Cross-Domain Self-Supervised Complete Geometric
Representation Learning for Real-Scanned Point
Cloud Based Pathological Gait Analysis

Xiao Gu, Yao Guo, Guang-Zhong Yang*, Fellow, IEEE, and Benny Lo*, Senior Member, IEEE

Abstract—Accurate lower-limb pose estimation is a prereq-
uisite of skeleton based pathological gait analysis. To achieve
this goal in free-living environments for long-term monitoring,
single depth sensor has been proposed in research. However,
the depth map acquired from a single viewpoint encodes only
partial geometric information of the lower limbs and exhibits
large variations across different viewpoints. Existing off-the-shelf
three-dimensional (3D) pose tracking algorithms and public
datasets for depth based human pose estimation are mainly
targeted at activity recognition applications. They are relatively
insensitive to skeleton estimation accuracy, especially at the
foot segments. Furthermore, acquiring ground truth skeleton
data for detailed biomechanics analysis also requires consid-
erable efforts. To address these issues, we propose a novel
cross-domain self-supervised complete geometric representation
learning framework, with knowledge transfer from the unlabelled
synthetic point clouds of full lower-limb surfaces. The proposed
method can significantly reduce the number of ground truth
skeletons (with only 1%) in the training phase, meanwhile
ensuring accurate and precise pose estimation and capturing
discriminative features across different pathological gait patterns
compared to other methods.

Index Terms—Gait Analysis, Pose Estimation, Self-Supervised
Learning, Point Cloud Completion, Depth Images.

I. INTRODUCTION

Gait analysis is an important tool for investigating the rela-
tionship between biomechanical parameters of lower limbs and
their associated neurological/musculoskeletal disorders [1]],
[2]. For pathological gait analysis, accurate and precise
three-dimensional (3D) skeleton extraction of lower limbs is a
prerequisite for detecting subtle changes of gait abnormalities.

Hitherto, it has received considerable attention to develop
unobtrusive gait analysis systems without complex laboratory
settings. In practice, these systems have evolved from man-
ual video annotations or complex infra-red motion capture
(Mocap) systems, to pervasive wearable or vision sensors [3l].
The advances in wearable sensors have enabled the lower
limb movement capture outside laboratory-based contexts [4].
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However, extracting reliable and unbiased kinematics infor-
mation from raw sensory data is still challenging due to
sensory/environmental noise, contextual/individual difference,
etc. [51], [6].

Thanks to recent progresses in 2D human pose detec-
tion/tracking based on color images/videos [7], [8], [9], mark-
erless human motion capture for gait analysis with a single
vision sensor has received increasing interest [10]. However,
the estimation of 3D skeletons form RGB images is still an
open problem [11]. To this end, existing works have utilized
anatomical, geometric, kinematic or temporal regularization
to resolve the ambiguities in lifting 2D poses to 3D [11]]. The
prior knowledge underpinning these algorithms is derived from
normal motion datasets (e.g., Human3.6M and COCO). They
may probably fail in detecting subtle pathological gait changes
because of the lack of generalization capability [12], [10].

Compared with RGB images, depth maps acquired from
commercial depth sensors (RGB-D cameras), could capture
additional, albeit noisy and incomplete, 3D geometric informa-
tion from visible surfaces. Existing literature [13]], [14] has re-
ported preliminary attempts of applying off-the-shelf 3D pose
trackers embedded in Kinect for clinical gait analysis. It was
observed that, for some spatiotemporal parameters such as step
length and width, high agreement with Mocap systems could
be achieved at specific viewpoints [14]. However, researchers
have emphasized the necessity of improved posture tracking
for accurate joint angle estimation [14].

Thus far, numerous models and algorithms [15[, [16],
[17], combined with several public datasets [15], [18], have
been developed to extract accurate 3D skeletons from depth
maps/voxel grids/point clouds, paving the way for 3D human
motion analysis. However, one of the remaining challenges
is that only incomplete and noisy geometric information is
directly encoded in depth maps, leading to large variations
and incompleteness across views [19].

Furthermore, most existing datasets and algorithms for
depth-based pose estimation are designed for activity recog-
nition [15]. They pose less demanding requirements on the
accuracy of biomechanical indices and pay less attention to
lower limb joints. The ground truth skeletons in most datasets
are either generated from (semi-)manual annotations or pro-
vided by the trajectories of attached markers. They may lack
consistency across annotators or not satisfy the requirements
for clinical diagnosis [20]. This can be potentially solved
by training on large-scale clinical datasets collected from
Mocap systems under standard clinical practices; however, it is
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Ilustration of our proposed self-supervised learning framework. In the pretext task (a)(b), synthetic (partial and complete pairs) and realistic (only

partial) data from multiple viewpoints are available for training. Firstly, feature encoder F' and completion decoder C' are applied to transform incomplete

lower-limb point clouds x°&x" to the complete 6°&06"

, respectively. Supervised completion loss Lcomp is applied between 6° and o®. Meanwhile, to mitigate

the domain shift between real-scanned and synthetic data, adversarial training is performed on the completed point clouds after canonical transformation by

T, which are 00 and 00

. Adversarial training is performed by implementing step (a) and (b) in an alternative way, where £ ;¢ enforces D to discriminate

09 and 09 in (b) whereas LGen enforces F' to generate 09 and 09 that confuse D. Subsequently, in the downstream task (c), the derived geometric
feature is fed into to a pose regression sub-network P to estimate lower-limb skeletons. The point cloud shown in the dashed rectangle is a rotated one from
the original view for better visualization of the incompleteness. Please refer to Section m for more details.

extremely expensive and laborious to perform such large-scale
data collection [1]]. Therefore, minimizing the efforts devoted
to acquiring ground truth 3D skeleton data is critical in
developing practical accessible gait analysis solutions.

