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Abstract

Human motion understanding has attracted considerable interest in recent research for its
applications to video surveillance, content-based search and healthcare. With different
capturing methods, human motion can be recorded in various forms (e.g. skeletal data, video,
image, etc.). Compared to the 2D video and image, skeletal data recorded by motion capture
device contains full 3D movement information. To begin with, we first look into a gait
motion analysis problem based on 3D skeletal data. We propose an automatic framework
for identifying musculoskeletal and neurological disorders among older people based on
3D skeletal motion data. In this framework, a feature selection strategy and two new gait
features are proposed to choose an optimal feature set from the input features to optimise
classification accuracy.

Due to self-occlusion caused by single shooting angle, 2D video and image are not able
to record full 3D geometric information. Therefore, viewpoint variation dramatically affects
the performance on lots of 2D based applications (e.g. arbitrary view action recognition
and image-based 3D human shape reconstruction). Leveraging view-invariance from the
3D model is a popular idea to improve the performance on 2D computer vision problems.
Therefore, in the second contribution, we adopt 3D models built with computer graphics
technology to assist in solving the problem of arbitrary view action recognition. As a solution,
a new transfer dictionary learning framework that utilises computer graphics technologies to
synthesise realistic 2D and 3D training videos is proposed, which can project a real-world
2D video into a view-invariant sparse representation.

In the third contribution, 3D models are utilised to build an end-to-end 3D human shape
reconstruction system, which can recover the 3D human shape from a single image without
any prior parametric model. In contrast to most existing methods that calculate 3D joint
locations, the method proposed in this thesis can produce a richer and more useful point
cloud based representation. Synthesised high-quality 2D images and dense 3D point clouds
are used to train a CNN-based encoder and 3D regression module.

It can be concluded that the methods introduced in this thesis try to explore human
motion understanding from 3D to 2D. We investigate how to compensate for the lack of full
geometric information in 2D based applications with view-invariance learnt from 3D models.
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Chapter 1

Introduction

Understanding human motion is based on studying global human motion patterns, rather
than on analysing local patterns such as facial expressions and hand gestures. Human
motion understanding based on multiple kinds of inputs is a field of research of increasing
importance. A lot of research has drawn much inspiration from human motion, ranging from
action recognition to human animation rendering. Together with tools from biomechanics,
human motion understanding enables our efforts to explore natural human motion, leading to
improvements in treatments for patients with neurological and musculoskeletal disorders, and
facilitating the development of human-inspired robots. Using computer vision and computer
graphics technologies, we aim to gain fundamental insight into natural human motion and
understand the mechanisms that lead to improved performance in action recognition and 3D
human shape reconstruction.

With the development of motion capture technology, more accurate 3D human motion
information (e.g. skeletal data) can be acquired to help us to understand human motion.
Skeletal data acquisition generates a huge amount of high-dimensional data. Machine
learning has appeared as a good way to extract information to describe the properties of a
collection of high-dimensional motion-captured data. It can avoid a lot of manpower and
mistake from doctor’s diagnosis by automatically diagnosing motion disorder with machine
learning technologies.

Vision is an essential perceptive approach for understanding human motion in images
and videos. The ultimate goal of computer vision is to understand the scene and object
correctly through various steps of acquiring, processing, analysing and interpreting different
kinds of information obtained by different types of sensors. We focus on the computer vision
technologies used in human motion understanding. Thanks to the convenience of the shooting
devices, 2D videos and images are the most popular media to record human motion. However,
2D videos and images are not able to capture full 3D geometric information because of the
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limitation of a single shooting angle. 2D appearance dramatically changes with a viewpoint
changing. Therefore, in this thesis, we leverage view-invariance learnt from 3D models to
solve arbitrary view action recognition and image-based 3D human shape reconstruction
problems.

Creating suitable and abundant training data for supervised learning is a very challenging
problem in computer vision. How do we efficiently generate such training data? The
dominant data acquisition method in visual recognition is based on web data and manual
annotation. However, for many computer vision problems related to 3D models, this approach
is not feasible because the number of high-quality 3D models that meet the requirements
on the web is far less than the number of images. In this thesis, we use computer graphics
technologies to generate synthetic human motion data for training based applications. We
also demonstrate the benefit of learning schedules that use different types of data at selected
stages of the training process.

1.1 Motivations

The research goal of this thesis is to leverage view-invariance learnt from 3D human body
models to solve some 2D human motion understanding applications. We develop learning
methods to advance automatic analysis and interpretation of human motion from different
perspectives, based on both 2D and 3D information, such as images, video and mocap data.
For this purpose, we propose machine learning models to learn human motion features, and
show their efficiency on a set of fundamental tasks.

Explicitly, we first apply machine learning technology to 3D skeletal data to learn features
for identification of gait disorders. Then, we utilise the knowledge and experience from 3D
data to compensate for the lack of full geometric information in 2D based applications (e.g.
arbitrary view action recognition and image-based 3D human shape reconstruction).

Gait disorder analysis Human motion understanding can assist doctors with diagnosing
abnormal motion. For example, gait analysis is a popular method for diagnosing muscu-
loskeletal and neurological disorders, but determining abnormal gaits can be challenging.
Gait disorders are among the most common causes of balance problems in older people
and often lead to injury, disability, loss of independence, which result in poor quality of
life. Manually analysing gait data is a labour intensive process, and its accuracy depends
on the expertise of the doctors performing the analysis. This is because there are no clearly
accepted standards to evaluate the gait of older people. Previous work investigates detailed
biomechanical analysis to study musculoskeletal and neurological disorders. Regardless of
the methods used, manually analysing gait data is a labour intensive process, and its accuracy
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depends on the experience of the doctors. Combined with machine learning and feature
selection methods, we propose an automatic framework for identifying musculoskeletal and
neurological disorders among older people. This can classify the motion into four classes:
healthy, muscle weaknesses, joint problems or neurological defects.

Arbitrary view action recognition 2D video based human action recognition plays
an important role in human motion understanding, it has attracted a lot of attention in
area such as security surveillance and human-computer interaction. However, most of
these approaches are only effective for single view action recognition, and the recognition
performance degrades significantly when the viewpoint is changed. This is because the
appearance of a particular action from different viewpoints varies dramatically. Leveraging
the view-invariance of 3D models is a general approach to solve this problem, which may
give results that are highly dependent on the quality of the 3D model. Therefore, combined
with computer graphics technology, we generate high-quality 3D models and propose a
smooth view-invariance transfer system between 3D models and 2D images.

3D human shape reconstruction 3D human shape reconstruction from a single image
is a highly under-determined problem, requiring strong prior knowledge of plausible 3D
human shapes. Previous work uses a prior parametric model and generate the reconstructed
3D model based on specific parameters (e.g. joint locations, pose categories). However, due
to the complexity of the human body shape and the variety of the different body sizes, relying
on the parametric model can not precisely recover details of body shape. In contrast to most
current methods that compute 3D joint locations, we utilise computer graphics knowledge to
produce a richer and more useful point cloud based representation, which can retain as many
details as possible.

1.2 Problems Definition and Methodology Overview

This section introduce three problems in human motion understanding that we address in
this thesis. We first define the problems, and then introduce the corresponding methodology
overview.

1.2.1 Gait disorder analysis

Musculoskeletal and neurological disorders are common devastating companions of ageing,
leading to a reduction in quality of life and increased mortality. Gait analysis is a popular
method for diagnosing these disorders. However, manually analysing the motion data is a
labour-intensive task, and the quality of the results depends on the experience of the doctors.
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Methodology Overview We propose an automatic framework for classifying muscu-
loskeletal and neurological disorders among older people based on 3D motion data. We also
propose two new features to capture the relationship between joints across frames, known as
3D Relative Joint Displacement (3DRJDP) and 6D Symmetric Relative Joint Displacement
(6DSymRJDP), such that relative movement between joints can be analyzed. To optimize the
classification performance, we adapt feature selection methods to choose an optimal feature
set from the raw feature input. Experimental results show that we achieve a classification
accuracy of 84.29% using the proposed relative joint features, outperforming existing fea-
tures that focus on the movement of individual joints. Considering the limited open motion
database for gait analysis focusing on such disorders, we construct a comprehensive, openly
accessible 3D full-body motion database from 45 subjects.

1.2.2 Arbitrary View Action Recognition

Most existing work leverages view-invariance provided by 3D models to realize cross-view
or arbitrary-view action recognition. Traditionally, simplified cylindrical models are used
[1, 2], which do not generate realistic movement appearance. High-quality reconstruction
models are proposed by calculating them from multi-view 2D videos [4]. In order to increase
the system robustness to viewpoint changes, training data is forced to cover as much 2D
data projected along as many viewpoints as possible. All these approaches suffer from
the following problems: (1) The recognition accuracy is highly related to the quality of
3D models. Some human appearance information could be lost due to the unrealistic 3D
reconstruction and the simplified cylindrical model; (2) Despite the effort to project the 3D
model into as many viewpoints as possible, these discrete projection angles will inevitably
result in the loss of 3D geometric information. A large number of 2D projections also requires
larger system capacity and training cost.

Methodology Overview We propose a novel end-to-end framework to jointly learn a
view-invariance transfer dictionary and a view-invariant classifier. The result of the process is
a dictionary that can project real-world 2D video into a view-invariant sparse representation,
as well as a classifier to recognize actions with an arbitrary view. The main feature of our
algorithm is the use of synthetic data to extract view-invariance between 3D and 2D videos
during the pre-training phase. This guarantees the availability of training data, and removes
the issue of obtaining real-world videos in specific viewing angles. Additionally, for better
describing the actions in 3D videos, we introduce a new feature set, called 3D dense trajec-
tories, to effectively encode extracted trajectory information on 3D videos. Experimental
results on the IXMAS, N-UCLA, i3DPost and UWA3DII datasets show improvements over
existing algorithms.
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1.2.3 Image-based 3D Human Shape Reconstruction

3D human shape reconstruction from 2D RGB images is challenging and ambiguous. All
methods try to address the ambiguity in different ways. Most methods adopt prior knowledge
to control the ambiguity. For example, prior shape model can enforce anthropometric
constraints on bone lengths, and prior pose information can keep ‘possible’ poses and
eliminate ‘impossible’ ones. However, since the geometry of the human body shape is very
complex, and body size is different across people, using only a parametric model can not
precisely recover details of body shape.

In contrast to most existing studies that depend on 2D and 3D locations, we produce a
richer and more useful point cloud based representation, which is able to retain as much
detail as possible. The main objective is to minimize the loss between the ground truth and
the predicted 3D human shape model.

Methodology Overview We provide a solution that is fully automatic, which estimates a
3D point cloud capturing human shape from a 2D image without any prior parametric model.
An image S is passed through a convolutional encoder. This is sent to a 3D regression module
that infers the latent 3D representation of the human that minimizes the Earth Mover’s
Distance (EMD) between the ground truth and the predicted 3D human body shape.

1.3 Thesis Structure

The structure of the rest of the thesis is as follows: I first review related work in the second
chapter Chapter 2. This part covers the state-of-art techniques from various fields that are
related to the topic. Then in the following three chapters, Chapter 3, Chapter 4 and Chapter
5, I detail our solutions of the three problems raised above. Finally, I conclude the thesis and
discuss some future work in Chapter 6.

1.4 Summary

2D videos and images are the most popular media to record human motion. However,
2D videos and images are not able to capture full 3D geometric information because of
the limitation of a single shooting angle. 2D appearance dramatically changes with the
viewpoint changing. Therefore, in this thesis, we leverage view-invariance learnt from 3D
models to solve 2D based computer vision problems. First, we propose a framework to
automatically identify the type of gait disorder directly on 3D skeletal data. Second, a transfer
dictionary learning system is built to transfer the view-invariance from 3D models to 2D
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videos smoothly. Finally, a deep shape recovery network is designed for 3D human shape
reconstruction from a 2D image with 3D point cloud based models.

Key words: Human motion understanding, Discriminative feature learning, Gait disorder
diagnosis, Arbitrary view action recognition, 3D human shape reconstruction, Machine
learning, Computer vision, Computer graphics, Motion analysis.



Chapter 2

Literature Review

In this chapter, we introduce some background knowledge of the three applications tried to
solve in the thesis. We first review frequently-used techniques for gait analysis, such as gait
feature selection methods and automatic diagnosis methods. Furthermore, basic techniques
for arbitrary view action recognition are introduced (e.g. 3D examplar based methods and
interest point based methods). Finally, we discuss some techniques used in 3D human shape
reconstruction.

2.1 Motion Analysis for gait disorder diagnosis

Extensive research efforts have been made towards gait disorder analysis. In this section, we
first discuss the different features adopted in gait analysis. We present a summary of machine
learning methods for improving gait analysis, including feature selection algorithms and gait
pattern classification algorithms.

Gait disorders are among the most common causes of balance problems in older people
[5] and often lead to injury, disability, loss of independence, which result in poor quality of
life. The prevalence of these conditions is expected to rise dramatically as the population
ages. At least 30% of people aged 65 and older report difficulty walking three city blocks
or climbing one flight of stairs, and approximately 20% require the use of a mobility aid to
move [6]. Musculoskeletal and neurological disorders are some of the major reasons for an
abnormal gait. They have been detected in approximately 25% of people between 70 and 74
years of age, and in nearly 60% of those between 80 and 84 years of age [7].

Gait analysis is a popular method for diagnosing the musculoskeletal and neurological
disorders, but determining abnormal gaits can be challenging. This is because there are no
clearly accepted standards to evaluate the gait of older people [8]. While some research
investigates time-distance variables (e.g. walking speed, step length) [9], others carry
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out detailed biomechanical analysis (e.g. joint rotation, joint position) [10] to investigate
musculoskeletal and neurological disorders. Regardless of the methods used, manually
analysing gait data is a labour intensive process, and its accuracy depends on the experience
of the doctors performing the analysis.

Automatic diagnosis of musculoskeletal and neurological disorders using machine learn-
ing technology has shown to be effective in reducing the manpower required for gait analysis
and ensuring the reliability of the diagnosis results [11]. Holzreiter and Kohle apply artifi-
cial neural networks (ANNs) for the classification of normal and pathological gaits using
foot-ground reaction forces [12]. Barton and Lees apply ANNs to differentiate different
types of gaits using joint angles [13] to distinguish different gait patterns. Begg et al. extract
the Minimum Foot Clearance (MFC), the shortest distance from the floor to the toes during
the swing phase, and use it to input to a support vector machine (SVM) classifier [14] for
gait balance classification. Khandoker et al. combine multiple features for gait analysis
[15]. They concatenate a selection of extracted statistical values from the MFC histogram
(e.g. Mean, Standard deviation, Maximum and Minimum) as identification features for the
balance impairment classification for older people. Despite many successes, the majority
of existing work only evaluates features extracted from individual joints independently, and
ignores the relationship between different joints that could be useful in gait analysis. Also,
selecting a subset of joints based on expert knowledge [14, 15], may not be optimal for gait
classification from the data point-of-view. Concatenating a large number of features into a
single feature vector could have an adverse effect on classification accuracy, due to noise in
some features, and could cause low system efficiency.

2.1.1 Features for Gait Analysis

Gait features are important for objective gait assessment and analysis. The core of many
contemporary features for gait analysis is the measurement of joint kinematics and kinetics,
such as the Conventional Gait Model and the Cleveland Clinic Model [16]. Among many gait
features, symmetry is an important gait characteristic and is defined as a perfect agreement
between the actions of the two lower limbs [17]. To calculate symmetry, mobility parameters
(e.g. single joint rotation) and spatiotemporal parameters (e.g. step length) can be used [18].
Since it is difficult to diagnose the class of disorder solely based on asymmetric gait, balance
and walking stability are also used. Multiple balance and stability measures include RMS
acceleration, jerk (the derivative of acceleration ), sway (a measure on how much a person
leans his/her body), step and stride regularity and variability [19]. Mobility parameters such
as cadence and step length are also important indicators to quantify gait [20]. These kinds of
balance and walking stability parameters are hand-crafted and require expert knowledge. In
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our research, we propose a new, generic feature based on relative joint information, which is
an important addition to the currently developed methods for identifying gait abnormalities.

