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Abstract—Existing view-invariant gait recognition methods 

encounter difficulties due to limited number of available gait 
views and varying conditions during training. This paper 
proposes gait partial similarity matching that assumes a 
3-dimensional (3D) object shares common view surfaces in 
significantly different views. Detecting such surfaces aids the 
extraction of gait features from multiple views. 3D parametric 
body models are morphed by pose and shape deformation from a 
template model using 2-dimensional (2D) gait silhouette as 
observation. The gait pose is estimated by a level set energy cost 
function from silhouettes including incomplete ones. Body shape 
deformation is achieved via Laplacian deformation energy 
function associated with inpainting gait silhouettes. Partial gait 
silhouettes in different views are extracted by gait partial region 
of interest elements selection and re-projected onto 2D space to 
construct partial gait energy images. A synthetic database with 
destination views and multi-linear subspace classifier fused with 
majority voting are used to achieve arbitrary view gait 
recognition that is robust to varying conditions. Experimental 
results on CMU, CASIA B, TUM-IITKGP, AVAMVG and 
KY4D and datasets shows the efficacy of the propose method. 
 

Index Terms—gait; person identification; 3D gait model; 
partial similarity matching.  

I. INTRODUCTION 
AIT is difficult to be disguised and can be easily 

observed in low-resolution video sequences at long 
distance without contact with the human subject. Thus gait 
recognition has great potential, and could be useful in various 
scenarios, such as analysis of forensic evidence for a legal 
case [1], criminal investigation and security check [2]. It could 
be achieved with high recognition rate where environmental 
and certain factors are controlled to some extent. The gait 
database OU-ISIR LP with 4000 subjects [3] has been used to 
evaluate the upper bound accuracy of gait recognition. 
However, implementing a gait-based personal identification 
system for large population in a real application is still 
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challenging due to the imaging of natural gait being easily 
influenced by various factors, such as scene structure, 
illumination, clothing variation, footwear, carrying conditions, 
walking speed, occlusions and camera views [4-6]. 
Nevertheless, gait provides an additional biometric cue for 
reliable personal identification system. 

In order to obtain acceptable recognition rate, it is important 
to obtain good segmentation of the gait silhouettes. However, 
many factors often lead to inaccuracy in the segmentation, 
e.g., similarity of colours between the subject’s clothes and 
background, changes in background due to illumination or 
appearance of new objects, self occlusion, etc. [7]. Gait image 
inpainting methods have thus been proposed, i.e., partial 
derivative equations based, texture synthesis, semi-automatic 
inpainting and hybrid methods. Multiple filters have been 
introduced to reduce noise or enhance the image quality. 
Image matching and moving object detection have been used 
to address dark areas of the data and to perform hole-filling. 
However, these methods assume that the missing pixels are 
similar to their adjacent pixels and thus use neighbouring 
pixels for interpolation. When the missing data is large, e.g., 
due to significant occlusion, existing model-free inpainting 
methods fail to correctly segment the gait silhouettes. Other 
methods for addressing imperfect gait silhouettes use robust 
statistics to extract gait features in a static image by averaging 
the silhouettes in a gait period. The gait energy image (GEI) 
[8] is one such method that is less sensitive to uncorrelated 
silhouette noise. Other variants include Gait Flow Image (GFI) 
[9], Pose Kinematics and Pose Energy Image (PEI) [10] and 
Frame Difference Energy Image (FDEI) [7]. However, these 
energy images are mainly for mitigating the effect of 
imperfect silhouettes in covariate conditions that affect gait 
feature extraction rather than the gait itself. Thus, in this paper 
we introduce a gait inpainting method that uses the unified and 
prior knowledge of 3D human body to restore the incomplete 
gait silhouettes when there is large missing data. 

Existing 2-dimensional (2D) gait recognition systems 
encounter difficulties in multi-view gait recognition where 
there is a limited number or absence of some gait views in the 
training data. Since gait is 3-dimensional (3D), a 2D gait 
image sequence provides only single-view information that 
constrains gait recognition from an arbitrary view. Using 2.5 
dimensional (2.5D) or 3D models for gait recognition [11,12] 
has achieved significant advances due to the availability of 3D 
imaging devices where the data is used for 3D reconstruction 
and target tracking. However the use of inexpensive 3D 
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sensors has its limitations, e.g., low-resolution and unreliable 
coarse range data for dark and infrared-absorbing objects, 
missing data if the objects are out of the sensor’s range, and 
data flickering in successive frames. Thus, it is difficult to use 
only range data to accurately segment body contours. The 
coarse data of the head and feet are also sometimes missing. 
As a result the 2.5D gait voxel models derived from the coarse 
range images are also imperfect. The use of such an approach 
provides only partial view of the gait data, similar to the use of 
a 2D camera. It only provides a simplified 3D surface 
representation that contains one range value (z) for every point 
in the (x, y) image plane. The use of high-accuracy 3D whole 
body scanners are typically expensive and limited for static 
modelling due to the long scanning time, e.g., for estimation 
of the body shape beneath the clothes. 

For view-invariant gait recognition to be practical, few 
cameras should be used. In this paper, we use 2D gait images 
that include incomplete body images to estimate the 3D gait 
model. The 3D gait pose is first estimated using level set 
energy cost function and improved using Laplacian 
deformation. The method not only repairs the incomplete 2D 
gait images but also estimates its corresponding 3D model. 
Since only one-view gait images are used, the 3D model is 
imperfect. Thus, a gait partial similarity matching (GPSM) is 
proposed for extracting the partially matched gait features in a 
cycle from 3D gait models with different views. These are the 
common data of a surface viewed from significantly different 
camera locations, referred to as the common view surface. 
Detecting the common view surfaces in different views and 
transforming the surfaces to the same view aids the extraction 
of the gait features from multiple views. We refer this as gait 
partial similarity matching and use it to achieve gait 
recognition from different views, especially for probe data 
from view that is not in the training dataset, i.e., gait 
recognition from arbitrary views but with limited number of 
gait views available during training.  

 The contributions of this paper are: (1) use of 3D human 
pose estimation and shape deformation to reconstruct 
parametric 3D body from 2D data to achieve robustness to 
variation in significant view changes, and occlusions, e.g., 
missing body parts or segmentation noise; (2) use of 2D 
incomplete gait image inpainting with weighted level set 
function based on 3D body to significantly improve the quality 
of incomplete 2D gait silhouettes for improved recognition; 
(3) by using partial similarity matching, view-invariant 2D 
gait images can be matched directly by partial similar features 
enabling robustness to carried item and improved recognition 
rate; and (4) by introducing multi-linear subspace classifier 
with majority voting for fusion enables arbitrary views gait 
recognition using GPSM. 

This paper is organized as follows. SectionⅡpresents the 
related work. Section Ⅲ discusses the gait partial similarity 
matching. Section Ⅳ presents our multi-view gait recognition 
method based on multi-linear subspace classifier with majority 
voting. SectionⅤpresents the experimental results and Section 
Ⅵ concludes the paper. 

II. RELATED WORK 
There are two main approaches to view-invariant gait 

recognition: (1) model-based human body structural analysis 
and (2) model-free appearance-based statistical analysis. The 
first approach uses different 3D gait skeleton structural models 
for view-invariant feature extraction of length of torso, upper 
arm, lower arm, thigh, calf and foot [13]. Zhao et al. [14] 
explored the use of multiple cameras to construct skeleton 
model with 10 joints and 24 degree of freedom. The length of 
key segments are extracted as static parameters, and their 
motion trajectories used as dynamic features to realize 3D gait 
recognition. Rogez et al. [15] modelled 3-D body poses and 
camera viewpoints with a low dimensional manifold, and use 
it to learn a generative model of the silhouette for view 
invariant 3-D gait tracking. However all current modelling of 
3D gait skeleton structural models is mostly based on images 
from multiple cameras, and are thus inaccurate. Also the 
features extracted from these models are limited. 

The second approach uses 3D appearance, 2D image 
appearance or 2.5D depth image appearance. Shakhnarovich et 
al. [16] used an image-based visual hull to construct a 3D 
model that is rotated to realize view-invariant gait recognition 
by projecting 3D surface to 2D space. Sivapalan et al. [17] 
used a 3D volume model derived from multi-view 2D images 
or frontal depth images, and the back-filled versions for 
matching frontal-view depth image and side-view 2D 
silhouette for cross-modal cross-view gait recognition. 
However, the need of complex hardware setup makes it 
practical only under limiting laboratory setting.  

There are three approaches to 2D appearance-based gait 
recognition. The first adopts view normalization or uses the 
result fused from multiple view-dependent gait recognition. 
Nizami et al. [18] used Extreme Learning Machine multiclass 
classifier where the view-dependent classifications are fused at 
score level according to some rules. This method is limited by 
the size of the multi-view gait databases and cannot realize 
arbitrary-view gait recognition. Jean et al. [19] used 
view-normalized body part trajectories as view-invariant gait 
features, but these are impractical for significantly different 
views and when self-occlusion is encountered. Wei et al. [20] 
introduced the deterministic learning theory to achieve 
view-invariant gait recognition and extraction of gait silhouette 
features that represents gait dynamics and reflects view variation. 

The second uses projection relationship of gaits across 
different views. Makihara et al. [21] proposed a view 
transformation model (VTM) to transform a probe gait view 
data onto the virtue view that exists in the training database. 
Muramatsu et al. [22] proposed arbitrary gait view 
transformation scheme using 3D gait data via VTM. 
Kusakunniran et al. [23,24] developed a VTM by using 
correlated motion regression and multi-layer perceptron. 
However a VTM based method requires multi-view 2D 
images to construct the VTM and performs virtue view 
transformation during recognition. Also, the parameters of the 
VTM are sensitive to the training multi-view images. 

