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This thesis covers the experimental study of the design of a controller for the single 

inverted pendulum system. This study will focus mostly on two methods to control a 

single inverted pendulum system, and the comparison between them. In this study, a real 

single inverted pendulum system will also be built. The study will be undertaken using 

the following steps. 

Firstly, according to Newton's laws of motion, the mathematical model of the 

inverted pendulum system is established. That will make it easier to obtain the system's 

transfer function and state space equation, so that the system's stability and 

controllability can be analyzed with the help of MATLAB. 

Secondly, the two methods, which are the proportional-integral-derivative PID 

double closed loop and the pole placement technique will be used to build the controller 

separately. The control algorithm simulation uses MATLAB/Simulink to obtain the step 



response curve of the system and to evaluate the system's performance. 

Thirdly, the single inverted pendulum system will be built in the lab, and an attempt 

will be made to make the system balance itself by tuning the PID parameters. 

Finally, by comparing these two methods, advantages and disadvantages will be 

demonstrated, and suggestions for controlling optimally the single inverted pendulum 

system will be given. 
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CHAPTER I INTRODUCTION 

General Area of Concern 

The inverted pendulum system is a classic problem in the area of control systems. It 

is often used to demonstrate key concepts in linear control such as the stabilization of 

unstable systems. Since the system is inherently nonlinear, it has also been useful in 

illustrating some of the ideas in nonlinear control. In this system, an inverted pendulum 

is attached to a cart equipped with a motor that drives it along a horizontal track. What 

needs to be done is to make sure the pendulum does not fall and can stay up straight by 

moving the cart left or right. The study of the inverted pendulum has significance for a 

variety of research problems in control, such as the biped robot walking problem, flight 

attitude adjustment of a rocket, aircraft landing, the stability of offshore oil platforms, 

etc. 

F---+1 M 

Figure 1. 1. Single inverted pendulum system. 
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Objectives 

This study aims at analyzing the mathematical model of a single inverted pendulum 

system and comparing the different control methods. Basically, there are three main steps 

in this study, which are studying the mathematical model, designing the controllers, and 

testing the control results. 

Significance of the Stndy 

The inverted pendulum is a classic problem in dynamics and control theory and is 

widely used as a benchmark for testing control algorithms. To design a stabilizing 

controller for a single inverted pendulum is a typical problem in control system design 

based on the state space approach. A stabilized pendulum is useful to show the layperson 

the power of the state-space theory as a control technique (Furuta, Kajiwara & Kosuge, 

1980). The inverted pendulum system is a typical unstable, higher-order, multivariable, 

strongly coupled non-linear system. It has two main purposes: firstly, as an inherently 

unstable nonlinear system, the inverted pendulum control system is the ideal platform to 

carry out a variety of tasks in the teaching of control theory, and in doing research. Many 

typical problems in control, such as nonlinear behavior, robustness, follow-up, etc. are 

included in the study of the inverted pendulum system. Secondly, due to the simplicity of 

the inverted pendulum as a controllable device, new control methods can be tested on the 

inverted pendulum to see if they are able to deal with a system that is nonlinear and 



unstable. 

Definition of Terms 

1. Inverted pendulum 

An inverted pendulum is a pendulum which has its mass above its pivot point. It is 

often implemented with the pivot point mounted on a cart that can move horizontally. 

Unlike a normal pendulum which is stable when hanging downwards, an inverted 

pendulum is inherently unstable, and must be actively balanced in order to remain 

upright. 

2. Controllability and observability 

3 

Controllability and observability represent two major concepts of modern control 

system theory. These concepts were introduced by R. Kalman in 1960. As to 

controllability, in order to be able to do whatever we want with the given dynamic system 

under control input, the system must be controllable. As to observability, in order to see 

what is going on inside the system under observation, the system must be observable. 

The observability and controllability of a system are mathematical duals (Kalman, 1959). 

3. Root locus 

The root locus is a way of presenting graphical information about a system's 

behavior when the controller is working. The root locus is a widely used tool for design 

of closed loop systems, and it has the virtue of being a good design tool for continuous 

time systems (where you work in the s-plane, or the complex plane) and for sampled 
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( computer controlled) systems (where you work in the z-plane ). Root locus analysis is a 

graphical method for examining how the roots of a system response function change with 

variation of a certain system parameter, commonly the gain of a feedback system. 

4. Pulse-Width Modulation (PWM) 

Pulse-width modulation (PWM), or pulse-duration modulation (PDM), is a 

commonly used technique for controlling power to inertial electrical devices, made 

practical by modem electronic power switches. The average value of voltage (and current) 

fed to the load is controlled by turning the switch between supply and load on and off at a 

fast pace. The longer the switch is on compared to the off periods, the higher the power 

supplied to the load is. The term "duty cycle" describes the proportion of "on" time to the 

regular interval or "period" of time; a low duty cycle corresponds to low power, because 

the power is off for most of the time. Duty cycle is expressed in percent and 100% is 

fully on. 



CHAPTER II REVIEW OF LITERATURE 

Historical Background 

In 1976, Shozo Mori, Hiroyoshi Nishihara and Katsuhisa Furuta successfully 

controlled a single pendulum system, considering the overall characteristics including its 

nonlinear property, which represented the real system more closely (Mori, Nishihara & 

Furuta, 1976). 

In 1980, Katsuhisa Furuta, Hiroyuki Kajiwara and Kazuhiro Kosuge designed a 

controller to stabilize a double inverted pendulum on an inclined rail. The controller was 

designed by means of computer aided design, or CAD (Furuta, Kajiwara & Kosuge, 

1980). 