2.1.2 Gait Feature Selection Methods

Simply concatenating gait features typically results in high-dimensional data, and some
dimensions may not be relevant for the problem in hand. It is therefore advantageous to
identify the important features for gait analysis, thereby removing features that convey little
or redundant discriminatory information. Some techniques [21, 22] involve choosing a subset
of original features that can represent the original data under certain criteria. They mainly
use conventional dimensionality reduction or statistical tools, such as principal component
analysis (PCA) [23, 24] and F-score [25]. Robnik-Šikonja and Kononenko propose ReliefF,
which weights different features by maximizing the distance between the data belonging to
different classes [26]. Yang et al. propose Neighborhood Component Analysis (NCA) to
learn a feature weighting vector by maximizing the expected leave-one-out classification
accuracy using a regularization term [27]. In our research, we adapt F-score, ReliefF and
NCA for feature selection, and evaluate their respective performance.

2.1.3 Automatic Diagnosis Methods

Many machine learning algorithms have been adapted to automatically diagnose gait disorder.
In [28], non-hierarchical cluster analysis is used to categorize four subgroups based on
the temporal-spatial and kinematic parameters of walking. Similarly, hierarchical cluster
analysis is used in [29], identifying three groups of subjects with homogeneous levels of
dysfunction. Artificial neural networks (ANN) are used in [30] to classify a post-stroke
subject’s gait into three categories based on the types of foot positions on the ground at first
contact. In [31, 32], the ability of ANN and Support Vector Machine (SVM) to distinguish
gait patterns for Parkinson Disease is discussed. Gait features from wavelet analysis and
kinematic parameters are extracted, which are passed to the SVM for classification [15].
We also utilize SVM in our method, as it has great usability in clinical routines without
introducing complex apparatus.

2.2 Arbitrary view action recognition

Understanding human motion in 2D videos has attracted a lot of attention in security surveil-
lance and human-computer interaction. Various spatio-temporal appearances generated from
the movements can be considered as the feature descriptors for action recognition. These
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include spatio-temporal pattern template [33], spatio-temporal interest points [34–37], shape
matching [38, 39] and motion trajectories based descriptors [40–43]. Among them, dense
trajectories based methods have achieved state-of-the-art results by extracting densely sam-
pled trajectories-aligned descriptors in the optical flow fields. Deep learning networks have
also achieved significant success in the 2D action recognition area [44–47]. These methods
can automatically learn spatial-temporal feature representations and identify different action
categories. However, [44–47] are only effective for single view action recognition and the
recognition performance degrades significantly when the viewpoint is changed. This is
because the appearances of a particular action from different viewpoints vary dramatically,
which results in dissimilar trajectories.

As a result, cross-view action recognition is proposed for bridging the appearance dif-
ferences between different viewpoints. The main idea is to transfer the knowledge from
the source view to the target view, allowing the system to recognize actions from a view
that is not included in the training set. Li et al. presented a dynamics-based feature called
hankelet that can capture the invariant property in viewpoint change using short tracklets for
cross-view recognition [33]. Wang et al. used an AND-OR graph representation to compactly
express the appearance and motion variance during viewpoint changes [48]. Zhang et al.
constructed a continuous path between the target view and the source view to facilitate
cross-view action recognition [38, 39]. Farhadi et al. generated the same split-based features
for correspondence video frames from both training and testing views [49]. Such systems
are computationally expensive as they not only require feature-to-feature correspondence,
but also require mapping between the split-based and the original feature. Liu et al. used a
bipartite graph to model the relationship between the two codebooks from the source view
and target view [50]. Wang et al. proposed a Statistical Translation Framework (STF) to
estimate the transfer probabilities of the visual words from the source to target views [51].
Huang et al. built a correlation subspace to produce joint representation from different views
by using canonical correlation analysis [52]. In spite of discovering the correspondence
between codebooks from two or more different views, the above approaches cannot guarantee
that videos captured from different views share similar features. Also, all these methods
require viewpoint information for both source view and target view, which is usually not
available in practical applications.

As a solution, arbitrary-view action recognition is proposed, in which viewpoint in-
formation is not required during testing and action from unseen views can be recognized.
The main idea is to remove view-dependent information from the feature representation.
Previous attempts to realize arbitrary-view action recognition have met with varying levels
of success. Lv et al. use a graphical model to calibrate 2D key poses of actors to represent
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3D surface models for arbitrary view action recognition. However, the motion information
for recognizing actions may not be well captured [39]. Weinland et al. propose to recognize
human actions by estimating 3D exemplars from a single 2D view angle using the hidden
Markov model [53]. However, reconstructing these 3D exemplars from a single view is unre-
liable. Also, detailed action information may be lost as only discrete samples of silhouette
information are used. Yan et al. present a 4D (i.e., 3D spatial and 1D temporal dimensions)
action feature using the time-ordered 3D reconstruction of the actors from multi-view video
data [4]. The recognition accuracy depends heavily on the performance of the 3D recon-
struction, and the framework requires training data to be captured from carefully designed
viewpoints. Gupta et al. propose to project the 3D motion capture sequence in the 2D
space and explore the best match of each training video using non-linear circular temporary
encoding [1]. However, since discrete 2D projection, instead of full 3D information, is
used for training, the accuracy depends on the number of projected views. Rahmani et al.
propose R-NKTM to transfer knowledge of human actions from any unknown view to a
shared high-level virtual view by finding a non-linear virtual path that connects the views
[54]. They generate the training data by projecting the 3D exemplar to 108 virtual views.
The use of so many projected views results in enhanced system performance, but result in a
computationally expensive training process. Ideally, we would like to have a framework that
relies on easy-to-obtain training data and performs robustly in runtime.

The general process for view-invariant action recognition can be divided into three major
parts: (1) Synthesized 3D exemplars are used for producing the 2D videos covering as many
viewpoints as possible. (2) Then, the feature extraction methods, especially some interest
points and trajectory-based feature extraction methods, describe the action on the 2D videos.
(3) Finally, transfer learning algorithms are used to transfer the action information across
different views in order to realize view-invariant action recognition. Here, previous work
related to these three major processes is introduced.

2.2.1 3D Exemplar-based Methods

One popular idea is to utilize 3D exemplars for view-invariant feature extraction and descrip-
tion. Some researchers use the static 3D exemplars. For example, Ankerst et al. propose the
histogram of shape [55] which is very similar to the 3D shape context proposed by Korgen et
al. [56]. Subsequently, Huang et al. combine the histogram of shape with color information
[57]. All these methods are mainly based on static descriptors such as poses and shape, while
the state-of-the-art descriptors integrate static descriptors with motion information.

Instead of relying only on static feature, some researchers utilize the derivative of static
descriptors over time in order to capture the temporal information by simply accumulating
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static descriptors, applying sliding windows, or tracking human pose information [58–60, 53].
Cohen et al. [61] present a 3D human shape model for view-invariant human identification.
Later, this 3D human shape model was developed by Pierobon et al. [60] for human action
recognition. Weinland et al. propose the Motion History Volume (MVH) as a 3D extension of
Motion Histogram Images (MHIs) [59]. MHV is calculated by accumulating human postures
over time in cylindrical coordinates. A different strategy is proposed by Yan et al. [4], where
they develop a 4D action feature model (4D-AFM) for arbitrary view action recognition
based on spatio-temporal volumes (STVs). However, the performance of the above 3D
exemplars-based systems is strictly limited to the result of 3D reconstruction. Normally, the
reconstructed 3D exemplars are not very realistic.

Other researchers construct the 3D exemplar with the aid of depth sensors. Zhang
et al. present a low-cost descriptor called 3D histogram of textures (3DHoTs) to extract
discriminative features from a sequence of depth maps [62]. They combine depth maps
and texture description by projecting depth frames onto three orthogonal Cartesian planes
to describe the salient information of a specific action. Liu et al. present a multi-scale
energy-based Global Ternary Image (GTI) representation, which efficiently encodes both
the spatial and temporal information of 3D actions [63]. Skeleton information can easily
be collected from the depth map. Liu et al. propose a sequence-based transform method,
which maps skeleton joints into a view-invariant high dimensional space [64]. They use color
images to visualize this space, and apply CNN to extract deep features from these enhanced
color images. Wang et al. realize non-rigid reconstruction and motion tracking without any
template using a single RGB-D camera [65]. Jia et al. present a tensor subspace, whose
dimension is learned automatically by low-rank learning for RGB-D action recognition
[66]. Kong et al. propose a discriminative relational feature learning method for fusing
heterogeneous RGB with depth modalities and classifying the actions in RGB-D sequences
[67]. Even though the depth information has a superior descriptive ability on 3D exemplars,
most videos in the real world are captured without depth information. Therefore, we focus on
techniques for extracting 3D information from RGB only videos, which has more potential
applications.

2.2.2 Interest Points and Trajectory-based Methods

To better describe the spatio-temporal interest points, Dollar et al. present descriptors on
brightness, optical flow and gradient information [34]. The SIFT descriptor is extended to
the spatio-temporal interest points by Scovanner et al. [68]. Willems et al. extend the SURF
descriptor to the video domain by computing weighted sums of response of Haar wavelets
[69].
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Due to the fact that spatio-temporal interest points are at fixed location in the video,
only base on interest points descriptors cannot capture motion information in the video. In
contrast, trajectories track the given interest point over time, so it can capture the motion
information. Messing et al. extract trajectories by tracking Harris3D interest points with
a KLT tracker [70]. They use a sequence of log-polar quantized velocities to represent
trajectories. Matikainen et al. extract trajectories with a standard KLT tracker, then they
cluster these trajectories for the action classfication [71]. Sun et al. match SIFT descriptor
between two frames to compute trajectories [72]. Later, they combine both SIFT matching
and KLT tracker to extract long-duration trajectories [73]. Wang et al. compute trajectories by
tracking the interest points in the optical flow field, then they compute Histogram of Gradient
(HOG), Histogram of Optical Flow (HOF) and Motion Boundary Histogram (MBH) to model
the action in the video [41]. However, the optical flow field is just a 2D approximation of the
3D motion field, and cannot accurately describe the 3D motion information.

2.2.3 Transfer Learning and Dictionary Learning

Transfer learning has been widely used in cross-domain action recognition problems to
take knowledge gained from one dataset and apply it to a different but related one. Liu et
al. present a simple-to-complex action transfer learning model (SCA-TLM) for complex
human action recognition [74]. It improves the performance of complex action recognition
by leveraging the abundant labeled simple actions. In particular, it optimizes the weight
parameters, enabling complex actions to be learned and to be reconstructed by simple actions.
Xu et al. propose a novel dual many-to-one encoder architecture to extract generalized
features by mapping raw features from source and target datasets to the same feature space
[75]. Rahmani et al. propose R-NKTM to transfer knowledge of human actions from any
unknown view to a shared high-level virtual view by finding a non-linear virtual path that
connects the views [54].

Recently, dictionary learning for sparse representation has been successfully applied
in many computer vision applications, such as image de-noising [76] and face recognition
[77]. With an over-complete dictionary, input signal can be approximately represented
by a sparse linear combination of items in the dictionary. Previously, many methods [78]
have been presented to learn such a dictionary based on different criteria. Among them,
K-Singular Value Decomposition (K-SVD) [79] is a typical dictionary learning method that
uses the K-means clustering algorithm for optimizing dictionary items to learn an over-
complete dictionary. Even though the K-SVD method has re-constructive ability, due to the
unsupervised learning process, its discriminative ability has not been considered. Later, [80]
proposed a dictionary transformation method to transform the dictionary from one domain to
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another. It can handle the problem that the testing instances are different from the training
instances. In addition, they use correspondences between the source view and the target
view to construct pairwise dictionaries for the cross-view action recognition problem. Zheng
et al. represent the videos in each view using a view-specific dictionary and the common
dictionary. More importantly, it encourages the set of videos taken from different views of
the same action to have the similar sparse representations [81].

Unlike the above approaches, our approach simultaneously learns pairwise dictionaries
and a classifier while considering re-constructive ability, discriminative ability and domain
adaptability during the dictionary learning process. The data in 3D source domain and 2D
target domain are with completely different formats. View-invariance from 3D data can be
smoothly transferred to 2D data with jointly optimizing the pairwise dictionaries.

2.3 Image-based 3D Human Shape Reconstruction

Our goal is the accurate estimation of a 3D human shape from a single 2D image. Whilst
there is a large amount of relevant literature relating to estimating human body posture and
shape from multiple camera images or video sequences, in this section, we focus on static
image methods due to the more practical hardware setup. As data is essential to train a
deep network, we also review methods to obtain 3D human surface data. Estimating the
3D body shape of humans is an increasingly important problem due to its application in
surveillance monitoring [82], motion analysis [83], and even online clothing shopping [84].
These applications typically require analysis of the body shape based upon an observed input,
which consists of information from both part size and posture.

2.3.1 Prior-based Reconstruction

Early works in the field rely on shape silhouettes to help estimating 3D shapes. Guan et
al. [85] estimate the 3D posture based upon manually marked 2D joint positions. They
project the SCAPE [86] model into the image and use GrabCut to segment the image [87].
They then use the SCAPE shape and posture to generate a variety of features including
shading cues, image edges and a shape silhouette. Sigal et al. [88] calculate the shape
feature from silhouettes. They then generate the 3D body shape and posture from those
features. A generative network is fit to the image silhouettes to construct a fully automatic
framework. They show some results using perfect silhouettes, however, they require both
manually provided correspondence and a known segmentation.
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Parametric models are used heavily in the field as priors. Zhou et al. [89] also use a
parametric model of posture and body shape to clearly segment the silhouette. Similarly,
Chen et al. [90] fit a prior parametric model of posture and the human body to extracted
silhouettes manually.

Loper et al. [91] propose to apply PCA to a set of captured 3D human shape to learn
one of the most popular parametric prior model called SMPL. As the dataset is captured
from real-world 3D scans, it is relatively small and costly to annotate. Macard et al. [92]
propose to combine the use of a camera and wearable inertia sensors to estimate 3D poses.
They jointly optimise the pose, the heading drift and the estimated camera pose with the
help of SMPL. Kanazawa et al. [93] combine the use of SMPL shape parameters, skeleton
pose parameters and camera project parameters to construct an end-to-end network for 3D
body mesh reconstruction. Similarly, Zhang et al. [94] use the SMPL parametric model as
prior with a focus on estimating the 3D body shape of clothed human forms. Varol et al.
[95] propose an end-to-end network that provides information about the hierarchy of the
body, and utilize SMPL to reconstruct the volumetric body-part. Yu et al. [96] propose a
method for real-time human performance capture which simultaneously reconstructs the body
geometry, non-rigid motion and the inner human body shape from a single depth camera.
They produce a double layer representation that is composed of an SMPL-based prior driven
inner surface that represents the human body, and a prior-less point cloud for the outer cloth
surface,implementing a loss function to correlate the two layers.

Apart from parametric priors, index models are also commonly used as prior. Such
models are particularly popular in the field of joint detection with a set of indexed joints.
Kulkarni et al. [97] estimate 2D joint locations based on a CNN and uses a monocular video
sequence to find the 3D posture. Zhou et al. [98] propose a 2D pose detector and optimise
the 3D posture by rejecting outliers. Yasin et al. [99] use the detected 2D joints to find the
nearest 3D postures in a mocap dataset. Ionescu et al. [100] predict each 3D body part from
the image before combining them. Simo-Serra et al. [101] propose a probabilistic model that
matches the 3D posture to the 2D image features. The concept of indexed model is extended
by Lassner et al. [102] to represent key landmarks on the human shape surface. Since the
landmarks are indexed, the system can consider the human shape as an ordered list of 3D
landmark positions.

As such prior constrain the representation of fine details and topological differences, we
attempted to challenge this problem without a prior model.
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2.3.2 Human Surface Data Acquisition

A major challenge faced in training deep networks is the availability and variety of the
training data. Whilst it is easy to obtain real world 2D images in the wild, it is costly to
annotate these images and to obtain 3D ground truth data.

Loper et al. [91] capture 3D human surface with minimum clothing for learning a set of
shape and pose prior, known as SMPL. Extending SMPL, Lassner et al. [102] and Hesse
et al. [83] propose methods to obtain 3D body model fits for multiple human pose datasets;
however, these approaches still only annotate 2D joint positions. Pons-Moll et al. [103] and
Starck et al. [104] also propose 3D capture methods, and whilst the techniques used generate
good quality 3D meshes, they provide little variety as the cost of capturing the data is high.