The third relies on correlation learning mapping relationship 
of gaits across multi-views. Hu et al. [25] proposed 
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view-invariant discriminative projection to improve the 
discriminative ability of multi-view gait features using a 
unitary linear projection. The multi-view gait features are 
matched without knowing or estimating the viewing angles. 
Hu et al. [26] used a sparse local discriminant canonical 
correlation analysis (CCA) to model the correlation of gait 
features from different views, using the correlation strength as 
similarity measure. Multi-view gait features correlation 
analysis does not require the gait to be transformed to virtue 
view. However, the gait features are less correlated when the 
gait views are significantly changed, and multi-view gait 
images are needed in the training step.  

Numerous gait recognition methods have been proposed to 
address multiple covariates (e.g., occlusion, clothing invariant, 
carrying items, and unconstrained paths). Martín-Félez et al. [27] 
treat gait recognition as a bipartite ranking problem. By 
exploiting learning to rank, the method is suitable under an 
uncooperative setting and robust against changes in covariate 
conditions. To identify subjects walking along curved 
trajectories Iwashita et al. [28] used a 4D gait database to 
synthesize virtual image corresponding to the estimated 
direction, and affine moment invariants as gait features. Rida 
et al. [29] select the most discriminative body part based on 
group Lasso of motion to reduce the intra-class variation. Xin et 
al. [30] used integrated sparse coding and multi-view hypergraph 
learning for recognizing a pedestrian under uncooperative setting. 
López-Fernández et al. [31] presented a rotation invariant gait 
descriptor based on 3D angular analysis of the subject’s 
movement for multi-view gait recognition on unconstrained paths. 
Nandy et al. [32] used pooled segmented statistical features to 
describe the shape of GEI edge contour. The higher order 
moments of the shape centroid in conjunction with a set of other 
area based features are combined to improve the classification 
results. Most of these methods address different covariates with 
limited gait views, mainly using frontal or side view of the gait 
sequences. In fact, it is difficult for a 2D training dataset to cover 
all conditions, especially incomplete gait silhouettes and with 
different carrying that affect the overall body shape directly. 

To address the above-mentioned gait recognition problems 
with arbitrary views, we propose partial similarity matching 
based on reconstructed 3D gait model with inpainting. A 
single view gait image is used to estimate the 3D gait model 
that includes one-side virtual surface portion of the human 
body in a gait cycle. The partial gait silhouettes in different 
views are extracted using gait partial region of interest (ROI) 
elements selection method and re-projected onto 2D space to 
construct partial gait energy images (PGEIs). A synthetic 
database with destination views is constructed based on 
GPSM, and multi-linear subspace classifier fused with major 
voting is used for gait classification and subject identification. 

III. GAIT PARTIAL SIMILARITY MATCHING  

A. Overview 
GPSM in 3D space enables gait recognition from different 

views especially from arbitrary views using limited number of 
gait views available in training data as illustrated in Fig.1. In 

Euclidean space, given two different 3D surface models 1S and

2S , the 3D partial surface matching searches for the optimal 
transformation { , }T R t= , where R is rotation matrix and t is 
translation matrix, by solving 

2

( , )
argmin

v v C
T

Rv t v
ʹ′ ∈

ʹ′+ −∑                      (1) 

where C denotes the dataset of GPSM points between the two 
surfaces. Most methods for solving 3D partial similarity 
matching, e.g., Besl [33] and Bareque [34], use two static 3D 
images of the same object captured at different views, and a 
rigid transformation T . As a gait cycle is composed of several 
dynamic non-rigid body transformation models, it is difficult 
to just use T to match the training subjects with themselves or 
with each other. Thus, in this paper a partial similarity 
matching (based on selected gait partial ROI elements 
between the given views) and PGEIs as features are used to 
realize arbitrary view gait recognition. 

      

(a) (b) (c) (d) (e) (f) 
Fig. 1. Gait partial similarity matching: (a) mesh vertices at 0° view (i.e., front 
view); (b) 90° view partial mesh vertices obtained by removing the 
self-occlusion data in (a) and rotated to 90°; (c) mesh vertices at 90° view; (d) 
0° view partial mesh vertices obtained by removing the self-occlusion data in 
(c) and rotated to 0°; (e) grey part of body denotes the partial similarity 
matching of (a) and (c) at 0° view using (d) as partial feature; and (f) grey part 
of body denotes the partial similarity matching of (a) and (c) at 90° view using 
(b) as partial feature. 

The overview of the partial similarity matching is shown in 
Fig. 2. In order to reconstruct the 3D gait model with different 
poses, a low DoF articulated skeleton structure is embedded 
into the body mesh, and a level set energy cost function is 
used for estimating the gait pose from incomplete 2D gait 
silhouettes. Laplacian deformation is then performed and the 
estimated pose mesh fitted onto the detailed body shape using 
the repaired 2D gait silhouette contour as reference. The gait 
frames used for 3D reconstruction are captured by a single 
view camera and include only the front view of the human 
body as silhouette constraints. Due to the absence of the side 
or rear surfaces, GPSM is used for partial similar feature 
extraction and representation. The multi-view PGEIs are then 
obtained to form a novel synthetic gallery database for 
multi-view gait training. Multi-linear subspace analysis with 
majority voting is used for subject identification. 

Gallery 
sequences 
Gallery 

sequences 

Probe 
sequences 

Probe 
sequences 

GPSM Feature Extraction

 Gait Partial ROI 
Elements Selection

Gallery Partial 
Gait Energy Image

GPSM Feature Extraction
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DB
with destination 
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 Multi-linear 
Subspace Analysis 
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Identification

Pose Estimation 
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Shape Deformation 
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Fig. 2. Overview of partial similarity matching for gait recognition. 
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B. 3D gait model reconstruction 
In 2D space, due to the absence of range value for every 

point in the image plane, partial similarity matching features 
cannot be extracted directly. Also, most research on 3D human 
motion capture assumes the body shape is known and is 
represented coarsely (e.g., using cylinders or super quadrics to 
fit limbs, or using visual hull without skeleton embedded). 
Such representations are less useful for 3D gait recognition 
with covariates. To address these problems, a parametric 3D 
human body is chosen as a template model obtained using the 
software Makehuman [35] that incorporates 1170 morphings. 
The parametric body model is optimized for subdivision 
surfaces modelling with 15128 vertices, suitable for gait 
modelling. Since gait silhouettes are often imperfect, by using 
parametric template, the model based gait silhouette inpainting 
can be derived for 3D gait model reconstruction. 

The reconstruction of 3D gait model from incomplete 2D 
gait silhouettes involves the following steps: 1) initialize the 
3D parametric body template; 2) estimate 3D body pose; 3) 
template based 2D incomplete gait image inpainting; and 4) 
3D shape deformation using the complete 2D gait silhouette. 

1)  Initializing 3D parametric body template  

A standard T-pose 3D parametric body is derived from the 
Makehuman software with average semantic values as shown 
in Fig. 1(a). Since T-pose body is not well fitted with the 
human postures in a gait cycle, a model with an I-pose as 
shown in Fig. 1(b) is initialized as 3D body template by 
morphing T-pose model onto I-pose using skeleton-based 
mesh deformation method [36]. The template model mesh is 
parameterized by the vector { },X XX V T=  comprising M 

vertices { }1 2, ,..., ,...,X m MV v v v v= and I mesh faces

{ }1 2, , , IT t t t= L . We use an articulated skeleton structure 
from [37] as shown in Fig. 3(c). 

     

(a) (b) (c) (d) (e) 
Fig. 3. 3D body template mesh: (a) T-pose 3D parametric body mesh; (b) 
initialized I-pose body mesh at 0°view; (c) skeleton embedded in I-pose 
model mesh; (d) I-pose model at 45° view; and (e) I-pose model at 90° view. 

It is assumed that the surface of template X  comprises the 
set of { }1 2, ,..., ,...,j JP p p p p=  rigid parts that are associated 
with J joints of the articulated skeleton. Every vertex in the 
template model is associated with a part label jη . It denotes 
the rigid part to which the vertex belongs. Every rigid part p  
is associated with a set of vertices and it has the same set of 
transformations in pose deformation, i.e., the joint rotation. 
The rigid parts of the human body are associated with the 
body joints and are estimated using the algorithm in [38]. 

2) Estimation of 3D body pose based on energy cost function  

Most recent work on body pose estimation and tracking 
using image cost function or other Bayesian methods require a 

generative model. However, crude and structured models are 
often used, e.g., articulated body model or ellipsoidal 
parametric model [39]. The method for recovering 3D pose 
throughout an image sequence by using SCAPE parametric 
body models in [40] based on 2D images assumes that the 
level of detailed shape recovery can be improved with 
additional cameras and improved background subtraction.  

Let ( , )S x y be the RGB frame captured by a fixed camera. 

Binary human silhouette image ( , )S x y is extracted using the 
background subtraction algorithm in [41] which can cope with 
local illumination changes, such as shadows and highlights, as 
well as global illumination changes. However, gait silhouettes 
extracted from a complex environment might still be 
incomplete, e.g., those in Fig. 4, where large areas of the 
silhouette are missing, mainly due to the similarity of colours 
between the subject’s clothes and background. It is thus 
important to estimate the detailed 3D body shape and pose 
directly from the incomplete images. 

    

(a) (b) (c) (d) 
Fig. 4. 2D incomplete gait silhouettes from CASIA databse. 

In this paper, the observation 2D gait silhouette images 
(complete or incomplete) are used to estimate 3D body poses. 