In 1984, K. Furuta, T. Ochiai, and N. Ono realized the control ofa triple inverted 

pendulum, consisting of three arms. This pendulum was a good analogy to a human 

standing on a single leg without a foot, and the results of the paper contributed to the 

study ofa biped locomotive machine (Furuta, Ochiai & Ono, 1984). 

In I 992, a robust swing-up control using a subspace projected from the whole state 

space was proposed by K. Furuta, M. Yamakita, and S. Kobayashi. Based on the 

projected state space or pseudo-state, the control input is determined depending on the 

partitioning of the state as a bang-bang type control. The control algorithm is applied for 

a new type of pendulum (TI Tech pendulum), and the effectiveness and robustness of the 

proposed control are examined by experiments (Furuta, Yamakita & Kobayashi, 1992). 

5 



In 1997, Gordillo compared LQR, which is Linear-quadratic regulator, and the 

control method based on a genetic algorithm, and drew the conclnsion that the traditional 

control method was much better than the genetic algorithm. 

Now, most research on the inverted pendulum is conducted in Asia, such as at 

Beijing Normal University, the University of Science and Technology of China, Beijing 

University of Aeronautics and Astronautics (Beihang University) in China, Tokyo 

Institute of Technology, Tokyo Denki University, Tokyo University, in Japan, and Pusan 

National University, and Chungnam National University in Korea. Besides the above 

research centers, St. Petersburg University in Russia, Russian Academy of Sciences, 

Poznan University in Poland, University of Florence in Italy, and so on also have 

correlative research in this field. 

Software Review 

In this study, Simulink 6.3 (MATLAB 7. I) and Lab VIEW 2011 served as the 

simulation tool and the actual controller respectively. Both of them provide a great 

convenience for analyzing and building control systems. MATLAB, developed by 

Math Works, is a high-level technical computing language and interactive environment 

for algorithm development, data visualization, data analysis, and numerical computation. 

Using MATLAB, technical computing problems can be solved faster than with 

traditional programming languages, such as C, C++, and FORTRAN. MATLAB also 

stands out for its extraordinary expandability. More functions are able to be added to 

6 
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MATLAB by the implementation of toolboxes, one of which is Simulink. Simulink, 

which is a tool for modeling, simulating and analyzing multidomain dynamic systems, is 

also from Math Works. It is widely used in control theory and digital signal processing for 

multidomain simulation and Model-Based Design. Its primary interface is a graphical 

block diagramming tool and a customizable set of block libraries. It offers tight 

integration with the rest of the MATLAB environment and can either drive MATLAB or 

be scripted from it. One of the most important reasons why Simulink was chosen for the 

theoretical analysis and simulation required by this thesis is that its program is very easy 

to interpret from the block diagram, which is a basic and common way to represent a 

system's principal functions and their relationships in the engineering world of control. 

The version of MATLAB and Simulink used in this thesis are version MATLAB 7.1 and 

Simulink 6.3, released in 2005. 

Lab VIEW, short for Laboratory Virtual Instrumentation Engineering Workbench, is 

a system design platform and development environment for a visual programming 

language from National Instruments. It uses the graphical language for programming, 

which is also known as the "G" language. G is a high-level, dataflow graphical 

programming language designed to develop applications that are interactive, execute in 

parallel and multicore. Lab VIEW combines the convenient graphical development 

environment with the powerful but flexible G language to make the program on 

Lab VIEW quite intuitive and readable. Besides, Lab VIEW's performances in data 

acquisition, instrument control, and industrial automation are extremely impressive. Thus, 



both advantages of Lab VIEW make it a good choice to serve as the core controller of the 

inverted pendulum system. The latest version of Lab VIEW, which is version Lab VIEW 

2011, released in August 2011, is used in this thesis, 

Control Methods Review 

In this study, there are two control methods that will be used: 

Proportional-Integral-Derivative control and pole placement. Even though PID control is 

a classical control theory, while the pole placement is a modern one, both of them show 

good performance in system control. 

8 

A proportional-integral-derivative control, or PID control, is the most commonly 

used closed loop feedback method in control systems. Even complex industrial control 

systems may comprise a control network whose main control building block is a PID 

control module (Johnson & Moradi, 2005). It was the first, as well as the only, controller 

to be mass produced for the high-volume market that existed in the process industries. 

A PID controller calculates an "error" value as the difference between a measured 

process variable and a desired set-point. It attempts to minimize the error by adjusting the 

process control inputs. The block diagram of closed loop systems with PID controller is 

shown in Figure 2.1. 



Controller 

~--o! I K,ls 

r e 
-~ • .f><l---..::_4-~ P K, 

'--~ D K, s 

+ 

+ 
+ 

u P(s) y 

Figure 2.1. Block Diagram of Closed Loop Systems with PID Controller 

In the figure above, the control signal u for the system is formed entirely from the 

error e (Astrom & Murray, 2008). It is pretty clear that the PID algorithm involves three 

separate parameters: the proportional, the integral and the derivative values, denoted P, I, 

9 

and D. That is why the PID control is also called "Three-Term Control". The input/output 

relation for an ideal PID controller with error feedback is: 

Each of the terms or parameters in the PID control system has its own function. P, or 

proportional control, has an immediate response to the input error of the system. This 

means that once the sensor senses the disturbance, the difference between the set and 

sensed value, or error will be sent into the proportional controller. Then the proportional 

controller will produce a control signal, which abates the error instantly, and the strength 

depends on the coefficient Kp. It is simple, but the static error of the system response 

cannot be eliminated. Usually, the static error can be reduced by increasing the Kp. 