To relieve the cost of database creation, Varol et al. [105] propose the use of a synthetic
database for machine learning of human shape. They present the SURREAL dataset that
includes both an artificial human and a real world background; however the 3D mesh mesh
surface is rather simple and the integration with the background is unrealistic due to lighting
and scene layout. Zhang et al. [82] propose the creation of a synthetic 2D and 3D training
dataset using transfer dictionary learning. They create highly realistic human model for better
transfer learning performance.

2.3.3 Point-cloud Representations

It is a challenging problem to perform machine learning on 3D shapes represented with an
unordered point cloud. Qi et al. [106] proposed to tackle the problem with a multistage
pipeline, in which shapes are first classified in order to apply proper segmentation for part-
based shape modelling. The classification driven segmentation process can be considered as
a type of prior. Qi et al. [107] extend the method to include a hierarchical neural network
structure such that fine-grained patterns can be better represented.

Fan et al. [108] propose one of the few prior-less point cloud deep neural networks for
3D reconstruction from a single image input. An advantage is that the system can model a
good level of detail for a large variety of objects. However, their focus is on rigid objects such
as chairs and cars, and it is unclear if they can model the complex deformation of a human
body during movement. We propose a different network structure that focuses exclusively on
human shape reconstruction.



Chapter 3

Motion Analysis for gait disorder
diagnosis

In this chapter, we initially explore the 3D human motion data and 3D feature learning system
by examining a gait motion analysis problem directly based on 3D skeletal data. Research
on human motion understanding is able to assist doctors in identifying abnormal motions.

Musculoskeletal and neurological disorders are common devastating companions of
ageing, leading to a reduction in quality of life and increased mortality. Gait analysis is a
popular method for diagnosing these disorders. However, manually analysing the motion
data is a labour-intensive task, and the quality of the results depends on the experience of the
doctors. In this paper, we propose an automatic framework for classifying musculoskeletal
and neurological disorders among older people based on 3D motion data. We also propose
two new features to capture the relationship between joints across frames, known as 3D
Relative Joint Displacement (3DRJDP) and 6D Symmetric Relative Joint Displacement
(6DSymRJDP), such that relative movement between joints can be analyzed. To optimize the
classification performance, we adapt feature selection methods to choose an optimal feature
set from the raw feature input. Experimental results show that we achieve a classification
accuracy of 84.29% using the proposed relative joint features, outperforming existing features
that focus on the movement of individual joints. Considering the limited open motion
database for gait analysis focusing on such disorders, we construct a comprehensive, openly
accessible 3D full-body motion database from 45 subjects.
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3.1 Introduction

In this project, we use features based on relative movement information for gait analysis.
Previous research in analysing the distance between the left and right feet is a solid support
for the effectiveness of relative information [109], but is limited, since other joint pairs
are not considered. Here, we propose two comprehensive features that capture the relative
information between all pairs of joints across frames, which we call as the 3D Relative Joints
Displacement (3DRJDP) and the 6D Symmetric Relative Joint Displacement (6DSymRJDP).
Compared with existing methods that utilize features extracted from individual joints, our
proposed method is capable of evaluating the relationships of joints for all joint pairs,
providing a holistic view of all interactions. Such comprehensive information allows us to
develop methods that outperform existing work in gait disorder classification.

We also use feature selection algorithms from the field of machine learning to further
improve system performance. Concatenating all possible features for gait analysis has an
adverse effect, as some features are noisy or even irrelevant. Manually selecting the features
based on expert knowledge is sub-optimal. Therefore, we evaluate and adopt a number
of feature selection algorithms to select an optimal feature set from the input features. In
particular, during feature selection, we consider the whole temporal series of the relative
features from two joints as a unit. This allows us to create human-understandable results
and ensure a reasonable system training cost. We develop a fully automated framework
to evaluate the quality of the features using F-score, Neighborhood Component Analysis
(NCA) and ReliefF. The system then iteratively selects the best I features that maximize the
classification accuracy.

Finally, in view of the limited available resources for 3D gait analysis, we construct
a comprehensive 3D motion database captured from 45 older people, annotated with the
subjects’ anonymised medical history. Based on the agreed decision from 3 medical doctors,
the subjects are diagnosed as entire healthy, having muscle weakness (e.g. muscle strain, un-
derdeveloped muscles), having joint problems (e.g. degenerative joint disease, osteoarthritis),
or having some neurological defect (e.g. Parkinson’s disease, Alzheimer’s diseases). All
three classes of disorder result in movement difficulties, which may appear similar at the
movement level. However, the underlying causes are very different. The database is freely
available for academic and research use for free, and is downloadable from our research
website (http://hubertshum.com/info/tnsre2018.htm).

We present four main contributions in this chapter:

• We propose an automatic framework for identifying musculoskeletal and neurological
disorders among older people based on 3D motion data.
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• We propose two new features called the 3D Relative Joints Displacement (3DRJDP)
and the 6D Symmetric Relative Joint Displacement (6DSymRJDP) to capture the
relationship of joint pairs across frames.

• We adapt feature selection methods including F-score, Neighborhood Component
Analysis and ReliefF, for choosing an optimal feature set from the input features to
optimize classification accuracy.

• We construct an openly accessible, comprehensive 3D gait database with the anonymised
medical history of the subjects. The subjects are diagnosed as healthy, muscle weak-
nesses, joint problems and neurological defects by 3 medical doctors.

3.2 System Overview

An overview of the proposed system is presented in Fig. 3.1. We capture the 3D motion of
walking from the subjects and collect their anonymised medical histories. We pre-process
the captured data using inverse kinematics and dynamic time warping. We extract different
types of features from the captured data, including 3DRJDP and 6DSymRJDP we proposed,
as well as other common joint-based features. We adopt 3 feature selection methods and
evaluate their effectiveness. Finally, the selected feature set is passed into a gait classifier.

Fig. 3.1 The overview of our automatic method for gait disorder diagnosis.

3.3 Data Collection

In this section, we first introduce the information about the invited subjects. Then, we give
details on our process to capture motion data.
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Table 3.1 The causes of disorder and subjects’ statistics.

Muscle
Weakness

Joint
Problem

Neurological
Defect

Healthy

18 4 13 10

Min. Max. Average
Age 61 91 70.26

Weight 33 67 54.06
Height 138 198 154.26

MMSE-Thai* 15 30 24.16
FES-I** 16 26 18.96

* Mini-Mental State Examination ** Thai Fall Efficacy Scale-International

3.3.1 Subjects

The data was collected from a total of 45 subjects in a voluntary manner, whose protocol
was agreed by the Faculty of Associated Medical Sciences Ethics Committee at Chiang Mai
University. The experiment was conducted in Chiang Mai, Thailand. Applicants were Thai
older people living in dwelling communities and nursing homes in Chiang Mai.

Three medical doctors from the Faculty of Associated Medical Sciences, Chiang Mai
University attended the assessment. They diagnosed the subjects and agreed on the respective
causes of the gait disorder, which were classified into healthy, muscle weakness, joint problem
and neurological defect. This classification scheme was suggested as it was very useful as
an initial diagnosis. With our system, patients can be efficiently and accurately directed to
the relevant departments for further evaluations, in order to understand the specific causes
of the disorder. In developing countries where there are limited budget and manpower for
health-care, such an initial diagnosis scheme can effectively screen patients and relieve the
stress from the front line. We discuss the possibility of employing depth camera based motion
sensing system for markerless motion capturing or even everyday movement tracking in
Section 3.7.4.

The voluntary applicants were screened and approved by medical experts using standard
clinical tests. Applicants were only included if they satisfy the following requirement: (1)
They could walk without any assistance from physiotherapist or gait aids for at least 10
meters. (2) They had no cognitive impairment as tested by the Mini-Mental State Examination
(MMSE-Thai 2002), i.e., MMSE-Thai ≤ 14 for older people who were uneducated, MMSE-
Thai ≤ 17 for older people who graduated in primary school level, and MMSE-Thai ≤ 22
for older people who graduated in high-school level or above [110]. (3) They had no fear
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of falling as tested by Thai Fall Efficacy Scale-International (FES-I), i.e., Thai FES-I < 23
[111]. (4) They had no other medical history that affected walking than those we considered.
(5) They had no pain while walking.

We performed a randomly sampled, population-based study. In particular, we randomly
selected 45 older people with ages ranging between 61 and 91 from the approved list of
the applicants, which resulted in 5 male subjects and 40 female subjects. The gender bias
in the database reflects that of the voluntary applicants. The details information of the
subjects including the causes of the disorder, age, weight, height, MMSE-Thai and FES-I are
summarized in Table 3.1.

3.3.2 Data Acquisition

Direct interviews with the subjects were conducted using a structured questionnaire [112]
before their walking sessions. Fig. 3.2 shows the questions in the questionnaire. The
collected data covered known diseases, medication history and Activities of Daily Living
(ADLs).

A clinical and functional assessment with motion capture was carried out. The motion
data was collected using the Motion Analysis® optical motion capture system [113] with
fourteen Raptor-E optoelectronic cameras sampling at 100 Hz. The subjects agreed to wear a
motion capture suit, attached with a set of reflective markers on their body based on Helen
Hayes marker set structure [114]. The output of the motion capture system is a set of 3D
marker’s positions in the temporal domain.

Adapting the protocol from [115], all subjects were asked to walk naturally along a 10
meter walkway with their normal gait speed. The length is bounded by the capturing volume
of the motion capture system. Four trials of walking were performed and a rest period of
two minutes was given after each trial. The first trial was for practising and the last was
for cooling down. We only consider the second and third trials as they better represent the
subjects’ normal walking motions.

3.4 Skeleton-Based Feature Extraction

In this section, we explain how we process the data and extract the features from a skeleton-
based motion format.
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Fig. 3.2 Questionnaire used in the interviews.
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3.4.1 Data Preprocessing

The data from the motion capture system is expressed in a 3D marker position format. Such
a format is inefficient for motion classification as it depends heavily on the body size and
phenotype. Following existing methods on motion analysis such as [116], we convert the
marker position based format into a skeletal format, such that we can focus on the movement
of joints instead of body surfaces.

The conversion to a skeletal format is facilitated by inverse kinematics [117], a process
that calculates the angle of a skeletal joint from multiple markers on the body surface. Motion
retargeting is performed to obtain a skeleton with predefined dimensions. In our system, all
these functionalities are provided by the software Autodesk MotionBuilder.

Fig. 3.3 The skeleton structure

The skeletal definition we adopted consists of 25 joints corresponding to real-human
joint positions, as shown in Fig. 3.3. Fig. 3.4 shows sampled frame of the skeleton in a gait
cycle. We store the skeletal joint rotation data in the BioVision (BVH) format, which is a
popular format readable by a large number of software libraries [118]. Notice that the end
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Fig. 3.4 Sampled keyframes in one walking cycle.

effectors do not contain any rotation information as they do not have child joints, and they
are excluded in the feature extraction process.

We normalize the motion data of the walking cycles in the spatial domain by aligning the
first frame to 0 degree, such that the gait classification process is not affected by the initial
walking direction. Furthermore, to normalize the temporal variation, we perform dynamic
time warping (DTW) [119] to wrap all captured motion into the mean duration of the walking
cycles, such that the classifier is not affected by the duration of the motion. These processes
are supported by the software MATLAB® version 2016b.

Fig. 3.5 The extraction of the feature vector.

3.4.2 Feature Extraction

In the two sections below, we explain how the proposed features based on relative joint
information, known as 3DRJDP and 6DSymRJDP, are extracted. We also describe other
traditional features, for which the features are extracted from individual joints.
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The considered features below are defined for each frame of the motion. In order to
evaluate the continuous sequence of motion features over time, we concatenate the frame-
based features over time into a long feature vector. This process is visualized in Fig. 3.5.

In the following explanation, i and j represents joints. (xi,yi,zi) represents the 3D position
of joint i, and (x j,y j,z j) represents that of joint j. ϕi, θi, ωi are the roll, pitch and yaw angles
of joint i respectively. (xhips,yhips,zhips) represents the 3D position of the hips joint. n is the
total number of joints.

3.4.3 The Proposed Features

3D Relative Joint Displacement (3DRJDP) is defined as the displacement between all the
possible joint pairs in the skeletal hierarchy, excluding the pairs connecting to the same joint.
We extract relative joint displacement as:

D3DRJDP(i, j) =
{
(xi − x j), (yi − y j), (zi − z j)

}
. (3.1)

3DRJDP within one frame consists of n(n−1) items:

{D3DRJDP(1,2), D3DRJDP(1,3), D3DRJDP(1,4), ...

D3DRJDP(2,1), D3DRJDP(2,3), ... D3DRJDP(n,n−1)} .
(3.2)

6D Symmetric Relative Joint Displacement (6DSymRJDP) is defined as the pair-wise
displacement between all the possible joint pairs, excluding the pairs connecting to the same
joint. Also, because of the symmetric nature of the feature, we also exclude the pairs with
joint identifier i > j:

D6DSymRJDP(i, j) =
{
(xi − x j), (yi − y j), (zi − z j),

(x j − xi), (y j − yi), (z j − zi)
}
.

(3.3)

6DSymRJDP within one frame consists of n(n−1)
2 items:{

D6DSymRJDP(1,2), D6DSymRJDP(1,3),

D6DSymRJDP(1,4) ... D6DSymRJDP(2,3) ...

D6DSymRJDP(n−1,n)
}
.

(3.4)
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3.4.4 Existing Features Considered in this Work

3D Joint Angle (3DJA) is defined as the concatenation of Euler joint rotation angle for each
joint:

D3DJA(i) = {ϕi, θi, ωi} . (3.5)

3DJA within one frame is therefore:

{D3DJA(1), D3DJA(2), ... D3DJA(n)} . (3.6)

4D Joint Angle (4DJA) is extracted by converting the Euler 3DJA rotation into the
quaternion representation. The quaternion representation avoids problems such as ambiguity
and gimbal locks in the Euler angles system:

D4DJA(i) = {wi, ai, bi, ci} , (3.7)

where the quaternion parameters are calculated as: 4DJA within one frame is therefore:

{D4DJA(1), D4DJA(2), ... D4DJA(n)} . (3.8)

3D Relative Joint Distance (3DRJD) is defined as the concatenation of the Euclidean
distance in each dimension between the all possible joints pairs, except the self-connecting
pairs and the neighboring joint pairs as the distances of these pairs are constant:

D3DRJD(i, j) =
{√

(xi − x j)2,
√

(yi − y j)2,
√
(zi − z j)2

}
. (3.9)

3DRJD within one frame is therefore:

{D3DRJD(1,2), D3DRJD(1,3), D3DRJD(1,4)

... D3DRJD(n−1,n)} .
(3.10)

1D Relative Joint Distance (1DRJD) is the 1D version of 3DRJD by combining the 3D
distance into a 1D distance:

D1DRJD(i, j) =
√

(xi − x j)2 +(yi − y j)2 +(zi − z j)2. (3.11)

1DRJD within one frame is therefore:

{D1DRJD(1,2), D1DRJD(1,3), D1DRJD(1,4)

... D1DRJD(n−1,n)} .
(3.12)
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3D Hips Relative Joint Position (3DhipRJP) is defined as the concatenation of the
Euclidean distance of each dimension of all joints with respect to the hip position, except the
joint itself and the neighboring joints of the hips, as they are constant distances from the hips:

D3DhipRJP(i)

=

{√
(xhips − xi)2,

√
(yhips − yi)2,

√
(zhips − zi)2)

}
.

(3.13)

3DhipRJP within one frame is therefore:

{
D3DhipRJP(1), D3DhipRJP(2), ... D3DhipRJP(n)

}
. (3.14)

1D Hips Relative Joint Position (1DhipRJP) is the 1D version of 3DhipRJP by combining
the 3D distance into a 1D distance:

D1DhipRJP(i)

=
√
(xhips − xi)2 +(yhips − yi)2 +(zhips − zi)2.