In this paper we propose a novel cross-domain
self-supervised complete geometric representation learning
framework for 2.5-dimensional (2.5D) real point clouds
converted from depth maps, with the help of unlabelled
synthetic point clouds, as shown in Fig. [T} It uses synthetic
partial-complete point cloud pairs to learn complete
geometric representation of lower limbs. Simultaneously, a
view-invariant adversarial training strategy is utilized, which
aligns the representations between real and synthetic domains.
The proposed method can reduce the number of ground truth
real skeletons in the training phase, yet enable accurate and
precise pose estimation for pathological gait recognition.

The main contributions of our paper are three-fold:

Self-Supervised Geometric Representation Learning:
We develop a self-supervised method aimed at incomplete
real-scanned point clouds. It can generate full lower-limb sur-
face point sets from incomplete inputs, thus deriving complete
geometric representations. This method can effectively reduce
the need for labelled real data yet achieve good performance
for pose estimation.

View-Invariant Domain Adaptation: We propose a
view-invariant domain adaptation strategy between realistic
and synthetic 2.5D point clouds. Compared to the vanilla
adversarial training strategy [21]], it is demonstrated that the

heterogeneity gap across domains can be better handled after
canonical transformation.

Discriminative Pathological Gait Analysis: The whole
framework overcomes the noises inherent in low-cost RGB-D
cameras and captures the subtle changes across different
abnormal gait patterns. It is validated on our self-collected
gait dataset and demonstrates promising recognition results.

II. RELATED WORK

A. Depth Based Pose Estimation
Depth based 3D human pose estimation algorithms are

either discriminative or generative [22]]. Generative approaches
are based on model-driven optimization, which aim to fit an
explicit deformable body model to input depth images by
minimizing specialized cost functions. They are either based
on non-parameterized point cloud registration methods like
iterative closest point algorithms [23]], or parameterized ones
like Gaussian mixture models [24].

Discriminative approaches directly infer human poses from
depth maps, which optimizes a computational model by
data-driven training. Among them, conventional methods ap-
plied machine learning models, mainly random forests, to learn
the mapping from depth maps to key joints [25], [26], [27].

Recently, several deep learning architectures [28]], [29], [22],
[[L6] have been proposed based on different representations of
depth data. Most of these proposed methods focus on hand
pose estimation, with the potential of being applied to human
body pose estimation as well. Among them, 2D convolution
is performed on 2D depth images [28]], [16] whereas 3D con-
volution is applied on the 3D volumetric representations [29],



[22]. Although Moon et al. [22] achieved superior performance
for both hand and human pose estimation, the low resolution
of voxelization would affect the estimation precision whereas
it is computationally expensive to perform 3D convolution
on high-resolution voxels [30]. In this paper, we target at
point cloud based representations, which also differ from
existing point-cloud-based pose estimation work as discussed
in Section [I-Bl

B. Deep Learning on Point Clouds

Deep learning based point cloud analysis has received in-
creasing attention due to the emerging solutions for unordered
point sets, like PointNet [31] and its variants/extensions [32],
[33], [34]. These architectures have been successfully applied
to a variety of tasks, such as 3D shape recognition, shape
completion [35], and object detection [34].

Recently, several methods have been proposed to estimate
hand/human skeletons based on point sets [36f], [37], [38l,
[19], [17]. Ge et al. [36] applied PointNet++ [32] based struc-
ture to model observable hand surfaces for pose regression.
Li et al. [38] proposed a point-to-pose voting scheme to
perform pose estimation from the weighted fusion of each
point. Different from these papers which focused on exploring
advanced network architectures, we focus on minimizing the
needs for labelled data while achieving satisfactory pose
estimation performance. Chen et al. [37] shared this motivation
by proposing a semi-supervised training strategy to learn
geometric representations with an autoencoder. Our work is
inspired by this approach, yet is conceptually different. We aim
to learn full geometric features via self-supervised learning
and meanwhile leverage synthetic data to achieve adversarial
training with real partial scans.

C. Domain Adaptation

Domain adaptation (DA) in homogeneous settings targets
to mitigate the data distribution heterogeneity across different
domains, where data from different sources are of the same
feature space yet different distributions. It plays an important
role in effective learning from synthetic data and subsequently
addressing real-world tasks [39], [40]. The main categories
of existing domain adaptation methods are discrepancy-,
adversarial- or reconstruction-based, aligning the distribution
in the embedded feature or low-level data space [21]].