However, the stability and dynamic performance of the system will decrease if Kp is too 



10 

large. I, or integral control, can help to remove the static error of the response. As long as 

the input error e is not equal to zero, it can keep modifying the control signal u 

cumulatively until the error e reaches zero. Integral control overcomes the shortcomings 

of proportional control by eliminating static error without the use of excessively large 

controller gain. The integral time constant T; reflects the strength of the integral action. 

The larger T; is, the more integral action will be added. What's more, a larger T; can 

reduce the overshoot, although the time used to eliminate the static error will be longer. 

Therefore, the cost of implementing integral control is weakening the rapidity of the 

system. D, or derivative control, uses the rate of change of an error signal as an input and 

introduces an element of prediction into control action to nip the error in the bud. So 

derivative control reduces the overshoot and overcomes the oscillation of a system (Lu, 

Lin & Zhou, 2009). To sum up, each of the three terms of PID control brings some 

benefits and shortcomings. In order to achieve an ideal and satisfying target, the three 

parameters, P, I and D, have to act coordinately and properly to work as a whole. 

Pole placement, or full state feedback, is a method implemented in feedback control 

system theory to place the closed-loop poles of a plant in pre-determined locations in the 

s-plane, or complex plane. Placing poles is desirable because the location of the poles 

corresponds directly to the eigenvalues of the system, which control the characteristics of 

the response of the system. 

Usually, the system must be considered controllable in order to implement this 

method. Represent the closed-loop input-output transfer function in the manner shown 



below: 

{
x=Ax+Bu 
y=Cx+ou· 

A is called the "state matrix" and is decided by the system itself. B is the "input 

11 

matrix". C is the "output matrix" and D is the "feed through or feed forward matrix" (Liu 

& Tang, 2008). The poles of the system are the roots of the characteristic equation given 

bylsI-AI = 0. In order to assign the poles, what needs to be done is to find out the 

feedback matrix Kand substitute the A with A+BK so that the poles can be successfully 

relocated on the left half side of the complex plane. By doing this, the system can 

become stable. The roots of the full state feedback system are given by the characteristic 

equation det[ s1-(A +BK)] (Liu & Tang, 2008). One compares the terms of this 

equation with those of the desired characteristic equation to obtain the K matrix 

elements. 

Hardware 

I. Incremental Encoder 

An encoder is an electromechanical device that converts linear or rotary 

displacement into digital or pulse signals. An incremental encoder generates a pulse for 

each incremental step in its rotation. Unlike the absolute encoder, the incremental 

encoder does not output absolute position. The most common type of incremental 

encoder uses two output channels (A and B) to sense position and usually one channel is 

shifted by 90 electrical degrees from the other. The direction "CW" or"CCW" can be 
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determined by evaluating the signal levels relative to the alternate channel at the time of 

the rising edge. 

For example, in Figure 2.2, when the encoder is rotated clockwise, each rising edge 

of channel A occurs when channel B is low. This gives a negative count. 

I 
CHANNEL A 

___j 

CHANNEL B 

I 
I 

I 
I 

'--~-'' I 

Figure 2.2. When the Encoder Is Rotating Clockwise. 

When the encoder is rotated anti-clockwise, each rising edge of channel A occurs 

when channel B is high. This gives a positive count. 

CHANNEL A 

f 
_J 

I 
CHANNEL B 

!---,--~+ 
I 

Figure 2.3. When the Encoder Is Rotating Counter-clockwise. 

2. H-Bridge Circuit 

An H bridge is an electronic circuit that enables a voltage to be applied across a load 

in either direction. These circuits are often used in robotics and other applications to 

allow DC motors to run forwards and backwards (Li & Wang, 2005). 
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Figure 2.4 Structure of an H-bridge. 

The H-Bridge circuit is usually used to reverse the polarity of the motor, as well as 

to brake the motor. Table 2.1 is the truth table of the H-Bridge. 

Table 2.1. Truth Table of the Operation ofH-Bridge circnit. 

SI S2 S3 S4 Status 

I 0 0 I Forward 

0 I 1 0 Reversed 

0 0 0 0 Free Runs 

0 I 0 I Brake 

I 0 1 0 Brake 

The H-bridge is available as an integrated circuit. It is built using a 

multi-technology process which combines bipolar and CMOS control circuitry with 

DMOS power devices on the same monolithic structure. It is ideal for driving both DC 

and stepper motors. 

3. National Instruments PCI-6229 

The National Instruments PCI-6229 is a low-cost multifunction M-Series data 

acquisition (DAQ) board optimized for cost-sensitive applications. It has four 16-bit 

analog outputs, 48 digital I/O, 32-bit counters, digital triggering, correlated DIO (32 
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clocked lines, 1 MHz), NIST-traceable calibration certificate and more than 70 signal 

conditioning options. The PCI-6229 pinout is shown in Figure 2.5 and the timer/counter 

pins are shown in Table 2.2. 
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Figure 2.5. PCI-6229 Pinout. 
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Table 2.2. PCI-6229 Timer/Counter Pins 

Default Conncdor O Pin Number 
Cuunh.-rffimct· S~nul (N~tmcl 

CTR0SRC 37(P~l 8) 

CTR0GATE 3 (PFJ 9) 

CTROAUX 4S (PA 10) 

CTR0OUT 2 (PFI IJ) 

CTROA 37 (PFI SJ 

CTROZ J (PFI 9) 

CTR OB 4S(PA 10) 

CTR I SRC --1'.! (PFI 3) 

