, upon the availability of accurate anthropomet-
ric measurements, the body is actually more distinctive
than the face when distinguishing humans. Previously,
other works (e.g., Rice et al. [36]) concluded that identifica-
tion based on body measurements can be as accurate as
using the face. Moustakas et al. [29] suggested a framework
based on height and stride length information to increase
the effectiveness of a gait recognition system, integrating
soft labels directly in the estimation of the matching score
instead of the traditionally used score-level fusion. Drosou
et al. [7] proposed a probabilistic framework for improving
the recognition performance via soft labels (global and
body-based), modelling the systematic intrinsic error of
each measurement (e.g., due to clothing).

Finally, most works in the head traits family analyze the
discriminability of hair/facial hair styles and lengths. Dass
et al. [6] pre-aligned the images based on the position of
the eyes and, using agglomerative clustering techniques,
defined five groups of hairstyles according to hair density
in image patches. Hewig et al. [13] observed that the typical
hair styles are heavily correlated with global traits (gender
and age), which might also be useful for identification.

A noteworthy conclusion was drawn by Reid et al. [35]:
comparative descriptors (relative magnitude between sub-
jects’ measurements) have more discriminatory power than
the absolute values themselves, and are particularly advan-
tageous in terms of stability. Detailed information about
soft biometrics can be found in two comprehensive surveys
by Kim et al. [25] and Reid et al. [34].

2.2 Head Pose Estimation

The existing methods for head pose estimation can be
divided into two main groups: 1) generative, by fitting
parametric models to the query; and 2) discriminative,
which are model-free and search for correspondences
between image features and known pose configurations.

Generative models consider prior information about
human kinematics and anthropometry to reduce the number
of plausible configurations for a query. In this family of

approaches, appearance template methods (e.g., fed by
Gabor descriptors [38]), flexible models based on the elastic
graphmatching (e.g., [27]) or active appearance models (e.g.,
[42]) can be highlighted. Model fitting methods, based on
generic 3D face [1] and ellipsoidal [41] shapes, are examples
of this family of algorithms, which focus on the idea of map-
ping a set of 3D face models onto the images, based on a
group of 2D-3D correspondences. Textured triangular
meshes [28] or cubic polynomials [45] can be used in such
mapping. In this model-driven family, the work of Krinidis
et al. [26] shares some insight with the algorithm proposed in
this paper, specifically by inferring the equations that govern
the face deformationmodel, fed by the trackingmodule.

Discriminative models are usually holistic, and consider
the whole image of the head/face for estimation, instead of
local landmarks. Li et al. [22] estimated local image gra-
dients, reduced dimensionality by an analysis of principal
components and used a support vector regression machine
to infer poses. Other similar approaches used manifold
embedding algorithms (e.g., [43]) and non-linear regression
methods (e.g., based on convolution networks [31]). A rep-
resentative approach in this family is the work of Huang
and Trivedi [14], who used a skin-tone edge-based detector
to feed a tracker module based on Kalman filter and a hid-
den Markov model to infer poses.

Refer to the surveys published by Murphy-Chutorian
and Trivedi [5], Ba and Odobez [3] and Zhang and Gao [46]
for detailed information about head pose estimation and its
taxonomy.

3 PROPOSED METHOD: LEARNING PHASE

For comprehensibility, we use the following notation:
matrices are represented by capitalized bold fonts and vec-
tors appear in bold. The subscripts denote indexes. All vec-
tors are column-wise. The ring symbol (e.g., 8x) denotes 2D
(image) positions, while 3D positions in the Euclidean space
appear in regular font (e.g., x). The hat symbol (e.g., x̂)
denotes an estimate and all the hard thresholds are denoted
by the k symbol.

3.1 Generation of Synthetic 3D Head Shape Models

Young [44] reported 22 head dimensions from a random,
composite of females and males in an adult population. The
author claims these dimensions are able to describe the essen-
tial morphological properties of a human head, with 17 of
these also being considered in previous surveys (e.g., [12]).
Based on data from 195 females and 172males, this study pro-
vides a set of summary statistics (minimum, maximum,
mean, standard deviation, coefficient of variation, symmetry
and kurtosis) for every type of measurement. In most cases,
the landmarks are internal bone features, with paired surface
landmarks defining lines in planes fromwhich perpendicular
distances are taken. The leftmost part of Fig. 2 illustrates some
of the dimensions provided in this survey, while Table 1 lists
the types of lengthswe consider in this paper (at left) and their
levels of linear correlation (rightmostmatrix).

We generate the 3D head shape models randomly,
starting from a single mesh that is iteratively deformed,
according to the target distances between the pairs of verti-
ces. Let xi be one 3D vertex and ni the normal to the surface

Fig. 1. Examples of images acquired by a visual surveillance system, com-
posed by a wide-view camera feeding a pan-tilt-zoom device that collects
data frommoving and at-a-distance targets (up to 40meters away).
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at that point. Let xij ¼ xi � xj, nij ¼ ni � nj (x:;n: 2 R3) and
let lij be the target length (Euclidean distance) between xi
and xj. The goal is to find the magnitude of displacement
aij on both vertices with respect to their normal vectors

(xnew ¼ xold þ an), such that the resulting distance lij follows
the probability density functions reported in the anthropo-
metric head survey:

jjnT
ijxij a

2
ij þ 2xTijnij aij þ xTijxij � lijjj2 ¼ 0; (1)

being jj:jj2 the ‘� 2 norm. Rearranging (1) in matrix form
we have:

jj½nT
ijxij; 2x

T
ijnij; x

T
ijxij� ½a2

ij;aij; 1�T � lijjj2 ¼ 0; (2)

which represents one constraint of the head shapemodel. Let

cij ¼ ½nT
ijxij; 2x

T
ijnij; x

T
ijxij�, aaij ¼ ½aij;

ffiffiffiffiffiffi
aij

p
; 1�T . C is the block

diagonal matrix that yields from the concatenation of all c
elements, while aa and l concatenate the remaining terms:

C ¼

cij 0 0 0 . . . 0 0 0

0 0 0 ci0j0 . . . 0 0 0

..

. ..
. ..

.
0 0 0

0 0 0 0 0 0 0 0 0 ci00j00

2
666664

3
777775

9>>>>>=
>>>>>;
n� 3n

aa ¼

aaij

aai0j0

..

.

aai00j00

2
666664

3
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9>>>>>=
>>>>>;

3n� 1; l ¼

lij

li0j0

..

.

li00j00

2
666664

3
777775

9>>>>>=
>>>>>;
n� 1;

(3)

being the unknowns aa found by:

âa ¼ argmin
aa

ðCaa� lÞT ðCaa� lÞ;
s:t: jj½aij; . . . ;ai00j00 �jj1 � k1;

(4)

where k1 avoids anatomically bizarre solutions and guaran-
tees that the solution closest to the initial configuration is pre-
ferred in the quadratic system (k1 � 0:1 in our experiments).
According to this formulation, (4) is a constrained

optimization problemwith inequality constraints that can be
solved as described in [4]. Once the âa values are found, the
coordinates of the corresponding vertices are updated, with
similar distortions (weighted by a Gaussian kernel) applied
to neighbouring vertices to enforce smoothness in the result-
ing mesh. The rightmost images in Fig. 2 are examples of the
different meshes that can result from this stochastic process.

3.2 Head Shape Hypotheses

Let s ¼ ½xT1 ; . . . ; xTtv �T be a vector representing one head
shape, given as a triangulated mesh of 3D vertices. S ¼
fs1; . . . ; stmg is the set of meshes used for learning purposes,
generated as described in Section 3.1. Evidently, there is
some correlation between the xi elements in each mesh,
which can be attenuated by representing meshes in the prin-
cipal components (PC) space:

s� ¼ ðs� s0ÞTpc; (5)

being s0 the 3tv-dimensional mean of the elements in S and
Tpc the PC transformation matrix. This way, it is possible to
describe each mesh in a feature space of a much lower
dimension than the 3tv, which is important for the sake of
computational effectiveness. In our case, the head models
have tv ¼ 957, with 50 PC coefficients being able to repre-
sent over 99.9 percent of their variability.

Fig. 2. Overview of the stochastic process that generates an arbitrary number of 3D head shapes (meshes). Based on anthropometric surveys
(marker 1), a set of probability density functions for head lengths is defined (marker 2), and used to iteratively deform a basemesh, enabling to obtain
head shapes of evidently different appearance (marker 3).

TABLE 1
Types of Anthropometric Measurements Considered in

This Paper and Their Levels of Linear Correlation
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Let S� represent the shape hypotheses in the PC space.
The next step is the inference of a set of prototypes that
intrinsically represent head shape similarity, with self-orga-
nizing maps [20] (SOMs) of size tc � tc being considered a
good choice for the following reasons: 1) SOMs obtain an
ordered mapping between the 50D input space and a 2D
output space, where each element represents one head pro-
totype; 2) prototypes in the output space are topologically
ordered, i.e., neighbor prototypes feature similar head
shapes; 3) SOM prototypes reflect the variations in density
in the input space, i.e., densely populated regions in the
input space (where the most frequent head shapes fall)
are represented by the largest number of prototypes; and
4) SOMs are known to be particularly suitable to model
non-linear input spaces, such as our input feature space. In
practical terms, the SOM output space is a similarity graph,
which is important in order to label degraded data: even if a
query is not mapped directly to the same cell as the enrol-
ment sample with a corresponding identity, it should be
mapped to a neighboring cell. Fig. 3 illustrates the head pro-
totypes (cells) that are used as soft labels.

3.3 3D Head Shape Covariance

Let sci be the head shape centroid corresponding to the ith

cell in the SOM, and let fsci1 . . . ; sciwg be the shape samples

associated with sci . For all the elements in s: that correspond

to head landmarks, the displacement between the 3D posi-
tions in the samples and in the centroid were measured
(xcij � xci ), obtaining a set of 3D vectors from where the

mean and covariance matrix were taken. This captures the
spread of the 3D data and is used in the algorithm conver-
gence test to discriminate between genuine/spurious query
landmarks. To illustrate this point, Fig. 4 plots the 99 per-
cent confidence ellipsoids for the right ear lobe, center of right
cornea and nose apex landmarks.

3.4 Pose Hypotheses

Let p ¼ fR; tg be a camera pose configuration, with R being
the rotation matrix and t the translation vector, i.e., p is a 6D

vector accounting for three components of rotation (yaw,
pitch and roll) and three of translation (tx, ty and tz). Let P ¼
fp1; . . . ;ptp

g be a set of pose hypotheses, created randomly

using uniformly distributed random numbers for all six
degrees of freedom. Given the relatively large number of ele-
ments generated (� 100,000), a set of pose prototypes is also
obtained. In this case, as there are no requirements about the
concept of similar poses, such prototypes can be found simply
by the k-means algorithm, yielding t~p pose vectors (t~p 	 tp).

3.5 Joint Head Shapes/Pose Hypotheses Indexing

Given a set of t~p pose and t2c head shape hypotheses, during
classification it is required to find the best joint pose/shape
configuration, which is the most likely match to the query.

Theoretically, there are a total of t~pt
2
c possibilities, but

exploring all by brute-force is prohibitive in terms of time
complexity. Moreover, not all the query landmarks will be
genuine, and both false negatives and false positives are
expected. Given such constraints, a forest of binary trees
was created, one per type of landmark, where the hypothe-
ses are grouped (k-means) in leaves according to their
neighborhood of one landmark projection, given by the
world-to-image function:

fw!iðx;pÞ ¼ 1

y
A½Rjt� x

1

� �
; (6)

being x the vertices of s, y the scalar projective parameter, A
the internal camera matrix, and p = {R (rotation), t (transla-
tion)} the pose parameters. This way, each tree keeps,
within its leaves, the indices of the hypotheses that have
similar 2D projections of a landmark. Later, in classification,
the position of every query landmark is used in the corre-
sponding tree to obtain the indices of the complying
hypotheses. By repeating the process for all landmarks
and accumulating the complying indices, the hypotheses
are ranked in descending order according to the frequency
with which they appear in leaves, so that the most likely
(those with the highest number of landmarks close to the
query) will be evaluated first.

The retrieval process is illustrated in Fig. 5, and has a
time complexity Oðtl log ðt~pt2cÞÞ, tl being the number of
query landmarks. This roughly logarithmic time complexity
is important for generating large sets of hypotheses without
substantially compromising the time cost of retrieval.

4 CLASSIFICATION PHASE

Let 8q ¼ f8q1; . . . ; 8qtq
g be a set of 2D head landmarks in a

query image. We assume that the type of each landmark

Fig. 3. Representation of the 3D head centroids resulting of a 4� 4
SOM. Note the similarity in size/shape between adjacent elements,
rooted in the preservation of the topological properties of the input space
that this kind of maps offers.

Fig. 4. Examples of the 99 percent confidence ellipsoids that represent
the deviations of the positions of landmarks in the head shape sam-
ples with respect to their centroid. These values are used in the con-
vergence test of the algorithm to discriminate between genuine/
spurious head landmarks.
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tð8qiÞ is known, i.e., the anatomic region corresponding to

each 8qi is given as input. This is a readily satisfied assump-
tion, using the state-of-the-art techniques for head/face
landmark detection (e.g., [18], [8], or [33]).

Using the trees described in Section 3.5, the most likely
joint pose/head shape hypothesis for the query is obtained
and its pose configuration subsequently optimized. Assum-
ing that the pose hypothesis p is relatively close to the query
pose, the idea is to perform only small adjustments in its
parameterization to better fit the query:

p̂ ¼ argmin
p

d
�
fw!iðs;pÞ; 8q

�
; (7)

where fw!iðs;pÞ ¼ fw!iðx;pÞ; 8x 2 s ¼ 8s and dð:; :Þ is the
function that measures the similarity between two sets of
landmarks:

dð8s; 8qÞ ¼ 1

nð8qÞ
Xnð 8qÞ
i¼1

min
8qjjtð 8qjÞ¼tð 8xiÞ

dð8xi; 8qjÞ; (8)

where dð8x; 8qÞ ¼ jj8x� 8qjj2 and nð8qÞ is the function that

counts the number of distinct types of landmarks in 8q.
Essentially, (8) sums the distances between projections of
3D head vertices and their closest query landmarks of the
corresponding type.

The optimization process is regarded as convex and
unconstrained, with all the advantages inherent to it in
terms of computational cost. We use a derivative-free algo-
rithm proposed by Lagarias et al. [21], due to its proven
effectiveness in relatively low dimensionality problems (six
in our case). Having an initial pose hypothesis p, the algo-
rithm generates a sample of seven points around p and iter-
atively discards the point with the maximum value of the
cost function (8), replacing it with a new point generated
either by reflection, expansion, contraction or shrinkage of
sample points. As Fig. 6 illustrates, this process enables us
to better fit the pose hypothesis to the query data by only
slightly adjusting the initial configuration.

Having an optimized estimate of pose p̂, the final step is
the evaluation of the reasonability of the {p̂; s} solution,
either stopping the algorithm or continuing to the next
hypothesis. This evaluation is carried out in the 3D space by

inferring the most likely 3D positions for the query land-

marks. Let 8q ¼ ðx; yÞ be one image landmark corresponding
to one vertex in s. There is a ray in the Euclidean 3D space

from where elements are projected into 8q, which is given by
the image-to-world function:

fi!wð8q; p̂Þ ¼ RTA�1y
8q
1

� �
� RT t; (9)

with A being the internal camera parameters, R and t its
extrinsic parameters (obtained from p̂) and y being the sca-
lar projective parameter. The shortest distance between the
ray and the corresponding vertex in s is the most optimistic

location of 8q in the 3D space:

q̂ ¼ xr þ vTr 
 ðx� xrÞTvr
jjvrjj2

; (10)

being 
 the point-by-point multiplication operator, xr; vr
the 3D point and vector defining the ray (given by (9)).
Fig. 7 illustrates the rationale behind this step, where the 3D

positions q̂: from where the query landmarks 8q: might have
been projected are estimated based on {p̂; s}.

According to (10), only the query landmarks q̂� that are
the most likely to be genuine are selected, providing the
minimum jjq̂: � x:jj2 values (per type of landmark). Hence-
forth, all the remaining landmarks are deemed to be spuri-
ous and are discarded. Finally, given the set of remaining
landmarks and their most plausible 3D positions, f evalu-
ates the reasonability of such positions by checking if

Fig. 5. Data structure that indexes the joint pose/shape hypotheses,
grouped according to the similarity of their landmark projections. In
retrieval, the indices of the hypotheses complying the query landmarks are
accumulated, such that themost voted hypotheseswill be evaluated first.

Fig. 6. Pose refinement, according to a convex optimisation paradigm.
Assuming that the initial hypothesis p is a good approximation of the
solution, the probability of falling in local minima is relatively short. p̂ is
the optimized configuration.

Fig. 7. Finding the 3D positions in the Euclidean space from where the
query landmarks might have been projected, according to a pose p̂ and
shape s estimates. The jjq̂: � x:jj2 values are used to discriminate
between the spurious (in red) and genuine (in green) query landmarks.
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misalignments are inside the prediction interval ellipsoid,
obtained as described in Section 3.3:

fðq̂�
i jxi; xci ;SSiÞ

¼ ðq̂�
i � xi � xciÞTSS�1

i ðq̂�
i � xi � xciÞ � x2

3ð0:99Þ;
(11)

with xci as the position of the shape centroid, SSi as the

covariance matrix and x2
3ð0:99Þ as the quantile function for

probability 99 percent of the chi-squared distribution with
three degrees of freedom. In practical terms, this function
checks if it is likely to observe a q̂�

: � x: misalignment
between a sample landmark and its centroid, returning a
positive value if the misalignment falls inside the covariance
error ellipsoid (Fig. 4) and a negative value otherwise.
Finally, a solution is acceptable if a sufficient number of land-
marks is deemed genuine, i.e.,HallðÞ � k2:

Hallðq̂�jx; xci ;SSÞ ¼
1

nðq̂�Þ
Xnðq̂�Þ
i¼1

H
�
fðq̂�

i jxi; xci ;SSiÞ
�
; (12)

where k2 is the convergence threshold, nðq̂�Þ is the number
of query landmarks, andH is the Heaviside function:

HðzÞ ¼ 1; if z � 0
0; if z < 0:

�
(13)

5 RESULTS AND DISCUSSION

Three well known data sets were selected for our experi-
mental evaluation. The Annotated Facial Landmarks in the
Wild [19] (AFLW) set was used to evaluate the results of the
pose estimation phase. It has 25,993 color images, each one
annotated with a 21-point markup on visibility. In this set,
we considered exclusively samples with pose angles in the
intervals yaw �p=4, pitch �p=2, and roll �p=5, according to
the plausibility of observing such poses in visual surveil-
lance scenarios. The soft biometric labels were evaluated
using the Labeled Faces in the Wild [15] (LFW) and in the
SCface [10] sets, selected due to the wildness of their data.
Out of the 9,164 images in the LFW set, 670 were disre-
garded due to extremely poor performance of the head
landmark detector, resulting in 8,494 samples from 1,574
subjects. For the SCface set, we exclusively used the third
sample from cameras 1-5 (650 images from 130 subjects),
which have the maximal resolution acquired at visible
wavelengths. Fig. 8 shows some images from the data sets
considered. In all the experiments below, the thresholds
were set to k1 ¼ 0:01 and k2 ¼ 0:9.