For point clouds, existing analysis methods are mostly
focused on synthetic benchmarks (e.g., ShapeNe or real
datasets only, and there is as yet a paucity of research focused
on the adaptation between real and synthetic domains. In fact,
there exist major differences between these two. The point
sets from synthetic models are complete and clean, whereas
those converted from depth scanning are incomplete and noisy.
Recently, Chen et al. [41] proposed an adversarial strategy for
shape completion of real-world depth scans. Different from its
ultimate goal of getting complete point sets, we aim to derive
clean and complete geometric representation from the latent
space and it is expected to work consistently across views.

D. Self-Supervised Learning
The advent of self-supervised learning has enabled effective
feature learning over the course of training pretext tasks on

Uhttps://shapenet.org/

self-generated labels. The learned feature representation can
facilitate faster convergence or reduce over-fitting when labels
are limited on downstream tasks. Till now, several methods
for 2D visual feature learning have been developed, such
as image inpainting/completion, jigsaw puzzle, or geometric
transformation [42]. Especially, for human pose estimation
from 2D RGB images, multiview consistency has been ex-
ploited as an effective self-supervised constraint during 2D-3D
lifting [43]]. Meanwhile, some recent work has developed
strategies for point cloud analysis based on self-supervised
reconstruction tasks [44], [45]. Using synthetic imagery to
facilitate self-supervised learning for real-world tasks has been
proposed in research like [39]. Different from it, our work
proposes a solution to simultaneously handling the domain
gap and view variations, when transferring knowledge learned
from self-supervised learning in the synthetic domain.

III. EXPERIMENTS
A. Real Pathological Gait Dataset
1) Experimental Settings: Our experiment was ap-

proved by Imperial College Research Ethics Committee
(ICREC-18IC4915), following the standard biomechanics
workflow. The experimental settings are shown in Fig. [2] The
recruited 8 subjects were instructed to walk on a treadmill,
with reflective markers attached to the anatomical landmarks
of lower limbs. We applied the conventional gait model
(CGM https://pycgm?2.netlify.app/) where 28 reflective markers
were used, as shown in Fig. They were recorded by Vicon
Mocap system with a sampling rate of 100Hz. Meanwhile, a
RGB-D camera, RealSense D435 (Intel Corporation, Califor-
nia, US), was used to simultaneously take RGB and depth
maps with a sampling rate of around 20Hz. It was placed on
a tripod, and five viewpoints facing towards the subject were
selected as tripod placement options, annotated in Fig. [2] We
did not set strict requirements for the camera localization and
orientation, which means that the camera extrinsic parameters
would slightly differ across each trial of the same viewpoint.
For each trial, only one RGB-D camera was used to avoid the
mutual interference caused by multiple light projections. The
RGB-D camera and the Mocap system were synchronized by
the broadcast UDP signals from the Mocap systenﬂ

2We followed the official procedure documented in https://docs.vicon.com/
display/Nexus210/Automatically+start+and-+stop+capture

b

Motion Capture System
(Vicon Motion System Ltd., Oxford, UK)

RealSense D435

(Intel Corporation, California, US)

Fig. 2. Experimental settings for data collection. Reflective markers based on
the conventional gait model were attached on the lower limbs of the subject.
Motion capture system captures the 3D trajectories of these attached markers.
Meanwhile, a tripod with a RGB-D camera embedded on the top was placed
at one of the five annotated positions to simultaneously record RGB-D images.
(Human animation is modified from https://optitrack.com/)
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Fig. 3. Illustration of (a) Real Subject (b) Conventional Gait Model (¢) SMPL
Model, and corresponding joint positions. There exists difference in the joint
positions relative to the limb surface.

In our experiments, six different walking patterns
were investigated. They are normal, supination, pronation,
leg-length-discrepancy (LLD), toe-in and toe-out respectively,
following the experimental settings of our previous re-
search [[6]. Supination/pronation was realized by edge-wedged
orthotic insoles [46] reflecting outwarded/inwarded ankle po-
sitions. LLD was simulated by adding heel-lift insoles similar
to [47]. Toe-in/toe-out refers to subjects walking with toes
pointing inwards/outwards [48]]. Totally, for each subject,
around 30 trials (5 viewsx6 patterns) with a duration of 30s
each were conducted.

2) Data Preparation: With the recorded 3D positions of
reflective markers, the embedded system can generate accurate
joint localizations (Hip, Knee, Ankle and Knee) and kine-
matics via dynamic calibration, as shown in Fig. The
extrinsic camera parameters were derived by minimizing the
reprojection error between the manually annotated 2D and
extracted 3D localization of visible markers [49]], [50]. After-
wards, the ground truth 3D keypoints for depth images under
local camera frames can be acquired by the transformation.

Regarding preprocessing, we firstly applied the
state-of-the-art human parsing algorithm Cross-Domain
Complementary Learning (CDCL) [51] to generate lower-limb
masks based on associated RGB and then lower-limb depth
maps were converted to point clouds via pre-calibrated
intrinsic parameters. They were downsampled to 2048 points
each.The whole real dataset is composed of around 146,300
frames, evenly distributed per subject/condition/view. Further
demographic details are given in the Supplementary Material.

B. Synthetic Gait Dataset

1) Synthetic Human Model: We applied SMPL (Skinned
Multi-Person Linear Model) [52]] to generate synthetic data
based on the kinematics extracted from Mocap data. SMPL is
a realistic articulated human model, parameterized by shape
{8} (body deformations) and pose {6} (skeleton kinematics)
parameters. Because of the realism and accessibility of this
model, it has been widely used to facilitate RGB based human
body part segmentation [S3]], human pose estimation [54] and
human mesh recovery [53]].