CTR I GATE 41 (PA 41 

CTR !AUX 46(PA II) 

CTR I OUT 40 (PA 13) 

CTRI A 42(PFl JI 

CTR 12 41 (PIH) 

CTRI B 46(PA 11) 

ffiEQOUT I (PF! 14) 

4. National Instrument SCB-68 

The NI SCB-68 is a shielded I/O connector block for interfacing I/O signals to 

plug-in data acquisition (DAQ) devices with 68-pin connectors. Combined with the 

shielded cables, the SCB-68 provides rugged, very low-noise signal termination. It 

is compatible with single- and dual-connector NI X Series and M Series devices 

with 68-pin connectors. The connector block is also compatible with most NI E, B, 

S, and R Series DAQ devices. The printed circuit board diagram is shown in Figure 

2.6. 
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CHAPTER III METHODOLOGY 

Mathematical Modeling 

Often when engineers analyze a system to be controlled or optimized, they use a 

mathematical model. Therefore, in my study, I will build a descriptive model of the 

system as a hypothesis of how the system could work, or try to estimate how an 

unforeseeable event could affect the system. I will build the mathematical model of the 

single inverted pendulum by studying and analyzing its movement mechanism and get 

the mathematical model according to the basic mechanical motion. In this research, 

Newton's laws of motion will be used to build the mathematical model of the single 

inverted pendulum system so that it can be convenient to analyze the system's 

controllability and observability. 

As has been mentioned in the previous chapter, the inverted pendulum system is a 

typical unstable, higher-order, multivariable, strongly coupled non-linear system. So, in 

order to simplify the analysis and build its mathematical model, the following 

assumptions are made: 

a. All components in the system are considered to be rigid. 

b. The air resistance and the friction in each joint are ignored. 

c. The entire mass of the pendulum is concentrated at its center of mass. 

17 
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The physical parameters and values of the system prototype are tabulated as 

follows: 

Table 3.1 Values and Parameters of the Inverted Pendulum System. 

m (kg) Pendulum's mass 0.18 

M(kg) Cart's mass 0.94 

I (m) Pendulum's halflength 0.30 

J(kg1n2) Pendulum's moment of inertia 0.0054 

F(N) Force on the cart 

X (m) Cart's position 

<P (rad) Pendulum's angle 

Figure 3.1 is the model of the inverted pendulum. 

' :x I 

~ 
' ' ' ' N,' ¢ '.,;--------------T--

y 

Yg 
o,.,_ __ __,__...,c_~x _______ J__ __ 

X M F 

Figure 3.1 The Mechanical Analysis of the Inverted Pendulum System 

In the rectangular coordinate system above, Xg and yg are the distances from P to Ny 

and N,, which are the vertical and horizontal force the cart gives to the pendulum 

respectively. Therefore, the kinetic equation of pendulum's rotating around its center of 

gravity is: 



J¢ = N,x, -N_,Y, = N,[sin¢-N,lcos¢ 

where J is the pendulum's moment of inertia. 

I I 
J =-m(21)2 = -ml' 

12 3 

For the pendulum's center of mass: 

d 2(x+lsin¢) 
m 2 N, 

dt 

d 2(l cos¢) 
m--'--,----'-'- = N - mg 

dt' ' 

For the cart (the horizontal direction): 

According to (2-3) and (2-5), 

(M +m)x+ml¢cos¢-ml¢' sin¢= F 

According to (2-1 ), (2-3) and (2-4), 

(J +ml')¢ +m/xcos¢-mglsin¢ = 0 

(2-1) 

(2-2) 

(2-3) 

(2-4) 

(2-5) 

(2-6) 

(2-7) 

Thus, we can get the precise kinetic equations of the inverted pendulum system are 

as followed; 

¢ = (M +m)mglsin¢-mlF-m212¢' sin¢ 

J(M +m)+m2l2 (1-cos¢)+Mml2 

.. (J +ml2 )F +(J +ml2 )ml¢' sin¢-m212gsin¢cos¢ 
x= 

J(M +m)+m2l2 (1-cos¢)+Mml2 

(2-8) 

(2-9) 

Since¢ is nsnally quite small while the inverted pendulum is working, we could 

assume that here sin¢ ,., ¢ and cos¢ ,., 1. So the simplified precise kinetic equations 
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are: 

¢= mgl(M+m) ¢ ml F 
(M +m)J +Mml' (M +m)J +Mml' 

'i= 11.'gl' 
2 

¢+ J +ml' F 
(M+m)J+Mml (M+m)J+Mml' 

After substitutiug the variables with values from Table 2-1, we can get: 

¢ =27.86¢-2.538F 

'i = -1.343¢+ l.015F 

Taking the Laplace transforms of the above equations, we have: 

s 2<l>(s) = 27.86<l>(s)- 2.538F(s) 

s2X(s) =-l.343<l>(s) + l.015F(s) 

So the transfer functions are: 

<l>(s) -2.538 

U(s) s 2 -27.86 

X(s) = 9.800-0.400s2 

<l>(s) s2 

System Stability 

(2-10) 

(2-11) 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

(2-14) 

(2-15) 
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The first step in designing compensation for any plant is to observe the closed loop 

unity feedback response to check for stability. Many systems are unstable in open loop 

but stable in closed loop configuration. The other way round is also possible that the 

system is stable in the open loop but unstable in closed loop, although this case is rare. 