Let the estimated 3D gait model be denoted by { },Y YY V T=
and { }1 2, ,... ,...,Y n MV y y y y= where M  is the number of 
vertices. The instance model Y  is obtained from the template 
model X  with pose deformation. The body pose is associated 
with the joint angles of model skeleton. The vertices of the 
new pose deformed model Y is denoted by 

{ }( )( )Y m mV v R ξα= ⋅ Δ ,                        (2) 

where αΔ  is joint relative rotation angles , 1m M= K , mv are 
vertices in XV of template model, R is rigid part transform 
matrix, ( ) , 1,2,...,jm j Jξ η∈ =  determines to which rigid part 

mv belongs, jη is part label, and 
1 2

[ ... ]
Jη η ηψ α α α= Δ Δ Δ  

which is denoted by the joints rotation matrix from the 
template I-pose model. Using the joint relative rotation angles, 
a hierarchical skeleton with rigid bones connected by joints is 
constructed. The 3D mesh model is skinned to the given 
posture using the method in [36], i.e., the template 3D I-model 
is morphed onto any given posture. 

Level set was introduced in [42] for capturing moving 
fronts to address image segmentation problems. We do not use 
the level set directly for gait contour segmentation from 
complicated background images. Instead, we apply level set 
algorithm to incomplete 2D gait silhouettes to construct pose 
energy cost function, tE , image inpainting and gait image 
inpainting with 3D templates for estimation of body pose. 

Let the moving active contours or moving front be denoted 
by the zero level set { }( ) ( , ), ( , , ) 0t x y t x yζ φ= = where 
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( , , )t x yφ  is the level set function at time t . The evolution 
equation of level set function is  

0F
t
φ

φ
∂

+ ∇ =
∂

 ,                             (3) 

where F denotes the speed function. In image segmentation F 
is associated with the level set function φ  and the gradient of 
the image data. The level set function at time t is usually 
defined as a signed distance function 

          

( , ( ))
( ( , ), ) 0 ( )

( , ( ))

d r t r
r x y t r t

d r t r

ζ

φ ζ

ζ

+

−

⎧ ∈Ω
⎪

= ∈⎨
⎪− ∈Ω⎩

v v
v v

v v
         (4) 

where ( , )r x yv is the spatial vector determined by the point 
( , )x y in 2D image plane, and ( , ( ))d r tζv denotes the signed 
distance between vector rv  and the zero level set active 
contour ( )tζ at time t. The distance function ( , ( ))d r tζv  is 

defined as ( , ( )) min( )Id r t r rζ = −
v v v , where ( )Ir tζ∈v . +Ω

denotes the area outside the active contour while −Ω is inside. 
   The level set function is re-initialized periodically to be a 
signed distance function during evolution by solving 

0( )(1 )sign
t
φ

φ φ
∂

= − ∇
∂

.                      (5) 

Since the re-initialization is quite complex, we use the 
variational level set formulation of curve evolution without 
re-initialization [43], i.e., 

( ) ( ) ( ) ( )div div g vg
t
φ φ φ

µ φ λδ φ δ φ
φ φ

⎡ ⎤∂ ∇ ∇
= Δ − + +⎢ ⎥

∂ ∇ ∇⎢ ⎥⎣ ⎦   
(6) 

where  λ> 0, µ and ν are constants. The edge indicator 
function 

2

1
1

g
G Iσ

=
+ ∇ ∗

,                            (7) 

where G is the Gaussian kernel with standard deviation σ. 
The approximation of (6) is expressed as [43] 

1
, , ,( )k k k
i j i j i jLφ φ τ φ+ = + ,                          (8) 

where ,( )ki jL φ  is an approximation of the right hand side of (6) 
by the partial difference scheme (4).  
 The performance of level set depends on how its parameters 
are set, especially for complex background. We use the level 
set method to process incomplete gait silhouettes, e.g., Fig. 
5(a), and construct level set images, e.g., Fig. 5(e)-(f). For our 
gait silhouettes, we used the parameters λ=5.0, µ=0.04, ν=3.0, 
and time stepτ=5.0 as similarly used in [43], which is 
significantly larger than the time step used for traditional level 
set methods. The curve evolution takes 300 iterations. 

Let the observation 2D gait image shown in Fig. 5(a) be 
denoted by 2 ( , )DI x y  and the corresponding 3D to 2D 
mapping gait image be ( , )

tY
I x yθ as illustrated in Fig. 5(d), 

which is derived from the estimated 3D gait model tY  at time 
t. tY  as illustrated in Fig. 5(c) is morphed from template 
I-pose gait mesh model using human skeleton skinned mesh 
animation method. The level set method is used to obtain the 

silhouettes of the two gait images, where the final evolution 
level sets are denoted by 2Dφ  and 3Dφ . The silhouette 

contours are denoted by 0
2 2 ( , ) 0d D x yζ φ= =  and 

0
3 3 ( , ) 0d D x yζ φ= = . The data inside the silhouette contours 

have negative value 0φ < while the data outside the contours 
have positive value 0φ >  as illustrated in Fig.5. 

      

(a) (b) (c) (d) (e) (f) 
Fig. 5. Level set of gait images: (a) 2D incomplete gait image; (b) I-pose 3D 
body template mesh with skeleton embedded; (c) estimated 3D gait model by 
posture morphing from (b); (d) 2D projected gait image from morphed mesh 
(c); (e) level set of (a) in X-Y plane; and (f) level set of (d) in X-Y plane. 

Let the level set of the observation 2D gait image 
1
2 2 2 2( ) ( )D D D DH Hφ φ φ φ= − + be 1 where 2 0Dφ >  and retain the 

value unchanged for 2 0Dφ ≤  as shown in Fig. 6(a), where
( )H ⋅  is the Heaviside function. The gait data inside the level 

set contour of 3D projected gait image is extracted and 
denoted by 3 3( )D DS H φ= − . The data set inside the level set 
contour are then weighted by 

0
3( , ) ( , )w dD x y G d rσ ζ= ∗

v ,                    (9) 

where 0
3( , )dd r ζv  denotes the distance between vector ( , )r x yv

and curve 0
3dζ . Gσ is the Gaussian kernel with standard 

deviation σ. * denotes the convolution operation and ( ⋅ ) 
denotes the dot product between two matrices. Let 

1
2 3( )mix D w DD Sφ φ= ⋅ ⋅  which is the weighted mixture of the 

two level set shown in Fig. 6(c). 

     

(a) (b) (c) (d) (e) 
Fig. 6. Level set energy cost function construction: (a) processed level set of 
2D incomplete gait image; (b) 3D projected gait silhouette after weighting; (c) 
mixture of the two data sets of (a) and weighted silhouette (b); and (d) and (e) 
are mixture of the data set of (a) and two different pose projected silhouettes 
without weighting. 

 The mixed level set mixφ  is then segmented into three parts, 
i.e., head, torso and motion leg. The anatomical positions of 
neck, hip and knee as a fraction of the body height (H) 
following anatomical studies in [44] as 0.870H, 0.530H and 
0.285H, respectively, measured from the bottom of the 
bounding rectangle are used for segmentation. Note that these 
positions, which are based on anthropometry, might slightly 
deviate from the actual positions on a subject especially when 
the subject is performing an activity, e.g., walking. For more 
accurate lower body segmented parts associated with the most 
important body motion, the human leg motion is modelled as a 
pendulum [45]. The fixed point of the pendulum in a gait 
cycle is selected as the segmented line. Since partitioning a 
body according to its anatomical position is still challenging, 
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the human silhouettes are sometimes incomplete. To 
overcome this, the frames of gait silhouettes in a cycle are first 
averaged using GEnI [46] as illustrated in Fig 7(a)-(d) without 
the horizontal lines. The lower part of GEnI between 
anatomical positions hip and knee are segmented as shown in 
Fig. 7(e)-(h) and converted to binary images, i.e., Fig. 7(i)-(l). 
Using the corresponding binary images, the fixed point of 
pendulum is estimated from the position of the second peak. 

    

            (a) (b) (c) (d) 
    

    (e) (f) (g) (h) 
    

(i) (j) (k) (l) 
Fig. 7. Segmentation of sub-level set parts using GEnIs: (a)-(d) GEnIs in 18°, 
54°, 90°, 126° views withhorizontal lines as estimated positions of shoulder 
and pendulum; (e)-(h) segmented parts between hip and knee from (a)-(d);  
and (i)-(l) corresponding binary images of  (e)-(h). 

Let 0.870s HH =  be the anatomical position of neck. The 
estimated position, which might be closer to the actual 
location, is defined as ˆ [ ]s s sH H h H h∈ − +△ △ , where h△  
denotes the interval parameter. Let ˆ

sH
L denotes the slice width 

from left to right body contour in ˆ sH  horizontal position. The 

value of ˆ sH  is estimated by ˆ
ˆ [ ]

ˆ argmin
s

s s s

s H
H H h H h

H L
∈ − +

=
△ △

. 

Let the sub level set body parts be denoted by n
mixφ  where 

n=1, 2, 3. The level set energy cost function is 
3

1

i i
t neg neg mix mix

i
E E Eµ µ

=

= − +∑ ,                (10) 

where
1

( )i i i
neg mix mix L
E H φ φ= − ⋅  and ( ( , ))mix mix

x y
E x yφ=∑∑ . 