2) Synthetic Data Generation: The kinematics derived
from our real-world training data based on CGM were trans-
ferred to SMPL {6;} to simulate different gait types. Mean-
while, {3;} parameters available from CAESAR dataset [56],
[S3] were adopted to generate varied but realistic body shapes.
For each set of {6;}, the camera was placed in random

positions around the subject to generate point clouds based on
the given kinematics. We applied Hidden Point Removal [57]]
to simulate the incompleteness. Subsequently, the point sets
belonging to lower limbs were segmented as data of interest
and sampled to a fixed number (2048). The corresponding
complete point sets of lower limbs were also derived.

For each subject, we generated on average 4000 frames
with corresponding kinematics available in the training/testing
set and randomly selected shapes. It should be noted that
there exists difference between our gait model (Fig.
and the synthetic human model (Fig. in terms of their
relative keypoint positions to the lower limb surface. In our
proposed method, the keypoints in the synthetic dataset are
not used for supervised training of pose estimation. Instead, a
self-supervised strategy for synthetic data is exploited, which
is further explained in Section

IV. METHODS
A. Objective and Method Overview
Extracted from depth maps, the observed point clouds

x € R™*3 are incomplete/partial. We denote its corresponding
complete point cloud (a point set sampled from the whole
lower limb surface) as o € R"*3. Along with the changes
of RGB-D camera positions and orientations, the observed
incomplete point clouds would shape differently. Meanwhile,
for each x, its corresponding ground truth skeleton is denoted
asy € R**3 where k refers to the number of lower-limb key-
points involved. The superscription  or s of above symbols,
if exists, refers to realistic or synthetic data respectively.

As mentioned above, it is extremely expensive and laborious
to collect large-scale datasets with ground truth 3D skeletons.
The objective of this paper is to derive a computational model
G: X — Y that enables the estimation of lower-limb pose
y' from the real-world incomplete point cloud x* captured
with a single depth camera, and more importantly, mini-
mizes the number of labels during training. To achieve this
goal, a cross-domain self-supervised geometric representation
learning framework is proposed by leveraging the unlabelled
synthetic data, as shown in Fig.

Firstly, with the access to synthetic partial-complete point
cloud pairs, a self-supervised point cloud completion network,
composed of feature encoder and completion decoder, is
applied to learn full geometric representations. Subsequently,
to deal with the heterogeneity gap between synthetic and real
data as well as the variations caused by noises, a view-invariant
adversarial network is cascaded with the canonical completed
point clouds as input. The embedded latent feature can there-
fore be aligned between real and synthetic data through the
optimization of the feature encoder. Afterwards, another pose
estimation network is trained with the learned latent feature
as the input for our downstream pose estimation task.

B. Point Cloud Completion: Self-Supervised Learning

2.5D point clouds only contain geometric information from
the visible surfaces, which tend to shape differently under
different gait kinematics and view angles. To deal with the
limitations caused by incomplete point clouds, one ideal solu-
tion is to first derive the full geometric information. Inspired
by existing self-supervised learning research on 2D images
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Fig. 4. The Combined Multi-Layer Perception (CMLP) module
proposed in [35]. Compared to original MLP series layers, in
our implementation, this architecture extracts the max-pooled
values of the last three layers and subsequently combines them
into a global latent vector. & refers to concatenation.
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Fig. 5. The detailed architecture for feature encoder F'. The point sets are sampled
to three resolutions N1 = 2048, No = 1024, N3 = 512, and put into each CMLP
branch to generate its corresponding latent vector. Three latent vectors are subsequently
concatenated together to form a 1792 x 3 feature map. Subsequently, a MLP [3-1] is
applied to convert the feature map to a 1792 latent vector, with a fully-connected

layer cascaded to generate the final latent vector with a length of 600. Point clouds in
dashed rectangles are the rotated ones from original views for better visualizations of
incompleteness. & refers to concatenation.
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Fig. 6. The detailed architecture for completion C' or reconstruction R. Firstly, the bottom branch generates sparse point sets composed of M3 points based

on a series of fully connected layers. Subsequently, the middle branch predicts

?{—Z relative coordinates to each point in the generated M3 point sets, thus

deriving totally Mo points. Then, denser M7 points are generated in the top branch by using the same strategy. @ refers to adding instead of concatenation.

like image inpainting/completion [58]], we build a function
F : X — Z that can derive the full representation z in the
latent space from the input x. Subsequently another function
C: Z — O is utilized to recover the full point sets o. Once
the full geometric information is extracted by J, another pose
estimation function P can be applied for pose regression from
z. Therefore, we have G = F o P.

However, in real world applications, it is challenging to
acquire o” for dynamic lower limbs via existing 3D re-
construction techniques [59]. Even with multiple cameras
positioned around, some surface areas cannot be captured due
to self-occlusion and the noises in depth sensors tend to have
profound effects on the reconstruction quality. Fortunately, this
issue does not hold for the synthetic model, since it is easy to
acquire paired {x*, o®}. The full representation z° of x° can
be extracted after the optimization of F o C.