Figure 3.2 is the pole zero map of the open loop system (o is a zero and x is a pole), 
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which shows that one of the poles of the transfer function lies on the right half side of the 

s-plane. Thus the system is absolutely unstable. For the closed loop situation, the root 

locus of the system in Figure 3 .3 indicates that the closed loop system is not stable either 

because whatever is the value of the loop gain, one branch of the locus remains on the 

right half side of the s-plane. This reveals that this system can never be controllable by 

unity feedback (Lu, Lin & Zhou, 2009). 
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Figure 3.2 The Pole Zero Maps of the Open Loop System. 
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Figure 3.3 The Root Locus of the Closed Loop Systems 
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In order to prove my judgment above, the step response of the systems are shown in 



Figure 3.4. 

.o., 
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Figure 3.4 The Step Response of the Open Loop Systems. 
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So, to sum up, the uncompensated systems are unstable, whether they are open loop 
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or closed loop. 

Control Strategy 

I. PID control. 

For the single inverted pendulum system, double closed loop control system will be 

implemented. There are two variables that need to be controlled: the angle of the 

pendulum, and the position of the cart. The block diagram is shown below in which G1(s), 

the angle, is the transfer function of the inner loop while G2(s), the position, is that of the 

outer loop. 

G,(s) G,(s) 

c_ _ __J G" '(s) w.----' 

L-------------1 G., '(s)i<---------_, 

Figure 3.5. Block Diagram of Double Closed Loop Control 

For the angle control, the expected control targets are below (standard parameters in 

engineering): 

1 Static error • < 
1 

· · e,, - 30' 

2. The system uses the optimum damping coefficient 0.707; 

3. Overshoot M",,; 5%; 

4. Settling time t, ,,; 2s; 

1 
Therefore, K=--. =-30 and s=0.707. 

e,, 



For the purpose of moving the root locus to the left side, which would make the 

system more stable, a zero can be added. So the controller could be: 

The closed loop transfer function is: 

-2.538K 
s 2 -27.86 -2.538K 

l + -2.538K(K,s + K,) s2 -2.538KK1s -27.86-2.538KK2 

s 2 -27.86 

·:K=-30 

. W.( ) = 76.14 
'" I S 2 

s +76.14K,s-27.86+76.14K2 

The standard second order transfer function model is 

Jli;(s) 

:. w; = 76.14, 2sw. = 76.14K1, w; =-27.86+ 76.14K2 

·:s=o.101 

:. w. = 8.726rad Is, K,=0.1621, K2 = 1.366 

:.G"(s)=-30, o· (s)=0.1621s+l.366 
" 

. W.( ) = 76.14 
"' I S 2 

s + 12.34s + 76.14 

One checks if the compensated system has met the expectations: 

_----5....._ 0.707:r 

M =e ~ =e-✓1-•·101' =4.33%:<;5% 
p 

4 4 
t = - = ----- 0.648s $ 2s 
' sw. 0.707x8.726 
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So the controller is acceptable. 

For the position control, the control object is now 

w;(s)G,(s)= 
2 

76.14 x9.800-0.400s
2 

s +12.34s+76.14 s' 

_ 9.8(-0.04082s2 +1) 

- s'(0.01313s2 +0.1621s+l) 

Since the order of the system is high, the higher order terms are going be removed 

by choosing a suitable crossover frequencyw,. Rewriting the w;(s)G,(s): 

9.8[-(o.2020s)' +1] 
w;(s)G,(s)= [ 2 ] 

s' (0.1146s) +0.162ls+l 

I I 
:. m, = - = 

I; 0.2020 

I I 
4.950rad Is, w, = - = _c__ r, 0.1158 

Therefore, iflet w, < w1 < w, , then: 

8.636rad Is 

-( 0.2020s )'+I"' I; ( 0.1158s )' + 0. 1653s + 0.1020 "'0.1653s + 0.1020 

:.w;(s)G,(s),s '( 
9

·
8 

) 
s 0.162ls+l 

Checkifthetruththat w, <min{w,,w,} for w;(s)G,(s). 

9.8 W.(. )G (. ) 9.8 
'JW 2 JW "'-w'(0.162ljw+l) -0.162ljw3 -w' 

·: lw;Uw,)G,(jwJI = I 

9.8 
I 

· · -0.162ljw3 -w' 

:. w, "'2.97rad Is< min{w"w2} = min{4.950,8.726} = 4.950 

Therefore, the simplification is reasonable. 

By using a PD controller, the root locus can be relocated to the left side of s-plane 

27 
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and this will also make the system become a standard type II system. 

G(s) = K('rs+l) 
s2(Ts+l) 

So, G,2 (s)=K,,('rs+l) and G,,'(s)=l. 

In practical use, the ratio of 1: and Tis defined as h, i.e. h = !... . The parameter h 
T 

here reflects the system's comprehensive performance and 5 is usually a better value for 

h. So the value of 1: is: 

1: = hT = 5x0.!621 = 0.8105 

m I 
9.8Kp = ll)lll), =---"- = -- 1.234 

1: 0.8105 

:. KP= 1.
234 

=0.1260 
9.8 

:. Gci(s) = 0.1260(0.8105s +I)= 0.1020s+0.1260 

Therefore, the open loop transfer function of the whole double loop feedback 

system is: 

G(s) = G (s)W.(s)G (s) = 76.14(-0.4s
2 

+9.8)(0.1020s+0.1260) 
'

2 1 2 s 2 (s2 +12.34s+76.14) 

-3.107s3 -3.837s2 + 76.1 ls +94.02 
= 

s4 + 12.34s3 + 76.14s' 

The root locus of G(s) is shown in Figure 3.6. Apparently all the poles are in the 

left half plane, which means that the system is stable when the locus is on the left half 

plane. 
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6 

Figure 3.6. The Root Locus of the Whole Closed Loop System 

In order to see the step response of the closed loop system, the simulation is done on 

the Simulink in MATLAB. The full diagram of the inverted pendulum system is created 

based on the block diagram shown in Figure 3.5 and all the transfer functions that were 

just derived. 