5.1 Pose Estimation

Let p 2 R6 be the ground-truth pose of a sample and p̂ be
the pose configuration found by our algorithm. In Fig. 9, we
give the box plots of the p� p̂ values for each of the six
pose degrees of freedom, showing the median of the errors
(horizontal solid line) and their first and third quartile val-
ues (top and bottom of the box marks). The upper and lower
whiskers are denoted by the horizontal lines outside each
box, and the outliers are denoted by crosses. The upper row
exemplifies three queries and the corresponding poses
found by the algorithm. In these experiments we used
25,000 joint poses/head shape hypotheses, i.e., t~p ¼ 1; 000;

t2c ¼ 25, indexed in binary trees of height 10 (� 50 hypothe-
ses per leaf).

Overall, upon the availability of a sufficient number of
pose hypotheses, the algorithm obtained a visually pleasant
approximation of the query poses for the large majority of
the cases. Objectively, we compared the performance of our
pose estimator, with 6,250, 12,500 and 25,000 joint head
shapes/pose hypotheses (t~p ¼ f250; 500; 1;000g, t2c ¼ 25), to
a state-of-the-art method due to Zhu and Ramanan [48],
using the data set these authors supply.1 The cumulative
error curves are given in the bottom plot of Fig. 9, with the
best configuration in our solution attaining performance
close to the state-of-the-art, but using a much lower (and
unfiltered) number of facial landmarks than the baseline.
Overall, the gap in performance between both methods was
the largest for low error values (where a larger number of
landmarks would be particularly useful), and the results
tended to converge for large cumulative errors which

Fig. 8. Examples of the data sets used in the empirical validation of the
proposed method. The upper row regards the AFLW data set, whereas
the bottom rows are from the LFWand SCface sets.

Fig. 9. Upper row: examples of pose estimates in images from the AFLW
data set. Second row: boxplot of the pose estimation errors for the six
degrees-of-freedom: {yaw, pitch, roll} rotation angles (in radians), plus
the {tx; ty; tz} translation values. Bottom row: performance comparison
with respect to a state-of-the-art pose estimator [48] in a subset of the
AFLW set.

1. http://www.ics.uci.edu/
xzhu/face/
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correspond to rough pose estimates. For large cumulative
errors - over p

4 - our method (with t~p ¼ 1;000) attains better

pose estimates than the baseline. We note that errors
increase substantially when a reduced number of pose
hypotheses are generated, particularly for t~p values below
250. However, it should also be noted that generating large
sets of hypotheses in the learning phase is not a concern, as
the indexing strategy used accounts for several thousands
of hypotheses without significantly increasing the temporal
complexity of retrieval.

5.2 Soft Labels’ Stability

The stability of the proposed soft labels varies per subject
and depends of the number of SOM centroids. We define
the stability of the ith subject as:

StcðiÞ ¼ 1� 1ffiffiffi
2

p
tcti

Xti
a¼1

jjbia � �bijj2; (14)

with bia 2 N2 being the ath sample label for the ith subject, �bi

being the subject centroid label (�bi ¼ 1
ti

Pti
a¼1 bia), ti being

the number of samples of the subject and tc denoting the
number of columns/rows in the SOM (only square SOMs
were considered).

For a set of subjects, a summary of their stability is given

by Stc ¼
Pts

i¼1
Stc ðiÞ tiPts
i¼1

ti
, ts being the number of subjects. Fig. 10

depicts the stability of labels in the LFW data set, with
respect to the number of centroids. The left plot gives three
probability density functions for the StcðiÞ values using
three typical SOM sizes. The right plot gives the group sta-
bility Stc , again as function of the SOM size.

The StcðiÞ values varied from around 0.63 (worst case for
small maps) to 1 in the LFW set, with the optimal value
observed for subjects with head shapes associated with cells
in a SOM corner. Also, by using small SOMs (e.g., 3 � 3) the
probability of obtaining near optimal stability values (all
samples of a subject associated to the same cell) is increased,
but so is also obtaining many more low stability values.
Note that in small maps even small misalignments corre-
spond to large normalized distances.

Overall, the summary stability Stc varied in direct corre-
spondence with the number of cells in the SOM, converging
for values around 0.87 in maps with more than 20 � 20 cells.
Note that (14) provides relative distances with respect to the
size of the SOM, i.e., values equal to 1 occur when two labels

are separated by
ffiffiffi
2

p
tc (a SOM diagonal). This explains why

the stability values increase for larger SOMs, even though
smallmaps should intuitively provide themaximum stability.

5.3 Soft Labels’ Discriminability

The discriminability of labels was evaluated based on the
flatness of the histogram that counts the number of subject
centroids per cell, considering that discriminating labels
should spread subjects evenly across the SOM cells. This is
measured by an entropy function:

Dtc ¼ �
Xt2c
i¼1

pi logt2c pi; (15)

where pi is the empirical probability that a subject centroid

is associated with the ith cell of the SOM. In this case, the
subject centroid labels were rounded to their closest cell.
Being Dtc 2 ½0; 1�, values close to 1 denote flat histograms,
where subjects are spread evenly across the SOM cells. Val-
ues close to 0 are the non-interesting case, where most sub-
jects are associated with a reduced number of cells.

Fig. 11 expresses the Dtc values with respect to the SOM
dimensions, having attained a maximum for the smallest
maps (3 � 3), with an approximately equal number of sub-
ject centroids per cell. As the number of cells increased,
some of the cells started to have too few centroids, while
others attracted the elements in that region, yielding a more
uneven distribution of the number of elements per cell.

Fig. 12 gives examples of the associations between the
queries and the 3D head centroids for the LFW data set,
using a 10 � 10 SOM. In each row, the leftmost image is the
3D head shape centroid (label) and the remaining images
illustrate samples associated with that cell. Note the evident
similarity between the major head features of the subjects
and the centroids: at the upper-left extreme in the SOM, the
(1,1) cell represents the largest heads with a round shape. At
the other extreme, the (10,10) cell represents the most longi-
tudinal heads with salient chins and extent maxillae. In this
kind of mapping, cells in the corners provide the most easily
distinguishable features (under visual inspection), while
central cells are not so obviously distinguishablewith respect
to neighbors (note the high similarity between elements in
cells (3,2) and (3,3)). Moreover, as the central region repre-
sents the most densely populated region of the feature space,
a larger number of prototypes is used here, which accounts
for the higher similarity between neighbouring prototypes.

Fig. 10. Left: Probability density functions of the stability of labels per
subject (Stc ðiÞ). Right: Variations in the overall stability Stc with respect to
the number of shape centroids considered.

Fig. 11. Relationship between the labels’ discriminability and the dimen-
sion of the SOMs used.
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5.4 Robustness to Clutter

Poor-quality data queries are expected to be cluttered, i.e.,
with misplaced landmarks not corresponding to the ana-
tomical region they are supposed to represent. This section
addresses the effects of such cluttered input in the algorithm
performance, which are two-fold: 1) increase the number of
head shapes/pose hypotheses explicitly evaluated before
convergence; and 2) decrease the convergence rate of the
algorithm, which occurs when a solution is not found after
evaluating the maximum number of hypotheses (100 in our
experiments). Let ps be the proportion of spurious land-
marks with respect to the accurate detections (e.g., ps ¼ 0
represents a non-cluttered input and ps ¼ 1 denotes a bal-
anced number of spurious/genuine landmarks). Using
images of the AFLW set (with landmarks confirmed by
human observers), cluttered inputs were simulated, by add-
ing landmarks away from their true position (random x, y
coordinates uniformly distributed over the entire image
space, Uð0; 1Þ, with coordinates normalized in the [0,1] inter-
val) or by changing the position of a landmark (again, by
generating uniformly distributed displacements over the
image space, U(0,1)).

As illustrated in Fig. 13, the algorithm convergence rate
decayed with respect to ps, but only slightly for values
below one, which is readily achieved by state-of-the-art
head landmark detectors. For larger ps values, the conver-
gence rate of the algorithm decays evidently and, for
ps > 5, the algorithm loses its effectiveness (bottom right
plot). In terms of the number of hypotheses explicitly evalu-
ated, an approximately direct linear relationship with
respect to ps was observed (bottom left plot). The top image
in Fig. 13 illustrates a query with ps ¼ 4 and the output of
the algorithm, where the landmarks deemed genuine (with
fðÞ � 0) appear in green and the spurious landmarks are
denoted by the color red.

5.5 Soft Labels Standalone Performance:
The Watch-List Problem

An important surveillance task is the watch-list problem:
authorities have an explicit list of criminals (the watch-list)
they want to locate or track among a population. Given a
query, the goal is to detect occurrences of watch-list

elements without revealing the identities of any other sub-
jects to the central authorities, which is considered a pri-
vacy-preserving policy.

The metric space formulation of labels is particularly
suitable for handling this type of problem. By assigning a
cell to each element in the watch-list, the topological proper-
ties of the input space ensure that any query assigned with
cells located sufficiently far from the watch-list cell does not
correspond to the criminal’s identity. This is illustrated in
the left diagram in Fig. 14. Depending on the radius d used
(which dictates the relationship between the hit/penetra-
tion rates), most of the identities in the watch-list can be
confidently rejected. The plot given at the right side of
Fig. 14 shows the probability density functions of observing
distances d between intra-subject samples, which is the key
for this watch-list formulation. Values are given for SOMs

Fig. 12. Examples of associations between samples of the LFW data set
and the head shape centroids of a SOM with 10 � 10 cells.

Fig. 13. Top: illustration of a query sample with spurious head landmarks
(ps ¼ 4), where the proposed method was still able to correctly estimate
the pose and the soft biometric label. Bottom-left plot: effect of the propor-
tion of spurious landmarks in the number of joint pose/head shape
hypotheses explicitly evaluated before convergence (given in linear and
log scales). Bottom-right plot: decay in the convergence rate with respect
to the proportion of spurious correspondences (linear and log scales).

Fig. 14. At left: insight of the negative identification concept, used in the
watch-list problem. All labels farther than d of a query correspond to
identities that can be rejected. At right: probability density functions of
observing distances d between intra-subject labels (values regard the
LFWdata set).
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of three different sizes and enable us to conclude that
there is a minimal probability of observing large distances
(> 0.5) between intra-subject labels.

The suitability of the soft labels for watch-list identifica-
tion is confirmed in the results given in Fig. 15, which
expresses the hit/penetration values for the LFW set, using
SOMs of dimensions 3 � 3 (continuous line with square
marks), 9 � 9 (dashed line with circular marks), and 15 � 15
(dot-dashed line with triangular marks). The performance
lines of the largest SOMs almost overlap and enable to reject
over 50 percent of the identities for a query, keeping hit
rates close to 99 percent.

Fig. 16 gives the hit/penetration values obtained for the
SCface set, which are worse than the LFW values. This was
justified by the small image resolution in the set, making the
detection of head landmarks an extremely difficult task.
Also, poses variations in this set are constrained to pitch
angles (yaw and roll angles close to 0, pitch values in
½p=40;p=10�), which led us to use only 100 pose prototypes.
However, the key factor behind the relatively poor perfor-
mance was that, in data of such reduced resolution, even
small inaccuracies in landmark detection lead to large devi-
ations in the 3D model positions inferred, which consider-
ably reduced the stability of labels.

5.6 Fusion of Soft/Strong Traits: Recognition
Performance

This section addresses the effectiveness of the soft labels to
provide auxiliary information to a strong biometric expert.
As in the previous sections, the LFW was used as main data
set, having chosen the evaluation mode (unsupervised) that
provides the lowest recognition performance among all pro-
tocols.2 As a baseline, we considered the face recognition
method due to Arashloo and Kittler [2] based on two rea-
sons: 1) this method is among the best performers in the
unsupervised (training free) LFW evaluation mode; and
2) it integrates well known techniques in a typical biometric
recognition processing chain that could be easily applied to
other traits (i.e., the ocular or the ear regions). It uses a
multi-layered graphical model that measures the geometric
distortion between image pairs, fed by the Daisy [39] feature
descriptor. In classification, multi-resolution LBPs, image

registration techniques and the cosine similarity yield the
pairwise similarity score.

Note that the purpose of these experiments is not to
obtain a system that outperforms the face recognition state-
of-the-art, but to show that the proposed type of weak trait
can be fused with strong systems and still improve the rec-
ognition performance with respect to the baseline. From
this perspective, the relative performance between the
ensemble and the baseline is most important than the abso-
lute effectiveness rates. Also, note that other improvements
in performance with respect to the baseline could be
obtained by properly using the landmarks information pro-
vided by the soft expert inside the face recognition engine.
However, that will be an attempt to improve a specific face
recognizer, which is out of the scope of this paper.

The face and soft biometric experts were fused at the
score level, learning a linear discriminant that projects both
scores into the subspace that maximizes the Fisher discrimi-
nant ratio (found in a disjoint set composed by 10 percent of
the available pairwise comparisons). Let �f be the pairwise
similarity score returned by the face recognition expert and
�s be the score returned by the soft expert:

�s ¼
1þ erf

�
kðjjb1�b2jj2ffiffi

2
p

tc
� 0:5Þ�

2
; (16)

where erf() is a transfer function (error function) with sig-
moid shape, b1;b2 2 N2 are the labels (of a tc � tc SOM)
associated to the image pairs and k is the parameter that
controls the shape of the transfer function (�s 2 ½0; 1�).
Results are summarized in the Receiver Operating Charac-
teristic curves of Fig. 17: the black line gives the baseline
performance of the face expert, and the colored lines are the
results attained by the ensemble, for three different shapes
of transfer functions (k 2 f1; 2; 4g), with larger values corre-
sponding to those farther from linear shapes. When com-
pared to the baseline, the improvements in performance
were maximized when the transfer function had the most
pronounced sigmoid shape (k ¼ 4), i.e., when small mis-
alignments between b1 and b2 were not excessively penal-
ized. On the other hand, for roughly linear transfer
functions (k � 1), the performance of the ensemble was
even slightly worse than the baseline.

Analyzing in detail the k ¼ 4 ensemble, we concluded
that improvements in performance were due to reducing

Fig. 15. Hit/penetration plots for the LFW data set, using SOMs of
dimensions 3 � 3 (continuous line), 9 � 9 (dashed line) and 15 � 15
(dot-dashed line).

Fig. 16. Hit/penetration plots for the SCface data set, using SOMs of
dimensions 3 � 3 (continuous line), 9 � 9 (dashed line) and 15 � 15
(dot-dashed line).

2. http://vis-www.cs.umass.edu/lfw/results.html
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the variability of intra-subject scores, typically by improving
the pairwise scores when both samples had largely different
poses, with the face recognition expert showing a particular
sensitivity to such covariates (cases where the graphical
model was not able to infer the appropriate deformation
parameters). Conversely, we observed that the impostors’
score distributions in the baseline and in the ensemble were
almost equal.

5.7 Effect of Facial Expressions

Considering that facial expressions may significantly distort
the head morphology (Fig. 18), this section addresses the
effect of facial expressions on the soft labels from three per-
spectives. Initially, it reports the deviations in the SOM cells
associated with intra-subject samples with neutral/non-
neutral expressions. Next, it compares the labels’ stability/
discriminability in three different scenarios: 1) with 3D
head shapes and queries having neutral expression; 2) with
neutral 3D shapes against queries of unconstrained (neutral
and non-neutral) expressions; and 3) with unconstrained 3D
shapes and queries. Finally, it evaluates the suitability of
the soft labels recognizing facial expressions.

All the experiments were conducted using the previously
mentioned LFW set, with images divided into disjoint
groups, according to the facial expressions considered.
Additionally, the Extended Kohn-Canade (CK+) [24] set
was selected, being one of the most popular sets in this
research topic. In terms of the facial expressions considered,
we constrained the analysis to the neutral and happy expres-
sions, due to two reasons: 1) the recognition of the remain-
ing types of facial expressions (e.g., fear, disgust or sadness)
implies the detection of action units that depend of an exces-
sively large number of facial landmarks that cannot be
detected in poor quality data; and 2) the LFW set has a small
number of samples with other facial expressions (apart from
neutral and happy), as they are unlikely in visual surveillance
scenarios. In these experiments SOMs had 15 � 15 cells,
maintaining all the ki values used previously.

Initially, only 3D head shapes of neutral expression were
generated, with queries grouped per individual and per
facial expression. For each subject, the centroid labels for
neutral b

ðnÞ
i and happy b

ðhÞ
i expressions were found. The left

plot in Fig. 19 gives the velocity plot corresponding to the

b
ðhÞ
i � b

ðnÞ
i misalignments, showing the average magnitude/

direction of vectors representing the typical movements in
SOM labels when expressions change from neutral to happy.
It is evident that movements vary across the maps, with cen-
tral regions being more stable than regions near the corners.
Overall, movements converge in the bottom-right corner
that represents the most elongated faces (with the largest
deformations in the head shape due to the happy expres-
sion). The rightmost part of Fig. 19 gives two examples of
neutral/happy head shapes falling in the SOM regions where
the largest deviations were observed.

In addition, to perceive the decrease in soft labels effec-
tiveness due to facial expressions, Fig. 20 compares the
labels’ stability/discriminability for three distinct configura-
tions: 1) using 3D head shapes and queries exclusively of
neutral expression; 2) using neutral head shapes and uncon-
strained queries (i.e., samples with neutral/non-neutral
expressions); and 3) using unconstrained head shapes and
queries. Results are given in terms of the hit/penetration
plots and show that facial expressions consistently decrease
the effectiveness of soft labels. However, such degradation

Fig. 17. Comparison between the recognition performance attained by a
face recognition system in standalone mode and when using also the
soft biometric labels as auxiliary information. Results are given for the
LFW data set and regard the unsupervised evaluation mode.

Fig. 18. Upper row: variations in the head shape appearance with
respect to the levels of evidence of a facial expression (happy). Second
row: pairwise samples of 3D head shapes with neutral /happy facial
expression. Bottom row: division of the samples from the LFW and
Cohn-Kanade data sets into two disjoint groups, according to their facial
expression.

Fig. 19. At left: velocity plot representing the predominant intra-subject

displacements in labels with respect to changes in facial expression

from neutral to happy (b
ðhÞ
i � b

ðnÞ
i ), using 3D head prototypes of exclusively

neutral expression. At right: samples associated to the SOM regions with
the largest movement slopes, i.e., where facial expressions imply the larg-
estmisalignments between the positions of soft labels in the SOM.
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is counter-balanced if 3D shape hypotheses with non-neutral
expressions are also generated, yielding results that are not
too far off the baseline neutral against neutral configuration
(at the expense of an increase in the computational burden
of the labelling task by doubling the number of head shape
hypotheses).

Finally, the suitability of the proposed method recogniz-
ing facial expressions in multi-pose data was assessed. We
doubled the number of 3D head hypotheses, having gener-
ated for each neutral head shape a corresponding happy
expression (second row in Fig. 18). Joint head shapes/pose
hypotheses were clustered and indexed in the same way as
before. Next, for each SOM cell sci , the number of neutral/
happy 3D head shape hypotheses associated with it was
assumed to give the class likelihood pðsci juÞ in that region of

the feature space, with u 2 f“Neutral”; “Happy”g. Then, any
query assigned to sci was classified in terms of facial expres-

sion according to the Bayesian paradigm, with the posterior
probability for a facial expression given by pðujsciÞ /
pðsci juÞ : pðuÞ=pðsciÞ. Under this formulation, and using equal

priors per class, queries are considered to have neutral/happy
expressions according to the most frequent expression of the
3D head shape hypotheses associatedwith that cell.