1) Network Architecture: In the practical deployment, an
autoencoder-resembling architecture composed of a feature en-
coder F' and a completion decoder C' is applied. Based on the
state-of-the-art point cloud completion network PF-Net [35]],
we adopt a hierarchical feature learning architecture consisting
of multiple branches with point sets sampled from multi-
ple resolutions as input, as shown in Fig. [7] In detail, the
point cloud is sampled with iterative farthest point sampling
(IFPS) [32]. The branch for feature extraction of each resolu-
tion adopts a structure modified from PointNet [31]], as shown
in Fig. A It extracts the maxpooled features from the last
several Multi-Layer Perceptron (MLP) layers and merges them
into a global latent feature vector, referred to as a Combined

MLP (CMLP). Afterwards, the global latent vectors from
different resolutions are concatenated and go through another
MLP layer to form the final latent vector. Such an architec-
ture has demonstrated the superior performance in deriving
geometric structures from incomplete point clouds [35]].

On the other hand, for the completion decoder C,
the completed point cloud is generated in a hierarchical
multi-resolution fashion as proposed in [35]. Instead of directly
using fully-connected layers or folding-based layers [60], the
adopted architecture is based on “add” and “expansion” op-
erations, progressively generating points from sparse to dense
(from M3 to M1). The expected output of C' is the full point
set 0. Details can be found in the Supplementary Material.

2) Loss Functions: We apply the Chamfer Distance Loss
Lcp to measure the difference between the recovered 6° and
ground truth o®, which is formulated as below,

1 2
Lcop(o1,02) = for] > min |[p1 — pall;

pLEo1 P2€
1 . 2 )
+— > min [jp — p2ff3
‘02| p1€01
p2€02

The hierarchical multi-resolution point cloud completion
loss Lcomyp is defined as below,

Leomp = ECD(C(F(XS))MmO?\/Il)
+ Aty Lo (C(F (%)) Mz 5 0hay) ()
+ Az Lep(C(F (%)) s, Ohy )
where Ays, and Ay, are weights of the Chamfer Distance loss
for the intermediate sparser point clouds (point sets with point



number M2 and M3 respectively). The optimization goal is to
minimize Leomp-

C. View-Invariant Real-Synthetic Domain Adaptation

Although F & C' trained on synthetic {(x*,0°)} pairs
allow full geometric feature extraction, there still exist gaps
when handling real world point clouds, which originate from
the noise, clothing deformation, motion artifacts, etc. We aim
to diminish the real-synthetic domain shift, thus enabling a
good generalization capability of trained models F' & C on
real partial scans x". Therefore, domain adversarial training
is introduced to align distributions across real and synthetic
domains. We do not directly attempt to align the embedded
feature z° and z", which would be largely varied due to
different angled viewpoints in both real and synthetic datasets.
Performing adversarial training on this latent space would
cause unnecessary disturbance due to viewpoint heterogeneity,
especially in our case that z is finally used for pose regression
rather than a certain classification task [61].

Instead, we perform adversarial training on the canonical
form of the completed point cloud 6" = C'(F(x")) and 6° =

C(F(x*)), as shown in Fig. [1] Based on the ground truttf)|

body orientations under local camera frames, a transformation
matrix %7}, is applied, where 6 denotes the orientation of
lower limbs under current camera frames, while 6. denotes
the pre-defined canonical frame. To derive a clean as well
as complete point cloud representation z” from x”, only
the parameters of feature encoder F' are optimized during
the adversarial training in case that the domain adaptation
capability would be mastered by C. Over the course of
adversarial training, L.omp of synthetic data is also added to
ensure the completion task.

1) Network Architecture: The discriminator is designed
based on PointNet, where the completed point clouds encom-
pass a series of MLP layers and the features from the last
three layers are extracted by maxpooling, forming a global
latent feature vector. Subsequently, shallow fully connected
layers are applied to discriminate between real and synthetic.

2) Loss Functions: In the adversarial training, Wasserstein
GAN with gradient penalty (WGAN-GP) [62]], [63] is applied,
the loss functions of which are formulated as below,

Lpis = Eyxr [D(°Ty - C(F(x0))]
— Bos [D(% Ty - C(F(x¢/))]
+ AapE (V2 DF) |, — 1)7]

Laen = —Exr [D(**Ty - C(F(x0))]

3

where % are sampled from points of the canonical synthetic
and realistic completed point clouds, and A, is the weight of
gradient penalty during the optimization of D.

Overall, the parameters of F' is optimized by the minimiza-
tion of Lgen+AcompLecomp, While D is optimized alternatively
by the minimization of L p;s.

3For synthetic data, the ground truth orientation can be easily derived; for
the real gait dataset, the orientation is roughly provided by the orientation

of the treadmill by pre-calibrated camera localization relative to the treadmill
with reflective markers.

D. Pose Estimation Supervised Training

To this end, the feature extractor F' is able to handle real
partial noisy point clouds and derive clean full geometric rep-
resentations. Therefore, a pose regression model P consisting
of three fully-connected layers is applied to perform pose
estimation from z after optimizing F&C.