D 

Figure 3.7. Simulatiou Diagram of the Single Inverted Pendulum System (For larger figure 

please refer to the Appendix). 



Force (J1 

/; 
I 
I 

•,f-------+---+---+----+---!---+-----!-----!---+--------i. -· 
Figure 3.8. Step Response of the System (For larger figure please refer to the Appendix). 

So the system will get back to the stable state in about 6 seconds. 

2. Pole placement 

The expectations of the system are still the same as the ones in PID control, which 

are: 

a. Take the optimum damping coefficient 0. 707 

b. Overshoot M, ~ 5% 

c. Settling time t, ~ 2s 

Actually, if the damping coefficient t; = 0. 707 , the Mp will definitely be less than 

_ ___!!f_ 0.707,r 

5%. M, =e H =e ✓,-o.707' = 4.33% ~ 5%. If the optimum damping coefficient is 

taken, usually the corresponding overshoot will be satisfying. As for the t,, 

ln(0.05✓1-t;2 ) 
t = --~-~~~ are required to be less than 2 seconds. So, 
, t;w, 
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1.e. 

1 
=-1n(o.osR) < 2 

' sco, 

ln(0.05x ✓l-0.7072 ) = 2_364rad Is 
2x0.707 

Take co, = 2.4rad Is, so the closed-loop dominant poles are: 

31 

As for the non-dominant poles, whichever are on the left side of the complex plane, 

and that are farther from the imaginary axis than s,.2 can be taken. Here s,.4 = -10. 

When finishing the mathematical modeling, we will get the system state space 

expression below: 

{
i=Ax+Bu 

y=Cx+Du 

According to the block diagram of the state feedback control system, shown in 

Figure 3.2, the state feedback matrix, K, can be calculated easily. 

V u y 

Figure 3.9. Block diagram of state feedback control system. 

As is explained in the previous part, two variables, angle and position, are selected 

to control the whole system. Recall the differential equation (2-10) and (2-11) and write 

the state space expression of the system. 

¢ = 27.86¢-2.538F (2-10) 



Then 

I.e. 

x = -l.343¢+1.015F 

x2 = x = -1.343¢ + l.015F = -l.343x, + 1.015u 

x4 =¢ = 27.86¢-2.538F =27.86x3 -2.538u 

0 

x= 
0 

0 

0 

y=[~ 

X1 = X2 

x2 = -l.343x3 + l.0l 5u 

.X3 = X4 

x4 =27.86x3 -2.538u 

1 0 0 0 

0 -1.343 0 1.015 x+ 
0 0 0 

0 27.86 0 -2.538 

0 0 ~]x+[~]u 0 1 

0 1 0 0 

0 0 -1.343 0 
:.A= 

0 0 0 1 

0 0 27.86 0 

0 

1.015 B= 0 

-2.538 

C=[~ 0 0 ~] 0 1 

D=[~] 

u 
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(2-11) 



Before calculating the feedback matrix K, the controllability and observability of 

the system need to be checked (Liu & Tang, 2008). The necessary and sufficient 

condition of a system's.being controllable and observable is that both the controllability 

and observability matrix are full rank. 

Since 

M=[B AB A2B ··· A"-'B] 
' ' ' ' 

N=[c cA CA' ... cA•-1]T 
' ' ' ' 

in this inverted pendulum system: 

0 1.015 0 3.408 

M=[B,AB,A2B,A'B]= 
1.015 0 3.408 0 

0 -2.538 0 -70.1 

-2.538 0 -70.71 0 

I 0 0 0 

0 0 I 0 

C 0 1 0 0 

CA 0 0 0 1 
N= 

CA' = 
0 0 -1.343 0 

CA3 0 0 27.86 0 

0 0 0 -1.343 

0 0 0 27.86 

:. Rank(M) = Rank(N) = 4 

Therefore, the system is both controllable and observable. 

Assume the feedback matrix K = [ K, K, K, K,] , then the closed-loop 

characteristic polynomial is f(J,,) = det[ J,,I-(A +BK)]. 

:. f(J,,) = J,,4 + (2.538K3 - 1.015K,) J,, 3 + ( 2.538K2 -27.86-1.015K,) J,,2 

+24.87K,J,,+24.87K0 

33 



34 

According to the expectations of the system, the revised system will have four 

poles:s1,, =-l.7±1.7j, s,., =-10. So the expected closed-loop characteristic polynomial 

is: 

:. 1·(J.,) = [ J.,-(-1.7 + 1.7 j)J[ J.,-(-1.7-1.7 j)J[ J.,-(-10)]' 

= J.,4 + 23.4?.,' + I 73.78?.,2 + 455.6?., + 578 

Compare J' (J.,) and f ( J.,) : 

2.538K,-l.015K1 =23.4 

2.538K2 -27.86-l.015K0 = 173.78 

24.87 K, = 455.6 

24.87K0 =578 

K0 =23.24 

K, =18.32 

K2 =88.74 

K, = 16.55 

:.K=[K0 K, K, K,]=[23.24 18.32 88.74 16.55] 

Therefore, the closed-loop state space expression is: 

0 I 0 0 0 

x=(A+BK)x+Bv= 
23.59 18.59 88.73 16.80 1.015 

x+ 
0 0 0 I 0 

-58.98 -46.50 -197.36 -42.00 -2.538 

y=Cx+Dv=[~ 
0 0 

~]x+[~]v 0 I 

V 

The step response is also simulated by the Simulink in MATLAB. The diagram and 

step response chart are shown in Figure 3. 10 and 3.11 respectively (For larger figures 

please refer to the Appendix). 
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s .. ,. 