The left plot in Fig. 21 illustrates the power of cells in a 15
� 15 SOM to discriminate facial expressions, showing the

jsðnÞci
j=j�sðnÞci

j þ jsðhÞci
j� per cell, jsð:Þci j being the number of 3D

head shapes of neutral (n)/happy (h) expression associated
with a cell. Values around 0.5 denote the non-interesting
cases, i.e., cells with poor discriminating power (the number
of neutral and happy elements is balanced). The right side of
this same figure gives the confusion matrices for the LFW
and CK+ sets, showing the mean and standard deviation
performance values when repeating the recognition tests,
using each time 85 percent of the available samples in a
bootstrapping-like strategy. The results are below the state-
of-the-art [9] method, mostly due to the poor discriminating
cells with classification performance only slightly better
than random. In our view, results would be improved if
facial models with more facial landmarks are used, which
in poor quality data would be hard to infer without filtering
techniques (e.g., graphical models to obtain the optimum
configuration from a set of candidate landmarks). Note that
filtering landmarks would violate one constraint in this

paper: using exclusively non-filtered landmarks to enable
real-time processing.

6 CONCLUSION

In this paper, we proposed a method to infer jointly human
head poses and soft biometric labels based on the 3D mor-
phology of the human head (the joint lengths between par-
ticular positions on the head). Using learning data from
anthropometric surveys, a set of typical 3D head shapes
(the labels) was inferred. Next, we described an algorithm
to associate labels to low quality query samples, where sub-
jects appear partially occluded and in varying poses. Using
projective geometry techniques, we efficiently ranked a set
of joint poses/head shape hypotheses, and iteratively evalu-
ated the most likely hypothesis. The idea is to explicitly
evaluate only a few hypotheses before the algorithm conver-
gence, which is the key for the reduced temporal cost of the
whole process.

The experiments were carried out using challenging data
sets and support the usefulness of the soft biometric labels in
two different ways: 1) coupledwith a strong biometric classi-
fier (e.g., a face recognizer), the resulting ensemble offers
consistent improvements in performance over the strong
expert alone; and, more importantly 2) these labels accord
the concept of privacy-preserving recognition. In public
environments, there are ethical/privacy issues behind the
covert recognition of every subject passing-by. If soft labels
are used, the system can confidently ignore the large major-
ity of the identities in a scene and perform positive recogni-
tion only for a small subset of the subjects (those with soft
labels similar to thewatch-list elements).
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A B S T R A C T

Visual surveillance cameras have been massively deployed in public urban environments over the recent
years, as a crime prevention and law enforcement solution. This fact raised the interest in developing
automata to infer useful information from such crowded scenes (from abnormal behavior detection to
human identification). In order to cover wide outdoor areas, one interesting possibility is to combine wide-
angle and pan–tilt–zoom (PTZ) cameras in a master–slave configuration. The use of fish-eye lenses allows
the master camera to maximize the coverage area while the PTZ acts as a foveal sensor, providing high-
resolution images of the interest regions. This paper addresses the feasibility of using this type of data
acquisition paradigm for imaging iris/periocular data with enough discriminating power to be used for
biometric recognition purposes.

© 2016 Elsevier B.V. All rights reserved.

1. Biometrics in surveillance environments

Recent attacks in crowded urban environments reduced the per-
ception of safety in modern societies, while the citizens’ tolerance
to reasonable risks has been also decreasing. There are now growing
needs of assuring the safety of people, particularly in places/events
that concentrate large crowds, which are naturally perceived as
those with the highest risk (due to e.g., 2001 New York 9/11,
2004 Madrid train bombing, 2013 Boston marathon and 2015 Paris
events). To counterbalance this fear, visual surveillance is now
deployed massively worldwide. The amount of surveillance cam-
eras running has grown astonishingly in the recent years, with more
than 5.9 million CCTV cameras reported only in the United King-
dom [1]. However, contrary to popular belief, there are still no fully
automatic techniques to identify subjects without requiring their
participation in data acquisition, and the automated understanding
of data is most times reduced to action recognition. For every identi-
fication attempt, it is still required some kind of human intervention
in the process. Even though national/international authorities have
lists of potentially harmful individuals, it is particularly difficult for
humans to confirm whether such elements are among a crowd. As an
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�� This work was supported by FCT: Fundação Ciência e Tecnologia project
UID/EEA/50008/2013.
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6201-001 Covilhã, Portugal.

E-mail addresses: hugomcp@di.ubi.pt (H. Proença), jcneves@di.ubi.pt (J. Neves).

example, the TIDE: Terrorist Identities Datamart Environment from the
U.S. National Counterterrorism Center has over 745,000 people listed
in the database which authorities are willing to arrest, but only a
small proportion of these was actually detected in visual surveillance
systems.

One interesting possibility is using coupled wide-angle and PTZ
devices, which are able to acquire high resolution images on arbi-
trary scene locations. In this kind of configuration, a master–slave
paradigm is usually adopted, i.e., the wide-angle camera covers
the whole scene and provides data both for detecting and track-
ing subjects, also supplying 3D cues about the position to where
the PTZ camera should be pointed to. While several advantages of
this paradigm can be outlined, inter-camera calibration is the major
bottleneck of this configuration, since determining the mapping
function from image coordinates to pan–tilt parameters requires
depth information. A solution to this problem is described in [2] and
illustrated in Fig. 1: by inferring the subjects’ height h, the depth
ambiguity problem can be avoided and a univocal correspondence
between positions in the wide-angle image data (xs, ys) and in the
3D physical coordinate system (Xp, Yp, Zp) can be obtained, enabling
to infer the pan–tilt angle (hp, ht) values required to center the PTZ
device at a particular position in the scene.

Another obvious difference between the operating requirements
of systems working in visual surveillance scenarios and the tradi-
tional stop-and-stare protocol currently used is that in the former
type of environments the number of targets usually exceeds the
available active cameras, which demands schedule techniques to not
only maximize the number of targets imaged but also the number of

http://dx.doi.org/10.1016/j.imavis.2016.03.015
0262-8856/© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. Top image: illustration of the depth ambiguity problem, with several physical
positions in the scene correspond to the same pan–tilt angles of the PTZ device (h(i)

pt ).
Bottom image: by estimating subjects’ height (h), it is possible to establish a bijection
between physical 3D positions and pan–tilt angles hpt .

shots taken from each one. This is a variant of the classical optimal
tour finding problem, which exhaustive solution has time cost O(n!),
being n the number of targets in the scene. Although brute-force
might be feasible for a reduced number of targets, the real-time
nature of the problem prohibits its use for more than six targets. Sev-
eral works have presented solutions to this problem (e.g., [3] and [4]),
where the contextual and dynamic scene information is considered
to find the optimal sequence of targets (Fig. 2).

2. Related work

In order to consider an image with acceptable quality, the iris
recognition standards recommend a resolution of at least 100
pixels across the iris diameter (ISO/IEC 2004) and an in-focus
image. Also, sufficient near infrared (NIR) illumination should be
ensured (more than 2 mW/cm2) without harming human health
(less than 10 mW/cm2 according to the international safety standard
IEC-60852-1). The space volume in front of the image acquisition sys-
tem where these constraints met is usually referred as the capture
volume of the system. Commercial iris recognition systems achieve
extremely low error rates, yet imposing highly restrictive capture
volumes that reduce the workability in less constrained scenarios. In
recent years, several attempts to relax the constraints of iris recog-
nition systems have been made, exploiting innovative strategies to
increase both the capture volume and the stand-off distance, i.e., the
distance between the front of the lens and the subjects.

Current strategies to perform the acquisition of iris data in less
constrained conditions can be divided into two families, depend-
ing of whether they use (or not) magnification devices. In terms
of the approaches that make no use of magnification devices, the
Iris-on-the-Move [5] system is notable for having significantly
decreased the cooperation levels required for image acquisition,
allowing subjects continuous movement through a portal equipped
with NIR illuminators. Another well known commercial device is the

LG IrisAccess4000, where image is acquired at-a-distance, provided
that subjects’ gaze point at a specific direction.

Magnification devices, such as PTZ cameras, extend the system
stand-off distance while providing enough resolution for reliable
iris recognition. Wheeler et al. [6] introduced a system to acquire
iris data at a resolution of 200 pixels from cooperative subjects at
1.5 m, using a PTZ camera assisted by two wide view cameras. Dong
et al. [7] also proposed a PTZ-based system, that images iris data up
to distances of 3 m with more than 150 pixels across the iris diam-
eter. Yoon et al. [8,9] relied on a light stripe to determine the 3D
position, avoiding the use of an extra wide camera. The Eagle Eye sys-
tem [10] uses one wide view camera and three close view cameras,
for capturing simultaneous images of both irises. This system has a
stand-off distance of about 5 m with a operational range of 3 m ×
2 m × 3 m. This system uses a bi-ocular setup, that enables to recover
the 3D world position of the subject by stereo reconstruction. Depth
information cues are used both for pan/tilt angles estimation and for
getting focused data.

Despite being considered more reliable, the use of two wide-
angle cameras significantly increases the system cost and limits its
flexibility. To address this problem, various commercial solutions
were introduced: Mitsubishi corporation developed a scheme where
depth is estimated using the disparity between facial features [11].
Yoo et al. [12] combined the wide-view and narrow-view cameras
with a beam splitter to simultaneously acquire facial and iris images.
This integrated dual-sensor enables the same ray to be mapped to
same position in both cameras sensors, avoiding the need for depth
estimation.

3. Challenges

Most of the current iris recognition systems require that the
iris is illuminated in the NIR wavelength band. Although this
wavelength has the major advantage (with respect to the visible
band) of avoiding corneal reflections from the surrounding light,
the use of NIR illuminators highly restricts the workability of iris
recognition in less constrained scenarios: the irradiance of the
illuminators decreases quadratically as the stand-off distance
increases, implying the use of extremely powerful illuminators
for acquiring the rich details of the iris from large distances. As
such, from our viewpoint non-cooperative iris recognition at such
large stand-off distances such as in typical surveillance scenarios
should be performed in the visible spectrum. Also, we believe that
the use of magnification devices (PTZ) cameras is the most effi-
cient solution to acquire iris with sufficient quality for recognition
purposes.

We recently described a system—named QUIS-CAMPI—for
acquiring high-resolution face imagery at large distances (up to 50
m) [2,13], but here we discuss its usability for unconstrained acqui-
sition of iris/periocular data. This system uses a PTZ camera with
full-HD resolution (1920 × 1080) and 30× optical zoom, corre-
sponding to an angle-of-view of 2.1◦. We used this framework to
acquire close-up shots of the ocular region at standoff distances of 10
and 15 m, with examples for six subjects being illustrated in Fig. 3.
Apart from the typical variability factors of unconstrained scenarios
(e.g., occlusions due to eyelids and reflections, poorly focused and
off-angle data), the resolution across the iris is a key factor for the
reasonability of using a system as QUIS-CAMPI for iris recognition in
unconstrained scenarios. Using as baseline the standard that recom-
mends 100 pixels across the iris, it can be seen that we are able to get
only about 60% and 40% of that resolution respectively at 10 m and
15 m stand-off distances.

In order to determine the maximum stand-off distance that can
be afforded without compromising iris quality, we investigate how
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”Frontal”  ,  ”Moving”
(B)

”Backside”  ,  ”Standing”

(A)

Fig. 2. Target selection: having n subjects in the scene, it is important to consider the scene context and dynamics (e.g., number of samples taken previously from each subject,
subjects’ position, velocity and perspective) to find the optimal PTZ tour, i.e., the data acquisition order. In this example, (B) is evidently a better target than (A).

the number of pixels across the iris (x(d)) is affected by the stand-
off distance (d), angle of view (a) and camera resolution horizontal
resolution (y). Assuming that the human iris has an average diam-
eter of 1.2 cm, the number of pixels across the iris is given by:

x(d,a,y) =
1.2 × y

2d tan( a
2 )

. (1)

This relation is depicted in Fig. 4 when using the PTZ camera
in QUIS-CAMPI (blue) and when using the next generation of PTZ
cameras (4K). For comprehensibility, the chart is divided into three
regions according to the quality of data with respect to the resolution
factor. It is evident that state-of-the-art PTZ cameras are not suffi-
cient to image iris at large stand-off distances, but it is worth noting
that 4 K PTZ cameras should be available soon, and that their maxi-
mum optical zoom is also expected to increase. As illustrated in Fig. 4
such type of devices should have an obvious impact in the resulting

image resolution, and allow the iris imaging with reasonable quality
up to stand-off distances of over 15 m.

Another noteworthy possibility is the use of periocular region as
the main biometric trait, which has been advocated as an interesting
possibility to increase the robustness of iris recognition in visible-
light data. The idea is to compensate for the degradation in the iris
data by also considering the discriminating information in the sur-
roundings of the eye (eyelids, eyelashes, eyebrows and skin texture).
Even though further empirical validations are required to confirm
the reasonability of using the periocular region as biometric trait in
this type of data, it is known that periocular recognition is much less
demanding in terms of data resolution than iris recognition.

4. Conclusions

Developing automata able to perform biometric recognition in
crowded scenes and without explicitly requiring any active human
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Fig. 3. Examples of facial data acquired in surveillance environments with the corresponding iris/periocular regions. The upper row contains samples acquired 10m away from
the subjects, while the bottom row illustrates images acquired from 15m away.
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Fig. 4. Relation between the number of pixels across the iris and the stand-off distance when using a different magnification zoom and resolution for the PTZ camera. Considering
the current standards as baseline, current PTZ cameras (blue line) do not appropriately image iris data at large stand-off distances. On contrast, 4K resolution cameras (pink line)
extend the maximum stand-off distance of the system up to 15 m away from the subjects.

effort in the data acquisition process is an ambition that dates back—
at least—to 1949, as a result of the widely famous George Orwell’s Big
Brother character. Even though such type of machine raises evident
concerns from the ethical/privacy protection perspectives, it is also
obvious that it will constitute a valuable law enforcement/security
tool. Among several alternatives, one interesting possibility for such
kind of system is to use coupled wide-angle and PTZ devices, that
not only cover large outdoor areas, but are also able to acquire high-
resolution data from moving subjects and large distances. In this
paper we discussed some of the major differences between the pro-
cessing chains of such type of non-cooperative recognition systems
and of the current biometrics operating mode. Also, we illustrated
the variations in the resulting facial/iris data with respect to the
subjects stand-off distance factor and speculate about the suitabil-
ity of using the periocular region as main biometric trait in such
conditions.
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1. Introduction

Supervised feature classification (or simply classification) is the as-
signment of a category (class) to an input value, on the basis of a learning
set. For n pairs (�xi, yi), �xi is represented in a d-dimensional space Ω and yi
its label (class), the goal is to find a function f : Ωd → N that maps feature
points into labels. In this context, an ensemble fe : Ωd×m → N combines
the output of multiple classifiers and seek to improve performance, when
compared to individual elements. Ensemble classifiers are widely seen in
the literature (e.g., Kuncheva, 2004 and several performance evaluation ini-
tiatives were conducted (e.g., Bauer and Kohavi, 1999; Banfield et al., 2007;
Dietterich, 2000; Alpaydin, 1999; Demsar, 2006).

Under a computational perspective, the burden of classification is a
primary concern for various domains (e.g., computer vision), due to ex-
tremely large amounts of data or to very demanding temporal constraints.
Here, the turnaround time of classification is usually more concerning than
the one of learning, as the latter is carried out off-line and a reduced number
of times. As an example of demanding temporal requirements for classifica-
tion, the defect detection in industrial environments can be referred, where
a high number of frames per second must be processed (Kumar, 2008).

This paper proposes an efficient ensemble algorithm based on the con-
cepts of Vantage-Point trees (Yianilos, 1993) and linear discriminant analy-
sis, and is from now on designated as Vantage-Point Classification (VPC).
The idea accords the philosophy of boosting and combines a set of base
(weak) classifiers learned from feature subspaces and positioned in leaves
of tree. The insight is that, regardless the complexity of the feature space,
a linear discriminant is able to separate classes at a sufficiently deep level
in the tree. Classification results from weighted voting of the base classi-
fiers, selected according to the distance between the unlabelled sample and
the centroid of each subspace. We come out with a solution that has two
interesting properties: it attains classification accuracy similar to the state-
of-the-art techniques in different problems, and it is efficient in terms of the
computational cost of classification.

Hence, the major findings reported in this paper are: 1) for a broad
range of the problems considered, VPC obtains better performance than
state-of-the-art individual and ensemble models; 2) improvements in clas-
sification accuracy were observed along with a decrease in the computa-
tional cost of classification, when compared to related models (e.g., neural
networks and K-nearest neighbors). Also, it should be stressed that experi-
ments were carried out in datasets widely used in the classification domain
(UCI Machine Learning Repository, Univ. California), that vary in terms of
different criteria: binary/n-ary classification, discrete/continuous features,
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balanced/unbalanced prior probabilities and densely/sparsely populated fea-
ture spaces.

The remainder of this paper is organized as follows: Section 2 summa-
rizes the most relevant ensemble classification methods. Section 3 provides
a description of the VPC algorithm. Section 4 presents and discusses the
results. Finally, the conclusions are given in Section 5.

2. Related Work

Sharing several properties with the method proposed in this paper,
Ting et al. (2011) proposed the concept of Feating, a generic ensemble
approach that is claimed to improve the predictive accuracy of both stable
and unstable classification models. As in our case, their original concept is
that “a local model formed from instances similar to one we wish to classify
will often be more accurate than a global model formed from all instances”
(Frank, Hall, and Pfahringer, 2003). The idea is to divide the feature space
into a set of disjoint subspaces, according to user-specified features that con-
trol the level of localization. Their trees use, at a given level, the same
attribute for feature subspace division; which does not happen in our case,
and we claim to be a much more intuitive variant, i.e., the feature that best
divides a subspace is not guaranteed to optimally divide another subspace,
even if both spaces are represented at the same level of the tree. Another
major difference is that in Feating, all models in the ensemble are used for
every query (as in Bagging), while in VPC only the models that regard the
closets subspaces to the query instances are used, in a weighted way. Com-
paring the results observed for our strategy and the results reported in Ting
et al. (2011), a major advantage is the ability of our ensemble model to
get error rates comparable to state-of-the-art classification algorithms, while
keeping a relatively short ensemble size, i.e., without building classification
trees that are impracticable for most situations.

According to Canuto et al. (2007), there are two major ensemble cate-
gories: 1) hybrid ensembles, that combine different types of algorithms; and
2) non-hybrid ensembles, where a single type of algorithm is replicated mul-
tiple times. The most popular schemes are non-hybrid and apply a base algo-
rithm to permutated training sets. Among these, Bagging and Boosting are
the most prominent strategies. Originally proposed by Breiman (1996), Bag-
ging (Bootstrap aggregating) builds multiple models for a problem, each one
based on a subset of the learning data. Then, voting combines the outputs,
improving stability and accuracy when compared to base models. Kuncheva
and Rodrı́guez (2007) replaced each classifier by a mini-ensemble of two
classifiers and a random linear function (oracle). In classification, the or-
acle decides which classifier to use. The classifiers and oracle are trained
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together, so that each classifier is pushed into a different region of the fea-
ture space. Also, Hothorn and Lausen (2005) construct a set of classifiers for
different bootstrap samples. Then, the predictions of such classifiers in each
element of the bootstrap are used for a classification tree. This tree implic-
itly selects the most effective predictors, which authors consider to bundle
the predictions for the bootstrap sample. Classification is done by averaging
the predictions from a set of trees. In a related topic of tree-based regression
models, Ceci, Appice and Malerba (2003) used two basic operations (prun-
ing and grafting) to obtain simpler structures for the regression tree. The
core of these simplification operations is to put aside some data for inde-
pendent pruning, which was observed in practice to improve classification
performance.

The idea of Boosting resulted from the stochastic discrimination the-
ory (Kleinberg, 1990), a branch that studies the ways to divide the feature
space for class discrimination. This algorithm combines several weak clas-
sifiers, each one with high bias and low variance. Experiments point out
that is possible to meet high accuracy far before using all the weak classi-
fiers. A relevant boosting method was due to Shapire (1990), but the most
well-known is the Adaboost variant (Freund and Schipire, 1995), that in-
creases adaptability by tweaking subsequent classifiers in favor of instances
misclassified by previous ones.