L, = E[|P(F(x") = y"|l3] C

V. RESULTS AND DISCUSSION
A. Implementation Details
In the experiment, we applied the leave-one-subject-out

(LOSO) cross validation paradigm, where in each session 7
subjects were selected for training and validation (90% &
10%), and the held-out 1 subject testing. To simulate the
real-world scenario where raw data can be easily acquired with
RGB-D camera while ground truth (GT) skeleton is difficult
to obtain, we evaluate the performance of our algorithms
when labelled data is scarce. In practice, we only used the
GT skeleton of 1% real data (around 1% x 125k=1.25k). On
the other hand, as it is easy to collect synthetic data and
obtain its labels, we used all the ground truth skeleton when
needed (4kx7=28k). It is also noteworthy that the synthetic
data was generated with varied shapes and viewpoints based
on the kinematics from the aforementioned 1% real data. Other
details can be found in the Supplementary Material.

In summary, in each LOSO session, extracted from the
7 training subjects, 1% Mocap GT, 100% raw real data, as
well as synthetic data based on 1% Mocap GT were used for
training. The fully trained model was then applied to test the
held-out 1 subject. Since the Mocap data of the held-out sub-
ject was only used to evaluate the performance, this experiment
setting can validate the feasibility of conducting gait analysis
outside complex laboratory settings, as well as minimizing the
efforts of acquiring Mocap data for model pre-training.

B. Self-Supervised Point Cloud Completion

1) Qualitative Results: The completed point clouds from
x" are visualized in Fig. |7} It should be noted that because of
the variance (e.g. cloth, shoe, noise, etc.) between real and
synthetic data, the “complete” point clouds cannot recover
some realistic details. However, it can capture the complete
geometric information for pose estimation as discussed later.

2) JSD Metric Comparison: To compare the similarity
between different point clouds, we utilized the Jensen-Shannon
Divergence (JSD) metric as in [64], [63], which measures the
JSD of their marginal distributions in the Euclidean 3D space.
All the completed point clouds are firstly transformed to the
canonical frame before measuring. The results are displayed
in Table [l The JSD between 6° and 6" is decreased from

TABLE 1
COMPARISON OF JSD METRICS FOR DIFFERENT COMPLETE POINT
CLOUDS. 0"* DENOTES THE COMPLETED REAL POINT SETS WITHOUT
DOMAIN ADAPTATION. HIGHER SIMILARITY HAS SMALLER JSD VALUES.

6’!‘ * 67‘ 65 OS
o - 0.0221  0.0362  0.2710
o 0.0221 - 0.0197  0.2546
o° 0.0362  0.0197 - 0.2543
o* 0.2710  0.2546  0.2543 -




COMPARISON OF DIFFERENT METHODS WITH ONLY 1% GROUND TRUTH OF REAL DATA IS UTILIZED DURING TRAINING.

TABLE I

Methods 3D Euclidean Distance Error (cm)l 3D Angle Error (degree)| Classification?

Hip Knee Ankle Toe Knee Ankle Foot-Progress  Prec Rec F1 Acc

V2V-Real 430+1.82 3.514+1.33 3904233 3.75+43.00 4.76+4.85 7.334+7.50 13.904+15.34  0.620 0.621 0.619 0.628
A2] 490+1.60 4.66+£198 4.40+1.79 4.54+197 5.0143.77 6.874+4.89 11.8948.32 0.629 0.600 0.579 0.608
HP 4.83+2.61 4.814+2.34 5894292 5804+3.72 6.95+6.01 10424898 16.98+16.32 0.610 0.559 0.532 0.554
F&P-Real 4.994+1.89 445+£1.56 4.894+1.87 4.34+221 5.8343.64 6.7245.33 129941020 0.573 0.548 0.542 0.552
Self-Recon 3.58+145 2574135 298+145 3294242 4524324 4.25+3.26 8.86+7.66 0.674 0.679 0.671 0.687
V2V-Syn 3444198 2.86+1.89 2.88+2.04 3444335 437+£385 6.72+5.84 12.43+16.57 0.713  0.708 0.704 0.712
F&P-Syn 3.84+2.44 335£1.67 3.97£2.61 4344278 5.754+4.69  7.32+6.33 11.45411.00 0.697 0.685 0.684 0.700
Proposed 2.78+1.43 2.54+1.36 2.62+1.49 3.01£1.70 4.324+3.51 3.65£3.32 7.84+6.78 0.767 0.745 0.750 0.759

Distance and angular errors are expressed under mean-=std format, whereas the average values of the classification metrics are reported.

0.0362 to 0.0197 after domain adaptation, to some extent
validating the shift mitigation. Larger JSD between 0°/0”
and o® demonstrates the limitation of only applying Chamfer
Distance loss for the completion task.

C. Lower-Limb Pose Estimation

1) Metrics: In order to evaluate the pose estimation meth-
ods, we adopted two commonly used metrics: 3D Euclidean
distance error (Hip, Knee, Ankle, Toe) and 3D joint angu-
lar error (Knee, Ankle, Foot-Progression, see Supplementary
Material) [65].