Figure 3.10. Simulation Diagram of the Single Inverted Pendulum System. 

••,------,-----,---~-----,,-----,---~---,---~---,--~ 

•• ~.---1---!---+-----!-----+-----!'---!---+----+-----!,. 

Figure 3.11. Step Response of the System. 

So the system will get back to the stable state in about 3.5 seconds. 
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Instruments and Software Used for Aetna! System 

I. HP Core 2 PC 

2. US Digital Incremental Encoder S2-1000-236-NE-D-D 

3. NI-PCI-6229 

4. NI-SCB-68 

5. H-Bridge LMD 1820 

6. Lab VIEW 2011 

Wiring Diagram for Hardware 

The whole system is going to be controlled by the Lab VIEW program in the PC. 

Due to the limitations of the lab, only single closed-loop feedback could be implemented 

in the single inverted pendulum system that was built in the lab. This system senses the 

angle of pendulum and adjusts the speed of the motor that drives the cart accordingly. 

The schematic diagram is shown in Figure 3 .12. 

Encoder 

PC (LabVIEW) NI PIC-6229 N!SCB-68 H-Bridge Circuit 

DC Motor 

Figure 3.12. Schematic Diagram.of the System. 

A PC with the Lab VIEW program works as the core controller. It receives the signal 

from the encoder and sends out the PWM, or Pulse Width Modulated signal to control 
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the speed of the motor after a series of calculations. The National Instruments PCI-6229 

is a multifunction M Series data acquisition (DAQ) board. This board has two counters, 

Counter O and Counter 1. Counter O is used to read the pulse signal from the encoder and 

convert the two-phase pulse trains to an angle value, while Counter 1 is used to generate 

the PWM signal. The Lab VIEW program is shown in Figure 3.13. 

[jJ 

,akJolion • 

ICOPul,:ef,., •I ~ 

' 

" 
lil_J [jJ i-;;_ _____ _,; 

Figure 3. 13. Lab VIEW Program for the System. 
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Figure 3.14. Front Panel of the Program 

The program basically has two parts. The part on the top is for reading the encoder 

and the other part is for generating the PWM signal. These two programs are connected 

with each other by the angle variable. Once the angle has been changed, the width of the 

pulse train which is generated will change accordingly by the PID control algorithm. 

Besides, the program also generates a direction signal, which is used for the H-Bridge 

drive circuit to decide whether the motor should rotate clockwise or counter-clockwise. 

The H-Bridge motor drive circuit and the program will be explained in detail later. 

The PCI-6229 from National Instrument, as was mentioned, is a data acquisition 

(DAQ) board. Three components are used for the whole system: Counter 0, Counter 1, 

and Digital Output 0.0. The pins that are used for this system are PFI 8 and PFI 10, 
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which are the Channel A and Channel B for the encoder on Counter 0, PFI 13, which is 

the output port for PWM signal on Counter I, and P0.0, which is the digital output used 

to send digital signal to control the direction of the DC motor connected to the following 

H-Bridge circuit. Together with the DAQ board is the National Instrument SCB-68. 

SCB-68 is a shielded I/0 connector block for interfacing I/0 signals to plug-in data 

acquisition (DAQ) devices with 68-pin connectors. The corresponding terminals for PFI 

8, PFI 10, PFI 13 and PO.Oare Pin 37, Pin 45, Pin 40 and Pin 52 respectively. 

The US Digital S2-I000-236-NE-D-D encoder is an incremental encoder with 1000 

cycles per revolution (CPR). Output channels A and B from the encoder (pins 3 and 5 

respectively) are connected to the Pin 37 and Pin 45 on the NI SCB-68. Besides, the 

encoder also needs an external five-volt power supply. 

NI-SGB-68 
37 

<PEI 8) 

45 
<PEI 10) 

40 
<PEI 13) 

52 
<PO. Ol 

S2-1000-236-NE-D-D 

5 4 3 2 1 

Channel B 

Channel A 

+5V 

Figure 3.15. Wiring Diagram for Encoder. 

The LMDI 8200T H-Bridge from National Semiconductor is a DC motor drive 
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circuit to control the speed by PWM signal. This H-Bridge circuit accepts up to 55V 

supply voltage and is able to deliver up to 3A of output current. The device contains the 

4-switch setup required for our motor control, along with protection diodes and circuitry 

to ensure there is never a short from the supply to ground. There are five pins connected 

to this drive. Pin 6 and pin 7 are for the external power supply which provides a voltage 

of 15V. Pin 5 is for the input of the PWM signal and is connoted to Pin 40, which is the 

output of Counter 1, on NI SCB-68. Pin 3 is connected to Pin 52, a digital output on NI 

SCB-68 to get the motor's direction information. Last but not least, the output pins, Pin 2 

and Pin 10, are connected to the two terminals on the DC motor. 