Ho (1995) suggested the notion of Random Forest, from where a gen-
eralization was proposed (Random Subspace: Ho, 1998), later known as
Attribute Bagging (Bryll, Gutierrez-Osuna and Quek, 2003). The idea is to
build an ensemble of classifiers, each one using a subset of the available
features. In classification, voting produces the final answer. In this con-
text, Zaman and Hirose (2013) enlarged the feature space of the base tree
classifiers in a random forest, by adding features extracted from additional
predictive models, having empirically concluded that such hybrid random
forests can be a more efficient tool than the traditional forests for several
classification tasks.

Domingos (1996) described an algorithm based on rule induction and
instance-based learning, considering individual instances as maximally spe-
cific rules, and then devising an algorithm to gradually fuse instances into
more general rules. The proposed algorithm was considered an inductive
learning approach that produces specialized rules that span the entire fea-
ture space, by searching for the best mixture of instances and increasingly
augment abstraction of rules, yielding a more general-form of nearest neigh-
bor classification.

Particularly interested in problems with a reduced amount of learning
data, Lu and Tan (2011) sought for a subspace that minimizes the within-
class to between-class distances ratio. To enlarge the amount of learning
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data, they used a linear model to interpolate pairs of prototypes, simulat-
ing variants of the available samples. Bock, Coussement and Poel (2010)
used generalized additive models as base classifiers for ensemble learning,
proposing variants based on bagging and random subspaces. Classification
yields from average aggregation.

In a related topic, instance selection aims at obtain a subset of the
learning data, so that models on each subset have similar performance to the
attained in the complete set. Garcı́a-Pedrajas (2009) used instance selection
in boosting processes, optimizing the training error by the weighted distribu-
tion of instances erroneously classified by previous models. Yu et al. (2012)
divided the feature space into disjoint subspaces. Then, defined a neighbor-
hood graph in each subspace and trained a linear classifier on this graph,
used as base classifier of the ensemble. In classification, the majority-voting
rule is used. Starting from models learned by random space and bootstrap
data samples, Yan and Tešić (2007) estimated the decision boundaries for
each class, concluding that a few shared subspace models are able to sup-
port the entire feature space. This scheme is claimed to reduce redundancy
while enjoying the advantages of being built from simple base models.

Considering that—typically—the performance of classifier ensembles
is maximized in case of Uniform distributions of observations, Jirina and
Jirina Jr. (2013) suggested a transformation on the data space that approx-
imates the distribution of observations in the feature space into a uniform
distribution, at least in the neighborhood of a query observation. Their trans-
formation is based on a scaling exponent that relates distances between pairs
of points in a multivariate space.

As described in the next section, the VPC model shares some of the
above referred foundations: similar to the concept behind boosting, we di-
vide the feature space into subspaces, pushing each base classier into disjoint
regions of the feature space. Similar to Lu and Tan (2011), the within-to-
between class distances proportion is used to determine the number of divi-
sions of the feature space. Then, by preserving neighborhoods between sub-
spaces, for a given query we are able to select a subset of the base-classifiers
in a computationally effective way.

3. Vantage Point Classification

Figure 1 illustrates the key idea behind the VPC scheme: the feature
space is divided into subspaces Ωi, according to the distance of elements to
pivots pi. Each subspace (leaf) is simple so that a linear discriminant Φi sep-
arates classes with a reduced expected error. In classification, for a query �x,
only the closest subset of the leaves vote, according to the distances between
�x and pi. This schema creates a set of spacesΩi where classification is done
locally.
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Figure 1. Illustration of the idea behind VPC. At left, the dotted line segments denote the pro-
jections Φi found for compact spaces Ωi and the dashed circles denote the median distance
between pivots pi and elements on that space. This value is used to separate elements at each
side of the vantage point tree. The right figure gives the VPC data structure corresponding to
this feature space.

3.1 Learning

The learning process starts by evaluating if a linear projection Φ sep-
arates the feature space with a misclassification rate lower than γ. Let Ω
be a d-dimensional feature space containing n instances �xi with labels yi.
According to Johnson andWichern (1988), multiple discriminant analysis is
a natural extension of the Fisher linear discriminant, having the within-class
matrix given by:

Σ̂w =
k∑

c=1

∑
�xi|yc

(�xi − �̄xyc
)(�xi − �̄xyc

)T , (1)

where k is the number of classes, �xi|yc denotes the elements in the cth class
and �̄xyc

is the centroid of these elements. The scatter matrix is given by:

Σ̂s =
k∑

c=1

nyc
(�̄x− �̄xyc

)(�̄x− �̄xyc
)T , (2)

being nyc
the number of training samples in class yc. �̄x is the dataset mean

vector. A linear transformation, Φ, is obtained by solving the generalized
eigenvalue system:

Σ̂sΦ = λΣ̂wΦ, (3)

where λ is a scalar that is usually called the generalized eigenvalue ofΣs and
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Σw. Classification is done in the transformed space according to a distance
function ξ(., .). Each query element �x is classified by:

k̂i = argmin
k

ξ(�xΦ, x̄yk
Φ). (4)

Our stopping criterion for the division of Ω considers the error rate in
the learning set, given by:

e(Ω) =

∑
i I{ki �=yc}

n
, (5)

where I is an indictor function that evaluates if the predicted and true class
values are the same. When e(Ω) ≤ γ, we consider that Φ appropriately dis-
criminates the feature space and the node is considered a leaf, with support
s(Ω) = n. Otherwise, Ω is divided into two halves, according to a pivot.

Note that the term appropriately, in terms of discrimination, is used
to indicate subspaces where a linear discriminant attain classification error
lower than γ. For γ = 0, the term is equivalent to linearly separable. In
practice, for most cases the optimal performance is attained when γ > 0,
i.e., stopping the division of subspaces when the number of elements per
class is still much higher than the dimension of the feature space (otherwise,
the algorithm would simply return the pseudo-inverse of the Fisher linear
Discriminant at a leaf). γ > 0 values are regarded as a soft margins, i.e., we
allow a few mistakes (some points - outliers or noisy examples might be on
the wrong side of the linear discriminant), but most times obtain a solution
that better separates the bulk of data.

If the ith element inΩ is used as pivot, the remaining elements with in-
dexes j ∈ {1, . . . , n}, j �= i, span through its left or right branch, depending
of the distance ξ(�xi, �xj). Let Y 0

ic and Y
1
ic be the sets of labels of class c in the

left and right branches, when using the ith element as pivot. The suitability
of that pivot s(i) is equal the support of the corresponding discriminant:

s(i) = −
1∑

j=0

k∑
c=1

|Y (j)
ic |

n− 1
log2

( |Y (j)
ic |

n− 1

)
, (6)

where |.| denotes set cardinality. The best pivot minimizes (6), i.e., is the
one that puts all elements of each class in different branches of the tree:

î = argmin
i

s(i). (7)

Let dîj = ξ(�xj , �xî), i = 1, . . . , n, i �= î be the n−1 distances between
the pivot and the remaining elements and let d∗

î
be the median value of {dîj}.

The jth element of the training set is included in the left ΩL or right ΩR
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subsets, according to:

{ {�xj , yj} ∈ ΩL if dîj ≥ d∗
î{�xj , yj} ∈ ΩR if dîj ≤ d∗
î
.

(8)

The process is repeated for ΩL and ΩR in a way similar to Ω, un-
til the stopping criterion is verified for all the subspaces. In practice, the
optimal performance of the VPC model is attained when γ > 0, i.e., stop-
ping the learning process before having all elements of a single class, which
contributes to avoid overfitting.

3.2 Classification

Classification is done by traversing the VPC tree and accumulating
the support values of the class predicted at each leaf. Let �x be an unlabelled
element and γ∗ the radius of the query. The classification of �x is given by
(9), where l(Ω) is an indicator function that discriminates between leaves
(l(Ω) = 1) and non-leaves (l(Ω) = 0) nodes:

c(�x,Ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�0 , if l(Ω) = 1 ∧ ξ(�x, �xp) > γ∗

s(Ω).�vi , if l(Ω) = 1 ∧ ξ(�x, �xp) ≤ γ∗

{s(ΩL) + s(ΩR)} , if l(Ω) = 0 ∧ (d∗ − γ∗) ≤ ξ(�x, �xp)
≤ (d∗ + γ∗)

s(ΩL) , if l(Ω) = 0 ∧ ξ(�x, �xp) ≤ (d∗ − γ∗)
s(ΩR) , if l(Ω) = 0 ∧ ξ(�x, �xp) ≥ (d∗ + γ∗)

,

(9)

being �xp the pivot of a node and �vi a unit vector with a single non-zero com-
ponent at the ith position (corresponding to the ith predicted class). This
way, c(�x,Ω) returns a vector with k elements, each one containing the ac-
cumulated support for the predicted class, i.e., �s = {s1, . . . , sk}. The re-
sponse given by the ensemble corresponds to the position where c(�x,Ω) is
maximum:

î = argmax
i

{si}. (10)

For comprehensibility, Algorithm 1 details the VPC classification
scheme in terms of the computational steps. As input, the method receives
the Vantage Point tree with a linear discriminant in each leaf. For a query
element �x, the binary tree is traversed down to leaves. In each leaf, a linear
discriminant predicts the class and the accumulation of the support values
gives the final response.
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Algorithm 1 VPC Classification Scheme
Require: Vantage Point Tree V , unlabelled instance �x ∈ R

d, radius query γ∗.
1: Get current node: c← V .root;
2: Support values for each class: �s ← [0, . . . , 0]
3: if leaf(c) then
4: Accumulate support: �s ← LDA(c,x)
5: return �s
6: end if
7: Get pivot: p ← c.pivot
8: Get median distance: m ← c.median
9: if distance(�x,p) ≤ m− γ then

10: Accumulate support: �s ← �s + VPC(cn.left, �x, γ∗)
11: end if
12: if distance(�x,p) ≥ m+ γ then
13: Accumulate support: �s ← �s + VPC(cn.right, �x, γ∗)
14: end if
15: return �s

3.3 Usability And Completeness

According to the theory of classification ensembles, it is particularly
important that the ensemble is fully usable and complete. Let Ω be the d-
dimensional feature space with Ωi compact subspaces. The usability of the
projection Φi was approximated by:

P
(
�x ∈ Ωi

) ≈
∑

j I{(x(1)
j ,...,x

(d)
j )∈Ωi}

n
, (11)

where I{.} is the indicator function and n is the number of learning instances.
Based on the stopping criterion used for learning, P

(
�x ∈ Ωi

)
> 0, ∀i ∈

{1, . . . , k}, guaranteeing that every Φi is usable and that the ensemble is
fully usable.

As described in Section 3.1, it can be stated that:

Ωd =
⋃
i

Ωd
i , (12)

assuring that the ensemble completely covers the feature space (provided
that n ≥ d). Similarly, as:

Ωd
j ∩ Ωd

i = ∅,∀i, j | i �= j, (13)

the domains of each discriminant Φi are disjoint and the full diversity of
the ensemble is also assured, i.e., every discriminant Φi is obtained from
completely disjoint data with respect to the remaining discriminants, which
reduces the probability of obtaining correlated models. The fact of using
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disjoint data for building each discriminant might augment the probability
of overfitting. As a counterbalance, we note that several nodes usually vote
for a query, which reduces the probability of overfitting.

3.4 Computational Complexity

Here we analyze the time complexity, which can refer to the learning
or classification phases. But, as the latter phase is done on-line and requires
repeated execution, our efforts were concentrated in keeping low the com-
plexity of the classification phase.

The learning phase has two major steps: 1) create the VPC tree; and
2) obtain a linear discriminant for each leaf node. Let n be the number of
learning instances. Determining one pivot per node takes O(n2). The inser-
tion always takes place at the deepest level, with complexity O(h), being h
the height of the tree (if the tree is balanced, h = lg(n)). Next, learning a
linear discriminant for each leaf involves three major steps: 1) singular value
decomposition to obtain the within and scatter matrices; 2) compute eigen-
vectors; and 3) solve the final linear system, which has O(n dmin(n, d) +
min(n, d)3) (Cai, He and Han, 2008) temporal complexity, being d the di-
mension of the feature space.

In classification, the complexity depends of the radius γ∗, varying be-
tween O(n) (when all leaves vote) and O(lg(n)) (when a single leaf votes).
Our experiments confirm that optimal performance is attained when a re-
duced number of nodes vote for the ensemble, yielding a temporal complex-
ity around O(α lg(n)), being α the number of nodes voting (1 ≤ α ≤ n).
At each leaf, the temporal complexity of classification is O(d(k − 1)X),
being k the number of classes. Hence, the time complexity of classifica-
tion is O(αd(k − 1)) + O(αlg(n)). Keeping moderate values for k and
d, the predominant term is clearly O(αlg(n)). Keeping in mind that usu-
ally each node of the tree represents more than one training instance (due
to the parameter γ > 0), it follows that α � n, reducing the complexity to
approximately logarithmic.

3.5 Bias-Variance Tradeoff

In VPC, the tradeoff between bias and variance depends of the number
of classifiers in the ensemble and of the number of votes per query. The
former is determined by γ and the latter by γ∗. Both γI and γq are in direct
proportion to bias, and inversely correlated to variance. As illustrated in
Figure 2, high values for γ and γ∗ reduce the number of leaves, from where a
large proportion is used in classification. At the other extreme, as the values
of γ and γ∗ decrease, more leaves are created, and smaller proportions of
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Figure 2. Top plot: effect of the γ and γ∗ parameters in the number of classifiers that vote
in each query. Bottom plot: corresponding misclassification rates, with the optimal configu-
ration highlighted. The configurations that are equivalent to linear discriminant analysis and
k-nearest neighbors appear inside dashed ellipses.

these are used in each query. This corresponds to getting purer—and less
biased—estimates. However, a tree with more leaves reduces the sample
size per classifier and increases the potential estimation error, increasing the
variance of the model.

It is interesting to note that, under specific parameterizations, VPC is
equivalent to linear discriminant analysis (LDA) or to k-nearest neighbors
(KNN) (Figure 2). It is equivalent to LDA in cases where the tree is com-
posed by a single node (large γ values). Oppositely, for γ = 0, each leaf of
the tree offers perfect separability between classes, which in practice reduces
to the nearest neighbor rule. However, as this example illustrates (”Optimal
Performance” arrow), one of the key findings reported in this paper is that
optimal performance is most times attained for intermediate values of γ and
γ∗.
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4. Experiments and Discussion

4.1 Comparison Terms

Eight well known classification techniques were used as comparison
terms. Four individual models (k-nearest neighbors: Cover and Hart, 1967;
linear discriminant analysis: Duda, Hart and Stork, 2000; neural networks:
Moller, 1993; and support vector machines: Cortes and Vapnik, 1995) and
four ensembles: Bagging with classification trees (CART), quadratic and
pseudo-linear weak classifiers, Boosting and Random Spaces with quad-
ratic discriminants and decision tree weak classifiers and the Random Forest
(Breiman, 2001) with decision trees as weak classifiers.

The selected algorithms were considered to represent the state-of-the-
art in terms of classification. Even though several variants exist, the ones
used are the most frequently reported in the literature and in previous perfor-
mance evaluation initiatives (e.g., Bauer and Kohavi, 1999; Dietterich, 2000;
and Demsar, 2006). This way, our idea is that by transitivity, it is possible
to compare the performance of VPC against any other classification model
that shared any comparison term used in this paper.

Table 1 describes the parameters tested in the optimization of each al-
gorithm. A set of parameterizationswas tested, by an exhaustive grid combi-
nation of parameters in the given range. Additionally, for non-deterministic
methods, each parameterization was tested 10 times and the best perfor-
mance taken. Regarding the VPC method, the Euclidean distance (�2-norm)
was used in all cases as ξ(., .) function. All the results correspond to imple-
mentations in the MATLAB environment.

4.2 Synthetic Datasets

Performance started to be analyzed on synthetic bi-dimensional data-
sets (Figure 3). All regard binary classification problems, ranging from lin-
early separable (Problem A) to complex decision environments: with contin-
uous/discontinuous boundaries (problems B and C) and balanced/unbalanced
prior probabilities (problems D and E). VPC denotes the proposed method,
LDA the linear discriminant analysis, NN stands for neural networks and
KNN for k-nearest neighbor classification. For each problem/algorithm, the
decision boundaries appear in black. An immediate conclusion is the suit-
ability of VPC to handle all classes of problems tested, both linearly sepa-
rable (problem A), with complex decision boundaries (problems C-E) and
different levels of prior probabilities per class (problem E). In these exper-
iments, the smoothness of the decision boundaries of VPC was lower than
for NN and KNN, which was explained by the parameters used (low values
of γ and γ∗ were used in this example).
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Table 1. Variants of each classification algorithm evaluated and corresponding parame-
ters/intervals evaluated in the optimization process.

Algorithm Parameters Optimization
LDA -
Neural Networks (NN) Learning Algorithm: Levenberg-Marquardt backpropaga-

tion, scaled-conjugate gradient, gradient descend with adap-

tive learning rate/momentum; Topology: neurons hidden

layer; Learning stopping criteria: validation checks, perfor-

mance, and epochs.

KNN Number neighbors: [1, d]

SVM Kernel type: linear, polynomial and sigmoid; kernel degree:

[1, 4]; γ kernel functions: [0.5/d, 2*d]

Bagging (BAG) Number ensemble classifiers: [2, 2*d], Weak learners: clas-

sification trees (CART), quadratic/pseudo-linear

Boosting (BOS) Number ensemble classifiers: [2, 2*d]; Weak learners:

quadratic discriminants and decision trees; Type learning

algorithm: multi-class AdaBoost, RUSBoost (Seiffert et al.,

2008)

Random Subspaces (RSP) Number ensemble classifiers: [2, 2*d]; Weak learners:

quadratic discriminants and decision trees, Gini’s diversity

index/maximum deviance split criteria.

Random Forests (RFO) Number weak classifiers: [2, 2*d]; Number of variables

selected per split: [1,
√

d].

VPC

A B C D E

LDA

KNN

NN

Figure 3. Results attained by the VPC for bi-dimensional synthetic datasets, when compared
to linear discriminant analysis (LDA), neural networks (NN) and k-nearest neighbors (KNN)
classification methods.
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Table 2. Datasets of the UCI Machine Learning Repository (Univ. California) used in the
performance evaluation of VPC.

ID Data Set Instances
(Training/Test)

Features Classes Prior Probs (%).

BC Breast
Cancer
Wiscosin
(Original)

683
(10 × 615/68)

9 2 65.00, 35.00

HS Haberman’s
Survival

306
(10 × 276/30)

3 2 74.00, 26.00

IS Image
Segment

2310
(10 × 2079/231)

19 7 (balanced)

IR Iris 150
(10 × 135/15)

4 3 (balanced)

IT Isolet 7797
(10 × 7 018/779)

617 26 (balanced)

LR Letter
Recognition

20 000 (10 ×
18 000/2 000)

16 26 3.94,3.83,3.68,4.03,3.84,3.87,3.86,

3.67,3.77,3.64,3.69,3.81,3.96,3.91,

3.77,4.01,3.91,3.79,3.74,3.98,4.06,

3.82,3.76,3.94,3.93,3.67

MF Multifeature
Digit

2 000 (10 ×
1 800/200)

649 10 (balanced)

MU Musk
(Version 2)

6 598 (10 ×
5 939/659)

168 2 84.59,15.41

PB Page Blocks 5 473 (10 ×
4 926/547)

10 5 89.77,6.01,0.51,1.61,2.10

SK Skin Seg-
mentation

245 057 (10 ×
220 552/24 505)

3 2 20.75,79.25

SP Spambase 4 601 (10 ×
4 141/460)

57 2 60.60,39.40

ST Statlog
(Shuttle)

58 000 (10 ×
52 200/5 800)

9 7 78.60,0.08,0.29,15.35,5.63,0.01,

0.02

4.3 UCI - Machine Learning Repository

Performance was also compared in theUniversity of California, Irvine:
Machine Learning Repository1 datasets, which are freely available and widely
known in the field of classification. The used sets are summarized in Ta-
ble 2, and were selected according to four criteria: 1) containing multivari-
ate or univariate features; 2) suitable for classification tasks; 3) exclusively
with numeric attributes; and 4) without missing values. We give the num-
ber of instances, features, classes and prior probabilities per class. Values
inside parenthesis denote the amounts of data selected for learning/testing
purposes. For all sets, 10-fold cross validation was adopted and features
were rescaled to [0,1] interval according to the min-max rule.