0i
negµ > and 0mixµ >  are the weighted coefficients. The 3D 

body pose estimation aims to obtain the optimal joints rotation 
matrix from template I model which is determined by 

1 2
[ ... ]

Jη η ηψ α α α= Δ Δ Δ . This is achieved by calculating the 
minimal energy cost 

1 2[ ... ]
argmin

J

tE
η η ηψ α α α

ψ
= Δ Δ Δ

ʹ′ = .                        (11) 

Fig. 6 illustrates the construction of the energy cost 

function which includes two parts. One is denoted by i
negE

which indicates how close the two silhouettes agree with each 
other in global space. If the silhouettes fit each other well, this 
indicates the largest level set overlap region. The level set data 
inside the gait contour regions has negative value and we use 

i
negE−  to indicate the sum. We also segment the mixed level 

set into three parts in order to overcome the sub-optimal 
decisions when significant part of the body is lost. The legs 
usually have the higher weighted coefficient because they are 
associated with the most important body motion for gait 
recognition. If there is a significant loss in data the leg regions 
would have small energy compared with other body parts and 

thus have make little effect or can even be ignored in the cost 
function. In order to address the solution being trapped in local 
optimum, the higher weighted coefficient is used. The other 
part of the cost function is denoted by mixE  which aids in 
improving the accuracy of the incomplete silhouette fitting 
process. Fig. 6(d) and (e) illustrate the mixture of the data set 
of Fig. 6(a) and two different pose projected silhouettes 
without weighting. The mixture of the data set is determined 
only by _ 1

2 3
no weighted
mix D DSφ φ= ⋅ . Fig. 6(d) and (e) have the same 

energy cost, because the incomplete data of legs are all 
embedded in the two different 3D projected silhouettes. 
However, the detail of the two estimated 3D meshes are 
actually different in the leg parts. Thus for optimal decisions, 
the silhouette weighted matrix is introduced and the mixE  
energy is used to improve the local detail level. 

3) 2D incomplete gait image inpainting based on 3D body  

The first step in the 3D body reconstruction is to estimate 
the gait pose that is denoted by the angles of joint rotation 
related to the template model. The next step is to apply body 
shape deformation since different subjects have different body 
shapes. Prior to the deformation, the incomplete gait images 
should be repaired, i.e., the lost parts should be filled and 
extraneous parts, e.g., bag, hat, and ball, should be removed. 

Let 2 ( , )DI x y  denote the incomplete image with 2Dφ  as 

its level set data. ( , )YI x yʹ′  is the 3D to 2D mapping gait image 
as illustrated in Fig. 5(d). It is projected from the final 
estimated 3D gait mesh with optimal pose parameters optionψ  
calculated using the minimal energy cost of (11). The final 
estimated 3D gait mesh illustrated in Fig. 5(c) is morphed 
from the template I-pose 3D gait model using our 3D pose 
estimation method. Human skeleton skinned mesh animation 
method is used for 3D posture morphing. The level set of 
( , )YI x yʹ′ is denoted by 3Dφʹ′ . The difference image ( , )differI x y is 

obtained as illustrated in Fig. 8(c). The level set of the 
difference image is denoted by differφ . The difference in the 

level sets 3Dφʹ′  and differφ is shown in Fig. 8(d). Let 

1 3m differ Dφ φ φʹ′= ⋅  and 2 1 1( )m m mHφ φ φ= ⋅ . The difference part is 

denoted by 3 2( )m mHφ φ= − . Fig. 8(d) shows the extraneous 
parts are located in different parts. 

     

(a) (b) (c) (d) (e) 
Fig. 8. Inpainting process: (a) level set of differential image with a bag; (b) 
level set of projected gait image from 3D estimated mesh; (c) weighted level 
set of (b); (d) level set sum of (a) and (b); (e) level set sum of (a) and (c). 

To eliminate the distortion to body shape due to carried 
item, the level sets differφ  and 3Dφʹ′ (respectively shown in Fig. 
9(a) and (b)) are added together to give the result in Fig. 9(d) 
which reduces the influence of the bag. To remove the residual 
silhouette of the bag in edge location we introduced the 
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weighted matrix to enhance 3Dφʹ′ in object location before 
adding, where the weighted matrix is 

3( , ) ( , )w dD x y G d rσλ ζʹ′ ʹ′= ⋅ ∗
v ,              (12) 

where 3dζ ʹ′  is gait contour curve denoting the zero level set of 

3Dφʹ′ , rv  is the vectors located in 3mφ  and λ  is the constant 
that controls the similarity between the final inpainting image 
and the 3D to 2D mapping gait image. The inpainting of 2D 
incomplete gait image is achieved by 

3fixed differ w DDφ φ φʹ′ ʹ′= + ⋅ ,                  (13) 

where fixedφ  and differφ  are 3D level set with coordinate (x, y) 

and ( ),  z x yφ= is the corresponding level set value. 
 

     

(a) (b) (c) (d) (e) 
Fig. 9. Inpainting process: (a) level set of differential image with a bag; (b) 
level set of projected gait image from 3D estimated mesh; (c) weighted level 
set of (b); (d) level set adding together of (a) and (b); and (e) level set adding 
together of (a) and (c) . 

 In Fig. 9(a) the bag is inside the contour with negative 
value. To eliminate the distortion, positive data is used for the 
sum. The bag in Fig. 9(b) and (c) have positive values. After 
the summation with Fig. 9(a), the bag is eliminated where the 
revised value is larger than zero and form the new zero level 
set contour. However, the revised value is sometimes not as 
accurate as the real gait contour illustrated in Fig. 9(d), 
especially in the area close to the body contour. To address 
this, the larger positive value is assigned to the bag before 
summation as shown in Fig. 9(c). As a result, the bag is better 
eliminated in Fig. 9(e), the final inpainting gait image with

1λ = . 

4) 3D shape deformation based on complete gait silhouettes  

The complete gait silhouettes are used for 3D body 
deformation. The 3D gait pose is estimated and denoted by the 
angles of joint rotation related to the template model X . The 
model X is transformed into the estimated pose ψ  by pose 
deformation based on model skeleton, and is denoted by 
Y Xψ=  as shown in Fig. 10(c). Since the instance model Y is 
different from the template model X in the body shape and 
clothing conditions, the model Xψ  needs to be processed for 
further shape correction by shape deformation.  

     

(a) (b) (c) (d) (e) 
Fig.10. Model based inpainting: (a) 2D gait silhouette; (b) markers extracted 
from (a); (c) pose deformed template model; (d) markers from (c); and (e) 
inpainting 3D model after Laplacian deformation. 

The markers 1,..., KZ z z= extracted from the 2D inpainting 
silhouette contour are set to the target position of 

1( ) ,...,silhouette KZ Extract X z zψʹ′ ʹ′ ʹ′= =  as shown in Fig. 10(d). 

The shape centroid ( , )c cx y  is chosen as the reference origin. 
The gait contours are counterclockwise unwrapped as in [47] 
from the top point of the contour to convert it into a complex 
vector 1 2[ , ,..., ]TNs p p p= where n n np x y j= +  and ( , )n nx y
denotes each boundary pixel. To eliminate the influence of 
spatial scale and number of points, the vector point is equally 
spaced by re-sampling it to normalize its size into a fixed 
number (360 in our experiments). 

Using the extracted silhouette landmarks, the deformed 
points are determined by minimizing the Laplacian 
deformation energy [48], i.e., 

2 2

1 1

argmin( ) argmin ( )- -
M K

L i i i i i i
i i

E L v T d z zω
= =

ʹ′ ʹ′= +∑ ∑  (14) 

whereM is the number of the vertices in 3D mesh model, ivʹ′  
is deformed iv , ( )iL vʹ′  is the Laplacian coordinate of the 
vertex ivʹ′ , id is the Laplacian coordinate of the vertex iv , iT  
is the 3 3×  matrix which transforms iv  to ivʹ′ . iω  are the 
weights. The resulting pose and shape deformed body model 
is shown in Fig. 10(e). 

 Fig. 11 shows several results of template based 3D gait 
model reconstruction from different bodies and views. The 2D 
gait silhouettes are segmented from CASIA dataset B [49] 
using background subtraction. The segmented regions are 
smoothed using Gaussian filter and subjected to 
connected-component analysis involving morphological 
operation of dilation to remove noisy pixels and followed by 
erosion to fill up any small holes inside the silhouette to give a 
single connected region. The pixels ( , )sil silx y  containing the 
human silhouette are selected as the object with maximum 
area [50] and are binarised using 2D Otsu thresholding. The 
missing data are manually filled in the 2D gait silhouettes. 
Using our inpainting method, the remapped inpainting 2D gait 
images are shown in Fig 11(c), (f) and (i). 

 
 

 
   

 
 

 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 
Fig. 11. 3D reconstruction using incomplete 2D gait silhouettes from different 
views: (a), (d) & (g) are respectively incomplete gait images at 54°, 108° and 
162°gait silhouettes with manually placed bar; (b), (e) & (h) are estimated 3D 
gait model after pose and shape deformation; (c), (f) & (i) are 2D projected 
gait model from 3D mesh. 

 Fig. 11(b), (e) and (h) are estimated 3D gait models using 
the method in Section III.B. The estimated 3D gait models are 
morphed from the I-pose parametric template body model by 
posture and shape deformation. The gait posture is determined 
by relative rotations of joint angles between template 3D 
I-model and estimated 3D model, and denoted by

1 2
[ ... ]

Jη η ηψ α α α= Δ Δ Δ estimated using our level set energy 
cost function. Using the joints angles, a hierarchical skeleton 
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with rigid bones connected by joints is reconstructed and the 
3D mesh model skinned. Using the method in [36], the 
template 3D I-model is morphed onto the given posture gait 
model. 3D Laplacian deformation is then applied on the 
morphed posture gait model to obtain individual body shape 
using Laplacian deformation energy. The final estimated 3D 
gait model are then obtained for the corresponding views. 