(3.15)

1DhipRJP within one frame is therefore:

{
D1DhipRJP(1), D1DhipRJP(2), ... D1DhipRJP(n)

}
. (3.16)

3.5 Feature Selection Algorithms

To extract the useful information from the raw data in a lower dimensional format, we apply
feature selection algorithms before doing classification. These algorithms are independent
of the input feature types. Given a type of input feature (e.g. 3DJA, 3DRJD, 3DRJDP,
6DSymRJDP), these algorithms obtain a subset of the features to be used in the classification
algorithm in the next stage. Using 3DJA as an example, one possible solution from these
algorithms could consider only the lower body joint angles but discard the upper body ones.
The underlying motivation is that some dimensions of the features are more relevant to the
classification problem, while some may either be irrelevant or noisy. By selecting only the
feature subset that is helpful for classification, the size of the input dataset can be reduced
and the classification accuracy can be improved.

In this research, we employ three algorithms to measure the discriminativeness of each
feature and select the optimal subset, including (1) F-score [25], (2) Neighborhood Compo-
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nent Analysis (NCA) [27], and (3) ReliefF [26]. These methods have achieved great success
in other problems, and we evaluate their performance in human motion analysis.

3.5.1 F-score

Here, we explain our implementation of F-score, which measures the discrimination power
within a set of training data with predefined criterion functions to characterize the intrinsic
properties of the training data.

Given the training vectors pk, k = 1, ...,m, and the number of members in each of the C
different gait classes (e.g. healthy, muscle weakness) as nc, the F-score of the lth feature is
defined as:

wl =
C

∑
c=1

(p(c)l − pl)
2/

C

∑
c=1

∑
nc
k=1(p(c)k,l − p(c)l )2

nc −1
(3.17)

where C is the total number of gait classes, pl and p(c)l are the average values of the whole
dataset and the gait class c respectively, p(c)k,l is the lth feature of the kth instance in the gait
class c.

The numerator in (3.17) represents the discrimination among all category sets, and the
denominator represents the discrimination within each of the sets. Since more discriminative
features are represented by larger F-score values, we use the scores to rank the importance of
the joints features and select the best I features that maximize the classification accuracy.

3.5.2 Neighborhood Component Analysis (NCA)

Neighborhood Component Analysis (NCA) is a dimensional reduction method that improves
the predicting performance of the K-Nearest Neighbor (KNN) classifier being used in the
feature selection process.

In [120], NCA has been proposed as the method to learn a Mahalanobis distance measure-
ment for maximizing a stochastic variant of the leave-one-out cross-validation within KNN
in the training dataset. This Mahalanobis distance can be calculated using inverse square
roots and represented as symmetric positive semi-definite matrices. Here, the probability of a
training vector, pi, selecting another training vector, p j, as its reference point is defined as:

Pi j =


K(Dw(pi, p j))

∑k ̸=i Dw(pi, pk)
if i ̸= j,

0 if i = j,
(3.18)
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where K(∆) = exp(−∆/σ) is a kernel function, the kernel width σ is an input parameter that
influences the probability of each point being selected as the reference point, w is a weighting
vector, and Dw is the weighted distance between two samples.

The objective function of KNN with the approximate leave-one-out classification accuracy
can be written as:

ξ (w) =
1
Q ∑

i
∑

j
yi jPi j, (3.19)

where yi j = 1 if and only if yi = y j and yi j = 0 otherwise. Q is the total number of samples.
We follow [27] to adopt the NCA strategy into a feature selection task by including a

weighting score, which results in a nearest neighbor-based feature weighting methods for
reducing the high dimensionality of the input vector. Such a method modifies the original
KNN and improves the classification performance in the leave-one-out cross-validation
method. Here, Eq. 3.19 is modified for approximating the leave-one-out classification
accuracy in KNN as:

ξ (w) = ∑
i

∑
j

yi jPi j −λ

d

∑
l=1

w2
l , (3.20)

where λ > 0 is a regularization parameter and can be tuned via cross-validation, which
replaces the functionality of the coefficient 1

Q in Eq. 3.19, wl is the scores that defines the
ranking of the features, and it is obtained by gradient decent method. Essentially, by using the
feature weighting method within the context of KNN, we identify the extent of redundancy
in the features and select the optimal feature subset for better classification.

3.5.3 ReliefF

The original RELIEF algorithm [121] is used to evaluate the features of the data samples,
resulting in a value that distinguishes a sample from it neighbors. The quality of the features
is represented by its weight, which is estimated from two neighbor samples, including one
nearest value from the same class (i.e. nearest hit) and another nearest value from a different
class (i.e. nearest miss). The weighting score vector of the feature l on the sample r, wl(r), is
estimated using the normalization of all Q training samples with the following equation:

wl(r) = wl(r)−
diff(l,r,h)

Q
+

diff(l,r,m)

Q
, (3.21)

where r is the feature value of the considering sample, h is the feature value of the nearest
hit sample, and m is the feature value of the nearest miss sample, diff(l,r,h) calculates the
distance between samples r and h using the lth feature, diff(l,r,m) calculates that between
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samples r and m. However, RELIEF is limited to only two-class problems and is sensitive to
noisy data samples.

Therefore, ReliefF [122] is proposed to improve the reliability in estimating the weight
and has been extended to handle multi-class data sets while retaining the same computational
complexity. Here, the K-nearest neighbor (KNN) concept is adopted to find the k nearest hit
observations and k nearest miss observations, instead of using one nearest neighbor in each
class as in Eq. 3.21, which improves the reliability of weight approximation. A multiple-class
problem is formulated as finding one nearest miss, M(Φ), for each different class Φ and
averaging their contribution for updating the estimated wl:

wl(r) = wl(r)−
diff(l,r,h)

Q

+ ∑
Φ̸=class(r)

P(Φ)
1−P(class(r)) ×diff(l,r,M(Φ))

Q
,

(3.22)

The final weighting score of the feature, wl is the summation of difference among the
sample and its neighbors from all Q samples. It estimates the ability of features to separate
different classes.

3.6 Motion Classification

In supervised learning-based classification problems, the Support Vector Machine (SVM)
[14] is a powerful classifier that is commonly used to classify different categories of the data.
It maps the data to a higher dimensional space and separates the data using hyperplanes.
Such hyperplanes are optimal boundaries that categorise new sets of data. The optimised
hyperplanes would maximise the margin among classes in the training data.

Given an instance-label pair (pi,qi), i = 1, ... , l where pi is a sample vector and qi ∈
{1,−1}l represent one of the two the categories in the training data, the original SVM
[123, 124] obtains the solution as an optimization problem as follow:

min
w,b,ξ

1
2

wT w+C
l

∑
i=1

ξi

subject to qi(wT
φ(pi)+b)≥ 1−ξi,

ξi ≥ 0.

(3.23)

where the feature vectors pi are mapped onto the higher dimensional space using the function
φ , C > 0 is the penalty parameter for the error. w is known as the weight vector, b is the
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bias and ξ is the maximum margin. In Eq. 3.23, the idea is to apply a linear hyperplane to
identify the margin of each data class as shown in Fig. 3.6 left.

Fig. 3.6 Support Vector Machine classifiers.

However, in a multiple classes problem, the linear SVM with one hyperplane cannot
separate multiple data classes. As a solution, the one-against-one approach is proposed
[125, 126], in which for a M classes classification problem, M(M − 1)/2 classifiers are
constructed and each of them trains data from two classes. Given training data from the ith

and the jth classes, the solution can be found by the following objective function:

min
wi j,bi j,ξ i j

1
2
(wi j)T wi j +C∑

t
(ξ i j)t

subject to (wi j)T
φ(pt)+bi j ≥ 1−ξ

i j
t , if pt in the ith class,

(wi j)T
φ(pt)+bi j ≤−1+ξ

i j
t , if pt in the jth class,

ξ
i j
t ≥ 0.

(3.24)

where wi j is the weighting vector, bi j is the bias and ξ i j is the maximum margin. A voting
strategy is implemented to find the class label that fits the best to the testing data. In particular,
the class label that has a maximum number of votes from all binary classifiers is considered
to be the best fit class label.

In a complex data space, it may be difficult to apply linear hyperplanes to separate the
classes. Therefore, kernel functions, K(pi, p j) ≡ φ(pi)

T φ(p j), are proposed to construct
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higher dimensional hyperplanes, as shown in Fig. 3.6. In this study, we evaluate three popular
kernel functions including linear, polynomial, and radial basis function (RBF) as defined
below:

• Linear:
K(pi, p j) = pT

i p j (3.25)

• Polynomial:
K(pi, p j) = (γ pT

i p j + r)d, γ > 0 (3.26)

• Radial basis function (RBF):

K(pi, p j) = exp(−γ||pi − p j||2), γ > 0 (3.27)

where, γ , r, and d are kernel parameters that need to be optimized during the construction of
the model. In this research, we implemented a multi-class SVM using the library LIBSVM
[126]. We conducted a grid-search to tune the kernel parameters.

3.7 Experimental Results

Using the database constructed in Section 3.3, we evaluate the performance of our proposed
method. Our primary experiment setup utilizes only the three unhealthy classes for classifi-
cation, while our secondary setup utilizes all four classes, including the healthy class. The
former is considered practically important to service providers, as the majority of patients
only access health-care services when they are unhealthy. The latter includes a healthy
control group in order to verify the performance of the system.

3.7.1 Evaluation on Different Kinematics Features

Table 3.2 summarises the numerical statistics of all features extracted from the participants’
motion. For example, for 6DSymRJDP, the average value of the features is 17.2± 6.81
millimetre in the muscle weakness category. Notice that 3DRJDP and 6DSymRJDP have the
same statistics because of the similar ways the features are defined, but the former has more
items in the feature vector, which affects the performance of classification.

We analyse the values of the features using ANOVA to identify the significance of
variance using the primary setup. We define p-value <= 0.05 as an indication of significant
variance, showing that the features can be used to differentiate different types of gait disorders.
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The results are shown in the fifth column of Table 3.2. It can be observed that features such as
3DJA and 4DJA have high p-values, meaning that there is not sufficient evidence to reject the
null hypothesis. The three better features for gait classifications are 6DSymRJDP, 3DRJDP,
and 3DRJD.

Next, we test the performance of the features by using the whole feature vectors for SVM
classification. For each type of feature, we experiment with different SVM kernels including
linear, polynomial and radial basis function (RBF), and select the best classification result.
The accuracy is obtained using the leave-one-out cross-validation strategy. As shown in
the last column of Table 3.2, both of our proposed features, 3DRJDP and 6DSymRJDP,
outperform the other features. In particular, 6DSymRJDP performs the best by delivering
an accuracy of 67.14%. This demonstrates that the relationship between joint pairs carries
more information for gait classification comparing to the absolute values of individual joint
features. Comparing with 3DRJDP, 6DSymRJDP has only the half number of items in the
feature vector by pairing up logically relevant ones, making it easier for the SVM systems to
model the data and interpret the diagnostic results.

3.7.2 Evaluation on Different Feature Selection Methods

We compare different features under four different feature selection strategies: the baseline
method without any feature selection, F-score, NCA and RelieF. The selected features are
concatenated as the feature vector for representing each motion based on the selected key
frames. They are fed as an input vector into the SVM machine learning mechanism. For each
type of feature, we experiment with different numbers of features and obtain the optimal
value. We also experiment with different kernels including linear, polynomial and RBF, and
use the value from the best one.

As shown in Table 3.3, generally, the results with feature selection outperform the
baseline ones. Also, the best results are obtained by using the F-score feature selection
method. Among eight different features, 6DSymRJDP and 3DRJDP perform better than
the other features under most feature selection methods. The highest accuracy 84.29%
(primary setup) and 79.17% (secondary setup) appears when we use 6DSymRJDP under
F-score feature selection method. With NCA, the best accuracy achieved is 75.71% (primary
setup) and 72.81% (secondary setup) with the 3DJA feature type, while our proposed feature
6DSymRJDP achieves comparable values. With ReliefF, by using the default value of k = 10
into KNN [122], the best classification performance is 80.00% of accuracy on both 1DRJD
and 6DSymRJDP (primary setup), and 74.56% on ReliefF (secondary setup).

F-score utilizes the whole training set in evaluating the suitability of a feature in classi-
fication, while NCA and ReliefF consider different sub-parts of the training set under the



3.7 Experimental Results 35

Features Baseline F-score NCA ReliefF
3DJA 57.14 83.17 75.71 78.57
4DJA 51.43 51.43 52.86 72.86

1DRJD 55.86 78.57 71.43 80.00
3DRJD 61.43 81.43 71.43 65.71

1DhipRJP 50.82 52.86 51.43 48.29
3DhipRJP 57.14 64.29 60.00 62.86
3DRJDP 63.29 82.43 72.86 76.86

6DSymRJDP 67.14 84.29 74.82 80.00

Features Baseline F-score NCA ReliefF
3DJA 49.71 78.61 72.81 74.56
4DJA 46.32 47.82 45.67 68.43

1DRJD 47.78 74.54 68.31 71.34
3DRJD 55.16 75.43 72.56 58.43

1DhipRJP 41.56 44.65 47.32 51.71
3DhipRJP 48.91 59.71 53.45 57.43
3DRJDP 57.76 77.33 65.89 71.47

6DSymRJDP 60.17 79.17 69.78 72.43

Table 3.3 Classification accuracy of each feature using different feature selection methods
for (upper) the primary setup (lower) the secondary setup.
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Features Linear Polynomial RBF
3DJA 74.29 83.17 51.43

3DRJD 81.43 80.00 55.71
3DRJDP 76.57 82.43 59.17

6DSymRJDP 81.43 84.29 62.86

Features Linear Polynomial RBF
3DJA 70.15 78.61 50.65

3DRJD 77.64 75.43 46.34
3DRJDP 74.14 77.33 54.23

6DSymRJDP 78.45 79.17 56.46

Table 3.4 The performance of SVM kernels with F-score for (upper) the primary setup (lower)
the secondary setup.

KNN algorithm. Since many databases in this field are small, F-score has an advantage of
utilizing the full dataset for a more robust performance. This explains why it outperforms
other feature selection methods in our experiments.

3.7.3 Kernel and Classifier Analysis

We evaluate the kernel selection process using F-score as the feature selection algorithm,
as it performed best in the previous experiment. We evaluate the features that perform
well with F-score (>80%), including 3DJA, 3DRJD, and our prposed features 3DRJDP and
6DSymRJDP.

Table 3.4 shows the experiment of all kernels. The polynomial kernel generates the best
results with 6DSymRJDP using F-score, with the classification accuracy of 84.29% (primary
setup) and 79.17% (secondary setup). In general, the polynomial kernel performs better than
the linear and RBF kernels, showing that the polynomial kernel models the motion features
better.

Fig. 3.7 shows the classification accuracy against the number of features selected using
F-score with 6DSymRJDP using the primary setup. We see that selecting more features may
not necessarily improve the classification accuracy. The classification accuracy starts to drop
when the number of features exceeds the modelling power of the classification system. The
best result is obtained with the polynomial kernels with 48 features selected, indicated by the
orange line.

To evaluate different classifiers, we compare the performance of SVM (using the polyno-
mial kernel), neural network and binary decision tree. The neural network is implemented
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Fig. 3.7 Feature selections according to different kernels for 6DSymRJDP with F-score.

Features SVM Neural Network Decision Tree
3DJA 83.17 51.32 79.19

3DRJD 81.43 54.89 77.52
3DRJDP 82.43 53.13 79.63

6DSymRJDP 84.29 56.87 81.24

Features SVM Neural Network Decision Tree
3DJA 78.61 45.71 71.15

3DRJD 75.43 48.95 73.34
3DRJDP 77.33 50.67 72.65

6DSymRJDP 79.17 52.57 74.33

Table 3.5 The performance of different classifiers with F-score for (upper) the primary setup
(lower) the secondary setup.
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using a 4-layer structure. The neurons number in the input (i.e. first) layer and the output (i.e.
last) layer is equal to the feature dimensionality and the number of classes respectively. The
second layer has half the neurons of the first layer, and the third layer has half the neurons of
the second layer, thereby implementing a typical triangle structure. The sigmoid function
is used as the activation function. The binary decision tree does not require any particular
parameter setup. Table 3.5 shows the results and SVM achieves the best accuracy of 84.29%
(primary setup) and 79.17% (secondary setup). Neural networks typically require a larger
amount of training data, and therefore perform sub-optimally on smaller clinical databases.
Decision trees have weaker generalization power comparing to polynomial SVM, as they
only utilize planer decision boundaries.