1. http://archive.ics.uci.edu/ml/
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Table 3. Results obtained for the datasets of the UCI Machine Learning Repository. The
mean errors are given, together with the standard deviations observed in the 10-fold cross
validation procedure. Cells in bold highlight the best algorithm per data set.

Dataset VPC LDA NN SVM KNN BAG BOS RSP RFO
BC 2.48 ± 1.83 3.68 ± 2.71 3.38 ± 2.78 2.94 ± 2.19 2.50 ± 1.71 3.68± 2.79 2.97± 2.06 6.62± 2.88 2.91± 1.95

HS 20.33± 5.54 28.00± 6.52 24.00± 4.66 25.33± 7.57 23.33 ± 4.16 23.67 ± 4.57 16.70 ± 4.98 25.67 ± 6.49 23.06 ± 6.06

IS 3.58 ± 1.07 11.26± 1.56 5.37 ± 5.29 7.01 ± 1.73 3.12 ± 1.29 8.18± 1.63 5.17± 2.03 21.17 ± 2.13 3.58± 1.52

IR 2.00 ± 1.22 4.00 ± 4.66 4.67 ± 6.32 4.00 ± 5.62 3.33 ± 4.71 1.33± 2.81 2.67± 3.44 4.00± 4.66 3.69± 1.02

IT 5.73 ± 0.72 5.73 ± 0.72 6.78 ± 6.89 3.07 ± 0.84 8.97 ± 1.27 5.35± 0.83 12.91 ± 2.28 30.90 ± 1.79 11.03 ± 2.02

LR 9.01 ± 0.63 37.49± 1.09 26.20± 5.17 17.65± 0.66 3.89 ± 0.29 11.21 ± 0.64 11.30 ± 0.69 49.03 ± 0.72 12.47 ± 1.28

MF 1.75 ± 0.67 1.75 ± 0.68 2.35 ± 2.96 1.55 ± 0.83 1.65 ± 0.58 1.05± 0.69 7.91± 0.97 9.25± 2.12 2.28± 0.80

MU 2.40 ± 0.38 6.43 ± 0.97 0.93 ± 0.45 5.13 ± 0.76 3.11 ± 0.37 3.25± 0.68 3.35± 0.60 11.90 ± 1.55 2.57± 0.94

PB 3.32 ± 0.70 7.35 ± 1.48 3.33 ± 0.77 7.11 ± 1.20 4.04 ± 0.97 5.60± 1.10 4.52± 1.45 7.77± 0.73 3.48± 0.53

SK 0.06 ± 0.01 6.60 ± 0.14 0.31 ± 0.53 1.02 ± 0.06 0.04 ± 0.01 1.64± 0.08 1.64± 0.08 17.45 ± 0.27 1.70± 0.22

SP 6.34 ± 1.31 9.48 ± 2.02 6.17 ± 1.74 9.57 ± 1.82 8.85 ± 1.03 10.80 ± 1.91 6.13± 1.02 34.28 ± 3.71 4.36± 0.80

ST 0.05 ± 0.02 17.48± 0.82 0.42 ± 0.02 3.08 ± 0.22 0.06 ± 0.03 5.52± 0.29 1.59± 0.32 14.66 ± 1.21 0.03± 0.00

Note that the used sets are heterogenous from different perspectives,
ranging from easy problems (such as SK and ST), to extremely hard (such as
the HS), due to low feature-to-instance ratio and classes overlapping. Also,
for some problems large amounts of data are available (e.g., SK), while oth-
ers have a reduced number of instances available (e.g., IR).

Results are given in Table 3 and a first evidence is that VPC only
got the best performance among all algorithms in two different problems
(BC and PB). However, the most important observation is that, for all the
remaining cases, VPC was among the best half of the algorithms. Also—
as expected—KNN got the best results in problems with low feature-to-
instance ratio, that correspond to densely populated feature spaces (e.g.,
SK).

Not only VPC, but also NN, SVM, KNN, Bagging and Random For-
est got the 1st rank in some problem. Among the ensemble algorithms,
Bagging, Boosting and Random Forest outperformed all the remaining al-
gorithm in some problem. In opposition, random subspaces got particularly
hazardous results in low dimensionality datasets, where the projection into
feature subspaces does not keep enough discriminating information.

To perceive the classes of problems where each algorithm got the best
results, their relative effectiveness was tested. Differences in performance
were validated in terms of statistical significance using Student t-tests (at
the 95% level), assuming that errors are normally distributed. Having per-
formance scores of two algorithms (vectors �v1 and �v2, length 10), a t-test
te was carried out, stating as null hypothesis H0 that “�v1 and �v2 are inde-
pendent random samples from normal distributions with equal means and
unknown variances”. The alternative hypothesis was that means are differ-
ent:

te =
abs(μ�v1

− μ�v2
)√

σ2
�v1

+σ2
�v2

10

, (14)
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Table 4. Summary of the algorithm-to-algorithm relative performance, for datasets of the
UCI Machine Learning Repository (represented in each cell in the same order as in Table 2).
The symbol “◦” denotes that the algorithm in the column is better than the algorithm in
the row, with statistical significance at 95% level. “•” denotes worse performance and “·”
corresponds to differences in results without statistical significance. Each cell in the bottom
row summarizes the total of “◦”, “·” and “•” cases for an algorithm.

Alg. VPC LDA NN SVM KNN BAG BOS RSP RFO

VPC - · · • · · • · • • • · • · · · · · • · ◦ · · · • · · • · ◦ • · • • • · • · · · · • ◦ · • · · • · · · • · · • · • • • • • · · · · • • • • · • · • · · • · • • • • • • • • · · · • • • · · · • ◦ ◦

LDA - · · · · · ◦ · ◦ ◦ ◦ · ◦ · · ◦ · ◦ ◦ · · · ◦ · ◦ · · ◦ · • ◦ · ◦ ◦ ◦ · ◦ · · · · · ◦ · ◦ · ◦ · ◦ · ◦ ◦ · • ◦ • ◦ · ◦ ◦ ◦ · · • · • • • • · • • ◦ · · ◦ · ◦ ◦ · ◦ ◦ ◦ ◦ ◦

NN · · · · · ◦ · • · · · ◦ · · · · · • · • • • · • - · · · · · ◦ · • • · · • · · · · · ◦ · • · · · ◦ · · · · · ◦ · • • • • • · ◦ • • · ◦ • • · • · • · · • · • • • • • • • • · · · · • ◦ · • · • • ◦

SVM · · ◦ · • ◦ · ◦ ◦ ◦ · ◦ · · • · • • · · · • · • · · · · · • · ◦ ◦ · · ◦ - · · ◦ · • ◦ · ◦ ◦ ◦ · ◦ · · · · • ◦ · ◦ · • · • · · · · • ◦ • ◦ · • · · · · • · • • • • · • • • · · ◦ · • ◦ · ◦ ◦ ◦ ◦ ◦

KNN · · · · ◦ • · ◦ · · ◦ · · · • · ◦ • · • • • · • · · · · · • · ◦ · · · • · · • · ◦ • · • • • · • - · · • · ◦ • · · · • · • · · · · ◦ ◦ • · · • · • · · • · • • • • • • • • · · · · · • · · · • ◦ ◦

BAG · · ◦ · · ◦ · ◦ ◦ ◦ ◦ ◦ · · · · · • · • · • · • · · · · · • · ◦ ◦ ◦ ◦ ◦ · · · · ◦ • · • · ◦ · ◦ · · ◦ · • ◦ · · · ◦ · ◦ - · · · · • · • · · · ◦ ◦ · · • · • • • • • • • • · · ◦ · • · · · ◦ · ◦ ◦

BOO · · · · ◦ ◦ ◦ ◦ · ◦ · ◦ · · ◦ · ◦ • ◦ • · • · ◦ · · ◦ · ◦ • ◦ ◦ · ◦ ◦ ◦ · · ◦ · ◦ • ◦ • · ◦ · ◦ · · ◦ · ◦ ◦ ◦ · · ◦ · ◦ · · ◦ · ◦ · ◦ · · · · ◦ - · · · · ◦ • ◦ • · • • ◦ · • · · · · ◦ · · · ·◦

RSP · · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ◦ · ◦ ◦ ◦ ◦ · ◦ ◦ • · · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ◦ · ◦ ◦ ◦ ◦ · ◦ ◦ ◦ · · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ◦ · ◦ ◦ · ◦ ◦ ◦ ◦ • - ◦ · ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

RFO · · · ◦ ◦ ◦ · · · ◦ • • · · • · • • · • • • • • · · · · ◦ • · ◦ · ◦ ◦ • · · • · ◦ • · • • • • • · · · · · ◦ · · · ◦ • • · · • · ◦ · · · • · • • · ◦ · · · · • · · · ·• • · • · • • • • • • • • -

Total 43, 48, 5 12, 46, 38 35, 52, 9 25, 45, 26 36, 51, 9 22, 51, 23 23, 48, 25 4, 27, 65 37, 46, 13

where abs(.) denotes the absolute value, μ�v1
and μ�v2

are the means and σ�v1

and σ�v2
the standard deviations. Every time te > 2.10,H0 was rejected and

assumed that both algorithms actually have different performance.
Table 4 summarizes the algorithm-to-algorithm comparison in the

datasets evaluated (in the same order in each cell as in the rows of Table 2).
Symbol “◦” denotes cases where the algorithm in the column got better re-
sults (with statistical significance) than the one in the row. Oppositely, sym-
bol “•” denotes worse performance and “·” denotes results without statistical
significance. As main conclusion, the best performance of VPC among all is
evident: only for three problems VPC got worse results than any other algo-
rithm: Musk (worse than neural networks), Isolet (worse than support vector
machines) and Letter Recognition (worse than k-nearest neighbors). The
bottom row of the table gives the summary statistics, showing the number of
“◦”, “·” and “•” cases. VPC, NN, SVM, KNN and Random Forests got over-
all positive balance, meaning that they were better more times than worse.
VPC attained maximal balance (“◦” - “•”) value (38), followed by KNN (27)
and NN (26) algorithms. Interestingly, the performance attained by two of
the ensemble strategies (Boosting and Random Subspaces) was poorer than
the observed for individual algorithms. When compared to LDA, in no case
did VPC get worse performance, and in the IT dataset results were exactly
equal, corresponding to a case where the VPC learning process stopped at
the tree root (yielding the LDA).

Regarding the ensemble algorithms, Random Forests got the best re-
sults, followed by Bagging, in accordance to the results given by Banfield
et al. (2007). Boosting got smaller errors than Bagging in half of the prob-
lems. The Random Forest algorithm outperformed all the remaining in two
problems (Spambase and Statlog) that share the property of class imbalance.
Random Subspaces got especially bad results in low dimensionality prob-
lems (e.g., Skin) and Boosting was among the best algorithms for problems
with a reduced number of classes (e.g.,Musk).

H. Proença and J.C. Neves100



1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Acc. Rank

P
ro

ba
bi

lit
y

VPC
LDA
NN
SVM
KNN
BAG
BOS
RSP
RFO

Figure 4. Accumulated probabilities of performance ranks observed for the eight algorithms
in the datasets of the UCI-Machine Learning Repository

Demsar (2006) suggested that the fairest way to compare algorithms
is to use their average ranking onmultiple datasets and cross-validation accu-
racy. Hence, the order-rank of the algorithms in each problemwas compared
and the results illustrated in Figure 4, showing the accumulated probabilities
in terms of ranks, i.e., the probabilities that an algorithm is among the top-k
rank (Acc. Rank axis). Here, the best algorithm appears most close to the
upper-left corner, which enables to intuitively visualise the relative effective-
ness.

It is evident that VPC was the algorithm with ranks closest to the
upper-left corner, followed by KNN and Random Forest. Next, a group of
four algorithms (NN, SVM, Bagging and Boosting) got similar results. LDA
appears next and the Random Subspaces algorithm got the worst results.
Another particularly interesting property of VPC is that—for all problems—
got performance among the top-half algorithms. This had only happened
in about 85% for KNN, and around 60% of the problems for the Random
Forest, which we consider a substantial difference. All the remaining algo-
rithms were among the top-half in less than 50% of the problems.

Further attention should be given to the levels of correlation between
the responses given by the best algorithms, in order to anticipate the advan-
tages of using meta-ensembles, i.e., the improvements in performance that
might result of fusing at the score level VPC, KNN, NN, SVM and Bagging
classifiers.

4.4 Major Performance Covariates

According to the results given above, it is particularly important to
perceive the factors that most evidently affect the performance of VPC with
respect to the competitors. For such, we decided to compare the results of
VPC to KNN and Random Forest classification strategies, with respect to
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Figure 5. Examples of images used in the GTSR set released by the Institute für Neuroin-
formatik, in the scope of a competition held at the 2011 International Joint Conference on
Neural Networks.

two different factors: 1) balance of classes prior probabilities; and 2) feature
spaces dimension. The choice of the comparison terms used was motivated
by the overall ranking of algorithms in the experiments above, summarized
in Figure 4.

All results reported in this section were based on data from the Ger-
man traffic sign recognition benchmark (Stallkamp et al., 2012) (Figure 5)
was used. This data set is a multi-class image classification challenge held
at the International Joint Conference on Neural Networks (IJCNN) 2011.
There are 43 classes in the data set and more than 50 000 images 2, divided
into disjoint training and test sets. Using the available meta-data that defines
a region-of-interest for each sample, a set of 1,300 features per sample was
extracted, scanning all 3 × 3 patches of the scale-normalized images (40 ×
40 pixels) with the highly popular Local Binary Patterns descriptor (Ojala,
Pietikainen, and Harwood, 1966). According to a bootstrapping-like strat-
egy, random samples with 80% of the available learning and test data were
drew, and the effectiveness of the measured, yielding the results given in the
sub-sections below, where we plot the average performance plus the first and
third quartile of the results, as a confidence interval.

4.4.1 Balance of Classes Prior Probabilities

To perceive the effect that the balance of classes priors has in VPC
performance, we selected the most frequent classes in the GTSR data set
(classes 1, 2, 12, 13 and 38). Next, we drew multiple samples of the learning
and test sets, each one comprising two classes and varying the proportion
of elements per class. Results are given in the left plot of Figure 6, for
VPC (solid line), KNN (dashed line) and Random Forests (dashed-dotted

2. http://benchmark.ini.rub.de/
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Figure 6. At left: Variations in performance with respect to the balance of classes prior
probabilities. At right: Variations in performance with respect to the dimensionality of the
feature spaces.

lines) algorithms, with the corresponding first and third quartile performance
values observed (p is the proportion of elements the less frequent class) It
is obvious that the gap between VPC and the competitors tends to increase
directly in proportion to the levels of class unbalance, which accords our
previous observations. Without surprise, KNN showed a larger deterioration
in performance than the remaining algorithms with respect to this factor,
whereas Random Forest showed a relatively small decrease in classification
effectiveness.

4.5 Feature Spaces Dimension

Further, we compared the classification effectiveness of VPC, KNN
and Random Forests with respect to the dimension of the feature space,
which also correlates to the density of the learning feature space (as the
number of used instances was kept constant). In this experiment, all classes
of the GTSR set were considered, using feature subsets composed by 10 to
100% of all the available features, chosen randomly. The results are given in
the right plot of Figure 6 (d represents the proportion of features considered),
and appear to confirm that the performance of VPC with respect to competi-
tors is maximized for problems of reduced andmoderate dimensionality, i.e.,
corresponding to more densely populated feature spaces. For large dimen-
sionality problems, the pivots chosen at each node of the classification tree
were observed to decrease the representativity of the corresponding elements
on that node. Noting that the confidence intervals associated with each al-
gorithm largely overlap, it is still possible to perceive an inverse tendency
between the performance of VPC/KNN and the Random Forest algorithm,
that is the unique where the rule ”the more features the better” appears to
apply. Even due to different reasons, this does not holds for VPC and KNN,
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which is known to suffer from the irrelevant features issue that happens of-
ten in high dimensionality problems.

5. Conclusions

This paper proposes a classification strategy that accords the idea of
Boosting and is based on a Vantage-Point tree that recursively divides the
feature space into compact subspaces (leaves) that are separated by weak
classifiers (linear discriminants). By preserving the neighborhood of sub-
spaces, the binary data structure is traversed in a computationally efficient
way and only a reduced number of leaves vote for the response of the ensem-
ble, which yields the low computational cost of classification.

The resulting ensemble classifies in temporal cost of approximately
O(lg(n)). Also, in terms of accuracy, it attains results similar to the state-
of-the-art in most of the problems tested. The computational cost/accuracy
balance is regarded in a particularly positive way due to the broad range
of problems considered (binary/n-ary classification, discrete/continuous fea-
tures, balanced /unbalanced priori probabilities, with densely/sparsely pop-
ulated datasets).

In terms of the results observed, we highlight the following conclu-
sions:

• Even though the proposed method (VPC) outperformed all the other
algorithms in a relatively short proportion of the problems (2/12), the
interesting property is that, for all problems VPC was among the best
algorithms, which clearly did not happened for any of the remaining
comparison terms.

• With respect to its competitors, the best results of VPC were observed
for problems with unbalanced priori probabilities per class. This was
explained by the fact that VPC classifies (locally) in subspaces, so that
the prior probabilities in the complete feature space do not bias each
local classifier.

• Also in terms of relative effectiveness, VPC is particularly suitable
for problems of moderate dimensionality, where the vantage-point re-
trieval scheme works better. In very large dimensionally problems, as
the �2-norm was used to obtain the distance between feature points,
pivots decrease the representativity of all the elements in the corre-
sponding node.

• When compared to KNN, the major advantage of VPC is its smaller
sensitivity to irrelevant features, which can be naturally disregarded
by the linear discriminants at the tree leaves.

• It should be noted that in all the problems considered, the number of
training instances n was always much higher than the dimensionally
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d of the feature space. Hence, as further work, we plan to analyze the
effectiveness of VPC in feature spaces with such high dimensionality
and relatively reduced amount of learning data (n ≈ d, or even n <
d).
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Soft Biometrics: Globally Coherent Solutions for
Hair Segmentation and Style Recognition

Based on Hierarchical MRFs
Hugo Proença, Senior Member, IEEE, and João C. Neves, Member, IEEE

Abstract— Markov Random Fields (MRFs) are a popular
tool in many computer vision problems and faithfully model
a broad range of local dependencies. However, rooted in the
Hammersley–Clifford theorem, they face serious difficulties in
enforcing the global coherence of the solutions without using too
high order cliques that reduce the computational effectiveness of
the inference phase. Having this problem in mind, we describe
a multi-layered (hierarchical) architecture for MRFs that is
based exclusively in pairwise connections and typically produces
globally coherent solutions, with 1) one layer working at the local
(pixel) level, modeling the interactions between adjacent image
patches; and 2) a complementary layer working at the object
(hypothesis) level pushing toward globally consistent solutions.
During optimization, both layers interact into an equilibrium
state that not only segments the data, but also classifies it.
The proposed MRF architecture is particularly suitable for
problems that deal with biological data (e.g., biometrics), where
the reasonability of the solutions can be objectively measured.
As test case, we considered the problem of hair / facial hair
segmentation and labeling, which are soft biometric labels useful
for human recognition in-the-wild. We observed performance
levels close to the state-of-the-art at a much lower computational
cost, both in the segmentation and classification (labeling) tasks.