C. Gait partial similarity matching (GPSM) 
In order to get detailed mesh models of the body in various 

poses and wearing conditions, 2D gait images from three or 
more camera views are used. This is because the 2D gait 
images are only represented in X-Y plane and occlusion 
makes body information on the other side of the 3D body 
unknown. Self-occlusion is one significant occlusion where a 
body part is partially occluded by other parts. In our proposed 
method only one-view gait images are used for 3D gait model 
estimation on a worst-case scenario that exists in practical 
surveillance application. Thus, the accuracy of the reverse side 
of the 3D model is low. For an estimated 3D gait model, 

{ },P PF POY Y Yθ θ θ= at θ  view, the self-occluded body parts are 
associated with the 2D gait views used for the estimation. Let 
the estimated 3D gait model be the 3D gait model comprising 
the non-occluded front view part PFY

θ  and the occluded part POY
θ .  

For gait recognition, the self-occluded parts are discarded 
due to their low reliability, and the non-occluded PY

θ  are used 
for gait feature extraction and recognition. As a result, the 3D 
gait model estimated from the 2D images with the same view 
and pose could be compared directly. However, gait is a 
dynamic movement, and it is difficult to synchronize the poses 
in a gait cycle, or the poses might be significantly the same for 
different subjects. Furthermore, the gait model estimated from 
different views cannot be compared directly. For an example, 
the gait probe feature PFY

θ cannot be matched with the gallery 
feature GFY

β  with β  view since they have different occluded 
and front view parts. To address this, the partial similar gait 
features or the gait partial ROI elements between PFY

θ  and GFY
β , 

denoted by ,
ROIGa β θ< >  and ,

ROIPr β θ< >  where ,
ROIGa β θ< > is the gallery 

ROI (extracted from gallery data between β andθ views) and 
,

ROIPr β θ< >  is the target ROI (extracted from probe data), are 
extracted. The two data can be compared directly if they are in 
the same pose (determined by partial surface and volume 
matching or nonrigid 3D matching). Since gait is not a static 
model and the poses in a gait cycle change, direct comparison 
of 3D gait models or partial features are not feasible. Thus the 
partial mesh constructed from the 3D gait partial ROI 
elements is re-projected onto 2D space to form a partial gait 
image. The Partial Gait Energy Image (PGEI), e.g., Fig. 12, is 
formed by averaging all the partial gait silhouettes in a cycle.  

 
   

(a)  (b) (c) (d) 
Fig. 12. Example PGEIs: (a) between 90° and 126°; (b) between 90° and 72°; 
(c) between 90° and 54°; and (d) between 90° and 36°. 

1) Gait partial ROI elements selection 

   Partial similarity matching is used to select the common 
view surfaces for comparison. The selected common view 
surfaces are ROI elements that include mesh vertices and 
mesh faces. Let Ω be the partial similar features between two 
different views. The ROI of M vertices and I mesh faces is 

{ }1 2 1 2, ,..., ; , ,..., , ( , )
iM I T iROI v v v T T T v T= ∈Ω ,      (15) 

where { } 1 4| 0,1,...3k
i iT t k R ×= = ∈  and ( , )

iT iv T  denotes a 
quadrilateral mesh face composed by four vertices indexed by 
k
it R∈ .Let the 3D mesh estimated from θ  and β  views be 

respectively denoted by { },P P PY V Tθ θ θ=  and { },G G GY V Tβ β β= , 

where PY
θ is the probe model and GY

β  is the gallery model. To 
select gait partial ROI elements is to choose the non-occluded 
common view surface. This is achieved in two steps. 

Step 1) Construct an initial ROI surface for each 3D mesh. 
The probe 3D body model atθ  view denoted by { },P PF POY Y Yθ θ θ=  
separates the mesh vertices and faces into two different sets. 
The initial ROI surface is the front (non-occluded) view PFY

θ . 
To get the non-occluded surface, the occluded part is first 
marked out and segmented from the 3D body mesh. Since the 
self-occluded vertices are behind the front surface, searching 
all the data and faces hidden in the rear aids in obtaining the 
self-occluded surface. Four vertices in one mesh face are used 
to construct a data set { } 3 4| 0,1, 3s iA v i R ×= = ∈K . sA  is 
projected onto the X-Y plane to get a closed polygon sD . By 
searching all the vertices whose X-Y plane projection belongs 
to polygon sD , a larger set of vertices is constructed and 

denoted by 3 J
sB R ×∈ , where J is the number of data. The 

mesh surface comprising the vertices in sA is fitted with a 

cubic surface
3 3

,
0 0

( , ) i j
i j

i j
z f x y a x y

= =

= =∑∑ [51], where i and j 

define the power, (x,y) is the coordinates of the curve surface 
and ,i ja  is the coefficient which is estimated from the given 
vertices. Each vertex in sB  is marked by ( , )markI f x y z= − . 
The vertices belong to the occluded surface if 0markI < . By 
iterating through all faces in the 3D mesh, the occlusion 
vertices are marked out. Fig. 13(b) shows the results of 
removing marked occluded vertices. Holes are found in the 
corresponding surface because all the faces associated with the 
occluded vertices are also discarded. To minimize these, the 
vertices in the same mesh face should be checked before 
removing them. They are discarded only if four of them are 
marked as occluded. Another problem is that part of some of 
the occluded surfaces might remain if any of the vertices in the 
retained surface belong to the occluded part. When the surface 
is rotated to another view, the removed surface data (shown in 
Fig. 13 (d)) will affect the extraction of partial similar 
features. To address this problem, mesh face deformation is 
used to transform the occluded vertices to optimized positions 
that result in a face with the smallest hole and overlapped 
areas. Fig. 15 shows the three cases where a mesh face should 
be deformed to get high level ROI. 
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(a)  (b) (c) (d) (e) (f) (g) 
Fig. 13. Determining self-occluded vertices: (a) complete 3D gait mesh at 

45° view; (b) ROI surface obtained by deleting all self-occluded vertices at 
45° view; (c) ROI surface at 90° view of (b); (d) ROI surface at 90° view 
obtained by deleting the faces with fully occluded vertices in (a); (e) 
self-occluded surface obtained by our method; (f) ROI surface obtained by our 
method at 45° view; and (g) ROI surface at 90° view of (f). 

The first case (Fig. 14(a)) has one vertex in the mesh face 
under the front view surface. The occluded vertex is denoted 
by ,1 ,1 ,1{ , , }o o o ov x y z= . The vertex is transformed to the new 
position that makes the triangular holes (illustrated by s1 and 
s2 in Fig. 14(a)) and the overlap triangle (illustrated by s3 in 
Fig.14 (a)) minimum. The new location of ov  is denoted by vʹ′
. The other constraint is that the new mesh face updated by vʹ′
should have the same normal vector nʹ′  as the former mesh 
face. The optimization problem is described by   

3
2

1

argmin
o

i
v i

s n n
ʹ′ =

ʹ′+ −∑ .               (16) 

Vo

V＇

s2

s1

s3

 

V1o
V1＇

V2＇

V2o

 

V1oV1＇

V3＇

V2o

V3o

V2＇

 

(a)  (b)  (c) 
Fig. 14. Three cases of mesh face structure that should be deformed: (a) 

one vertex under front view surface; (b) two vertices under front view surface; 
and (c) three vertices under front view surface. 

Fig.14 (b) and (c) show the other two cases respectively 
with two and three vertices in the mesh face belonging to the 
occluded surface. Let the occluded vertices be denoted by , 
where . The vertices in the occluded mesh face and 
the corresponding face above them are projected onto the X-Y 
plane to get two closed polygons  and . Let denotes the 
curve that intersects the two closed polygons. The newly 
transformed occluded vertices are denoted by  which are 
located within curve  and the updated face retains the same 
normal vector  that satisfies . 

Step 2) Obtain the partial ROI surface between β  and θ  
using the initial ROI surfaces of the front view part denoted by
PFY
θ  and GFY

β . Let Rα β→  denote the 3D rotation transformation 
matrix from view α  to view β . The initial ROI surfaces are 
affine transformed by PFY Rθ

θ β→⋅  and GFY Rβ
β θ→⋅ . They are 

transformed to each other’s view. Step 1 is repeated on the 
two surfaces to remove the new occluded vertices. Finally, 
transform the resulting partial similar surface to the same 
view. The gait partial ROI elements are then denoted by

, ( )ROI GGa Yβ θ β< >  and , ( )ROI PPr Yβ θ θ< >  that set GY
β and PY

θ  
respectively as the gallery ROI and probe ROI. 

2) Partial gait energy image (PGEI) 

An incomplete binary silhouettes is the projection of the 
common view surface and is composed of gait partial ROI 
elements denoted by ,

ROIGa β θ< >  and ,
ROIPr β θ< > . By using the 

partial ROI elements, the partial similar surface meshes can be 
represented. Transforming them to the same gallery β view, 
and projecting to X-Y space form 2D partial images denoted 
by ,

, ( , )Ga tI x yβ θ< > and ,
, ( , )Pr tI x yβ θ< > . The partial similarity gait 

energy images is 

,
,

1
,

,
,

1

1 ( , ),

( , )
1 ( , )

N

Ga t
t
M

Pr t
t

I x y Gallery
N

PGEI x y

I x y Probe

R

R

OI

OI
M

β θ

β θ
β θ

< >

=
< >

< >

=

⎧
⎪
⎪

= ⎨
⎪
⎪
⎩

∑

∑
 (17)  

where β is the gallery view andθ the partial destination view. 

