226 research outputs found

    A Framework for Developing Real-Time OLAP algorithm using Multi-core processing and GPU: Heterogeneous Computing

    Full text link
    The overwhelmingly increasing amount of stored data has spurred researchers seeking different methods in order to optimally take advantage of it which mostly have faced a response time problem as a result of this enormous size of data. Most of solutions have suggested materialization as a favourite solution. However, such a solution cannot attain Real- Time answers anyhow. In this paper we propose a framework illustrating the barriers and suggested solutions in the way of achieving Real-Time OLAP answers that are significantly used in decision support systems and data warehouses

    HaoLap: a Hadoop based OLAP system for big data

    Get PDF
    International audienceIn recent years, facing information explosion, industry and academia have adopted distributed file system and MapReduce programming model to address new challenges the big data has brought. Based on these technologies, this paper presents HaoLap (Hadoop based oLap), an OLAP (OnLine Analytical Processing) system for big data. Drawing on the experience of Multidimensional OLAP (MOLAP), HaoLap adopts the specified multidimensional model to map the dimensions and the measures; the dimension coding and traverse algorithm to achieve the roll up operation on dimension hierarchy; the partition and linearization algorithm to store dimensions and measures; the chunk selection algorithm to optimize OLAP performance; and MapReduce to execute OLAP. The paper illustrates the key techniques of HaoLap including system architecture, dimension definition, dimension coding and traversing, partition, data storage, OLAP and data loading algorithm. We evaluated HaoLap on a real application and compared it with Hive, HadoopDB, HBaseLattice, and Olap4Cloud. The experiment results show that HaoLap boost the efficiency of data loading, and has a great advantage in the OLAP performance of the data set size and query complexity, and meanwhile HaoLap also completely support dimension operations

    Data Mining

    Get PDF

    A Data Centric Privacy Preserved Mining Model for Business Intelligence Applications

    Get PDF
    In present day competitive scenario, the techniques such as data warehouse and on-line analytical process (OLAP) have become a very significant approach for decision support in data centric applications and industries. In fact the decision support mechanism puts certain moderately varied needs on database technology as compared to OLAP based applications. Data centric decision support schemes (DSS) like data warehouse might play a significant role in extracting details from various areas and for standardizing data throughout the organization to achieve a singular way of detail presentation. Such efficient data presentation facilitates information for decision making in business intelligence (BI) applications in various industrial services. In order to enhance the effectiveness and robust computation in BI applications, the optimization in data mining and its processing is must. On the other hand, being in a multiuser scenario, the security of data on warehouse is also a critical issue, which is not explored till date. In this paper a data centric and service oriented privacy preserved model for BI applications has been proposed. The optimization in data mining has been accomplished by means of C5.0 classification algorithm and comparative study has been done with C4.5 algorithm. The implementation of enhanced C5.0 algorithm with BI model would provide much better performance with privacy preservation facility for Business Intelligence applications

    Integration of Data Mining and Data Warehousing: a practical methodology

    Get PDF
    The ever growing repository of data in all fields poses new challenges to the modern analytical systems. Real-world datasets, with mixed numeric and nominal variables, are difficult to analyze and require effective visual exploration that conveys semantic relationships of data. Traditional data mining techniques such as clustering clusters only the numeric data. Little research has been carried out in tackling the problem of clustering high cardinality nominal variables to get better insight of underlying dataset. Several works in the literature proved the likelihood of integrating data mining with warehousing to discover knowledge from data. For the seamless integration, the mined data has to be modeled in form of a data warehouse schema. Schema generation process is complex manual task and requires domain and warehousing familiarity. Automated techniques are required to generate warehouse schema to overcome the existing dependencies. To fulfill the growing analytical needs and to overcome the existing limitations, we propose a novel methodology in this paper that permits efficient analysis of mixed numeric and nominal data, effective visual data exploration, automatic warehouse schema generation and integration of data mining and warehousing. The proposed methodology is evaluated by performing case study on real-world data set. Results show that multidimensional analysis can be performed in an easier and flexible way to discover meaningful knowledge from large datasets

    Multidimensional process discovery

    Get PDF

    Greedy Selection of Materialized Views

    Get PDF
    Greedy based approach for view selection at each step selects a beneficial view that fits within the space available for view materialization. Most of these approaches are focused around the HRU algorithm, which uses a multidimensional lattice framework to determine a good set of views to materialize. The HRU algorithm exhibits high run time complexity as the number of possible views is exponential with respect to the number of dimensions. The PGA algorithm provides a scalable solution to this problem by selecting views for materialization in polynomial time relative to the number of dimensions. This paper compares the HRU and the PGA algorithm. It was experimentally deduced that the PGA algorithm, in comparison with the HRU algorithm, achieves an improved execution time with lowered memory and CPU usages. The HRU algorithm has an edge over the PGA algorithm on the quality of the views selected for materialization

    Enrichment of the Phenotypic and Genotypic Data Warehouse analysis using Question Answering systems to facilitate the decision making process in cereal breeding programs

    Get PDF
    Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.This paper has been partially supported by the MESOLAP (TIN2010-14860) and GEODAS-BI (TIN2012-37493-C03-03) projects from the Spanish Ministry of Education and Competitivity. Alejandro Maté is funded by the Generalitat Valenciana under an ACIF grant (ACIF/2010/298)
    corecore