Index Terms— Soft biometrics, visual surveillance, homeland
security.

I. INTRODUCTION

IN VISUAL surveillance / biometrics research, the devel-
opment of systems to work in unconstrained data acqui-

sition protocols and uncontrolled lighting environments is a
major ambition. The images resulting of such conditions are
degraded in multiple ways, such as blurred, shadowed, of poor
resolution, with subjects off-angle and partially occluded
(Fig. 1). In these cases, soft biometrics can be seen as an
identity retrieval tool that attenuates the decrease in perfor-
mance of the classical biometric traits (e.g., the face or the
iris).

The descriptions of the facial hair and hair styles are
among the most effective soft biometric traits reported in the
literature [24]. In this scope, the pioneer analysis methods
were designed to work exclusively in good quality images of
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Fig. 1. Examples of images captured by an outdoor visual surveillance
system, with unconstrained acquisition conditions and protocols. Images have
typically poor resolution and are often blurred, with subjects partially occluded
and under varying poses.

frontal subjects. Regardless recents attempts to increase the
robustness (e.g., [29]), the ambition of working effectively
in images acquired in typical visual surveillance conditions
remains to be achieved.

Markov Random Fields (MRFs) are a classical tool for many
computer vision problems, from image segmentation [13],
image registration [8] to object recognition [4]. Among other
strengths, they provide non-causal models with isotropic
behaviour and faithfully model a broad range of local depen-
dencies. On the other way, they hardly guarantee globally
coherent solutions without using too high order cliques that
compromise the computational effectiveness of the inference
phase. Having this problem in mind, in this paper we propose
a multi-layered (hierarchical) MRF that does not use high
order cliques but still typically reaches globally coherent
solutions. As test case, we consider the hair / facial hair
style analysis, and describe an inference process composed of
two phases:

1) three supervised non-linear classifiers run at the pixel
level and provide the posterior probabilities for each
image position and class of interest: hair, skin and back-
ground. Each classifier detects one component based on
texture and shape image statistics;

2) the posteriors based on data appearance are combined
with geometric constraints and a set of model hypotheses
to feed the MRF, composed of a segmentation and
a classification layer. One layer discriminates locally
the classes of interest, while the other infers the soft
biometric labels that describe the query’s facial hair and
hair styles.

The key idea is to combine the strengths of MRFs
with groups of synthetic hypotheses that are projected
onto the input plane and guarantee the global consistency
(biological coherence) of the solution. The proposed model

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I

SUMMARY OF THE MOST RELEVANT METHODS TO PERFORM AUTOMATED DETECTION, SEGMENTATION AND CLASSIFICATION OF FACIAL HAIR AND
HAIR STYLES. Y, P, R , A AND C STAND FOR THE DATA VARIATION FACTORS EACH METHOD CLAIMS TO HANDLE: DEVIATIONS IN YAW, PITCH

AND ROLL ANGLES, UNALIGNED DATA AND NON-EXISTENCE OF HAIR COLOR CONSTRAINTS

inherits some insights from previous works that used shape
priors to constraint the models (e.g., [2]) and multiple layered
MRFs (e.g., [26], [20]).

The remainder of this paper is organized as follows:
Section II analyzes the related work. Section III details
the learning and inference phases of the proposed method.
Section V describes our experiments and the conclusions are
given in Section VI.

II. RELATED WORK

Table I overviews the literature for facial hair / hair style
analysis. Algorithms are classified according to their scope
(Hair (H) / Facial Hair (FH), Segmentation / Classification),
along with a description of the techniques / color spaces used.
The data variability factors considered are enumerated, with Y,
P and R denoting deviations in yaw, pitch and roll angles, and
A and C referring the abilities to work with unaligned data
and unconstrained hair colors. Below, methods are grouped
into three families: predominantly generative, discriminative
and hybrid.

Lee et al. [17] propose a generative model that infers a
set of hypotheses for the face, hair, and background regions.
In classification, the most reliable pixels are the information
source for mixture models that parameterise each component
and define the MRF unary costs. Still in the generative
family, Shen et al. [23] propose a face detector to define the
ROI and consider color information (YCbCr space) to feed
a MRF used for segmentation. As post-processing, nearest

neighbour analysis enforces the homogeneity between adja-
cent regions. Wang et al. [28] formulate the segmentation
problem as finding pairs of isomorphic manifolds, using a
set of learning images with the corresponding ground-truth,
designated as optimal maps. Here, queries are represented as
combinations of optimal maps. Zhang et al. [33] and [34]
infer a set of probability density functions of four typical hair
colors (XYZ and HSV spaces), learned by the expectation-
maximization algorithm. Assuming the statistical indepen-
dence between color channels, they obtain the likelihood in
each color space and use a Bayesian framework to segment
hair. Finally, a simple approach is due to Dass et al. [5], that
segment the hair regions by thresholding and use agglomera-
tive clustering to parameterise five groups of hairstyles, based
on the proportion of hair pixels in image patches.

Regarding methods that are predominantly discriminative,
Kae et al. [12] detect the most homogenous image patches
(super-pixels), which provide the appearance information to a
CRF. To guarantee the global coherence of the hypotheses,
a restricted Boltzmann machine encodes the global shape
priors and enforces shape constraints. Wang and Ai [27]
learn a discriminator between the hair / non-hair regions.
In classification, seven hairstyles are considered, with the
RankBoost algorithm selecting the most informative patches
and defining hairstyle similarity directly on the hair shapes.
Under the same paradigm, Rousset and Coulon [22] fuse color
(YCbCr space) to frequency information, in order to locally
discriminate between hair / non-hair pixels.
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Hybrid approaches are typically based in template matching,
with the pioneer method due to Yacoob and Davis [30]. These
authors use face and eye detectors to define the ROIs. Based
on spatial and color information, a set of seeds is inferred
and region growing is used based on local homogeneity.
Finally, morphologic operators enforce connected components.
Julian et al. [11] learn a set of shape templates of the upper
part of the head, based on the boundary control points. Using
principal components analysis, they propose the concept of
eigen shape, keeping the top variability vectors that represent
the 3D head orientation and the face morphology. Hair regions
are classified at the pixel level according to a texture-analysis
strategy, generating seeds for subsequent finer parameterisa-
tions (active contours). Ugurlu [25] use a head pose detector
based both in shape and texture, being the latter described
statistically in the HSV color space. Wang et al. [29] use a
head detector that defines a ROI, based in histogram analysis
and nearest neighbour rules. The hair length is inferred by
line scanning on the segmented hair region. A relevant gap of
this work is the fact of being only suitable for handling dark
hair subjects. Lipowezky et al. [18] start by detecting head
landmarks (eyes and mouth) to find the most homogenous
image patches. Color information (LAB and YCbCr spaces) is
fused to the Canny magnitude and to four texture descriptors
(wavelets-based), feeding a region-growing algorithm. Simi-
larly, Krupka et al. [16] use a head detector that defines the
ROI where the skin is detected and segmented. The differences
between the head foreground and the skin pixels provide the
estimate of the hair positions. Skin seeds are detected by
thresholding, further expanded upon homogeneity.

III. PROPOSED METHOD

For comprehensibility, the following notation is adopted:
matrices are represented by capitalized bold font and vectors
appear in bold. The subscripts denote indexes. All vectors
are column-wise. The ring symbol (e.g., x̊) denotes image
positions, while 3D positions appear in regular font (e.g., x).

A. Synthesis of 3D Models

We consider three types of 3D models: 1) head; 2) hair;
and 3) facial hair. The head models are generated as described
in [19]. Using the Young’s [31] head anthropometric survey to
obtain a group of probability density functions of human head
lengths and a basis 3D mesh, we deform the mesh according to
randomly drew target distances between pairs of vertices (li j ).
Let xi be one 3D vertex and ni the normal to the surface at that
point. Let xi j = xi −x j , ni j = ni −n j (x.,n. ∈ R

3) and let li j

be the target length (Euclidean distance) between xi and x j .
This yields a system of linear equations with inequality
constraints, enabling to find (using [3]) the magnitude of
the displacement αi j on both vertices with respect to their
normals (xnew = xold + αn), such that their distance is li j and
||ααα||∞ ≤ κ0 (to avoid anatomically bizarre solutions). The top
row of Fig. 2 illustrates our population of head shapes.

Let ss = [xT
1 , . . . , xT

tv ]T be a vector representing one head
shape, given as a triangulated mesh of tv vertices. Considering
a set of head shapes Ss = {ss,1, . . . , ss,tm }, there is evidently

Fig. 2. Illustration of the 3D head shapes, hair and facial hair models that
are used as the hypotheses considered in this paper. (a) Head models (Ss ).
(b) Hair models (Sh ). (c) Facial hair models (Sf ).

strong correlation between the xi elements in those meshes,
which is attenuated if they are represented in the principal
components (PC) space:

s∗
s = (ss − s̄s)Tpc, (1)

where s̄s is the 3 tv -dimensional mean of the elements in
Ss and Tpc is the PC transformation matrix. This way, each
mesh is represented in a feature space of a much lower
dimension than the 3 tv , which accounts for the computational
effectiveness of the whole method. In our case, the head
models have tv = 957, but 50 PC coefficients represent over
99.9% of the variability.

Regarding the hair / facial hair models, we use the concept
of hair mesh from Yuksel et al. [32] and consider hair / facial
hair classes as particular cases of polygonal mesh modelling.
For simplicity, we keep a short number of hypotheses for
each class: Sh={”bald”, ”short bald”, ”short”, ”medium”,
”long fine”, ”long volume”} for the hair and S f ={”clean”,
”moustache”, ”goatee”, ”beard”} for the facial hair. As previ-
ously, all models are generated by deforming iteratively a basis
3D mesh (examples are shown at the bottom rows of Fig. 2).

B. Pose Hypotheses

We also consider a set of pose hypotheses. Let p = {R, t} be
a camera pose configuration, with R being the rotation matrix
and t the translation vector, i.e., p is a 6D vector accounting
for three components of rotation (yaw, pitch and roll) and
three of translation along the orthogonal axes tx , ty and tz .
P = {p1, . . . ,pt p } is the set of tp pose hypotheses uniformly
distributed over all the six degrees of freedom.

C. Joint Head Shape / Pose Hypotheses Indexing

Given a set of tp pose and ts head shape hypotheses, it
is required to find the best joint pose / head shape config-
uration, which will most likely match the query. To avoid
exploring by brute-force all tpts possibilities, a forest of



1640 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

Fig. 3. Successful / failure (rightmost column) estimates of the head shape /
pose. Most failed cases are due to ambiguities in various head shape / pose
configurations that provide too many overlapped landmark projections.

binary trees is created at learning time, one tree per type of
landmark. In these indexing structures, hypotheses are grouped
(k-means) in branches according to the neighbourhood of the
projected landmark. The world-to-image function projects the
x vertices of a head shape hypothesis ss according to a pose
configuration p:

fw→i (x,p) = x̊ = 1

υ
A[R|t]

[
x
1

]
, (2)

where υ is the scalar projective parameter, A is the internal
camera matrix, and R and t are the pose parameters. The
retrieval time of the forest is approximately logarithmic with
respect to the number of hypotheses, which enables to generate
a large set of hypotheses without compromising the time cost
of retrieval. Additional details about this data structure are
given in [19].

Let q̊ = {q̊1, . . . , q̊tq } be a set of 2D head landmarks in a
query image. We assume that the type of each landmark τ (q̊i )
is known, i.e., the anatomic part corresponding to each q̊i is
given as input. This is a readily satisfied assumption, using the
state-of-the-art techniques for head / face landmark detection
(e.g.,[6], [10], or [21]). The position of every query landmark
enters in the corresponding binary tree to retrieve the indices
of the complying hypotheses. By accumulating the complying
indices over all trees, the hypotheses are ranked in descending
order according to the likeliness they match the query. Refer
to [19] for full details about the way the most likely head shape
ŝ and pose p̂ hypotheses are inferred. Fig. 3 gives examples of
the head shape / pose estimation inference, using images of the
AFLW [15] set. The five leftmost columns contain successful
cases, whereas the rightmost column illustrates failure cases,
mostly due to ambiguities in various head shape / pose
configurations that provide too many overlapped landmark
projections.

IV. SOFT LABELS INFERENCE

After inferring the query head shape ŝ and pose p̂ hypothe-
ses, all hair / facial hair hypotheses are projected according
to {ŝ, p̂}, to perceive how much they agree with the data
appearance terms, which implicitly constitute part of the
MRF costs. Fig. 4 gives a cohesive perspective of the two-
layered MRF we propose. One layer works at the pixel level

Fig. 4. Structure of the MRF that fuses the data appearance information
(upper layer) to global constraints (bottom layer). During optimization, the the
network should converge into a balance point where the predominant labels at
the segmentation level are biologically plausible and accord globally coherent
facial hair / hair hypotheses (at the classification level).

(segmentation layer), with a bijection between image pixels
and nodes, each one with three potential labels: hair, skin
and background. The other layer (classification) has two nodes
that represent the facial hair / hair hypotheses. During model
optimization, the interaction between both layers privilege
pixel labels that accord a parameterization of the classification
nodes and vice-versa, forcing the network to converge into
an equilibrium state where the configurations at one layer
implicitly segment data and the parameterizations in the other
layer enforce biologic coherent solutions and describe the
facial hair / hair styles.

Let G = (V, E) be a graph representing a MRF of tv
vertices V , linked by te edges E . Let ts be the number
of vertices in the segmentation layer and tc the number of
vertices in the classification layer, such that tv = ts + tc. The
MRF is a representation of a discrete latent random variable
L = {Li },∀i ∈ V , where each element Li takes one value li

from a set of labels. Let l = {l1, . . . , lts , lts+1, . . . , lts+tc}
represent one configuration of the MRF. In our model, the clas-
sification nodes are connected to each other and to all pixel
nodes, while the pixel nodes are connected to their horizontal /
vertical neighbours. Note that the proposed model does not use
high-order cliques. Even though there is a point in Fig. 4 that
joins multiple edges, it actually represents overlapped pairwise
connections between one classification and one segmentation
node.

The energy of a configuration l of the MRF is the sum of
the unary θi (li ) and pairwise θi, j (li , l j ) potentials:

E(l) =
∑
i∈V

θi (li )+
∑
(i, j )∈E

θi, j (li , l j ). (3)

According to this formulation, segmenting / classifying an
image is done by inferring the random variables that minimize
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Fig. 5. Rationale for the inter-layer pairwise costs θ(sc)
i, j (li , l j ). For two

queries, the unary costs (segmentation layer) are shown at the left side,
At the right side, having one plausible (green frame) and one non-acceptable
(red frame) hair model, the inter-layer pairwise costs encode the reasonability
of fitting the data appearance term to the corresponding models (warm colors
denote high costs). During inference, the MRF converges into an equilibrium
between θ(sc)

i, j (li , l j ) and θ(s)i (li ).

its energy:

l̂ = arg min
l

E(l), (4)

where {l̂1, . . . , l̂ts } are the labels of the pixels and
{l̂ts+1, . . . , l̂ts+tc} specify the parameterizations in the classifi-
cation nodes.

A. Feature Extraction

The data appearance is analyzed at the pixel level, to distin-
guish between three components in the image: hair, skin and
background (any remaining information). As the red / blue
chroma values provide good separability between skin and
non-skin pixels [1] and the hair is frequently discriminated
by analysing the HSV / RGB triplets (Table I), we extract,
for each image pixel, a feature set composed of 81 elements:
{red, green and blue channels (RGB); hue, saturation and value
channels (HSV); red and blue chroma (yCbCr); LBP from the
value channel}, considering the average, standard deviation
and range statistics in square patches of side {5, 9, 15} around
the central element.

B. Learning

1) Unary Potentials: Let γ : N
2 → R

81 be
the feature extraction function that produces a vector
γ (x, y) ∈ R

81 for each pixel at position (x, y). Let � =
[γ (x1, y1), . . . , γ (xn, yn)]T be a n × 81 matrix in a learn-
ing set used to create three non-linear binary classification
models, one for each component ωi ∈ {”Hair”, ”Skin”,
”Background”}. Let ηi : R

81 → [0, 1] be the response of
the ith model, regarded as an estimate of the class likelihood
P

(
ηi

(
γ (x, y)

)|ωi

)
. According to the Bayes rule, and assum-

ing equal priors, the posterior probabilities are given by:

P
(
ωi |ηi

(
γ (x, y)

)) =
P

(
ηi

(
γ (x, y)

)|ωi

)
∑3

j=1 P
(
η j

(
γ (x, y)

)|ω j

) . (5)

Fig. 6. Typical hair segmentation results obtained by our model (second
column), when compared to the methods due to Krupka et al. [16] (third
column), Lee et al. [17] (forth column) and Kae et al. [12] (fifth column).

In our model, the unary potentials of the vertices in
the segmentation layer are defined as θ

(s)
i (li ) = 1 −

P
(
ωi |ηi

(
γ (x, y)

))
. The unary potentials in the classifi-

cation layer correspond to the agreement (exclusive-or)
between the index of the maximum posterior probability at
each point Im(x, y) = arg max j p

(
ω j |η j

(
γ (x, y)

))
and the

3D model projections Ip(x, y) obtained by the world-to-image
function (2):

θ
(c)
i (li ) = 1

h w

h∑
y=1

w∑
x=1

(
1 − δ(Im(x, y), Ip(x, y))

)
, (6)

with δ(., .) being the Kronecker delta function, h and w the
query height and width. The rationale here is to privilege
the hair and facial hair models that provide the maximum
overlap between the responses of the non-linear models and
the projections of the corresponding 3D meshes.

2) Pairwise Potentials: There are three types of pairwise
potentials in our model: 1) between segmentation nodes;
2) between classification nodes; and 3) between inter-layer
nodes. The pairwise potentials between segmentation nodes
θ
(s)
i, j (li , l j ) correspond to the prior probability of observing

labels li , l j in adjacent positions of a learning set, to privilege
smooth solutions:

θ
(s)
i, j (li , l j ) = 1

κ1 + P(C(x ′, y ′) = ωi ,C(x, y) = ω j )
, (7)

where P(., .) is the joint probability, (x ′, y ′) and (x, y) are
4-adjacent positions, C(., .) denotes the component label {hair,
skin, background} at one position and κ1 ∈ R

+ avoids infinite
costs.

The pairwise potentials between classification nodes
θ
(c)
i, j (li , l j ) consider the prior probabilities of observing two

facial hair and hair hypotheses in the learning set (e.g., beards
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Fig. 7. Hair segmentation / hairstyle inference results obtained by the proposed method. The queries are shown at the leftmost column. For each query,
the most likely segmentation and hairstyle models are given in descending likelihood order (from left to right), showing also the cost of the optimal MRF
state.

are more probable in bald and short hair than in long / long
volume subjects).

The pairwise potentials between inter-layer nodes
θ
(sc)
i, j (li , l j ) enforce the biological plausibility of the

solution (8) and privilege the consistency between the
configurations in both layers. This is done by penalising
parameterisations of pixel nodes that are outside of the
polygons defined by the boundaries of the projections of the
head, hair and facial hair models (e.g., it is too costly to
observe a hair pixel and a bald hypothesis).