IV. ARBITRARY-VIEW GAIT RECOGNITION BASED 
ON MULTI-LINEAR SUBSPACE ANALYSIS 

To realize arbitrary-view gait recognition with partial 
similarity matching, a synthetic database with destination 
views is constructed based on GPSM. Let 0 Gβ β=  be the 
gallery view and 1N pβ β+ = be the probe view. Let

{ }1, , ,n Nϕ β β β∈ K K  be the synthetic destination views. The 
training partial similarity matching features are denoted by  

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0 0 0

1

1

1

1
1 1

, , ,

, , ,

, , ,

G

G G G

G G G

N

m M

m

G N G N G

M

m M

Y Y Y

D Y Y Y

Y Y Y
ϕ ϕ ϕ
β

ϕ

β β β β β β

β β β β β β

β β β β β β+ + +

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K K

K K

K K

 (18) 

where ( ) ,,
G

m
G

mY PGEI
ϕϕ β ββ β < >= , andM denotes the number 

of classification. Let { }GD Dϕ
β

ϕ = , the synthetic database Dϕ

which is represented by a higher order tensor. Multi-linear 
subspace analysis has been shown to be good for analysing an 
ensemble of images [52]. We represent the gait PGEI features 
of different objects with multiple partial views as a 
higher-order tensor D . The row of the tensor denotes the 
PGEIs with the same partial view. The column of the tensor 
defines the PGEIs of the same objects. The longitudinal of the 
tensor illustrates the PGEIs of the different gallery views.  

Tensors are multi-linear mappings over a set of vector 
spaces. The order of tensor 1 n NI I IR × × × ×∈ K KA  is N elements of 
Α  are denoted as 

1 n Ni i i× × × ×K KA , where1 n ni I≤ ≤ . The tensor D 

is decomposed into different constituent factors by subjecting 
it to a generalization of N-mode single value decomposition 
that orthogonalizes the N spaces and decomposes the tensor as 
the mode-n product of N-orthogonal spaces. Thus a tensor can 
be expressed as a multi-linear model of factors as [52] 

1 1 2 2 3 m n N N× × × × ×K= U U U UD Z .      (18) 

n
ov

1,2,3n∈

oD tD l

nvʹ′
l

nʹ′ 2argmin
n
ov

n nʹ′ −
%
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The core tensor governs the interaction between the mode 
matrices 1 NKU U . The mode matrix NU contains the 
orthonormal vectors spanning the column space of matrix 
( n)D  resulting from the mode-n flattening of D . 

The multi-linear analysis of different objects with multiple 
partial similarity gait PGEI feature ensembles leads to the 
tensor gait representation. The ensemble of acquired gait 
features is organized as a 4th-order tensor D , gallery views, 
partial destination views and PGEI pixels. The N-mode SVD 
algorithm is applied to compute four orthonormal mode 
matrices, and the tensor is decomposed as 

1 subject 2 g_views 3 d_views 4 pixels× × × ×= U U U UD Z .     (19) 

1 subject 2 g_views 3 _ 4 pixels
T T T T

d views× × × ×= U U U UZ D is the core 

tensor. The column vectors of subjectU  denoted by mc span the 
identification space, while their rows encode the gallery 
views, partial destination views and pixels invariant 
representation. Let the tensor base be denoted by

2 _ 3 _ 4g views d views pixels= × × ×U U UB Z . If the gallery gait view, 
partial destination view and pixels are known, the training gait 
features of the mth subject in gallery view β and partial 
destination viewθ can be denoted by 

, , , subject
m T

my cβ θ β θ< > < >= B ,             (20) 

where 
1

, ,subject ,( )T m
mc yβ θ β θ

−
< > < >= B .           (21) 

The operator factor for identity is  
1

, , subject , , subject( )TP θ β β θ
−

< > < >= B .           (22) 

Given a probe gait PGEI feature y between θ  partial 
destination view and β gallery view, the identity coefficient is 

1
, , , subject , , subject( )Tc P y yβ θ β θ β θ

−
< > < > < >= = B .     (23) 

The maximum probability information of identity is 
selected to achieve gait recognition as   

2 2
, ,( | ) exp[ / (2 )]mp m c c cβ θ β θ σ< > < >∞ − − .   (24) 

The weighting coefficient is then used to obtain the final 
recognition result via majority voting, i.e., 

,( ) argmax [C( ) ]
m M

Identity probe p c mβ β θ
β

ϖ < >
∈

= =∑ ,  (25) 

where M  is the set of classification labels and Gβ β∈ . 

( )Identity probe is the final label that is fused by the multiple 

classifiers. ,C( )c mβ θ< > =  means the class label m  learned by 

the individual classifier of k-nearest neighbours C( )⋅  using 
identity coefficient in the β  gallery view, and 

,[C( ) ]p c mβ θ< > =  is the probability defined in (24). βϖ is a 
weighting coefficient for recognition results using different 
gallery dataset and it is in inverse ratio to the difference 
between β  and θ . 

V. EXPERIMENTS 

A. Experiments on CMU MoBo Database 
The CMU MoBo database [53] consists of six image 

sequences of 25 subjects (23 males, 2 females) walking on a 
treadmill. Each image has a resolution of 640×480. Each 
subject performed 4 types of walk: slow walk, fast walk, 
inclined walk, and slow walk holding a ball. Each sequence is 
11 seconds long and recorded at 30 frames per second.  
 In order to illustrate the advantages of our proposed method 
on incomplete binary gait silhouettes, occlusion is simulated 
by adding horizontal or vertical bar to the gallery silhouettes 
as illustrated in Fig. 15. A horizontal or vertical bar is added to 
gait silhouettes with the probability varying from 10% to 
100% as in [7]. The horizontal bar width varies from 40 to 100 
pixels with step size of 20 pixels, and the vertical bar width 
changes from 20 to 50 pixels with step size of 10 pixels.  

 
       

(a) (b) (c) (d) (e) (f) (g) (h) 
Fig. 15. Synthesized bar occlusions: (a)–(d) Vertical bars with width of 
20-50pixels; and (e)–(h) Horizontal bars with width of 40-100 pixels. 

The position of the added bar is uniformly distributed 
within the silhouette height or width. For comparison, the 
sequences captured by the frontal-view camera are chosen for 
the experiment. We used the fast walk sequences as the gallery 
and slow walk sequences as the probe set as in [7]. The test 
view is the same with the corresponding training view. 

Table 1 and Table 2 clearly show that our GPSM 
outperforms the other methods in dealing with incomplete gait 
silhouettes. Our 2D incomplete gait image inpainting method 
repairs the gait images rather than mitigating the effect of 
imperfect silhouettes in covariate conditions that affect gait 
feature extraction. 

 
Table 1 Rank-1 recognition rates with horizontal bar occlusions. 

Method 
Horizontal bar width 

40 60 80 100 
IDTW[54] 64% 60.2% 62.4% 63.2% 

GEI[8] 79.6% 80.6% 81% 79.6% 
GHI[55] 54.4% 54.4% 57.8% 53.4% 
GMI[56] 46.0% 46.4% 46.4% 39.6% 

FD[7] 79.5% 81.4% 80.3% 80.3% 
GPSM 92.6% 94.2% 93.4% 93.8% 

Table 2 Rank-1 recognition rates with vertical bar occlusions. 

Method 
Vertical bar width 

20 30 40 50 
IDTW[54] 66.2% 67.3% 65.8% 66.4% 

GEI[8] 81% 82% 82% 80.6% 
GHI[55] 52.8% 54.6% 56% 56.2% 
GMI[56] 48.8% 50.8% 46.4% 48.4% 

FD[7] 83.4% 83.2% 82.2% 81.4% 
GPSM 94.6% 93.3% 93.1% 92.8% 
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Table 3 Twelve experiments on CMU MoBo gait dataset (in lateral view). 
Experiment Gallery set Probe set 

A Slow walk Fast walk 
B Slow walk Ball carrying walk 
C Slow walk inclined walk 
D Fast walk Slow walk 
E Fast walk Ball carrying walk 
F Fast walk Inclined walk 
G Inclined walk Slow walk 
H Inclined walk Fast walk 
I Inclined walk Ball carrying walk 
J Ball carrying walk Slow walk 
K Ball carrying walk Fast walk 
L Ball carrying walk Inclined walk 

Twelve additional experiments in [10] were performed as 
shown in Table 3. Given the gallery or probe sequences, 
GPSM is used to get 2D inpainting gait silhouettes. In this 
step, the object that corresponds to the carried item is 
eliminated and the missing data in the body repaired. As a 
result the gait silhouettes used for training or testing are quite 
accurate. Once the gait images are repaired, the GPSM 
features are extracted for classification. Since the gallery view 
and the probe view are the same, the existing methods show 
high recognition rates when gallery and probe sets are either 
the same or have small shape variation (train with S and test 
with S, or train with B and test with B) [44]. In order to 
evaluate our proposed method for robustness, experiments are 
chosen with gallery and probe sets under various conditions. 

The methods FSVB [57] STM-SPP [58], WBP [59], 
SGRVDL [60] and PEI [10] evaluated under varied 
challenging conditions using CMU MoBo database are chosen 
for performance comparison. Table 4 shows that our GPSM 
outperforms the other methods especially for ball carrying 
condition and inclined walk. Results of the experiments that 
are not presented in the original papers have been left blank in 
the table. The existing methods show high recognition results 
when the gait silhouettes have small shape changes (e.g., slow 
walk vs. fast walk, and fast walk vs. slow scenarios). 
However, most methods are not robust to appearance changes 
(e.g., fast walk vs. ball carrying walk, and incline walk vs. ball 
carrying walk scenarios). The 2D gait silhouettes could be 
influenced easily by various carrying conditions. In contrast, 
the performance of GPSM shows satisfactory classification 
results across all types of gallery/probe conditions. 