2) Compared Methods: The following methods were im-
plemented for comparison. The experimental settings are based
on their online available source codes. The bounding box, if
utilized in the preprocessing, are provided by the lower-limb
segmentation mask pre-calculated by CDCL [51]. Implement-
ing details are listed in our Supplementary Material.

e V2V [22]: The Voxel-to-Voxel (V2V) pose prediction
network performs 3D convolution on voxels and has
achieved the state-of-the-art performance for both hand
and human pose estimation. For comparison, two versions
are considered, V2V-Real and V2V-Syn. V2V-Real is
trained on the given labelled real data. On the other
hand, the synthetic ground truth 3D skeletal data y*®
is extracted together with x° to form synthetic training
pairs. V2V-Syn is firstly trained on {(x*,y*)} and then
fine-tuned on available labelled real data.

« Hand-PointNet (HP) [36]: This point set based method
was initially proposed for the hand pose estimation task.
It applies an architecture similar to PointNet++ [32] to
learn hand feature in a hierarchical manner.

o A2J [16]: A2J is an algorithm that predicts joint positions
in an ensemble way (anchor to joint). It applies 2D-CNN
as the backbone network.
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Fig. 7. Visualizations of completed point sets (bottom) from real-scanned
data (top). They are rotated around the vertical axis with an increment step of
90° from original-view for visualization. GT skeleton is visualized as black
dots in the bottom for reference.

« Self-Recon: We replace the completion C with the re-
construction module R for reconstruction, both of which
share the same architecture. It applies self-reconstruction
loss in the real-world to learn the 3D geometrical infor-
mation, which is similar to [37].

o F&P: The feature extractor F' together with pose es-
timation net P are utilized to constitute F&P model.
F&P-Real it is trained on available {(x",y")} pairs,
while F&P-Syn is firstly trained on {(x®,y®)} and then
finetuned on available {(x",y")} pairs.

We followed the experiment settings for simulating
real-world scenarios as illustrated in Section [V-Al In this
manner, for those train-on-real test-on-real supervised-training
methods (V2V-Real, A2J, HP, F&P-Real), only the real
data whose labels are available (1%) were used for di-
rect supervised training. For those train-on-syn test-on-real
supervised-training ones (V2V-Syn, F&P-Syn), as the GT
skeleton can be easily acquired from the synthetic model, we
used all the synthetic data (with label) for supervised training
and then fine-tuned the model with the real data whose labels
are available (1%). For Self-Recon and Proposed, only GT of
1% real was used in the pose estimation task, while all the
real training data (w/o label) was used for adversarial training
(Proposed) or autoencoder (Self-Recon).

3) Quantitative Results:

a) Train-on-real Versus Train-on-syn: In Table [II, we
provide the quantitative results of lower-limb pose estimation.
As noticed, the train-on-syn test-on-real supervised methods
achieve better performance compared to those train-on-real
test-on-real counterparts. This validates our motivation of
utilizing synthetic data for training when the ground truth
data in the real world is difficult to obtain. With access to
larger amounts of ground truth labels from the synthetic human
model, train-on-syn test-on-real methods can avoid over-fitting
to some degree and achieve performance gains.

b) Self-Supervised Learning Versus Supervised Learn-
ing: As per our experimental settings, we set available the
ground truth skeletons of only 1% of the real-world training
data. The remaining 99% unlabelled data were not used
in supervised learning strategies. By contrast, our proposed
learning strategy can make the most of the rest unlabelled
by self-reconstruction loss. Such strategy outperforms those
supervised training ones, showing its effectiveness. Especially,
compared with F&P-Syn, it can effectively learn geometric
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Fig. 9. t-SNE plot of the feature distribution extracted by the classifier in
one session of leave-one-subject-out cross validation.
representations by utilizing the unlabelled real data, therefore
performing better in terms of pose estimation.

¢) Reconstruction Versus Completion: The method
Self-Recon is adopted from [37], which utilizes point cloud
reconstruction from latent space as auxiliary tasks. It shows
preferable results compared to all other methods except for the
proposed method. Our proposed method applied point cloud
completion task, and its better pose estimation result demon-
strates its higher capability of capturing complete geometric
representations.

4) Qualitative Results: In Fig. [8] qualitative results of
the lower-limb pose estimation are displayed. The region of
interest is annotated in green dashed rectangles and zoomed in
views are provided for better visualization. It can be observed
that our method presents superior performance compared to
the others in selected views and gait types. Although most
compared methods can achieve reasonably good visual results,
they cannot achieve the same precision level as our method.

D. Abnormal Gait Recognition

1) Quantitative Results: Based on the extracted lower-limb
pose sequence from different methods, we compared their ca-
pabilities of discriminating different gait abnormalities. Based
on the generated heel-strike event from Mocap data, a pose
sequence was segmented into each cycle and then normalized
to the same length and orientation. A network based on
ID-CNN adopted from [6] was trained on all the ground
truth (100%) trajectories of training subjects for classification
training, details of which can be found in the Supplemen-
tary Material. We present the results of Macro Precision,
Recall, F1, and Accuracy. The result based on ground truth
data is {Prec:0.840; Rec:0.843; F1:0.844; Acc:0.832}. This
performance is limited by the individual difference across
subjects [6], which is out of the scope of this paper. The
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Fig. 10. TIllustrations of different adversarial training strategies for domain
adaptation. (Red solid refers to the update of weights while red dash refers
to freezing/no update.)