θ
(sc)
i, j (li , l j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if δ
(
δ(li ,C

′(i, l j )),

δ(ψt (xi , yi , x j , y j ), 0
)

= 0

erf
(
κ2 ψd (xi , yi , x j , y j )

)
, otherwise,

where ψt (xi , yi , x j , y j ) : N
2 × N

n → {0, 1} is an indicator
function that assumes a unit value when the point (xi , yi ) is
inside the polygon defined by vertices {x j , y j } = {(x j,k, y j,k)}.
ψd (xi , yi , x j , y j ) : N

2 × N
n → R

+ is the point-to-polygon
distance divided by the image diagonal length. erf(.) : R

+ →
[0, 1] is a transfer function (error function) with sigmoid shape
with κ2 controlling its shape (larger values lead to farther from
linear shapes). Here, C′(i, l j ) denotes the component label
(hair, skin or background) at the i th image position under the
j th joint facial hair / hair hypothesis. Fig. 5 illustrates the
rationale of this kind of costs: for two queries, the responses
given by the three non-linear classifiers are shown at the left
side. The right side shows one plausible (green square) and one
unlikely (red square) hair hypothesis, with the corresponding
pairwise costs.

V. RESULTS AND DISCUSSION

A. Datasets

The LFW [9] was the main dataset used in the empirical
validation of our model, due to two reasons: 1) it con-
tains heterogenous images acquired indoor / outdoor, with
the degradation factors that are likely in visual surveillance
environments; and 2) it has a subset of manually segmented
images (the funnelled version) into hair, skin and background.
Additionally, the AFLW [15] set was considered for evaluating
the variations in segmentation performance with respect to
errors in the head landmarks detection phase.

B. Model Inference

All our models were optimized using the Loopy Belief
Propagation [7] algorithm. Even though it is not guaranteed
that it converges to global minimums on non sub-modular
graphs (such our models), it provides visually pleasant solu-
tions most of the times. As future work, we plan to evaluate
the effectiveness of our method according to more sophisti-
cated energy minimization algorithms (e.g., sequential tree-
reweighed message passing [14]).

C. Segmentation

We compared the segmentation accuracy of our method
to three baseline methods: 1) a computationally inexpensive
method due to Wang et al. [29], based on a set of seeds
from where the adjacent regions are thresholded; 2) a single
layered MRF due to Lee et al. [17], which is a particular
case of our model, with constant costs in the objects layer
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TABLE II

COMPARISON BETWEEN THE PIXEL SEGMENTATION PERFORMANCE
(AFLW SET). THE SUPERSCRIPTS GIVE THE

95% CONFIDENCE INTERVALS

and in the inter-layer edges; and 3) the method due to
Kae et al. [12], which we consider the state-of-the-art and has
a rationale much similar to our solution: it uses a random
field to model the transitions at the pixel level and a restricted
Boltzmann machine to enforce globally coherent hypotheses.
Fig. 6 illustrates the typical outputs provided by the methods
compared: whereas ours and Kae et al. methods typically
produce similar results, Krupka et al. and Lee et al. methods
are frequently trapped in local minima of their cost functions,
due to not enforcing the biological coherence of the solutions.
Particularly, Krupka et al. produce poor results when the seeds
do not faithfully represent the distributions of the components
(due to textured data). Finally, by regarding exclusively image
appearance, Lee et al.’s method often produces biological
unlikely solutions, with discontiguous skin / hair regions with
boundaries having too many number of degrees-of-freedom.

More objectively, Table II quantifies the average segmenta-
tion performance for the methods evaluated. We got slightly
better results than Kae et al. for the hair component and
worse results for the skin and background, in all cases with
differences not being statistically significant (inside the 95%
confidence intervals). The method due to Krupka et al. ranked
third, yet it was the one that most frequently produced bio-
logically inconsistent solutions. Also, this method performed
particularly poor in highly textured background images, where
the seeds hardly represent the high entropy in the background
regions.

Another interesting feature of our method is its ability to
rank the plausibility of the hypotheses with respect to the
queries. This can be done by optimizing the model iteratively
and, at each step, remove the hypothesis considered optimal
in the previous iteration. Results of this ordering are shown
in Fig. 7, with the top-5 most similar hair hypotheses with
respect to queries, along with the segmentation masks for each
hypothesis. At the bottom-right corner, the cost of the solution
is given, i.e., the cost of fitting the segmentation mask in the
corresponding template.

Note that our results depend of the head landmarks to infer
the head shape and pose hypotheses (Sec. III-C). Failures at
this point introduce a bias in the way hypotheses are projected
and in the MRF unary / pairwise costs. Hence, we used a set
of ground-truth head landmarks (AFLW set) to perceive the
sensitivity to this factor, introducing inaccuracies in landmarks
detection by adding random offsets to the accurate landmarks.
Results are given in Fig. 8 (the overall accuracy is shown), with
respect to the proportion of landmarks inaccurately detected
(horizontal axis) and the relative magnitude of the offset

Fig. 8. Variations in segmentation performance of the proposed method with
respect to the proportion of head landmarks inaccurately detected (horizontal
axis) and the magnitude of these inaccuracies (vertical axis). The overall
accuracy is shown.

Fig. 9. Top plot: probability density functions for the distance between intra-
subject labels |ε(I (i)j )− ε(I (i)k )|1. Bottom plot: hit / penetration plots for the
LFW data set.

(i.e., the Euclidean distance between the original and the
biased landmark positions, weighted by the image diagonal
length, vertical axis). The segmentation performance remained
approximately invariant when less than 20% of the head
landmarks were inaccurate. Also, the magnitude of the detec-
tions offset was observed to play a relatively minor role in
segmentation accuracy, but, in practice, the algorithm looses
its effectiveness when more than 35% of the landmarks are
inaccurate.

D. Identity Retrieval

This section reports the identity retrieval results in the
LFW set. A one-dimensional manifold M for the hair models
was inferred using a self-organized map fed by a feature set
composed of the concatenation of the mode label in local
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3D volumes regularly sampled in the 3D hair models Sh :
M :={0: bald, 1: short bald, 2: short, 3: medium, 4: long
fine, 5: long volume}. Let I(i)j be the j th image from the
i th subject ( j = 1, . . . ti ), with ti representing the number of
images for that subject. Let ε(I (.). ): N

2 → M be the inference
function (MRF) that associates one query to one hair style in
M. |ε(I (i)j )− ε(I (i)k )|1 captures the spread of the intra-subject
labels distribution, with the probability density function for
this value shown in the upper part of Fig. 9. Results are given
with respect to the κ2 parameter that controls the shape of
the transfer function (Sec. IV-B.2). In all cases, it is obvious
that large deviation values (> 3, for κ2 = 2.0) in intra-subject
labels rarely occur, which is the insight for using these labels in
identity retrieval. The bottom plot gives the corresponding hit /
penetration plots, once again with respect to the κ2 parameter.

VI. CONCLUSIONS

Being a classical tool in computer vision, MRFs tradition-
ally have difficulties in assuring globally coherent solutions
without using too-high order cliques that compromise the
computational effectiveness of the inference process. In this
paper we described a hierarchical architecture for MRFs free
of high-order cliques that still enforces globally coherent
models. The idea is to have the bottom layer working at
the local (pixel) level, while the upper layers work at the
hypotheses level, providing possible solutions for the problem.
During optimization, all layers interact and converge into an
equilibrium state, where the configuration in the bottom layer
implicitly segments the data, and the configuration in the other
layers correspond to the most likely models. As test case,
we considered the segmentation and labelling of hair / facial
hair styles in degraded data, which are important soft biometric
labels for human recognition in-the-wild. Our experiments
were carried out in the challenging LFW data set, and we
observed performance similar to the state-of-the-art methods,
both in the hair segmentation and hairstyle labelling tasks,
and at a much lower computational cost. Further, the proposed
MRF architecture can be applied with minimal adaptations to
other segmentation / classification computer vision problems,
particularly in cases where the biological (global) coherence
of the solutions can be objectively measured.
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Abstract

The effectiveness of current iris recognition systems de-

pends on the accurate segmentation and parameterisation

of the iris boundaries, as failures at this point misalign

the coefficients of the biometric signatures. This paper de-

scribes IRINA, an algorithm for Iris Recognition that is ro-

bust against INAccurately segmented samples, which makes

it a good candidate to work in poor-quality data. The pro-

cess is based in the concept of ”corresponding” patch be-

tween pairs of images, that is used to estimate the posterior

probabilities that patches regard the same biological region,

even in case of segmentation errors and non-linear texture

deformations. Such information enables to infer a free-form

deformation field (2D registration vectors) between images,

whose first and second-order statistics provide effective bio-

metric discriminating power. Extensive experiments were

carried out in four datasets (CASIA-IrisV3-Lamp, CASIA-

IrisV4-Lamp, CASIA-IrisV4-Thousand and WVU) and show

that IRINA not only achieves state-of-the-art performance

in good quality data, but also handles effectively severe seg-

mentation errors and large differences in pupillary dilation

/ constriction.

1. Introduction

Iris recognition is a mature technology, with systems

successfully deployed in domains such as border controls,

computers login and national ID cards. Since the pioneer al-

gorithm [5] proposed in 1993, a long road has been travelled

in iris biometrics research [2], with two major weaknesses

subsisting:

• accurate segmentation and parameterization of the iris

boundaries is required to image normalisation. As

most of the iris encoding / matching strategies are

phase-based, failures in segmentation lead to bit shift-

ing in the biometric signatures, with a corresponding

increase of false rejections;

• false rejections also increase in case of severely dilated

/ constricted pupils, which cause non-linear deforma-

tions in the iris texture that are only partially compen-

sated by the normalisation phase. Pupil movements

laterally pressure the iris, with some of the fibers fold-

ing underneath others and changing texture appear-

ance.

Note that 1) varying lighting conditions change the lev-

els of pupillary dilation; and 2) less constrained acquisi-

tion protocols reduce data quality and make hard to accu-

rately parameterise the iris boundaries. Hence, the robust-

ness of recognition can be seen as the major concern be-

hind the method proposed in this paper (IRINA), keeping as

main goal to achieve state-of-the-art performance in good-

quality data while also handling segmentation inaccuracies

and non-linear texture deformations.

A cohesive perspective of IRINA is given in Fig. 1, with

a processing chain divided into three phases:

1. we estimate the posterior probabilities that patches

from two iris samples correspond, even in case of non-

linear texture deformations. Starting from a learning

set of manually annotated point correspondences that

define convex polygons, we densely sample these re-

gions and obtain a large number of patches considered

to regard the same biological region. This information

feeds a convolution neural network (CNN), that: a) ex-

plicitly discriminates between the corresponding and

non-corresponding patches; and b) implicitly learns

the typical iris texture deformations;

2. we infer a free-form deformation field (set of 2D vec-

tors) that registrates pairs of samples represented in

normalised coordinates. This step is formulated us-

ing a discrete Markov random field (MRF), with unary

costs provided by the responses of the CNN, and pair-

wise costs imposing smooth solutions that penalize lo-

cal gradients of the deformation field. The loopy belief

propagation (LBP) algorithm [8] is used to solve the

image registration problem;
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Figure 1. Overview of IRINA’s processing chain. The first and second order statistics of the free-form deformation vector fields are the

basis for biometric recognition. Deformation fields are exaggerated for illustration purposes.

3. for biometric recognition, the key observation is that

genuine deformation fields (between samples of the

same subject) are composed of 2D vectors with phase

and magnitude gradients substantially smaller than

those of impostors. First and second-order statistics

of these vectors provide the discriminating information

for biometric recognition.

Belonging to the discriminative family of pattern recog-

nition methods, IRINA’s rationale is evidently original

with respect to the state-of-the-art, in which the generative

paradigm rules: apart from assuming that data is accurately

segmented, previous methods consider that no parts of the

iris texture appear / vanish due to pupillary dilation. As

an example, Thornton et al. [28] assume that the iris re-

gions unaffected by pupil dilation still provide enough in-

formation for matching (providing the insight for subse-

quent works [14] and [24]) , while other authors provided

(inevitably rough) parameterizations of iris deformations

(e.g., [33], [4] and [29]). In a discriminative approach, Ross

et al. [21] propose an information fusion framework where

three distinct feature extraction and matching schemes are

fused to handle the significant variability in the input ocular

images. Finally, note that our idea of corresponding patch

is different from the used in keypoint-matching iris recogni-

tion algorithms, which analyzed the geometric distribution

of perfectly matching pairs of keypoints between two im-

ages (e.g., using SIFT descriptors [1]), but fail in case of

varying levels of focus, lighting or non-linear iris deforma-

tions.

1.1. Iris Recognition

Given the maturity of iris biometrics technology, strides

have been concentrated in improving particular features of

the recognition process: i) extending the data acquisition

volume; ii) improving performance in less constrained con-

ditions; iii) augment the human interpretability of results;

iv) develop cancellable signatures; and v) provide inter-

sensor operability.

In terms of the data acquisition volume, a good exam-

ple is the iris-on-the-move system [17], that acquires data

from subjects walking through a portal. For similar pur-

poses, Hsieh et al. [13] used wavefront coding and super-

resolution techniques. In terms of the recognition robust-

ness, Dong et al. [7] proposed an adaptive personalized

matching scheme that highlights the most discriminating

features. Pillai et al. [19] used the sparse representa-

tion for classification algorithm in randomly projected iris

patches, claiming to increase the robustness against acquisi-

tion artefacts. Yang et al. [32] relied in high-order informa-

tion to perform iris matching, while Alonzo-Fernandez et

al. [9] focused in the image enhancement phase, propos-

ing a super-resolution method based on PCA and eigen-

transformations of local iris patches. Bit consistency is

also a concern, with several approaches selecting only parts

of the biometric signatures for matching (e.g. [12], [27]

and [16]).

Under complementary perspectives, the lack of inter-

pretability hinders the use of iris recognition in foren-

sics [3]. Also, inter-sensor recognition provided the moti-

vation for Pillai et al. [20], which learned transformations

between data acquired by different sensors. Cancellable

biometrics is a privacy-preserving solution that requires to

find hardly invertible transfer functions of the biometric

data into different domains: Zhao et al. [34] proposed the

concept of negative recognition, using only complementary

information (p-hidden algorithm) of the biometric data for

matching. Finally, according to the growing popularity of

CNNs, various approaches based on this paradigm appeared

recently in the literature, either for specific phases of the

recognition chain (e.g., segmentation [15] or spoofing de-
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tection [18]) or for the whole process [10].

1.2. Image Registration

Image registration involves three components: i) a trans-

formation model that maps regions of one image into re-

gions of another; ii) a similarity criterion, that quantifies the

nearness between image patches; and iii) an optimization

strategy, that finds a global mapping between both images.

Transformation models can be global / local. The first

family includes linear transformations such as rotation,

scaling, translation and affine. Local transformations

allow to warp regions of one image into another, using

radial basis functions, physical continuum and large

deformation models. The similarity criterion quantifies

how much one image patch resembles another one in the

reference data, using cross-correlation, mutual information

or other distance functions. Similarity can be intensity or

feature-based, with the latter family matching the most

complex structures as lines and curves, based in spatial

and frequency information. Finally, during optimization

the set of parameters that optimally match both images are

found. Exhaustive search techniques were firstly used here,

but later abandoned due to their reduced computational

feasibility. Modern approaches use optimization algorithms

and gradient-free / gradient based techniques to derive

reasonable solutions, which might be sub-optimal in case

of non-convex cost functions. For additional information,

Sotiras et al. [25] provide an overview of the state-of-the-art

in image registration.

The remainder of this paper is organized as follows:

Section 2 provides a detailed description of the proposed

method. In Section 3 we discuss the obtained results and

the conclusions are given in Section 4.

2. Proposed Method

2.1. Corresponding Iris Patches

The concept of corresponding patches between pairs of

iris images is the key to learn the typical non-linear de-

formations in normalized representations of the iris due to

pupillary dilation / constriction and segmentation errors.

Iris recognition systems comprise a normalisation

phase [6] that compensates for differences in scale, per-

spective and pupillary dilation, assuming that iris deforma-

tions are linear and limited to the radial direction. This does

not compensate for the actual deformations, which are non-

linear, radial and angular, with fibers vanishing / appearing

for different levels of pupillary dilation [30]. Several au-

thors proposed non-linear iris normalization schemes to at-

tenuate the problem: Wyatt [31] developed a mathematical

model to explain how the collagen fibers in the iris deform

and Yuan and Shi [33] proposed a scheme based on that

model. Also, Clark et al. [4] described a theoretical model

for the iris dynamics, used subsequently by Tomeo-Reyes

et al. [29].

To infer the corresponding patches, we use pairs of nor-

malized samples from the same subject and manually anno-

tate sets of control points that (by visual inspection) seem to

regard the same biological region. These control points de-

fine two convex polygons Γ and Γ
0 and are represented by

the coloured dots (xi and x0
i) in the upper part of Fig. 2. Let

xi = (xi, yi) and x0
i = (x0

i, y
0
i), i = {1, . . . n} be the loca-

tions of pointwise correspondences. We learn two functions

fr, fc that establish a dense set of correspondences between

positions (rows, columns) in Γ and Γ
0, fr, fc : N 2 → N ,

such that ∀ x0
i ∈ Γ

0, x0
i =

(

fc(x), fr(x)
)

:

fc(x) = λT
c [φ, p(x)], (1)

fr(x) = λT
r [φ, p(x)], (2)

with φ =
⇥

φ
(

|x − x1|2
)

, . . . , φ
(

|x − xn|2
)⇤

, |.|2 repre-

senting the `2 norm, φ(r) = e(−r/κ)2 being a radial basis

function and p(x) = [1, x, y] being a polynomial basis of

first degree for a 2-dimensional vector space ( = 0.1 was

used in all our experiments).

In order to obtain the λ coefficients, we define a n × n

matrix A, Ai,j = φ
(

|xi−xj |2
)

and P as the n×3 polyno-

mial basis matrix, such that P = [p(x1); . . . ; p(xn)]. Then,

λc and λr are given by:

λc =



A P

P T
0

]−1 
x0
c

0

]

(3)

λr =



A P

P T
0

]−1 
x0
r

0

]

(4)

with x0
c=[x0

1, . . . , x
0
n]

T and x0
r=[y01, . . . , y

0
n]

T concatenat-

ing the horizontal (column) and vertical (row) positions of

the control points in Γ
0.

According to this procedure, we deem that positions x ∈
Γ correspond biologically to x0 =

(

fc(x), fr(x)
)

∈ Γ
0.

As Γ and Γ
0 have different size and shape, this set of corre-

spondences implicitly encodes the non-linear deformations

that affect the iris texture. Finally, we consider patches P

(from Γ) and P 0 (from Γ
0) of 21× 21 pixels, cropped from

the learning data and centered at each point correspondence.

Using 320 images (from 75 subjects) of the CASIA-

IrisV3-Lamp set, 510,000 corresponding Ci,j patches

(Ci,j = [Pi,P
0
j ;P

0
j ,Pi]) were cropped. Also, using im-

age pairs from different subjects, another 510,000 non-

corresponding C̄i,j patches were created. Both were used

to train a CNN that extracts high-level texture informa-

tion and distinguishes between the corresponding / non-

corresponding patches. Note that the iris boundaries in this
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Figure 2. Concept of corresponding iris patches. The top part of

the figure gives a schema of the way correspondences are found:

based on a set of manually marked corresponding control points

between two iris samples (x. and x
0

.), two polygons (Γ and Γ
0) are

defined. Next, for every point inside Γ, the corresponding position

in Γ
0 is found (middle row). The bottom part of the figure shows

five pairs of corresponding iris patches, where non-linear defor-

mations (red arrows), and vanishing / emerging regions (green ar-

rows) inside each patch are evident.

learning set (obtained as described in Sec. 3.1) were not

manually confirmed, i.e., there are accurately and inaccu-

rately samples in this set, which is important to infer the

deformations in the iris texture yielding from segmentation

failures.