Table 4 Recognition results on Mobo data set. 
Exp. FSVB WBP STM-SPP SGRVDL Method [20] PEI GPSM 

A 82% 92% 94% 96% 92% 100% 100% 
B 77% 73% 93% 87% - 92% 94% 
C - - - - - 60% 92% 
D 80% 92% 91% 92% 92% 88% 96% 
E 61% 61% 84% 88% - 60% 93% 
F - - - - - 72% 94% 
G - - - - - 76% 93% 
H - - - - - 80% 94% 
I - - - - - 48% 91% 
J 89% 75% 82% 87% - 92% 93% 
K 73% 63% 82% 88% - 84% 91% 
L - - - - - 76% 92% 

There are several reasons why our GPSM achieves 
significantly better performance. First, our estimated 3D 
models are embedded with skeleton structure. The motion 
features of the gait can be implicitly represented in our PGEIs 
that are robust to various challenging factors. Second, our 3D 
gait models are based on parametric body template with the 
same mesh vertices and faces. Our level set based inpainting 
makes our method more efficient in dealing with incomplete 
gait silhouettes and carrying conditions. Third, 3D parametric 
model is less sensitive to inclined silhouettes. This is because 
the initial pose of 3D models can be manipulated around 
X-Y-Z axes to fit any view changes whereas the 2D 
silhouettes cannot. As initial pose of the skeleton are included 
in the motion features ψ , the inclined conditions are 
considered in 3D pose estimation. 

B. Experiments	
  on	
  CASIA	
  B	
  dataset	
  
CASIA Dataset B is a multi-view gait dataset comprising 

124 subjects, and the gait data was captured from 11 views in 
the range [0° 180°] with an interval of 18°. Three variations, 
namely in view angle, clothing and carrying condition are 
separately considered. There are 10 video sequences for each 
view of a subject: six sequences for normal walking, i.e., 
without wearing a coat or carrying a bag; two sequences for 
walking wearing a coat; and two sequences for walking with 
either a knapsack, a satchel or a handbag [49]. The video 
sequences are recorded indoor at a rate of 25 frames per 
second and the resolution of each frame is 320×240. 

1) One Gallery View Under Normal Conditions 

   The performance of our view-invariant gait recognition 
based on partial similarity matching is evaluated in this 
section. First, 100 subjects are chosen randomly from the 
CASIA Dataset B, and the normal walk set of the selected 
subjects is divided into two groups. Each group contains 3 
normal sequences from each of the multiple views. One group 
is used as gallery for training and the remaining as probe for 
testing. Only one gallery view is used for training. 

 

 

(a) (b) 

 

 

(c) (d) 

Fig. 16. Rank-1 recognition rates of different methods. 
 

In order to evaluate the robustness of our partial similarity 
matching under multi-views, we compare it with GEI-SVD 
[61] and GFI-CCA [9]. Fig. 16 shows the rank-1 recognition 
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rates for views from 0° to 180°. It is clear that our method 
performs best. Unlike the VTM-based methods which 
transform the feature of probe gait data to gallery viewing 
angle in order to match one of the views in gallery gait dataset, 
our method extracts the partial similar features between two 
different views directly from an estimated 3D parametric gait 
model. It avoids the feature mismatched that often occurs in 
view transformation, especially with large view angle change. 
As a result, the VTM-based methods require a larger number 
of training samples to construct a more generic VTM, and 
better performance is achieved by learning from more 
varieties of gait samples. Furthermore our method which is 
based on parametric 3D human body is robust to incomplete 
gait silhouettes that aids in recognition. 

2) Under Various Conditions  

In order to evaluate the robustness of our method in 
various conditions under multi-views, we compare our method 
with VI-MGR [6], GFI-CCA [9], RLTDA [62], Robust VTM 
[63], FT-SVD [21] using CASIA Dataset B.  

Table 5 Rank-1 recognition rates on CASIA B gait dataset. 
Probe/ Gallery view 54°/36° 90°/108° 126°/144° 

Our Method 
Bag 94.2% 92.3% 95.1% 
Coat 93.5% 92% 94.2% 

Method [29] 
Bag 76.4% 73.7% 76.9% 
Coat 87.9% 91.1% 86.2% 

RLTDA 
Bag 80.8% 76.5% 72.3% 
Coat 69.4% 72.1% 64.6% 

RobustVTM 
Bag 40.7% 58.2% 59.4% 
Coat 35.4% 50.3% 61.3% 

FT-SVD 
Bag 26.5% 33.1% 38.6% 
Coat 19.8% 20.6% 32% 

Table 5 shows the rank-1 recognition rates on the dataset 
at 54°, 90°and 126° views. The gallery gait data is under 
viewing angle from 36° to 144°. The known probe gait feature 
from one view angle is transformed into another gallery view 
using VTM for matching. Tables 6 to 8 show our method 
outperforms all the existing methods, especially in bag and 
clothes conditions with large angle changes. Our method is 
robust and less sensitive to various carrying conditions 
including wearing a coat and carrying a bag. The parametric 
3D model of the human gait is useful for view-invariant gait 
recognition by using prior knowledge of human body as 
constraint. The 2D gait image inpainting helps to remove the 
bag not belonging to the body and mitigate the effect of heavy 
coat.  
Table 6 Rank-1 View-invariant gait recognition (%) under various conditions: 
probe data viewing angle 54°. 

Methods Gallery 36° 54° 72° 90° 108° 126° 144° 

ROI-SR 
Bag 92.2 96.4 86.3 60.1 43.6 35.7 23.5 

Coat 92.9 96.1 90.5 61.8 45.4 34.8 24.2 

GFI-CCA 
Bag 89.3 94.2 83.5 51.6 43.9 42.2 43.5 
Coat 87.4 92.1 82.7 48.3 42.5 39.3 40.1 

UMSLDCCA 
Bag 93.6 97.5 92.0 66.3 55.4 52.0 49.5 
Coat 93.1 97.0 91.4 63.5 51.2 47.6 44.3 

GPSM 
Bag 94.2 97.3 92.3 83.7 68.4 62.7 58.6 

Coat 93.5 97.2 91.8 82.2 65.8 60.1 51.4 

Table 7 Rank-1 View-invariant gait recognition (%) under various conditions: 
probe data viewing angle 90°. 

Methods Gallery 36° 54° 72° 90° 108° 126° 144° 

ROI-SR 
Bag 28.4 49.1 86.2 92.9 86.6 61.2 27.2 

Coat 24.9 51.4 88.9 93.8 90.4 59.3 28.3 

GFI-CCA 
Bag 33.1 52.0 85.4 94.5 89.3 81.5 36.2 
Coat 30.6 52.4 83.1 92.8 85.5 77.3 34.3 

UMSLDCCA 
Bag 44.2 61.7 90.4 96.0 91.9 86.3 47.9 
Coat 41.0 59.3 89.4 94.4 91.6 84.2 46.1 

GPSM 
Bag 62.5 82.7 93.2 96.3 92.3 88.2 67.2 

Coat 60.3 80.4 91.9 95.2 92.0 87.8 64.1 

Table 8 Rank-1 View-invariant gait recognition (%) under various conditions: 
probe data viewing angle 126°. 

Methods Gallery 36° 54° 72° 90° 108° 126° 144° 

ROI-SR 
Bag 26.1 37.3 45.4 68.2 92.1 94.8 91.6 

Coat 27.5 39.2 46.3 66.9 94.0 95.5 92.4 

GFI-CCA 
Bag 34.5 46.7 59.4 65.1 93.2 95.0 90.4 
Coat 33.4 44.6 56.1 68.3 93.4 96.5 91.2 

UMSLDCCA 
Bag 42.1 52.0 62.5 70.3 94.4 96.9 95.1 
Coat 40.3 50.4 62.7 71.1 96.5 97.3 93.8 

GPSM 
Bag 53.2 61.9 73.2 86.5 95.6 97.1 95.1 

Coat 51.8 60.4 72.5 83.8 95.9 96.4 94.2 

There are several other reasons why our method achieves 
significantly better performance. 3D parametric gait model is 
used for gait partial ROI elements selection. By using the 
extracted partial similarity ROI features, view-invariant 2D 
gait images can be matched directly by PGEI using GPSM. In 
VTM or related view transformation methods, the gait features 
in different views must transform to the same view for 
recognition. The accuracy of the VTM model is important 
which can influence the recognition results directly. Only 
when VTM is constructed using a gallery dataset that covers 
sufficient walking samples including various views and 
challenging factors can VTM be effective for the view 
transformation of gaits under various walking conditions. This 
is why VTM constructed from mixed walking conditions gives 
worse performance than VTM from single walking condition. 
In practical applications VTM is limited by insufficient 
training dataset for various conditions or views. In contrast, 
our GPSM enables gait recognition from different views 
especially from arbitrary views but with limited number of 
gait views available in training dataset. Our method is the 
mixture of model-based and apparent-based gait recognition 
that is robust for carrying items, occlusions, segmentation 
problem, etc. Another reason is that our GPSM is robust to 
wearing conditions. The 3D template model used in our 
method is tight clothes fitting. When the gaits are with coat 
condition, the silhouettes could be larger than the normal ones. 
After 3D body pose estimation, the larger 2D gait silhouettes 
with coat on body could be slimmed down by using a bigger 
control coefficient λ  in (12). It is the constant that controls 
the similarity between the final inpainting image and the pose 
fitting 3D template projected gait images. The larger λ  value 
makes the inpainting gait silhouettes closer to the template 
model. As a result, the skeleton motion features are enhanced 
and the coat appearance is eliminated. The coefficient λ  can 
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be used to adjust the composition proportion of statistic and 
dynamic feature of the final PGEI. 