TABLE III
COMPARISON OF DIFFERENT DOMAIN ADAPTATION STRATEGIES AS SHOWN IN
FIG.[T0]AND W/O DOMAIN ADAPTATION. (1% ANNOTATED)

Strategies Dist (cm)] Angle (degree)] Acct
a (proposed) 2744148 5.48+4.89 0.759
b 3.5441.60 7.81+7.22 0.660

c 5.7943.29 8.7649.34 0.585

d 5.4543.80 8.2548.81 0.556

w/o DA 3.3241.92 6.89+6.29 0.642

Mean=+Std for Dist and Angle; Mean for Acc.

classification results using the estimated skeleton of the testing
subject is reported in Table [[l which reflect the precision as
well as discriminative capability of different methods. Over
75% accuracy can be achieved by our method, which demon-
strates better discriminativeness across gait patterns based on
the estimated skeletons, compared to other methods.

2) Qualitative Results: The distributions of the features ex-
tracted from the last but one layer of our classifier, is presented
in Fig. 0] by t-SNE (t-Distributed Stochastic Neighbor Embed-
ding) plot. We compared the features from GT, estimation of
V2V-Syn, and estimation of our proposed method. As shown
in Fig. P(a)] the features of GT are reasonably discriminative
across patterns. Slight marginal ambiguity between normal
and pronation might be caused by the overfitting due to the
heterogeneity between different subjects, since our classifier
is trained on the other seven subjects. Comparing Fig. 0(b)]
and Fig. we can observe that our proposed method can
better keep discriminative categorical distributions, which is
enabled by its superior performance on skeleton estimation.



TABLE IV
PERFORMANCE CHANGES WITH THE CHANGE OF NUMBER OF SYNTHETIC
TRAINING/VALIDATION DATA.

Ratio  Dist (cm)]  Angle (degree)]  Acct
10% 4.99+3.01 9.89+7.35 0.574
50% 3.19£2.30 6.3245.90 0.709
100%  2.74+£1.48 5.484+4.89 0.759
200%  2.71£1.40 5.491+4.90 0.759
Mean=+Std for Dist and Angle; Mean for Acc.

TABLE V

COMPARISON BETWEEN OUR PROPOSED METHOD AND V2V-REAL WHEN
1% OR 100% GROUND TRUTH SKELETON DATA IS AVAILABLE.

Methods Dist (cm)]  Angle (degree)]  Acct
Proposed-1% 2.74+1.48 5.484+4.89 0.759
Proposed-100%  2.25+ 1.44 4.63+3.24 0.805
V2V-1% 3.9242.24 9.23412.05 0.628
V2V-100% 2.22+1.22 4.62+3.50 0.809

Mean=Std for Dist and Angle; Mean for Acc.

This is consistent with the quantitative classification results
reported in Table To address the overfitting problem, in
our future work, the distribution shift between subjects, as
well as between ground truth and estimation, is considered to
be mitigated by domain adaptation as well.

E. Other Results

1) Ablation study - variants of adversarial training: To
evaluate the effectiveness of our proposed architecture, espe-
cially the adversarial architecture, we explore and compare
various variants with the proposed one, as shown in Fig.
The results are shown in Table The superior performance
of our method demonstrates the effectiveness of our archi-
tecture. We observe that w/o DA can achieve relatively good
results, which to some extend shows the relative similarity
between x” and x® as well as the relative robustness to noise
of our multi-resolution encoder architecture.

2) Performance with the change of synthetic data volume:
Extended from the synthetic training/validation data (4kx7,
100%), experiments based on 10%, 50%, 200% were done.
It is observed from Table that less data would decrease
the data diversity, thus decreasing the overall performance,
whereas the result starts to converge with more data added.

3) Performance changes with the whole ground truth:
We compare our proposed method with the state-of-the-art
V2V-Real [22]] when all the ground truth of real data is
available. Results in Table |[V| show that V2V outperforms our
method slightly when the full ground truth is available. This
shows the strength of voxelized heatmap prediction proposed
in V2V; however, it is computationally expensive (Running
time with Pytorch Titan Xp: V2V 26.1 ms; Proposed 3.5 ms).

On the other hand, for our proposed method, only a small
reduction is observed when only 1% ground truth is available
compared to the full training. This demonstrates the robustness
of our method against the number of available ground truth,
and also indicates that the proposed method can effectively
reduce the efforts of acquiring ground truth. Our future work
would consider applying more sophisticated and advanced
models for point cloud analysis, to better capture movement
subtle changes.

VI. CONCLUSION

Acquiring Mocap data in complex laboratory settings for
gait analysis is expensive and laborious. In this paper, we have
proposed a novel cross-domain self-supervised learning frame-
work. It not only enables gait analysis in home environments,
but also minimizes the need for ground truth Mocap data
for the pose estimation model training. Detailed comparative
experiments based on leave-one-subject-out cross validation
were conducted with the state-of-the-art approaches. The re-
sults show that our approach achieved superior performance
in terms of pose estimation with minimal Mocap for training.
Furthermore, with accurate pose estimation of lower limbs,
our proposed method can better capture subtle yet important
abnormal gait deviations for improved gait pattern recognition.

Future work should consider the occlusion caused by arm
swinging under daily self-paced walking settings as well as
the generalization capability of our proposed method to novel
arbitrary viewpoints in the real world.
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