The CNN input is 42×42 image patches and its architec-

ture (Fig. 3) is composed of six layers (three convolutional

plus three fully connected layers): the first convolutional

layer uses 32 kernels (3×3), and the next ones are composed

of 64 kernels of size 3× 3× 32. The responses from these

layers feed max-pooling layers (stride equals to 1, given the

relatively small size of the input data). Next, there are two

fully connected layers, each one with 256 cells. The output

is a soft max loss corresponding to the probability of two iris

patches to correspond. Learning was done according to the

stochastic gradient descend algorithm, with an initial learn-

ing rate of 1e−2, momentum set to 0.9 and weight decay

equals to 1e−3 .

The responses of the CNN enable to obtain the posterior

probabilities that two iris patches regard the same biologi-

42

4
2

32

38 ⇥ 38 36 ⇥ 36 17 ⇥ 17

64

5 ⇥ 5
3 ⇥ 3 ⇥ 32

max(), 3 ⇥ 3 ⇥ 64 max()
256 256

64

Figure 3. Structure of the convolutional neural network (CNN)

used to discriminate between the corresponding and non-

corresponding iris pairwise patches.

cal region. Such information enters a Markov random field

(MRF), which energy minimization provides the solution to

the image registration problem, used as information source

for biometric recognition.

2.2. Deformation Field Inference

We consider a free-form transformation model [22] to

represent a deformation field, expressed as a set of 2D vec-

tors d ∈ Z2 at control points x̊ ∈ N 2. We superimpose a r

× c regular grid at positions G = {x̊1, . . . , x̊|G|}, |G|=r.c,

over the left half of the normalized images representation

(corresponding to the lower part of the iris that is less prune

to occlusions and shadows). Also, we assume that deforma-

tions at any position d(x) can be obtained by interpolating

the closest control points deformations [11]:

d(x) =

|G|
X

i=1

⌫(x) d(x̊i), (5)

with d(x̊i) representing the deformation at the ith control

point and ⌫() being the interpolation function.

Let G = (V, E) be a graph representing a MRF, com-

posed of a set of tv vertices V , linked by te edges E . In

our model, every control point of G is a vertex of G, i.e.,

tv = |G| and te = 2.r.c − r − c, using a typical grid con-

figuration (4-neighborhood). The MRF is a representation

of a discrete latent random variable L = {Li}, ∀i ∈ V ,

where each element Li takes one value li from a set of labels

(each corresponding to a deformation vector d). In practi-

cal terms, having the ith image patch centered at position x,

we find its corresponding patch in the second sample at po-

sitions x+m, m= (m1,m2), mi ∈ {−mmax, . . .mmax}.

We use mmax = 7 in our experiments (Fig. 4).

Let l = {l1, . . . , ltv} be one configuration of the MRF.

The energy of l is the sum of the unary υi(li) and pairwise

υ(li, lj) potentials:

E(l) =
X

i2V
υi(li) +

X

(i,j)2E
υ(li, lj). (6)
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According to this formulation, obtaining the deformation

model between a pair of images is equivalent to infer the

random variables in the MRF that minimize its energy:

l̂ = argmin
l

E(l), (7)

where l̂ = {l̂1, . . . , l̂tv} (l̂i ≡ di) are the labels inferred. In

all cases, MRFs were optimized according to the Loopy Be-

lief Propagation [8] algorithm. Even though it is not guar-

anteed to converge to global minimums on loopy non-sub

modular graphs (such as ours), we concluded that the algo-

rithm provides acceptable solutions most of the times.

2.2.1 Unary Costs

Let ⌘(i, j) : N2 → [0, 1] be the CNN response for one pair

of patches, expressing the likelihood p
(

⌘(i, j) | Ci,j

)

that

the ith patch of one sample corresponds to the jth patch of

its counterpart. According to the Bayes rule, and assuming

equal priors, the posterior probability functions are given

by:

p
(

Ci,j | ⌘(i, j)
)

=
p
(

⌘(i, j) | Ci,j

)

P|M |
k=1 p

(

⌘(i, k) | Ci,k

)

, (8)

with |M | expressing the number of positions in the second

image where we search for the position corresponding to

the ith patch. This way, the unary costs of the labels in each

vertex are defined as:

υi(li) = ↵
⇣

1− p
(

Ci,j | ⌘(i, j)
)

⌘

, (9)

with ↵ ∈ [0, 1] determining the trade-off between the

strength of the unary to the pairwise costs in MRF opti-

mization.

2.2.2 Pairwise Costs

In our model, the pairwise costs serve to control the deriva-

tives in the deformation field, i.e., penalise adjacent posi-

tions with dramatically different deformation vectors that

are not biologically plausible.

Let l represent a deformation vector d ∈ Z2 for one

control point. For computational purposes, it is important

to discretise the solution space, not only limiting the max-

imum displacement mmax allowed for d, but also defining

an appropriate sampling strategy (dense sampling produces

(2.mmax + 1)2 labels). Based in [11], we use a circular

sparse grid with
p
2
4 .⇡. r nodes, r = {1, . . . ,mmax} at

positions x = ir. cos(✓), y = ir. sin(✓), ✓ ∈ [0, 2⇡], be-

ing i the sampling rate at the r-radius circumference. This

sparse sampling strategy reduces over 50% the number of

labels without significant decreases in the method perfor-

mance (leftmost part of Fig. 4).

d1

d2

||d1 − d2||1
υ(l1, l2) =

d3
||d3 − d2||1

υ(l3, l2) =

υ(l3, l2) ⌧ υ(l1, l2)

Figure 4. At left: comparison between the number of labels (max-

imum displacement mmax = ±7) when using a sparse sampling

strategy, with respect to the dense sampling variant (solid black

points denote the displacements di using the sparse sampling strat-

egy, while the white points would have been also considered by

the dense sampling strategy). At right: schema of the pairwise

cost υ(li, lj) for observing two displacement vectors (d1,d2) and

(d3,d2) in adjacent positions of the deformation field: d1 being

farther than d3 from d2 implies that υ(l3, l2) ⌧ υ(l1, l2).

Finally, the pairwise cost for labelling two adjacent

nodes is defined by:

υ(li, lj) = (1− ↵) |di − dj |1, (10)

being |.|1 the `1 norm.

2.3. Classification

The biometric recognition task is regarded as a binary

classification problem. We use a machine-learned classifier

to discriminate between the set of features extracted from

positive (genuine) and negative (impostor) pairwise defor-

mation fields. Let l̂ = {l̂1, . . . , l̂tv} represent the set of

labels returned by the MRF. Each label li corresponds bi-

jectively to a free form deformation vector di ∈ Z2 at a

position x of the normalised coordinates space. We extract

the histogram of magnitudes and phase angles of di and

their second-order statistics (local energy and homogeneity)

from the magnitude and phase maps (with 6 × 12 vectors,

taken in 3 × 3 and 5 × 5 regions, using stride 3 and 5),

yielding 34 features that feed the binary discriminant (SVM

in our case). A disjoint set from the CASIA-IrisV3-Lamp

set (with 3,000 genuine / 3,000 impostor pairwise compar-

isons) was used as learning data at this point.

3. Results and Discussion

3.1. Datasets and Experimental Setting

IRINA was empirically validated in four iris datasets:

CASIA-IrisV3-Lamp, CASIA-IrisV4-Lamp, CASIA-
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IrisV4-Thousand 1 and WVU. 2. Examples are given

in Fig. 5, showing the degradation factors of each set:

off-angle and occluded irises, glasses, dilated / constricted

pupils (all sets) and shadows (WVU). 500 classes (eyes)

per data set were used: for all the CASIA-Iris sets, 10

images per class were considered, while for the WVU

the number of images per class varied between 2 and 10.

All images were successfully segmented according to a

coarse-to-fine strategy [23], composed by a form fitting

step and a geodesic active contours algorithm. This way,

we accurately parameterize the iris boundaries, having the

pupillary contour described by shapes of 20 degrees-of-

freedom (dof) and the scleric boundary described by 3

dof. At this point, images were normalised into the pseudo

polar domain [6] and their right halves were discarded

(corresponding to the upper half of the irises in the original

representation).

Figure 5. Datasets used in IRINA’s empirical validation. From

top to bottom rows, images of the CASIA-IrisV3-Lamp, CASIA-

IrisV4-Lamp, CASIA-IrisV4-Thousand and WVU sets are shown.

As baselines, the methods due to Yang et al. [32] (using

the O2PT iris-only variant, with block size w = 2, h = 14,

translation vector [6, 3]T and neighbourhood 8×8) and Sun

and Tan [26] (with dilobe and trilobe filters, Gaussians 5×5,

σ = 1.7, inter-lobe distances {5,9} and sequential feature

selection) were firstly considered, as both concern about the

robustness of recognition to pupillary dilation and to non-

linear iris deformations. Also, the method due to Belcher

and Du [1] (with 64 bins = 4 (horizontal) × 4 (vertical)

× 4 (orientation), SIFT descriptors extracted using VLFeat

package 3 ) was chosen due to the fact of being keypoints-

based, even though its results cannot be considered state-of-

the-art anymore. Three performance measures are reported:

the decidability index (d0), the area under curve (AUC) and

the receiver operating characteristic curve (ROC). In all ex-

periments, the pairwise comparisons per dataset were di-

1CASIA iris image database, http://biometrics.

idealtest.org
2West Virginia University iris dataset, http://www.clarkson.

edu/citer/research/collections/
3http://www.vlfeat.org/

vided into random samples (drew with repetition), each one

with 90% of the available pairs. Then, independent per-

formance tests were conducted in each subset, with the

obtained results approximating the confidence intervals at

each point, according to a bootstrapping-like strategy.

3.2. Learning and Parameter Tuning

It is important to note that the learning data used in the

CNN was exclusively composed of CASIA-IrisV3-Lamp

images. Using randomly sampled learning / validation and

test sets (with 60% / 20% / 20% of the available pair-

wise comparisons), performance was tuned and all pa-

rameters strictly kept for the remaining datasets, meaning

that the CASIA-Iris-V4-Lamp, CASIA-IrisV4-Thousand

and WVU were used exclusively as test sets. The left

plot in Fig. 6 shows the decision environment resulting

from the responses ⌘(i, j) of the CNN, to distinguish be-

tween the corresponding Ci,j and non-corresponding C̄i,j

iris patches. The likelihood functions p
(

⌘(i, j) | Ci,j

)

and

p
(

⌘(i, j) | C̄i,j

)

in the CASIA-IrisV3-Lamp test set are

shown.

In terms of IRINA’s parameterisation, the value set to

↵ (9) is the most sensitive, as it expresses the relative weight

in the MRF between the unary and the pairwise costs. Here,

↵ = 1 corresponds to deformation vectors that are inde-

pendent of their neighbours (no MRF would be required).

In opposition, small ↵ values reduce the local variations in

the deformation field, with values below 0.9 imposing con-

stant deformation fields with poor biometric discriminabil-

ity. The AUC values obtained with respect to the value of ↵

are shown in the right plot of Fig. 6. Note the significantly

best performance (and smallest variance) for the CASIA-

IrisV3-Lamp among all sets, due to the learning data that

fed the CNN (same set, yet with disjoint instances). Based

on these results, ↵ = 96.35 was used in all our subsequent

experiments.
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Figure 6. Left plot: decision environment of the responses given

by the CNN to distinguish between corresponding Ci,j and non-

corresponding C̄i,j iris patches (CASIA-IrisV3-Lamp set). Right

plot: variations in recognition performance with respect to the α

parameter.
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3.3. Accurately Segmented Data

Performance was evaluated in two different settings:

at first we used the accurate parameterisations of the iris

boundaries, to perceive IRINA’s performance in relatively

good quality data. Results are given in Fig. 7, comparing

the ROC curves (in linear and log scales) for the four meth-

ods and four data sets considered. It can be seen that IRINA

outperformed its competitors in all cases and regions of the

performance space, with exception to a narrow band around

FAR ≈ 10−3 in the CASIA-V4-Thousand. In the remain-

ing cases, IRINA was considerably better than the other

methods, at some operating points with reductions in FAR

levels over 40% with respect to the second best approach

(usually Yang et al.). At the other extreme, the method

due to Belcher and Du got consistently the worst results in

our experiments, due to the difficulties in finding exact key-

point correspondences between images with different levels

of focus or pupillary dilation. Overall, IRINA’s best per-

formance among all methods is particularly evident in the

CASIA-IrisV3-Lamp, where the decreases in the error rates

(over the second-best strategy) almost reached one order of

magnitude.

The most relevant performance indicators are sum-

marised in Table 1. It should be noted that results re-

ported here should not be directly compared to the last

generation of iris recognition evaluation initiatives (Inter-

national Biometric Group evaluation FRR 2-5%@ FAR ≈
1e−6 and Iris Challenge Evaluation FRR 1-3% @ FAR

≈ 1e−3), as the average quality of data here is substan-

tially lower than in those contests. Even though, in or-

der to provide easy baselines, IRINA obtained FRR lev-

els at FAR ≈ [1e−1, 1e−2, 1e−3, 1e−4] of [0.001, 0.006,

0.021, 0.121] (CASIA-IrisV3-Lamp), [0.012, 0.039, 0.076,

0.084] (CASIA-IrisV4-Lamp), [0.011, 0.054, 0.140, 0.156]

(CASIA-Iris-V4-Thousand) and [0.023, 0.080, 0.116,

0.121] (WVU).

3.4. Inaccurately Segmented Data

At a second stage, we added two type of errors (transla-

tion and scale) to the iris boundaries parameterisations, to

perceive the decreases in performance when the iris is in-

accurately segmented. Segmentation errors of magnitude

up to 21% were randomly generated, with ”magnitude” ex-

pressing the difference between the maximum Euclidean

distance between boundary points in the original and in the

inaccurate segmentation parameterisation (e.g., for a circu-

lar boundary with diameter of 100 pixels, a scale error of

magnitude 10% will either change the diameter to 90 or 110

pixels, whereas a translation error will move the boundary

10 pixels in a random direction).

According to our observations, the inaccurate segmenta-

tion setting is exactly when the advantages of IRINA with

respect to the state-of-the-art are the most evident. The key

Method AUC d’ EER

CASIA-IrisV3-Lamp

IRINA 0.999 ± 1e−4 12.623 ± 0.716 0.006 ± 0.001

Yang et al. 0.995 ± 4e−4 4.085 ± 0.590 0.021 ± 0.004

Sun and Tan 0.989 ± 5e−4 3.239 ± 0.501 0.044 ± 0.004

Belcher and Du 0.930 ± 0.005 2.701 ± 0.799 0.083 ± 0.009

CASIA-IrisV4-Lamp

IRINA 0.995 ± 0.002 6.623 ± 0.454 0.026 ± 0.005

Yang et al. 0.993 ± 5e−4 3.629 ± 0.385 0.028 ± 0.004

Sun and Tan 0.992 ± 4e−4 3.448 ± 0.404 0.029 ± 0.005

Belcher and Du 0.948 ± 0.007 2.933 ± 0.696 0.077 ± 0.011

CASIA-IrisV4-Thousand

IRINA 0.996 ± 0.001 6.179 ± 0.380 0.030 ± 0.005

Yang et al. 0.988 ± 6e−4 2.995 ± 0.366 0.045 ± 0.004

Sun and Tan 0.984 ± 6e−4 3.097 ± 0.583 0.052 ± 0.006

Belcher and Du 0.901 ± 0.009 2.104 ± 0.597 0.097 ± 0.012

WVU

IRINA 0.991 ± 0.002 5.179 ± 0.361 0.042 ± 0.008

Yang et al. 0.980 ± 0.001 2.552 ± 0.185 0.065 ± 0.008

Sun and Tan 0.967 ± 0.001 2.210 ± 0.193 0.098 ± 0.007

Belcher and Du 0.882 ± 0.011 2.008 ± 0.780 0.116 ± 0.015

Table 1. Comparison between the performance obtained by IRINA

with respect to three other strategies.

insight IRINA’ s robustness to segmentation failures is illus-

trated in Fig. 8, showing the deformation fields for genuine

image pairwise comparisons, with accurate (green bound-

aries) and inaccurate (red boundaries) segmentations in the

a)-c) rows, and one impostor comparison (bottom row) from

the CASIA-IrisV4-Thousand set. Note that the impostor

deformation field is almost chaotic, with much larger local

derivatives than any genuine deformation field, where local

correlation is evident.

The average decreases in performance with respect to

segmentation inaccuracies up to 21% are given in Fig. 9

(mean AUC values, with 95% confidence intervals). It can

be seen that IRINA almost kept its performance up to seg-

mentation inaccuracies of 12%, and then slightly decreased

its results, which could even be attenuated if larger mag-

nitudes in the deformation field mmax were tolerated (yet,

this would have increased the number of labels in the MRF

and the computational cost). In opposition, both Yang et

al. and Sun and Tan showed substantial decreases in per-

formance even for relatively small segmentation errors, and

almost loose any efficiency for errors larger than 15%. Fi-

nally, as it is not phase-based, the method due to Belcher

and Du proved to be relatively robust against segmentation

inaccuracies, but at much lower performance levels than

IRINA.
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Figure 7. Comparison between the ROC curves obtained for the three methods and four datasets considered. At each operating point, the

confidence interval is denoted by the shade region.

Gallery (S5009L00 sample)

Probes (Segmentation) Free Form Deformation Fields

a) S5009L01

b) S5009L01

c) S5009L01

d) S5029R00

Figure 8. Examples of deformation fields with respect to failures in

the segmentation of the iris. a) genuine comparison using an accu-

rately segmented image; b) and c) genuine pairwise comparisons

in inaccurately segmented data; d) impostor pairwise comparison.

For illustration purposes, circular boundaries (3 dof) are used, as

they provide the most evident patterns in the deformation fields.

OK (0%) Scale (+10%)Scale (-15%) Trans. (+10%) Tr+Sc (+15%)

Segmentation Inaccuracies (Pupillary Boundary)

0% 3% 6% 9% 12% 15% 18% 21%
0.7

0.8

0.9

1

IRINA
Yang et al.
Sun and Tan
Belcher and Du

A
U

C

Inaccuracies Magnitude

Figure 9. Top row: examples of segmentation inaccuracies and

their corresponding magnitudes. Bottom row: AUC values with

respect to the magnitude of segmentation inaccuracies (CASIA-

IrisV4-Thousand set).

4. Conclusions and Further Work

Iris recognition has limited robustness against failures in

segmentation and dilated / constricted pupils. In this paper

we proposed an algorithm (IRINA) to cope with such co-

variates. The idea is to learn the ”corresponding” patches

between pairs of iris samples non-linearly deformed due to

segmentation failures and to pupillary dilation. A convo-

lutional neural network is used for such purposes, which

provides the information for an image registration step that

matches patches of the query iris sample into the enrolled

data. A Markov random field infers a free form deforma-

tion field (set of 2D vectors), which first and second order

statistics provide the discriminating information for biomet-

ric recognition. Our experiments show that IRINA not only

achieves state-of-the-art performance in good quality data,

but also effectively handles severe segmentation errors and

large differences in pupillary dilation / constriction.

As current work, we are concentrated in finding alternate

strategies to obtain the 2D deformation fields and reduce the

computational cost of matching.
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