3) Gait Recognition with Multiple Gallery Views  

Table 9 shows the rank-1 recognition rate of our method on 
CASIA B gait dataset with multiple gallery views for training. 
The multi-linear subspace analysis enables our multi-view gait 
recognition method to use information from multi-gallery 
views. We match the feature of probe PGEI to the features of 
gallery PGEIs from all possible views, and using weighted 
majority voting for the final decision.  

The table shows clearly that better performance can be 
achieved by incorporating the information from more viewing 
angles. A larger number of training samples with various 
carrying conditions and view angles will contribute to a more 
accurate partial similar feature extraction, leading to even 
better performance in arbitrary view gait recognition under 
various conditions. 
Table 9 Rank-1 recognition (%) of GPSM on CASIA B gait dataset with 
different views for training. A: training with 9 views from 18° to 162°; B: 
training with 4 views including 36°, 72°, 108° and 144°; and C: training with 
2 views including 54°and 126°. 

Probe 
Normal Bag Coat 

A B C A B C A B C 
18° 94 91 85 91 88 80 90 86 81 
36° 98 98 96 95 95 90 95 95 91 
54° 99 92 95 97 91 94 97 93 96 
72° 98 98 96 96 96 91 96 96 92 
90° 99 94 87 96 92 84 95 91 84 

108° 98 98 95 95 95 91 94 94 89 
126° 98 93 96 97 94 96 96 92 95 
144° 98 98 96 93 93 87 93 93 82 
162° 93 90 83 92 88 81 92 87 80 

C. Experiments on AVAMVG and KY4D databases 
The database AVAMVG [31] comprises 20 subjects 

performing 9 walking trajectories defined by 1 9,  ...{  ,  }t t in an 
indoor environment. Of these trajectories, 3 are straight 

1 3,  ...{  ,  }t t  and 6 are curved 4 9,  ...{  ,  }t t . Each trajectory is 
recorded on 6 colour cameras placed around a room. The 
video sequences have a resolution of 640×480 pixels sampled 
at a rate of 25 frames per second. KY4D (Kyushu University 
4D Gait Database) [28] comprises 42 subjects with 3D visual 
hull models and 2D image sequences. Each subject walks 
along four straight and two curved trajectories captured by 16 
cameras at a resolution 1032×776 pixels. Although the 
database provides 3D visual hull models of the subjects, for a 
fair comparative evaluation of our system we reconstruct them 
with our 3D parametric body model.   

Our 3D parametric body reconstruction method includes 
two steps. The first step is to estimate the 3D body pose 
morphing from I-pose template model using level set energy 
cost function. In order to fully use the 2D multi-view gait data 
for accurate 3D gait reconstruction, (10) is rewritten as 

  

3
,

1

i i
t neg neg mix mix

i
E E Eθ θ θ

θ

µ µ
∈Φ =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑ ,                (26) 

where Φ is a multi-view set determined by cameral numbers. By 
calculating the minimal energy cost in (11), the joints rotation 

matrix 
1 2

[ ... ]
Jη η ηψ α α α= Δ Δ Δ from the template I-pose 

model is obtained for pose morphing. The second step is body 
shape deformation. Using the multi-view extracted silhouette 
landmarks, the Laplacian deformation energy in (14) is 
redefined by combining multi-view data as 

22

1 1

argmin( ) argmin ( )- -
M K

L i i i i i i
i i

E L v T d z zθ θ

θ

ω
= ∈Φ =

ʹ′ʹ′= +∑ ∑∑ .(27) 

From the reconstructed 3D parametric gait model (illustrated 
in Fig. 17), virtual 2D images of arbitrary view are 
synthesized using a method similar to that in [31]. Using the 
synthesized virtual 2D images with different views of a 
subject walking on curved trajectories, the average image of 
one gait cycle similar to GEI is generated for recognition.  

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 17 Reconstruction from curved trajectories of KY4D: (a), (c), (e), (g) - 
2D gait images from Camera C; and (b), (d), (f), (h) the corresponding 
reconstructed 3D gait models. 

To evaluate the robustness of our method with limited 
training conditions, i.e., using dataset comprising only straight 
trajectories for training, for recognition of multi-view gait 
walking with unconstrained path, the data of straight 
trajectories in AVAMVG and KY4D are chosen as galleries 
for training while the data of curved trajectories are selected as 
probe for testing. Tables 10 and 11 show that our method 
performed well for unconstrained gait trajectories. This is 
mainly because by using multi-view 2D gait images and our 
level set based inpainting process, more accurate parametric 
3D body is generated from incomplete 2D data with skeleton 
embedded. By synthesizing arbitrary view gait images, our 
approach is robust to variations in view and path. 

Table 10 Correct classification rate(%) on AVAMVG gait dataset. 
Method Training trajectories t4 probe t7 probe AVG 

Our method Straight {t1,t2,t3} 92.00 97.00 94.5 

López  [31] Straight {t1,t2,t3} 90.69 96.57 93.63 
Castro [64] Straight {t1,t2,t3} 85.00 95.00 90.00 
Seely [65] Straight {t1,t2,t3} 55.00 70.00 62.50 

Iwashita [28] Straight { t1,t2,t3} 35.14 37.71 36.42 

Table 11 Correct classification rate(%) on KY4D gait dataset. 
Method Training trajectories t4 probe t7 probe AVG 

Our method Straight {t1,t2,t3,t4} 75.5 80.0 77.75 
López  [31] Straight { t1,t2,t3,t4} 68.29 77.5 72.89 

Iwashita [28] Straight { t1,t2,t3,t4} 61.90 71.40 66.65 

Castro [64] Straight { t1,t2,t3,t4} 58.50 61.00 59.75 
Seely [65] Straight { t1,t2,t3,t4} 19.51 35.00 27.25 

D. Experiments on TUM-IITKGP database 
The TUM-IITKGP database [66] contains static and 

dynamic occlusions with subjects walking on straight paths. It 
consists of 840 sequences from 35 subjects with each of the 
walking conditions recorded four times. The subjects were 
recorded in a regular walking configuration, followed by three 
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degenerated configurations including hands in pocket, 
backpack and gown. The other two variations are dynamic 
occlusion (two subjects walking past each other) and static 
occlusion (two subjects just standing in the line of sight).  

In our experiments, one group of sequences with regular 
walking is selected for training, and the remaining sequences 
with various conditions are for testing. The results compared 
with three baselines introduced in [66] are illustrated in Table 
12. Baseline 1 (BL 1) using Colour Histogram for feature, 
Baseline 2 (BL 2) using GEI, and Baseline 3 (BL 3) using 
cropped GEI as feature for classification to eliminate the effect 
of backpack and gown. When walking in regular condition 
and with hand in pocket, the Colour Histogram Baseline 
method has the highest recognition rate. This is because it uses 
the colour information of the subjects that is highly correlated 
with the colour of the clothes. Also, it is very sensitive to 
lighting conditions especially for recognition under differently 
calibrated cameras and daytimes. However, in this experiment, 
the number of the subjects is limited to 35 and the subjects’ 
clothes and illumination are unchanged. As a result, the 
simplest Colour Histogram Baseline method achieves good 
recognition result in regular walking conditions. Our approach 
has the highest recognition rate for walking with backpack, 
gown and static occlusion. This is due to our 2D incomplete 
gait image inpainting with weighted level set function based 
on 3D template body. It significantly improves the quality of 
incomplete 2D gait silhouettes for improved recognition as 
illustrated in Fig. 18. 

    

(a) (b) (c) (d) 
Fig. 18 Gown inpainting: (a) walking with gown; (b) estimated 3D gait model 
after pose and shape deformation; (c) differential image of (a) and (b); and (d) 
morphed skeleton of (b). 

We have not done any experiments on dynamic occlusion, 
because human motion tracking method should be introduced 
first for adequate segmentation of gait silhouettes. When the 
two moving subjects are fused together, it is difficult to 
separate them. However, the human skeleton motion 
information with tracking method could be used for 
recognition. When the moving subjects are known to be fused, 
we can discard the frame and use the remaining frames for 
recognition. These will be our future work. 

Table 12 Rank-1 recognition (%) on TUM-IITKGPgait dataset. 

Method Our method BL 1 BL 2a BL 2b 

Regular walk 95.3 97.9 68.6 77.1 
Hand in pocket 87.1 93.3 67.1 75.7 

With backpack 85.9 75.0 11.4 77.1 
With gown 45.0 20.0 8.6 32.9 
Dynamic occlusion - 43.7 - - 

Static occlusion 80.0 70.0 - - 

VI. CONCLUSION 
In this paper, 3D parametric gait model is reconstructed 

from 2D video sequences using a template body model and 

involving pose and shape deformation. A new framework is 
proposed for view-invariant gait recognition using partial 
similarity matching. In order to extract multi-view partial 
similar features, GPSM is proposed. Multi-view PGEIs are 
synthesized to form a synthetic database for view-invariant 
gait recognition. Multi-linear subspace classifier fused with 
majority voting is used to provide accurate identification of 
the subjects. The experimental results show that our proposed 
arbitrary view gait recognition method is robust for various 
conditions, e.g., occlusions, carrying items and segmentation 
noises. These advantages enable the proposed method to be 
used in many practical surveillance applications. Further work 
will concentrate on dynamic occlusion and other more 
complex variations. 
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