1,651 research outputs found

    Robust Control Theory Based Performance Investigation of an Inverted Pendulum System using Simulink

    Get PDF
    In this paper, the performance of inverted pendulum have been Investigated using robust control theory. The robust controllers used in this paper are H∞ Loop Shaping Design Using Glover McFarlane Method and mixed H∞ Loop Shaping Controllers. The mathematical model of Inverted Pendulum, a DC motor, Cart and Cart driving mechanism have been done successfully. Comparison of an inverted pendulum with H∞ Loop Shaping Design Using Glover McFarlane Method and H∞ Loop Shaping Controllers for a control target deviation of an angle from vertical of the inverted pendulum using two input signals (step and impulse). The simulation result shows that the inverted pendulum with mixed H∞ Loop Shaping Controller to have a small rise time, settling time and percentage overshoot in the step response and having a good response in the impulse response too. Finally the inverted pendulum with mixed H∞ Loop Shaping Controller shows the best performance in the overall simulation result

    OPTIMIZATION OF PID CONTROLLER FOR INVERTED PENDULUM SYSTEM USING GENETIC ALGORITHM

    Get PDF
    The proportional-integral-derivative controller or commonly known as PID Controller has been widely used in the industries since the 1940s and remains the most often used today. In this project, PID Controller of an Inverted Pendulum System is optimized using Genetic Algorithms (GA) approach. Currently, the Inverted Pendulum System as available in the laboratory is controlled by PID Controller. However, ample time is required by the pendulum to change its position from downward to upright and to be stabilized. Therefore, GA will be applied to overcome this problem. The main objective of this project is to find the optimum stable point, which is the optimum value ofKP, K} andKD of the PIDController using GA approach. The second objective of this project is to reduce the time required for the pendulum to be stabilized. In order to complete this project, a few stages need to be carried out. The stages include problem identification, research on GA, understand the principle of PID Controller and Inverted Pendulum, obtain stable region, create GA coding via MATLAB and conduct test on the real Inverted Pendulum System. Before optimization technique using GA can be applied, the stable region for the desired system needs to be obtained first. In this project, Nyquist Stability Criterion is utilized to obtain the stable region. Once the stable region is obtain, GA is then been applied where the optimum value of KP, Ki and KD within the stable region are determined. For this project, MATLAB Software and Double Inverted Pendulum Trainer are required. Therefore, the understanding on those software and hardware are vital

    Development of a Genetic Fuzzy Controller and Its Application to a Noisy Inverted Double Pendulum

    Get PDF
    Fuzzy logic is used in a variety of applications due to its universal approximator attribute and non-linear characteristics. The tuning of the parameters of a fuzzy logic system, viz. the membership functions and the rulebase, requires a lot of trial and error. This process could be simplified by using a heuristic search algorithm like genetic algorithm (GA). In this chapter, we discuss the design of such a genetic fuzzy controller that can control an inverted double pendulum. GA improves the fuzzy logic controller (FLC) with each generation during the training process to obtain an FLC that can bring the pendulum to its inverted position. After training, the effectiveness of the FLC is tested for different scenarios by varying the initial conditions. We also show the effectiveness of the FLC even when subjected to noise and how the performance improves when the controller is tuned with noise

    Implementation and Integration of Fuzzy Algorithms for Descending Stair of KMEI Humanoid Robot

    Get PDF
    Locomotion of humanoid robot depends on the mechanical characteristic of the robot. Walking on descending stairs with integrated control systems for the humanoid robot is proposed. The analysis of trajectory for descending stairs is calculated by the constrains of step length stair using fuzzy algorithm. The established humanoid robot on dynamically balance on this matter of zero moment point has been pretended to be consisting of single support phase and double support phase. Walking transition from single support phase to double support phase is needed for a smooth transition cycle. To accomplish the problem, integrated motion and controller are divided into two conditions: motion working on offline planning and controller working online walking gait generation. To solve the defect during locomotion of the humanoid robot, it is directly controlled by the fuzzy logic controller. This paper verified the simulation and the experiment for descending stair of KMEI humanoid robot.&nbsp

    Classical and intelligent methods in model extraction and stabilization of a dual-axis reaction wheel pendulum: A comparative study

    Get PDF
    Controlling underactuated open-loop unstable systems is challenging. In this study, first, both nonlinear and linear models of a dual-axis reaction wheel pendulum (DA-RWP) are extracted by employing Lagrangian equa-tions which are based on energy methods. Then to control the system and stabilize the pendulum's angle in the upright position, fuzzy logic based controllers for both x -y directions are developed. To show the efficiency of the designed intelligent controller, comparisons are made with its classical optimal control counterparts. In our simulations, as proof of the reliability and robustness of the fuzzy controller, two scenarios including noise -disturbance-free and noisy-disturbed situations are considered. The comparisons made between the classical and fuzzy-based controllers reveal the superiority of the proposed fuzzy logic controller, in terms of time response. The simulation results of our experiments in terms of both mathematical modeling and control can be deployed as a baseline for robotics and aerospace studies as developing walking humanoid robots and satellite attitude systems, respectively.The work of U.F.-G. was supported by the government of the Basque Country for the ELKARTEK21/10 KK-2021/00014 and ELKARTEK22/85 research programs, respectively

    Fuzzy logic applications to expert systems and control

    Get PDF
    A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    Single Inverted Pendulum System Controller: System Study and Comparison

    Get PDF
    A thesis presented to the faculty of the College of Science and Technology at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Cheng Cheng on May 15, 2012

    Bacterial foraging-optimized PID control of a two-wheeled machine with a two-directional handling mechanism

    Get PDF
    This paper presents the performance of utilizing a bacterial foraging optimization algorithm on a PID control scheme for controlling a five DOF two-wheeled robotic machine with two-directional handling mechanism. The system under investigation provides solutions for industrial robotic applications that require a limited-space working environment. The system nonlinear mathematical model, derived using Lagrangian modeling approach, is simulated in MATLAB/Simulink(®) environment. Bacterial foraging-optimized PID control with decoupled nature is designed and implemented. Various working scenarios with multiple initial conditions are used to test the robustness and the system performance. Simulation results revealed the effectiveness of the bacterial foraging-optimized PID control method in improving the system performance compared to the PID control scheme

    Saturable absorption measurement of platinum as saturable absorber by using twin detector method based on mode-locked fiber laser

    Get PDF
    This paper illustrates the absorption measurement of Pt as saturable absorber (SA) by using mode-locked fiber laser system. The SA is fabricated by depositing 10 nm of Pt on the fiber ferrules using sputtering method. The absorption measurement of Pt is characterised by employing a balanced twin detector method based on mode-locked fiber laser with central wavelength of 1532.25 nm, repetition rate of 2.833 MHz and pulse duration of 34.3 ns. The Pt-SA produce modulation depth of 21.9% and saturation intensity of 21.6 MW cm-2
    corecore