The gender bias in our database is unfortunately unpreventable due to the local culture.
In Thailand where the data is collected, females have much stronger local social networks
comparing to males. These networks are more open to voluntary works including ours -
working with technicians to capture motion data. In our current database, we do not have
sufficient data to evaluate if the gender bias has affected the experimental accuracy. One
future direction is to analyze if (1) there is a correlation between genders and the types of gait
disorder, and (2) the gender ratio would affect the performance of the proposed framework.

3.7.4 Conclusions

In this chapter, we propose an automatic gait analysis frame- work for musculoskeletal and
neurological disorder diagnosis. We capture the gait motion from 45 Thai people with ages
ranging between 61 and 91 according to four disorder categories: healthy, muscle weakness,
joint problem and neurological defect. After that, we map all the gait motion into fixed
length sequence with dynamic time warping and represent the warped gait sequences with
different gait features. We experiment with several combinations of the optimal joint set,
feature extraction methods, and classifiers for the disorder diagnosis. The results show that
using our proposed feature 6D Symmetric Relative Joint Displacement (6DSymRJDP) can
achieve better results (84.29%) than using other gait features.

Since it is inconvenient and uncomfortable for the older people to wear suits and markers
for motion capture, one future direction is to explore R-GBD motion sensing hardware such
as the Microsoft Kinect, which does not require capture suits nor calibration. A benefit is
that such a type of motion capture equipment can be deployed in care homes for everyday
motion tracking and pre-diagnosis, thereby helping to identify disorders in the early stage.

Also, while our system allows the machine to automatically extract features for disorders
classification, it may be enhanced by introducing prior medical knowledge to the existing
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features. We envisage that a combination of human knowledge and machine understanding
would give a better description on these problems.

While there can be overlapping between different classes of disorder, when selecting
subjects for motion capture, we found that there were not enough subjects suffering from
more than one disorder to form a representative class. Therefore, we did not include those
subjects. One of our future directions is to gather enough data of subjects suffering from
multiple types of disorder and design a corresponding classification system. With enough
data, one possible idea is to implement one binary classifier for each disorder to tell if the
patient is suffering from such a disorder or not. Multiple binary classifiers are then combined
to form the full system.





Chapter 4

Learning Arbitrary view features for
action recognition

Unlike 3D skeletal data, the appearances of a particular 2D action video from different
viewpoints vary dramatically, which results in dissimilar visual features. Conventional
arbitrary view action recognition methods usually leverage the view-invariance of 3D models,
which may cause results highly dependent on the quality of the 3D model. However, the 3D
models calibrated from different viewpoints are always unrealistic, and the transfer process
of view-invariance is not smooth.

Therefore, in this chapter, we adopt 3D models built with computer graphics technology
to assist in solving the problem of arbitrary view action recognition. As a solution, a
new transfer dictionary learning framework that utilises computer graphics technologies to
synthesise realistic 2D and 3D training videos is proposed, which can project a real-world
2D video into a view-invariant sparse representation. A new 3D feature set called the 3D
dense trajectories consisting of 3D trajectories, 3D Histogram of Optical Flow (3DHOF)
and 3D Motion Boundary Histogram (3DMBH) is also proposed for a better description of
synthesised motion in 3D.

4.1 Introduction

Most of the existing works leverage view-invariance provided by 3D models to realize
cross-view or arbitrary-view action recognition. Traditionally, simplified cylindrical models
are used [1, 2], which does not generate realistic movement appearance. High-quality
reconstruction models are proposed by calculating them from multi-view 2D videos [4]. In
order to increase the system robustness to viewpoint changes, training data is forced to cover
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Fig. 4.1 Leveraging view-invariance from 3D model is a popular idea to tackle arbitrary-view
and cross-view action recognition. (a) Existing works [1, 2] project a simplified 3D cylindrical
model into as many viewpoints as possible to produce 2D training videos and extract 2D
dense trajectories from these projections. However, some human appearance information
could be lost due to the unrealistic 3D reconstruction and the simplified cylindrical model.
The discrete projection angles also inevitably result in the loss of 3D geometric information.
(b) The proposed 3D dense trajectories are extracted directly from high-quality 3D human
surface model without any projection.
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as much 2D data projected along as many viewpoints as possible. All these approaches suffer
from the following problems: (1) The recognition accuracy is highly related to the quality
of 3D models. Some human appearance information could be lost due to the unrealistic 3D
reconstruction and the simplified cylindrical model; (2) Despite the effort to project the 3D
model into as many viewpoints as possible, these discrete projection angles will inevitably
result in the loss of 3D geometric information. A large amount of 2D projections also requires
larger system capacity and training cost.

To solve the problems, we synthesize training data using high-quality human models with
captured 3D motion data. We employ primary deformation [127] to drive the movement of
the models, and motion retargeting [128] to adjust the movement based on the body sizes
of the models. We further propose a new 3D feature set called the 3D dense trajectories
including 3D trajectories, 3DHOF and 3DMBH. This allows us to extract the feature directly
from 3D videos and avoid geometric information loss due to discrete projection. Finally, we
propose a new view-invariance transfer dictionary learning framework, which extracts the
view-invariance between 3D and 2D video, to perform arbitrary view action recognition. We
pre-train the system with a large number of automatically synthesized 3D and 2D videos. This
allows us to train a view-invariant action classifier using only a small number of real-world
2D videos, in which the view information is not annotated. Experimental results show that
our system achieves better accuracy when compared with previous work in arbitrary-view
and cross-view action recognition.

This chapter has three main contributions:

• We propose a new transfer dictionary learning framework that utilizes synthetic 2D and
3D training videos generated from realistic human models to learn a dictionary that
can project a real world 2D video into a view-invariant sparse representation, which
allows us to train an action classifier that works in an arbitrary view.

• We release our synthetic 2D and 3D dataset for public usage. This is the first structured
action dataset built with realistic human models for high-quality action classification.

• We propose a new 3D feature set called the 3D dense trajectories consisting of 3D
trajectories, 3DHOF and 3DMBH for a better description of motion in 3D. This can be
considered as a 3D counterpart of the popular 2D feature dense trajectories [51].

This chapter is based on our previous work presented in [3], but it substantially extends
the work in four aspects, which are: (1) We replace the cylinder-based 3D model with several
more realistic 3D human models. The motion is retargeted according to the bone dimensions
[128] and skinned to the realistic models [127]. (2) We propose the 3D dense trajectories
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Fig. 4.2 The overview of our view-invariance transfer dictionary learning system. (Left)
In the pre-training phase, we learn the dictionaries D3D, D2D and a linear classifier W
simultaneously from the synthetic 3D videos and the synthetic 2D videos. (Middle) In the
training phase, we replace the synthetic 2D videos with 2D real training videos for adapting
the dictionaries D3D

′, D2D
′ and the classifier W ′. The 2D dictionary and the classifier are

denormalized into D̂2D
′ and Ŵ′ respectively. (Right) In the testing phase, given any real 2D

video, we apply D̂2D
′ to encode the features into a view-invariant sparse representation X ,

and use Ŵ′ for classification.

Fig. 4.3 Overview of our baseline view-invariant human action recognition system in [3].
The major weakness of this framework is this is not an end-to-end system. A separate SVM
classifier is required to recognise the action.

including 3D trajectories, 3DHOF and 3DMBH to better describe the motion in 3D videos.
(3) By jointly training the transfer dictionary pair and the classifier, we build an end-to-end
framework with an updated objective function to improve the efficiency and performance of
the system. (4) We perform more detailed system evaluation with two more datasets: i3DPost
and UWA3DII.

The rest of this chapter is organized as follows. In Section 4.2, we give an overview of
our view-invariant human action recognition frame. In Section 4.3, we present the synthesis
and feature extraction process on our 2D and 3D video data. Section 4.4 provides the details
of our view-invariant dictionary learning algorithm. Section 4.5 presents the experimental
results, and Section 4.6 concludes the chapter.
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4.2 System Overview

As illustrated in Fig. 4.2 Left, in the pre-training phase, we synthesize 3D video sequences
using motion capture data. We propose a new 3D dense trajectories feature extracted from a
source 3D synthetic video, and Y3D = [yyy333DDD

1, ...,yyy333DDD
K] ∈ RS×K denotes the K S-dimensional

features. The synthetic 3D video is projected into different viewpoints to create multiple
synthetic 2D videos. Y2D = [yyy222DDD

1, ...,yyy222DDD
K] ∈ RT×K denotes the K T -dimensional features

extracted from a target synthetic 2D video. We build 3D videos and 2D videos pairwisely in
order to train the correspondence between them. We use K to denote both the numbers of 2D
videos and 3D videos used in the pre-training phase.

We then train the 3D and 2D dictionaries simultaneously from the synthetic 3D and
2D videos respectively, which projects the respective video data into a common view-
invariant sparse feature space. They are represented as D3D = [ddd333DDD

1, ...,ddd333DDD
N ] ∈ RS×N

and D2D = [ddd222DDD
1, ...,ddd222DDD

N ] ∈ RT×N , where N is the dimension of the sparse feature space.
Records belonging to the same action class in both 3D and 2D data are constrained to share
the same sparse representation. We construct the action classifier W in an end-to-end manner
for better accuracy, by jointly minimizing the classification error rate and the dictionary
quantization error. This improves training efficiency and system accuracy.

Then, as illustrated in Fig. 4.2 Middle, in the training phase, we replace the synthetic 2D
videos with the 2D real training videos and perform system fine-tuning. This allows us to
adapt the dictionaries (D3D

′, D2D
′) and the classifier (W ′) originally trained from synthetic

data into real-world data. Because of the pre-training phase, only a small amount of real
training videos are needed. We finally denormalize the 2D dictionary and the classifier into
D̂2D

′ and Ŵ′ respectively.
In the testing phase illustrated in Fig. 4.2 Right, given any real 2D video, we apply D̂2D

′

to encode the features into a view-invariant sparse representation X = [xxx1, ...,xxxK] ∈ RN×K .
We then apply Ŵ′ to identify the class label of the video. Due to the use of the view transfer
dictionary, our system can identify actions from an arbitrary 2D view.

Fig. 4.3 shows the Overview of our baseline view-invariant human action recognition
system in [3]. The major weakness of this framework is this is not an end-to-end system. A
separate SVM classifier is required to recognise the actions.
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Fig. 4.4 (a) Some example frames from the synthetic 3D video. Using motion retargeting
techniques, we can retarget the captured motion to 3D models of different body sizes to
increase the database diversity. (b) The interest points obtained according to the vertices of
the 3D models.

Fig. 4.5 (a) Some example frames from the baseline synthetic 3D video. We use cylinders
to model body parts and represent surface information. (b) The interest points obtained
according to the vertices of the 3D models.
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Fig. 4.6 (a) Example frames of synthetic 2D videos obtained by projecting a 3D video into
different viewpoints. (b) Virtual cameras are placed on the hemisphere looking towards the
center of the sphere to generate different viewpoints.

4.3 Video Synthesis and Feature Extraction

In this section, we explain how we synthesize 3D videos and project them to generate
synthetic 2D videos. We then explain how we extract a corresponding set of 3D and 2D
features.

4.3.1 Synthesizing 3D and 2D Videos

Here, we explain the process of synthesizing 3D and 2D video data.
To synthesize the 3D motion models, we utilize the motion capture data from the Carnegie-

Mellon Graphics Lab and the Truebones dataset [129]. The motions are represented with
3D joint angles in a skeletal body hierarchy at 25 frames per second (FPS). Instead of
using simplified cylindrical model to represent surface information as in past research [1, 3]
(showed in Fig. 4.5), we use different high-resolution 3D human models instead. This
requires a process known as primary deformation [127] to deform the human models based
on the skeletal movement over time. The advantage of using 3D motion data is that we can
apply motion retargeting techniques to synthesize the motion performed by human models of
different body sizes, as shown in Fig. 4.4a. Such an automatic process enhances the diversity
of the database by adjusting the movement according to the bone length.

In order to produce synthetic 2D video, we project the synthesized 3D videos uniformly
in a set of pre-defined viewpoints. Fig. 4.6 shows example frames of 2D videos projected
from various viewpoints. Notice that in our system, we do not require any information about
the viewpoints to perform classification.
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Fig. 4.7 (a) Synthesized 2D video (b) Extracted dense trajectories (red points are interest
points, green curves are trajectories)

4.3.2 2D Dense Trajectories

For both 2D synthetic videos and 2D real videos, we employ dense trajectories [42], a
powerful action representation, for feature extraction. It considers both holistic and local
information of 2D motion by combining dense sampling and trajectory tracking. Specifically,
it consists of a set of low-level descriptors, including trajectory descriptor, Histogram of Ori-
ented Gradients (HOG), Histogram of Optical Flow (HOF) and Motion Boundary Histogram
(MBH). Among them, HOG can extract the static appearance of the videos while HOF and
MBH can extract the motion information. Fig. 4.7 shows an example of dense trajectories
extracted from a synthetic 2D video.

4.3.3 Proposed 3D Dense Trajectories

Our transfer learning involves transferring 3D and 2D features into a common sparse feature
space, and hence it is preferable that both of them have similar logical meanings. Therefore,
we propose a 3D version of dense trajectories that corresponds to the 2D one. The proposed
feature consists of three components: 3D trajectories, 3DHOF and 3DMBH. Notice that
HOG is not included here, as the surface texture of a 3D model remains unchanged over
time.

An advantage of synthetic 3D videos is that both the vertices geometry on the human
model surface and the vertices correspondence across frames are available. We first obtain a
set of interest points over time according to the surface vertices of the 3D models, as shown
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Fig. 4.8 The 14 3D velocity bins visualized with a 3D cube. 6 directions point towards the
faces of the cube, and 8 directions point towards the corners of the cube.

in Fig. 4.4b. For each point, we extract the motion trajectory across frames (Pt ,Pt+1,Pt+2, ...),
where Pt is the 3D Cartesian coordinate of the vertex at frame t, as shown in Fig. 4.1b.

The 3D trajectory is defined as:

Tr
′
=

(∆Pt , ...,∆Pt+L−1)

∑
t+L−1
j=t ∥∆Pj∥

(4.1)

where L is a user-defined value that represents the number of frames to be considered
in a trajectory, and ∆Pt = (Pt+1 −Pt) indicates the displacement across two frames. The
denominator is the total length of the trajectory, which is used for normalization.

2D HOF is the pattern of apparent motion of objects and surface in a visual scene caused
by the relative motion between an observer and a scene. A logically similar representation in
3D, which we named the 3D Histogram of Optical Flow (3DHOF), is the velocity field of
the surface vertices. We first define the velocity of a vertex as:

Vt =
∆Pt

1/FPS
(4.2)

where FPS is the frame rate of the 3D video, and is set to 25 in our experiments. We then
quantize the 3D velocity orientations into 14 bins H(h1,h2, ...,h14) as shown in Fig. 4.8.
3DHOF is defined as the binned histogram along each vertex trajectory:

hi =
∑t∈Ti ∥Vt∥

∑
t+L−1
j=t ∥Vt∥

(4.3)

where Ti is a set that contains the frame’s number in which the velocity direction of the
interest point belongs to i on a L-frame trajectory. ∥Vt∥ is the magnitude of the velocity,
which is used for weighting.

The 2D MBH (motion boundary histogram) is the derivative of the optical flow field
computed separately for the horizontal and vertical components to encode the relative
motion between pixels. This is to compensate the HOF descriptor, which can only compute
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Fig. 4.9 The 3DMBH components in X, Y and Z directions are quantized into 8 bins each.
The 3DMBH is defined as the concatenation of 3DMBHx, 3DMBHy and 3DMBHz along
each vertex trajectory.

Fig. 4.10 (a) The Y component of 3D velocity field for the example frame. (b) 3DMBHy is
obtained by computing the gradient of Y component of 3D velocity field.
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absolute motion information. Inspired by this, we proposed the 3DMBH that encodes the
relative motion between neighbour interest points on our 3D model. Similar to the 2D MBH
implementation, we compute the derivatives separately along the X, Y, Z axes in the 3D
velocity field. We quantize each 3DMBH component into 8 bins and the 3DMBH is defined
as the concatenation of 3DMBHx, 3DMBHy and 3DMBHz along each vertex trajectory. The
process is visualized as in Fig. 4.9. For example, the Y component of 3D velocity field is
shown in Fig. 4.10a, and we compute its gradient to describe the relative motion between
neighbouring interest points of that frame as shown in Fig. 4.10b.

4.4 View-invariant Action Classification

In this section, we explain how we train the view-invariant dictionaries and the classifier from
synthetic 3D and 2D video data using dictionary learning. The processes are summarized as
the algorithm shown in Fig. 4.11.

4.4.1 The Pre-training Phase

Here, we introduce the basic theory of dictionary learning [130], and explain how we learn
the view-invariance transfer dictionary for the 3D and 2D synthetic videos.

Dictionary learning generates a sparse representation for a high dimensional signal using
linear projection with a projection dictionary. Let yyy ∈ RP denote a P-dimensional input signal
that can be reconstructed by the Q-dimensional projection coefficient xxx ∈ RQ via a linear
projection dictionary D = [ddd1, ...,dddQ] ∈ RP×Q. To obtain an over-completed dictionary, P
should be much larger than Q. Assuming the reconstruction error to be E(xxx), the projection
process is formulated as:

yyy = Dxxx+E(xxx) (4.4)

The objective function is defined as:

argminxxx,D∥yyy−Dxxx∥2
2 s.t.∥xxx∥0 ≤ M (4.5)

where ∥yyy−Dxxx∥2
2 denotes the reconstruction error. s.t.∥xxx∥0 ≤ M denotes the sparsity con-

straint. M is the L0-norm sparsity constraint factor that limits the number of non-zero
elements in the sparse codes.

Due to the different number of trajectories across action videos, we use a bag-of-words
descriptor to ensure that the features extracted from the action videos share the same di-
mension, following [40–43]. Specifically, we use K-means to cluster the trajectory-based
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Fig. 4.11 The algorithm for transferring view-invariance from 3D video to 2D video by
transfer dictionary learning.
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Fig. 4.12 Optimizing the 3D (source) and 2D (target) dictionaries to constraint that the same
action in synthetic 3D and 2D videos has the same sparse representations.

descriptors in each action video into a fixed number of visual words. This allows us to
represent the action videos with histograms of the same dimension.

We design a transfer dictionary learning system to transfer the view-invariance of the
synthetic 3D videos to the synthetic 2D videos. We train two dictionaries simultaneously,
with one for 3D (i.e. source - D3D) and one for 2D (i.e. target - D2D). The main idea is to
optimize the dictionaries such that the same action in both 3D and 2D videos has the same
sparse representations, as visualized in Fig. 4.12. Upon successful training, D2D is able to
project the feature vector of a 2D video into a sparse representation that is similar to that of a
3D video. In other words, such a sparse representation is view-invariant.

We divide the dictionary into a number of disjoint subsets, and each of these is used
exclusively for one action category. 3D and 2D videos with the same action category are
therefore represented by the same subset of the dictionary. Those with different action
categories are represented with disjoint subsets of the dictionary. This design enables the 3D
and 2D videos with the same action category to share the same sparse representation pattern.
Conversely, those with different action categories tend to have different representations.
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Specifically, the dictionary optimization function is designed as:

argminX ,D3D,D2D,A

α∥Y3D −D3DX∥2
2 +∥Y2D −D2DX∥2

2 +β∥Q−AX∥2
2

s.t∀i,∥xxxi∥0 ≤ M

(4.6)

where α and β are trade-off parameters, ∥Y3D −D3DX∥2
2 and ∥Y2D −D2DX∥2

2 are two terms
to minimize the error of the 3D and 2D dictionaries respectively, and ∥Q−AX∥2

2 is a label
consistent regularization term to minimize the difference in sparse representation for the
same class of action as introduced in [131, 132]. A is a linear transformation matrix that
maps the original sparse codes X to be consistent with the discriminative sparse codes
Q = [qqq1, ...,qqqK] ∈ RN×K of input signal (yyy333DDD

j,yyy222DDD
j), in which the index j indicates the index

of 2D and 3D action video pairs. Specifically, each vector qqq jjj = [qqq jjj
1, ...,qqq jjj

N ] = [0...1,1...0]∈
RN , and the non-zero occurs at those indices where the input signal (yyy333DDD

j,yyy222DDD
j) and the

dictionary items (ddd333DDD
n,ddd222DDD

n) share the same label. In our dictionary design, dictionary item
ddd333DDD

n and ddd333DDD
n always have the same label. For example, assuming the Y2D = [yyy222DDD

1, ...,yyy222DDD
6]

and D2D = [ddd222DDD
1, ...,ddd222DDD

6], where yyy222DDD
1,yyy222DDD

2 and ddd222DDD
1,ddd222DDD

2 are from class 1, yyy222DDD
3,yyy222DDD

4

and ddd222DDD
3,ddd222DDD

4 are from class 2, yyy222DDD
5,yyy222DDD

6 and ddd222DDD
5,ddd222DDD

6 are from class 3, then Q can be
defined as:

Q =



1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1


(4.7)

Inspired by [132], we propose to include the action classification error of a linear pre-
diction classifier into the object function to build an end-to-end system. This enhances the
system training efficiency and results in better classification accuracy. The new objective
function is therefore updated as

argminX ,D3D,D2D,A,W

α∥Y3D −D3DX∥2
2 +∥Y2D −D2DX∥2

2 +β∥Q−AX∥2
2

+ γ∥H −WX∥2
2 s.t.∀i,∥xxxi∥0 ≤ M

(4.8)
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where ∥H −WX∥2
2 is the proposed action classification error term, W ∈ RC×N denotes the

classifier parameters and H = [hhh1, ...,hhhK] ∈ RC×K are the class label of input signals Y2D.
hhh j = [0...1...0]T ∈ RC is a label vector corresponding to an input signal yyy222DDD

j, where the
nonzero position indicates the class of yyy222DDD

j.

4.4.2 Optimization

Here, we explain how we obtain the solution for Eq. 4.8. Since the three terms on the right
hand side of Eq. 4.8 have the same format, we first rewrite Eq. 4.8 as follows:

argminX ,D0∥Y0 −D0X∥2
2 s.t.∀i,∥xxxi∥0 ≤ M (4.9)

where Y0 =

( √
αY3D
Y2D√

βQ√
γH

)
, D0 =

( √
αD3D
D2D√

βA√
γW

)
.

Such an objective function shares the same form as Eq. 4.5, which can be optimized
using the K-SVD algorithm [79]. Specifically, Eq. 4.9 is solved through both dictionary
atom updating and sparse representing.

For the dictionary atom updating stage, each dictionary atom is updated sequentially to
better represent both 3D videos and 2D videos. When pursing the better dictionary D0, the
sparse representation X is fixed, and each dictionary atom is updated by tracking down a
rank-one approximation to the matrix of residuals.

Following K-SVD, the kth atom of dictionary D0 and its corresponding coefficients are
denoted as dddkkk and xxxkkk respectively. Let Ek = Y0 −∑ j ̸=k ddd jjjxxx jjj and we further denote x̃xxkkk and Ẽ
as the result obtained when all zero entries in xxxkkk and Ek are discarded respectively. Each
dictionary atom dddkkk and its corresponding non-zero coefficients x̃xxkkk can be computed by:

argmindddkkk,x̃xxkkk
∥Ẽk −dddkkkx̃xxkkk∥2

2 (4.10)

The approximation in Eq. 4.10 is achieved through Singular Value Decomposition (SVD) on
Ẽk:

SV D(Ẽk) =U ∑V T

dddkkk =U(:,1)

x̃xxkkk = ∑(1,1)V (1, :)

(4.11)

where U(:,1) indicates the first column of U while V (1, :) indicates the first row of V .
At the sparse representation stage, we compute the best matching projection X of the

multidimensional training data for the updated dictionary D0 using Orthogonal Matching
Pursuit (OMP) algorithm.
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Initialization

D3D, D2D, A and W must be initialized before pre-training. In our system, for D3D and D2D,
we run a few iterations of K-SVD within each action class and initialize the label of the
dictionary items based on the corresponding action labels. To initialize A and W , we use the
multivariate ridge regression model [133] with the L2-norm:

A = argminA∥Q−AX∥2
2 +ϕ1∥A∥2

2

W = argminW∥H −WX∥2
2 +ϕ2∥W∥2

2

(4.12)

where ϕ1 and ϕ2 are manually defined constants and are empirically set as 0.5 in our system.
The equation yields the following solutions:

A = (XX t +ϕ1I)−1

W = (XX t +ϕ2I)−1
(4.13)

where X is calculated with the initialized D3D or D2D.

Convergence Analysis

The convergence proof of the proposed method is similar with the K-SVD algorithm. In
the dictionary updating stage, each atom dk and its corresponding coefficients x̃k minimize
the objective function, while the rest of dictionary atoms are updated iteration by iteration.
Therefore, the Mean Squared Error (MSE) of the reconstruction error should be monoton-
ically decreasing. At the sparse representation stage, the MSE is also reduced due to the
computation of the best matched coefficients under the L0-norm constraint of the OMP
algorithm. In addition, since MSE is non-negative, the optimization process should be
monotonically reducing and bounded by zero. Therefore, the convergence of the proposed
transfer dictionary learning method is guaranteed. We also show the convergence of the
system in Fig. 4.15.

4.4.3 The Training Phase

Here, we explain how to adapt the pre-trained dictionaries and classifier into real video.
We fine-tune the dictionaries and the classifier pre-trained by the synthetic data in order

to adapt them into real-world data. Specifically, we use D3D, D2D, A, W in the pre-training
phase to initialize the training phase. We also replace the 2D synthetic videos with 2D real
training videos. Then, we follow the same optimization strategy in Section 4.4.2 and apply
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the same number of iterations as the pre-training phase. After the optimization, we denote
the trained dictionaries and classifiers as (D3D

′, D2D
′) and W ′ respectively.

Since D3D
′, D2D

′, W ′ are jointly L2-normalized during the optimization process, we need
a step of de-normalization before they can be used for classification. Following [132], the
denormalized 2D dictionary D̂2D

′ and the classification parameter Ŵ′ are calculated as:

D̂2D
′ =

(
ddd222DDD_111

′

∥ddd222DDD_111
′∥2

,
ddd222DDD_222

′

∥ddd222DDD_222
′∥2

, ...,
ddd222DDD_NNN

′

∥ddd222DDD_NNN
′∥2

)
Ŵ′ =

(
www111

′

∥www111
′∥2

,
www222

′

∥www222
′∥2

, ...,
wwwNNN

′

∥wwwNNN
′∥2

) (4.14)

where ddd222DDD_nnn
′ denotes the nth atom of the dictionary D2D

′, wwwNNN
′ denotes the nth atom of W ′.

Notice that we do not denormalize D3D
′ as it is no longer needed in the next phase.

4.4.4 The Testing Phase

Here, we explain how we apply our trained dictionary to perform view-invariant action
classification.

Given a real 2D video query sample yyy222DDD
′, its sparse representation xxx′ can be computed

with D̂2D
′. With the linear classification parameter Ŵ ′, the label lll can be predicted as:

lll = Ŵ ′xxx′ (4.15)

The label of yyy222DDD
′ is the index corresponding to the largest element of lll.

4.5 Experimental Results

In this section, we first provide experiment setup details. We then evaluate the performance of
our method with four public multi-view datasets including the IXMAS, N-UCLA, UWA3DII
and i3DPost datasets.

The synthetic 3D and 2D datasets we used for transfer dictionary learning are open to
the public. They can be found at our project website. All experiments were performed on
a desktop computer with an Intel i7-4790k CPU, a NVIDIA Quadro K2200 graphics card,
16GB RAM and Microsoft Windows 10 OS.
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4.5.1 Implementation Details

We used the software package Poser 2014 to retarget 3D motion capture data files in BVH
format, animate 3D human models, and project the 3D scenes into 2D videos. We employed 5
high-quality 3D characters to synthesize the 3D video. For each action class, we synthesized
18 3D videos per character with 18 randomly selected motion files within the class. For each
action class, we synthesized the 2D videos per character by projecting a randomly selected
3D video into 18 uniformly sampled viewpoints. The azimuthal angle of the projection
was uniformly sampled as {0◦, 60◦, 120◦, 180◦, 240◦, 300◦} and the polar angle of the
projection was sampled as {0◦, −30◦, −60◦}. This setup allowed us to generate the same
number of 3D and 2D videos (number of characters × number of views × number of action
classes)as required by K-SVD for transfer dictionary learning.

During pre-training, for the experiments on the IXMAS dataset (11 action classes), the N-
UCLA dataset (10 action classes), the i3DPost dataset (10 action classes) and the UWA3DII
dataset (30 action classes), we synthesized 990, 900, 900, 2700 pairwise 3D and 2D videos,
respectively. From our experience, a larger synthetic dataset resulted in better accuracy.
The size used was chosen considering the trade-off between system accuracy and training
complexity.

We extracted dense trajectories from 2D synthetic videos, as well as 2D real videos
from the IXMAS, N-UCLA, UWA3DII and i3DPost datasets. Afterwards, we constructed a
codebook for each of the four descriptors in the dense trajectories separately. For each 2D
descriptor, we applied k-means to cluster a subset of 100,000 dense trajectory features into
375 visual words. This resulted in a 2D feature Y2D of 1,500 dimensions. For 3D synthetic
videos, similar to [53], we set the trajectory sample step to 5 frames, and the trajectory
length to 15 frames. We constructed codebooks for 3D trajectories, 3DHOF and 3DMBH
descriptors respectively. For each 3D descriptor, we applied k-means to cluster a subset of
100,000 3D dense trajectories into 500 visual words. This resulted in a 3D feature Y3D of
1,500 dimensions.

When training the transfer dictionaries, to initialize the dictionary pair D3D and D2D, we
employed k-means 5 times on the features Y3D and Y2D respectively. For IXMAS, N-UCLA,
UWA3DII and i3DPost datasets, we set the dictionary sizes N to 1180, 1150, 2500 and 1150
respectively, for both D3D and D2D. The 3D dictionary trade-off parameter α was set to
1.5. The label consistent trade-off parameter β was set to be 2.0. The classification error
trader-off parameter γ was set to be 4.0. Finally, the numbers of iterations for the K-SVD
algorithm in both pre-training and training phases were set to 60, 65, 100 and 65 for IXMAS,
N-UCLA, UWA3DII and i3DPost datasets respectively.
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Fig. 4.13 Sampled frames from the IXMAS dataset.

Fig. 4.14 Cross-view recognition accuracy per action class in IXMAS.
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Fig. 4.15 Parameter analysis on the cross-view action recognition in IXMAS dataset. (a)
The optimization process of the objective function with 50 iterations. (b) Performance with
varying the dictionary size.

Fig. 4.16 Analysis on hyperparameters in Equation 7.
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Methods C0 C1 C2 C3 C4
DVV[134] 44.7 45.6 31.2 42.0 27.3
CVP[135] 50.0 49.3 34.7 45.9 31.0
nCTE[1] 72.6 72.7 73.5 70.1 47.5

Hankelets[136] 59.7 59.9 65.0 56.3 41.2
NKTM[2] 77.8 75.2 80.3 74.7 54.6

R-NKTM[54] 78.4 78.0 80.7 75.8 57.8
Zhang et al.[3] 70.8 76.5 72.6 71.9 50.5

Ours 73.2 78.5 74.9 76.1 52.9

Table 4.2 Average accuracy on the IXMAS dataset for each camera, e.g. C0 is the average
accuracy when camera 0 is used for training or testing. Each time, only one camera view is
used for training and testing.

4.5.2 Experiments on the IXMAS Dataset

The IXMAS dataset [59] contains 11 daily-life actions including “check watch”, “cross
arms”, “scratch head”, “sit down”, “get up”, turn around”, “walk”, “wave”, “punch”, “kick”,
and “pick up”. Each action was performed three times by 10 subjects captured from 5
different viewpoints. Fig. 4.13 shows some examples.

In order to compare with existing works on cross-view action recognition that utilize view
labels including DVV [134], CVP [135], nCTE [1], Hankelets [136], and our preliminary
work [3], we conducted an experiment considering view labels. Here, we grouped the videos
in the IXMAS dataset into different views and evaluated the accuracy of transferring one
view to another. We followed the leave-one-action-out cross-validation strategy from [1, 136].
Table 4.1 shows that our algorithm outperforms the state-of-the-art method nCTE in most
cross-view pairs, as well as the average system accuracy. It also demonstrates that our
proposed methodology enhancements over [3] have resulted in superior accuracy. We also
compare with a baseline setup of our system that does not include the pre-training phase,
which demonstrates the effectiveness of utilizing synthetic 2D and 3D videos for pre-training.
Fig. 4.14 shows that our algorithm outperforms nCTE in most action classes, thereby
indicating that our system can can realize cross-view action recognition by transferring the
view-invariance from 3D models. Notice that in our default setup, the system does not require
any view information. This experiment was designed for the sake of comparison only.

In order to analyze the effect of the hyperparameters (i.e. α , β and γ), we experiment
with 27 different settings within the searching range of α in [1, 2] on every 0.5 interval, β in
[1, 2] on every 0.5 interval and γ in [2, 4] on every 1.0 interval. The result is visualized in
Fig. 4.16.
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Fig. 4.17 Sampled frames from the N-UCLA dataset.

Since the orientation of the actors is arbitrary in the IXMAS dataset, we compare with
existing works on arbitrary view action recognition by calculating average accuracy for each
camera. For example, C0 is the average accuracy when camera0 is used for training or
testing. Table 4.2 shows that our algorithm outperforms most of the previous methods in
some viewpoints. It is worth mentioning that NKTM [2] and R-NKTM [54] are deep learning
based methods, at the core of which is the use of neural networks to transfer videos from
different views to a canonical view. However, their method requires the generation of 2D
training video by projecting the 3D exemplar to 108 virtual views, while ours only needs
18 different views. Due to the lower amount of training data required, our method can save
computation resources, especially when constructing the system.

4.5.3 Experiments on the N-UCLA Dataset

The N-UCLA dataset [51] contains 10 action classes captured from 3 different viewpoints
with 10 different actors. The action categories include “pick up with one hand”, “pick up
with two hands”, “drop trash”, “walk around”, “sit down”, “stand up”, “donning”, “doffing”,
“throw”, and “carry”. Fig. 4.17 shows some sample frames from the N-UCLA dataset.

We evaluated our system accuracy in cross-view action recognition and in comparison
with existing work including DVV [134], nCTE [1], CVP [135], and our preliminary work
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Methods {1,2}|3 {1,3}|2 {2,3}|1 Mean
DVV[134] 58.5 55.2 39.3 51.0
CVP[135] 60.6 55.8 39.5 52.0
nCTE[1] 68.6 68.3 52.1 63.0

Zhang et al.[3] 67.3 74.2 61.8 67.8
Ours 69.1 74.4 61.8 68.5

Table 4.3 Accuracy on the N-UCLA dataset (two views for training and one for testing).

Fig. 4.18 (a) Cross-view recognition accuracy per action class in N-UCLA. (b) The confusion
matrix of N-UCLA.

[3]. We followed the experimental setup in [1, 135], which utilizes videos captured from
two cameras for training and the other one for testing. The accuracy was calculated using
leave-one-action-out cross validation. As shown in Table 4.3, our method outperforms
existing algorithms in most of the cross-view setups and the overall result. Fig. 4.18 shows
that our algorithm outperforms nCTE in most action classes. This demonstrates that our
system can realize cross-view action recognition by transferring the view-invariance from
3D models. Notice that in our default setup, the system does not require view information.
This experiment was designed for the sake of comparison only.

On the N-UCLA dataset, some actions are quite difficult to differentiate, such as “Drop
Trash” vs. “Throw”, “Carry” vs. “Walk around”, as they both consist of similar body
movement.

4.5.4 Experiments on the UWA3DII Dataset

This dataset [137] consists of a variety of daily-life human actions performed by 10 subjects
with different scales. It includes 30 action classes: “one hand waving”, “one hand punching”,
“two hand waving”, “two hand punching”, “sitting down”, “standing up”, “vibrating”, “falling
down”, “holding chest”, “holding head”, “holding back”, “walking”, “irregular walking”,
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Fig. 4.19 Sampled frames from the UWA3DII dataset.
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Fig. 4.20 Cross-view recognition accuracy per action class in the UWA3DII dataset.

“lying down”, “turning around”, “drinking”, “phone answering”, “bending”, “jumping jack”,
“running”, “picking up”, “putting down”, “kicking”, “jumping”, “dancing”, “moping floor”,
“sneezing”, “sitting down (chair)”, “squatting”, and “coughing”. Each video is captured
from one of four predefined viewpoints. This results in variations in actions across different
viewpoints within the same action class. This dataset is challenging because of varying actor
orientations, self-occlusion and high similarity among actions. Fig. 4.19 shows four sample
actions from different viewpoints.

As shown in Table 4.4, our method outperforms existing algorithms in most of the
cross-view setups and the overall result. Fig. 4.20 shows that our algorithm outperforms our
baseline in most action classes.

4.5.5 Experiments on the i3DPost Dataset

The i3DPost dataset consists of 8 actors performing 10 different actions, where 6 are single
actions: “walk”, “run”, “jump”, “bend”, “hand-wave” and “jump-in-place”, and 4 are
combined actions: “sit-stand-up”, “run-fall”, “walk-sit” and “run-jump-walk”. The subjects
have different body sizes, clothing and are of different sex and nationalities. The multi-view
videos have been recorded by 8 calibrated and synchronized cameras in a high definition
resolution (1920×1080), resulting in a total of 640 videos. For each video frames, an actor 3D
mesh model of high detail level (20000-40000 vertices and 40000-80000 triangles) and the
associated camera calibration parameters are available. The mesh models were reconstructed
using a global optimization method proposed by Starck and Hilton [137]. Fig. 4.21 shows
multi-view actor/action examples from the i3DPost dataset.

We use leave-one-actor out strategy followed by [140]. This means that we use the 2D
videos of one actor for testing, while using the rest of the dataset for training. Table 4.5
shows that our system achieves better result than previous methods.



4.5 Experimental Results 67

M
ethods

{1,2}|3
{1,2}|4

{1,3}|2
{1,3}|4

{1,4}|2
{1,4}|3

{2,3}|1
{2,3}|4

{2,4}|1
{2,4}|3

{3,4}|1
{3,4}|2

M
ean

A
O

G
[51]

47.3
39.7

43.0
30.5

35.0
42.2

50.7
28.6

51.0
43.2

51.6
44.2

42.3
A

ction
Tube[138]

49.1
18.2

39.6
17.8

35.1
39.0

52.0
15.2

47.2
44.6

49.1
36.9

37.0
L

R
C

N
[139]

53.9
20.6

43.6
18.6

37.2
43.6

56.0
20.0

50.5
44.8

53.3
41.6

40.3
Z

hang
etal.[3]

50.6
56.8

48.6
43.7

53.2
59.7

66.8
48.9

56.8
50.4

68.3
51.7

54.6
O

urs
59.3

57.9
50.2

48.1
59.9

63.4
65.1

67.1
68.2

55.5
73.5

53.4
60.1

Table
4.4

A
ccuracy

on
the

U
W

A
3D

IIdataset(tw
o

view
s

fortraining
and

one
fortesting).



68 Learning Arbitrary view features for action recognition

Fig. 4.21 Sampled frames from the i3DPost dataset.
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Methods Mean
Holte et al.[140] 92.2

Iosifidis et al.[141] 90.9
Gkalelis et al.[137] 90.0

Zhang et al.[3] 93.8
Ours 94.6

Table 4.5 Average accuracy for arbitrary view recognition on the i3DPost dataset.

Features IXMAS N-UCLA UWA3DII i3DPost
3D Trajectories 58.1 57.1 48.6 90.1

3DHOF 67.8 62.4 58.4 87.5
3DMBH 66.3 56.3 53.2 81.6

All Features Combined 70.8 68.5 60.1 94.6

Table 4.6 Comparison of cross-view action recognition results on the IXMAS, N-UCLA,
UWA3DII and i3DPost dataset by using different features.

4.5.6 Evaluation of our 3D Dense Trajectories

In this section, we evaluate our 3D dense trajectories by using 3D trajectories, 3DHOF and
3DMBH independently.

Table 4.6 shows the comparison of cross-view action recognition results on the IXMAS, N-
UCLA, UWA3DII and i3DPost dataset by using each descriptor independently and combining
them together. Among the three descriptors, 3DHOF outperforms the other two in the most
of dataset. However, it is clear that the combined feature produces far superior results
that cannot be achieved by any single feature. This shows that our proposed features are
complementary to each other.

Fig. 4.22 and 4.23 show the performance of different descriptors according to different
view transfer pairs on the IXMAS and UWA3DII datasets respectively. In all pairs, combining
all the descriptors achieves better result than using them independently.

4.5.7 Evaluation of 2D Features Used in Our System

While appearance information and movement information are both very important for de-
scribing the 2D action videos, such appearance information is quite different for 2D action
videos captured from different points. We build a transfer learning framework to transfer
3D and 2D features into a common sparse feature space, and hence it is preferable that both
of them have similar logical meanings. Therefore, any useful information on the 3D and
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Fig. 4.22 Feature evaluation on IXMAS dataset according to different view transfer pairs.
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Fig. 4.23 Feature evaluation on UWA3DII dataset according to different view transfer pairs.

Fig. 4.24 2D HOG evaluation of the UWA3DII dataset according to different view transfer
pairs.

2D action videos such as appearance will assist our system. The reason we do not propose
3DHOG is that the surface texture of a 3D model remains unchanged over time. We conduct
an experiment on the UWA3DII dataset to show the importance of appearance feature 2D
HOG.

Fig. 4.24 shows the performance on only, without and with using 2D HOG respectively.
Features combined with 2D Trajectories, 2D HOF and 2D MBH perform better than only
using 2D HOG in all the view transfer pairs. Because the movement related descriptors
contain more view-invariant information than appearance related descriptors on the 2D action
videos. Combined features also perform better than features without using 2D HOG, which
shows the assistance of appearance information to our system.
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4.6 Conclusions

In this chapter, we have proposed a view-invariant human action recognition framework.
Unlike previous work, we construct a synthetic 3D and 2D video database using realistic
human models, which is used to obtain the view-invariance through transfer dictionary
learning. The trained dictionary is used to project real world 2D video into a view-invariant
sparse representation, facilitating an arbitrary view action classifier. The use of synthetic
data for initial training reduces the need for carefully captured video with view information.
The synthetic dataset created in this project is open to the public, it is the first structured
action dataset built with realistic human models for classification purposes. To enhance
the quality of 3D motion description, we propose a new set of features known as the 3D
dense trajectories, which consists of 3D trajectories, 3DHOF and 3DMBH. These features
are complementary to each other and the combined feature set is highly effective for action
classification. We demonstrate superior results in comparison to existing works in the
IXMAS, NUCLA, UWA3DII and i3DPOST datasets.

In our system, we project the 3D and 2D videos into a common view-invariant sparse
representation with the 3D and 2D dictionaries respectively. Theoretically speaking, it is
possible to learn a dictionary that directly projects 2D video into 3D space, and consider the
3D space to be view-invariant. However, this is not practically possible. This is because 2D
to 3D projection requires information that is not available in the 2D video. Even if a project
matrix can be trained, the projected results will suffer from a large reconstruction error. In
this research, we solve this problem by extracting the common view-invariant features in the
3D and 2D videos instead.

A main advantage of our framework is that the view-invariance transfer dictionary is
pre-trained with a full synthetic dataset and fine-tuned with a small amount of real data.
It is possible to include a large number of views in the synthetic dataset to learn a better
view-invariant representation, even if the real data does not cover all of these views. Also, it is
possible to introduce variations within each action class using computer graphics techniques
such as motion style transfer to improve the richness of the dataset, which can enhance the
classification accuracy. While existing work requires encoding and pooling parts to aggregate
the local features, we use bag-of-words to effectively aggregate the local trajectories based
features, motivated by the promising results from [40–43]. Specifically, we train a dictionary
by using K-means to cluster the local features (e.g. HOG, HOF) into some visual words and
then encode these local features by counting the occurrence of different visual words.

During the implementation, we found that the quality of the synthetic video could affect
the classification accuracy of the system. This was the main motivation for us to utilize
high-quality human models instead of simplified cylinder-based models as in previous
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works. In the future, we are interested to explore if more realistic rendering (such as
photorealistic rendering with global illuminations) and more realistic character movement
(such as introducing secondary deformation to simulate the involuntary movement of body
fat and clothings) would further improve the system performance.

In many datasets, the facing angles of the actors are not aligned with that camera
viewpoints. As a result, the same action may appear differently for the same viewpoints
dependent on the faced direction. As a future direction, we are interested in introducing the
facing angle into the classification framework, such that the system can understand how the
action may appear dependent on the orientation of the actor. Furthermore, when creating
synthetic 2D videos, our current system samples projection viewpoints uniformly. With
the facing angle, we may explore an optimal way of projection sampling that can optimize
classification accuracy with a minimal number of synthetic 2D views.

Dictionary learning can be considered as a linear projection algorithm and can be limited
in representing the view-invariance of 2D and 3D videos. In the future, we are interested
in applying non-linear algorithms such as Neural Networks with synthetic training data
to achieve better results. The potential challenges in using Neural Networks to learn the
complex view-invariance is the need to tune a large number of hyper-parameters, as well as
the need to design an optimal network architecture.





Chapter 5

Deep Feature for 3D Human Shape
Reconstruction

With the increasing popularity of shooting equipment (e.g. mobile phones), the image
becomes the most widely used content carrier. However, the content given by the image is
very limited due to the lack of temporal information compared to the videos used in Chapter
4. Understanding human motion from a single image is a more challenging problem. The
estimation of 3D human pose from a single image is a longstanding problem with many
applications. Most previous approaches focus only on pose but ignore 3D human shape. In
this chapter, we provide a solution that is fully automatic and estimates a 3D point cloud
capturing human shape from a 2D image.

Automated 3D human body shape estimation has become a fundamental part of many
practical applications. In this chapter, we seek to address the problem of reconstructing a
3D human shape from a 2D image. In this context, the major challenge faced is that the
human form is defined by both the posture and the body dimensions. Additionally, the shape
deformation is highly non-linear and therefore the shape surfaces of different postures are not
easily comparable. Existing work typically relies on strong prior knowledge of human shapes
to facilitate effective reconstruction, but such prior knowledge limits the representation,
making the system unable to effectively represent fine details (e.g. fingers) or topological
differences (e.g. clothing). In this chapter, we propose a novel end-to-end deep learning
framework, capable of 3D human shape reconstruction from a 2D image without the need of
a 3D prior parametric model. We employ a “prior-less” representation of the human shape
using unordered point clouds. Due to the lack of prior information, comparing the generated
and ground truth point clouds to evaluate the reconstruction error is challenging. We solve
this problem by proposing an Earth Mover’s Distance (EMD) function to find the optimal
mapping between point clouds. Our experimental results show that we are able to obtain
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a visually accurate estimation of the 3D human shape from a single 2D image, with some
inaccuracy for heavily occluded body parts.

Fig. 5.1 Two examples of reconstruction: (a) 2D images, (b) ground truth 3D point cloud,
and (c) reconstructed 3D point cloud.

5.1 Introduction

In this chapter, we tackle the problem of 2D to 3D reconstruction. We consider the use of 2D
input as it is widely available and can be easily obtained using consumer hardware, as opposed
to RGB-D images and 3D scans. Previous work in this field typically makes use of strong
prior knowledge of plausible 3D human shapes. Two main approaches are parametric models
[91] and indexed models [102]. The former represents the high-dimensional 3D model
based upon low-dimensional parameters. The latter utilizes points with unique identities to
represent landmarks on the body surface. While these method are effective in human shape
reconstruction, they limit the representation capacity of the system. It becomes ineffective to
represent shapes with large variations, such as the difference in body shape between male
and female. It is also difficult to represent human surfaces with different topology, such as in
the case of clothing or even physical disabilities.

To address this problem, rather than adopting the parametric model approach, we propose
that the shape can be represented by directly generating a prior-less unordered point cloud,
which is able to retain significantly more detail. Whilst the use of unordered point clouds can
present a technical challenge, it can also prove advantageous over other approaches. One such
advantage is that, unlike 2D-based representations such as images, there are no topological
constraints upon the represented 3D shapes, meaning that direct correlation between points is
not required. Also, when compared with 3D-volumetric grids, the point cloud set has higher
efficiency by encoding only the points on the surface.

In order to facilitate the use of an unordered point cloud, we need to be able to measure
the distance between the reconstructed points and the ground truths. Motivated by previous
success on mesh processing [142, 143], we consider this as a transportation problem, and
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propose a novel loss function that incorporates the Earth Mover’s Distance. Such a method
effectively determines the optimal alignment between two point cloud distributions, and
allows for evaluation of the reconstruction accuracy for back-propagation.

In this chapter, we therefore present the following contributions:

• We propose an end-to-end deep learning framework for 3D human shape reconstruction
from a 2D image without the need for a 3D prior parametric model.

• We propose a novel loss function based upon the Earth Mover’s Distance [143] to
evaluate the distances between unordered 3D point clouds representing human body
shapes.

Our preliminary experimental results suggest that we are able to obtain a visually accurate
estimation of the 3D human shape from a single 2D image, as shown in Fig.5.1. However it
is also evident that self-occlusion has an impact upon the quality of the final output.

Fig. 5.2 The overview of our architecture.

5.2 Synthesising Training Data

Given the difficulty in obtaining suitably annotated 2D images with 3D ground truth data,
and inspired by the success of [3], we synthesized a high-quality, realistic training dataset
with which to train our system. To generate this dataset, we utilized skeletal human motion
capture data from the CMU motion database [144]. We then utilized the Poser [145] software
suite to obtain high-quality character meshes. We then applied skinning, to bind the skeleton
to the mesh, in order to drive mesh deformation using the associated skeletal movement.
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The generated frames of the meshes were then stored in a pairwise representation of 3D
point clouds and 2D images. To obtain the 3D point clouds, each model was then projected
onto a 2D image with a blank background. Each 3D human model, was normalized to 800
points and aligned using the Iterative Closest Point (ICP) algorithm. To generate 2D images,
we projected the mesh with a predefined observation angle and with a simple local lighting
model.

In our implementation, we selected ten diverse human models from the database, encom-
passing different genders and body sizes. As the process is automatic, we are easily able to
enrich the database with more models and to incorporate other lighting strategies or more
complex backgrounds. Figure 5.1 includes some examples of the 2D images (a) and the
ground truth point clouds (b) generated.

5.3 EMD-informed CNN for Human Shape Reconstruction

To train a model that does not rely on prior knowledge, we represent the 3D human body
shape as an unordered list of points on the human surface. The resultant system, therefore,
can represent human body shapes with significant differences, even topologically. However,
This also poses significant challenges in the 2D to 3D reconstruction process. We adapt a
CNN-based network architecture, and devise a novel loss function informed by EMD to
tackle this problem.

5.3.1 The Reconstruction Network

We propose a deep architecture that has strong representation ability and makes use of the
statistics learned from the associated geometric data. An overview of the network architecture
is shown in Fig. 5.2. Given an input image S and a random vector t, the network reconstructs
a 3D point cloud Mr through an CNN encoder and a fully-connected regressor.

To model the uncertainty of the input image, we propose the incorporation of a random
perturbation vector t as a part of the input, together with the input image S, as suggested by
[146]. The inclusion of a small random vector allows the trained system to be more robust
against noise. Also, once trained, we can change the random vector such that the system will
generate different reconstruction results, which is useful in evaluating the system robustness.

The core of the network consists of a CNN encoder and a fully-connected regressor.
The former is able to understand the features of images, while the latter can capture com-
plex structures to generate the corresponding 3D point cloud. As we do not enforce prior
knowledge, we use an unordered point cloud set M = (xi,yi,zi)

N
i=1 to represent the 3D shapes,
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where N is a predefined constant that represents the number of points in the point cloud. In
our implementation, we set N = 800 as we have found that this value is generally sufficient
to preserve the major structures of the body parts.

We define the ground truth as a probability distribution P(·|S) over the shapes conditioned
on the input 2D image S to model the uncertainty from 2D to 3D. We train a deep neural
network G as a conditional sampler from P(·|S):

M = G(S, t;θ), (5.1)

where θ denotes the network parameter, and t ∼ N(0, I) is the aforementioned random vector
used to perturb the input. During testing, multiple samples of t are used to generate different
predictions.

As for the implementation details, the encoder is composed of a combination of ReLU
and convolution layers. It maps a random vector t and the input image S into a subspace. By
using MoN (min of N) to model the uncertainty, the network can change its prediction based
upon different random vectors. The regressor generates the 3D shape as an N ×3 matrix,
where each row represents the coordinates of one vertex.

5.3.2 The EMD-based Loss Function

While the use of an unordered point cloud frees the system from relying upon any priors, it is
challenging to compare two unordered point clouds due to the lack of correspondence. Such
a comparison is required when we build the reconstruction loss function. Motivated by the
successes in applying Earth Mover’s Function (EMD) to evaluate mesh distances [142, 143],
we propose the use of EMD in our deep learning loss.

EMD evaluates the minimum overall distance between two point clouds by finding the
optimal mapping between them. It optimizes a set of unidirectional flows to map the points.
As EMD itself is an optimization problem, it is differentiable for point locations everywhere
and therefore is an excellent choice to add to the deep learning architecture. It can also be
calculated reasonably efficiently, which facilitates back-propagation of the data.

The loss function is defined as:

L(Mr,Mgt) = dEMD(Mr,Mgt), (5.2)
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where Mr is the reconstructed 3D human shape, Mgt is the ground truth of each sample, dEMD

is the EMD calculated as:

dEMD(M1,M2) = min
φ :M1→M2

∑
x∈M1,y∈M2

||y−φ(x)||2, (5.3)

where M1,M2 ∈ R3 has equal size, m = |M1| = |M2| and φ : M1 → M2 is a bijection (i.e.
flows), || ||2 represents the root mean square point to point distance.

With the EMD-based loss function, the system can effectively evaluate the distance
between the synthesized human shape and the ground-truth one for backpropagation during
training.

5.4 Experimental Results

In this section, we demonstrate some preliminary experimental results generated by our
system.

Fig.5.1 shows the point cloud reconstructed by our system compared with the ground
truth based on a 2D image. The color visualizes the depth of the points in scale from blue
(furthest away) to yellow (closest). Both examples show that our reconstructed point cloud
resembles the body shape with the correct posture. For the left example, there are some errors
around the right foot, where the foot direction is not pointing towards the viewer, and the
hands are shown as being slightly further away. For the right example, the models’ right hand
appears lower and slightly further away, also there is some confusion with he distribution
around the head and the thighs.

With the random vector, the same input image can have multiple plausible 3D shapes.
Fig. 5.3 shows some differing 3D shapes produced using the same input image. They are
largely consistent, which demonstrates the robustness of our system, and that the architecture
is able to model the uncertainty of the predicted shape and the ambiguity of the input image.
The top image shows a male model performing a throwing motion. There are small variations
regarding the rotation of the lower part of the bodies, but the system successfully reconstructs
the depth (i.e. the left leg is shown behind the right leg, based on the blue to yellow depth
visualization scale). The bottom image shows a female model performing a low-kicking
motion. There are some variations around the volume of the chest area, but the depth
information is generally consistent and the overall posture provided is a good representation.

We also try to evaluate that impact that occlusion has on our system, which is one of
the most challenging aspects in 2D to 3D reconstruction. Fig. 5.4 shows two example
models from three different angles that generate different amounts of self-occlusion. With
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Fig. 5.3 Different possible shapes for the same image.

minimal occlusion, the system reconstructs the shape accurately. The accuracy decreases as
the amount of occlusion increases. For the left example, which is a male character carrying
out a walking motion, the lower body has more and more occlusion as we progress from the
side view to the front view. As a result, the reconstruction quality degrades in these areas.
The right example is a a female character performing a kicking motion. We observe similar
problems around the upper body. Fig. (c) of the right example is an extreme case in which
the whole right leg is occluded, this results in an unsatisfactory reconstruction. We also
observe that the presence of occluded body parts may affect other body parts which are not
occluded. This is likely due to the EMD function attempting to find the optimal mapping for
the whole body, as such the occluded part confuses the mapping system.

5.5 Conclusion and Discussions

In this chapter, we propose an EMD-informed CNN framework for 2D to 3D point cloud
reconstruction. Unlike the majority of the previous work, we experiment with a setup in
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Fig. 5.4 The impact of occlusion in reconstruction: (a) minimal occlusion, (b) moderate
occlusion, and (c) heavy occlusion.

which there is no prior-knowledge. Our EMD function successfully solves the problem of
using an unordered point cloud for prior-less human shape representation. Furthermore,
to enable sufficient high-quality training data, we employ a computer graphics pipeline to
generate synthetic training data. Our method is able to solve the ambiguity of geometry in
2D images, however it suffers in situations where the model is heavily self-occluded.

Our preliminary results suggest that the generative ability of our network is good, and
that it is able to model the uncertainty of predicted 3D shapes with a random vector. However,
our system still suffers from a lack of discriminative ability and the generated 3D shapes are
sometimes not realistic.

The use of EMD demonstrates high potential in matching two prior-less point clouds
in order to evaluate the reconstruction loss. However, since the point to point distance is
calculated in using Cartesian coordinates, when multiple joints are close together or occluded,
the system has problems identifying which body parts the points should belong to, which
results in poor quality during occlusion. Our future direction is to consider other coordinate
systems within EMD, such at the Laplacian coordinate that can better represent surfaces, or
the topology coordinate [147], that can effectively represent structures.

In our future work we also intend to explore the potential of incorporating Generative
Adversary Networks (GANs) due to their strong discriminative ability [148]. Given its
popularity in 3D reconstruction, we may also look to integrate a re-projection loss in our
system by building a dual network which can project the reconstructed 3D model back to 2D,
and minimise the difference between the re-projected 2D image and the input 2D image.
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Finally, we have only tested with synthetic data. Whilst the images are almost photoreal-
istic, in the future, we would like to test with real-world images, in the wild. We anticipate
that this will be a challenge due to the high-frequency textures in real-world images, as well
as the more complicated lighting conditions.





Chapter 6

Conclusions and Future work

In this chapter, the contributions of this thesis have been briefly concluded. Furthermore, the
possible future work have been also discussed.

6.1 Conclusions

2D videos and images are the most popular medium to record human motion. However,
2D videos and images are not able to capture full 3D geometric information because of
the limitation of single shooting angle. 2D appearance dramatically changes with the
viewpoint changing. In this thesis, we try to investigate how to compensate for the lack of
full geometric information in 2D based applications with view-invariance learnt from 3D
models. We successfully extract the view-invariant features from high-quality 3D models
to solve arbitrary view action recognition and image-based 3D human shape reconstruction
problems.

We first propose an automatic gait analysis framework for musculoskeletal and neurolog-
ical disorder diagnosis directly on 3D skeletal data. 3D skeletal data can record complete
human movement information. Our system allows the machine to extract 3D movement
features for disorders classification automatically. It can be enhanced by introducing prior
medical knowledge to the existing features. We prove that a combination of human expertise
and machine understanding would give a better description of these problems.

Unlike skeletal data, 2D videos and images are not able to capture full 3D geometric
information. Therefore, we propose a view-invariant human action recognition framework.
We construct a synthetic 3D and 2D video database using realistic human models, which is
used to obtain the view-invariance through transfer dictionary learning. The trained dictionary
is used to project real-world 2D video into a view-invariant sparse representation, facilitating
an arbitrary view action classifier. The use of synthetic data for initial training reduces the
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need for carefully captured video with view information. The synthetic dataset created in
this project is open to the public, it is the first structured action dataset built with realistic
human models for classification purposes. To enhance the quality of 3D motion description,
we propose a new set of features known as the 3D dense trajectories, which consists of 3D
trajectories, 3DHOF and 3DMBH. These features are complementary to each other, and the
combined feature set is highly effective for action classification. We demonstrate superior
results in comparison to existing works in the IXMAS, NUCLA, UWA3DII and i3DPOST
datasets.

Furthermore, without temporal information, 3D human shape reconstruction from a
single image is a highly under-determined problem, requiring strong prior knowledge of
plausible 3D human shapes. We propose an end-to-end deep learning framework for 3D
human shape reconstruction from a 2D image without any 3D parametric model. Going
beyond skeletons, we propose a 3D point cloud based aligned method and a loss function to
calculate the distance between 3D human body shapes so that the complex 3D models can
easily fit into deep architecture.

6.2 Summary of Contributions

In this section, we summarize the contributions in this thesis.

• We propose an automatic framework for identifying musculoskeletal and neurological
disorders among older people based on 3D skeletal data.

• We propose two new features called the 3D Relative Joints Displacement (3DRJDP)
and the 6D Symmetric Relative Joint Displacement (6DSymRJDP) to capture the
relationship of joint pairs across frames.

• We adapt feature selection methods including F-score, Neighborhood Component
Analysis and ReliefF, for choosing an optimal feature set from the input features to
optimize classification accuracy.

• We construct an openly accessible, comprehensive 3D gait database with the anonymised
medical history of the subjects. The subjects are diagnosed as healthy, muscle weak-
nesses, joint problems and neurological defects by 3 medical doctors.

• We propose a new transfer dictionary learning framework that utilizes synthetic 2D and
3D training videos generated from realistic human models to learn a dictionary that
can project a real world 2D video into a view-invariant sparse representation, which
allows us to train an action classifier that works in an arbitrary view.
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• We release our synthetic 2D and 3D dataset for public usage. This is the first structured
action dataset built with realistic human models for high-quality action classification.

• We propose a new 3D feature set called the 3D dense trajectories consisting of 3D
trajectories, 3DHOF and 3DMBH for a better description of motion in 3D. This can be
considered as a 3D counterpart of the popular 2D feature dense trajectories [51].

• We propose an end-to-end deep learning framework for 3D human shape reconstruction
from 2D image without any 3D parametric model.

• Going beyond skeletons, we propose a 3D point cloud based loss function to calculate
the distance between 3D human body shapes, so that the complex 3D models can easily
fit into deep architectures.

6.3 Discussion and Future Work

In this thesis, in order to solve the ambiguity in 2D based computer vision problems, we
have tried to transfer the view-invariance from 3D models to 2D images or videos. There
are two major sub-problems when we solve these 3D-2D applications: (1) How to describe
the 2D images or videos and the 3D model? (2) How to establish a connection between
2D images and 3D models to make the transfer process smooth and efficient? For the first
problem, we find that using equivalent representation methods for 2D videos and 3D models
(e.g. 2D trajectories and 3D trajectories) is easier to be integrated into the architecture and
is able to improve the efficiency of the system. Conversely, if the representation of both
ends are not equivalent (e,g. raw image and point cloud data), we have to design more
complex architecture to make up for this problem. For the second problem, we may have
three potential way to improve the system performance in the future:

Non-linear Transfer Learning Framework In Chapter 4, we use transfer dictionary
learning to bridge the connection between 2D and 3D. This method is proved to be efficient.
However, dictionary learning method learns a linear mapping between 2D and 3D data,
which can not precisely describe the non-linear projection process between 3D and 2D data.
Therefore, some non-linear algorithms are worth trying to explore whether it is suitable to
model the relationship between the 3D model and its multiple 2D projections.

Discriminativeness Improvement via Generative Adversary Networks (GAN) Gen-
erative Adversary Networks (GAN) has been widely used in today’s research due to its strong
discriminative ability [148]. In Chapter 5, our architecture has good generative ability but
lack the discriminative ability. Especially when the input 2D image suffers from severe
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self-occlusion, the predicted 3D shape becomes different to identify. Therefore, we will try
to add an adversarial loss to the original EMD based loss function. We will build a database
of healthy 3D shapes. If the predicted 3D shape is significantly different from any health
shapes in the database. The system will reject it and find the nearest healthy shape in the
database to improve the outcome.

Dual Network Re-projection loss is a very popular tool in the 3D reconstruction area.
The idea is simple [93]. They project the reconstructed 3D model back to 2D and minimise
the difference between the re-projected 2D image with the input 2D image. We can also
integrate this re-projection loss in our system to build a dual network. The problem will
be how to compute the difference between the image and the projected point cloud. Using
silhouette may be an intermediate method to balance these two types of images.
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