PWM OUTPUT 2 
5 ID " 

NI-SGB-68 
37 

DIR 

' 6 v, 
<PEI 8) 

0 

~ 
45 0 

<PEI 1 0) f;l 7 

40 ,__ 0 -:- GROUND :,; 
<PEI 13) 

_, ' 
52 2 

CPO. 0) 
OUTPUT 1 

Figure 3.16. Wiring Diagram for LMD 1820 

Therefore, to sum up, the entire wiring diagram for the whole system is shown in 

Figure 3.17 (For larger figure please refer to the Appendix). 
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Nl-PCl-6229 NI-SCB-G8 
Counte• 0 09-pln 

,, 
PEI 8 "'' . ., 

PEI ID ffl Hll 

~ 
PEI l:J <PEI 13> 

" Diaital '"' ... 
Out u• - ""'"'" ' " 

" ' • ,, 
~ ' c -= GROIJIID 
3 

""'"" 

Figure 3.17. Wiring Diagram for the Single Stage Inverted Pendnlum System. 

Programming 

As is shown and mentioned in Figure 3.13 (For larger figure please refer to the 

Appendix), the whole program is basically divided into two parts, one for reading signals 

from encoder and the other for generating the adjustable pulse train, or PWM signals. For 

the first part, two modules from Lab VIEW 2011 are used, which are DAQ Assistant and 

PID toolkit. 

The DAQ Assistant is an easy-to-use graphical interface for configuring 

measurement tasks and channels and for customizing timing, triggering, and scales 

without programming. Using the DAQ Assistant can help to configure a measurement 

task for all of the DAQ applications and then generate code to configure and use the task 

in the application program. Right click on the blank area of Block Diagram window and 

select Express, Input, and then DAQ Assist, referring to Figure 3.18. 



.. f,:J Functions 
Express 

Input 

[~ 
Sig'Manip 

Fa'{orites 

Um libraries 

Select a VI ... 

Q.searchffi 

Simulate Sig Sill1ArbSig Acquire Sound 

[ID] I lll~I I mm 
Read Meas File Prompt User File Dialog 

Figure 3.18. Inserting the DAQAssistant. 
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Then the DAQ Assistant Creating Wizard in Figure 3 .19 shows up. Since the 

program is going to read the angular signals from encoder by Counter O on NI-PCI-6229, 

go to Acquire Signals, Counter Input, Position, and then Angular. After hitting "Next", 

the supported physical channels will be shown. Here, Counter O is selected. 
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To haY• rn• ]tjpl9 IT'euu,..,,..,.,~t tr= 
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Figure 3.19. DAQ Assistant Creating Wizard for Angular Position Input. 

After hitting Finish, the DAQ Assistant has been created successfully, and what is 
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done next is to double click on the DAQ Assistant icon and configure the parameters for 

the encoder. See Figure 3.20. After putting in the information and parameters of the 

encoder, we can test the encoder to see if it works as the way we wish by hitting the Run 

button at the top, and the measured value will be shown. Hit OK when everything works 



fine. 
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What is next is to build the VI to generate the direction information by using 

another DAQ Assistant. This time in the DAQ Assistant creating wizard, we go to 

Generate Signals, Digital Output, and then Line output. See Figure 3.21. After hitting 
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Next, Port 0/Line O is selected in the list of supported physical channels. Hit Finish when 

it is done. 
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Figure 3.21. DAQ Assistant Creating Wizard for Digital Output. 

PID toolkit from National Instruments hardware can be used to develop Lab VIEW 
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control applications. Use 1/0 hardware, like a DAQ device, FieldPoint 1/0 modules, or a 

GPIB board, to connect the PC to the system that needs to control. Right click on the 

blank area of Block Diagram window and select Control Design & Simulation, PID, and 

then PID.vi. Place the VI in blank area and connect the parameters it needs to realize the 

PID algorithm, like PID gians, set point, process variable, output range and ontpnt. 
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Figure 3.22. PID Toolkit from National Instruments 

Recalling Fignre 3.13, the second part of the program aims at generating adjustable 

pulse trains, or PWM signals. As a matter of fact, the DAQ Assistant used in the first part 

of the program is be able to generate pulse trains. It is convenient and does not involve 

too much programming work. However, taking advantage of the DAQ Assistant makes it 

nearly impossible to change the duty cycle for the PWM while the program is running. 

The duty cycle of the PWM signal that DAQ Assistant generates has to be preset before 

running the program. Consequently, NI-DAQmx programming is used to take the DAQ 

Assistant's place in this case. 

NI-DAQmx is the next generation driver for the data acquisition hardware from 

National Instruments. It contains a Lab VIEW Application Programming Interface (API) 

which allows customers to create applications for their own device. It is easy to use and 



has many new features such as improved ease of use, faster development time, 

multithreaded measurements and increased accuracy of measurements. Also, the data 

acquisition application in Lab VIEW and NI-DAQmx is quite straightforward. 

NI-DAQmax can be found when you right click on the blank area of Block Diagram 

window and select Mesurement I/O and then DAQmx. See Figure 3.23. 
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Figure 3.23. NI-DAQmx. 

Before actually starting to generate PWM signals, the physical channel has to be 

created first. So choose "DAQmx Create Virtual Channel.vi" and initialize the 

parameters of the PWM signals such as frequency and duty cycle. In this case, the duty 

cycle generated by the PID controller is used. Then DAQmx Timing VI is used to 
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configure the duration of the pulse generation. The Implicit instance should be used when 

no sample timing is needed, such as in counter tasks like pulse train generation. 

Additionally, choose Continuous as the sample mode. Finally, call the DAQmx Start VI. 

This VI begins the pulse train generation and loop continuously until the user presses the 
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Stop button. The duty cycle control on the front panel is checked every iteration of the 

loop. If it has been changed, the new duty cycle is set using the DAQmx Write VI. If the 

duty cycle has not been changed, the false case of the case structure executes, and 

nothing is updated. 
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CHAPTER IV FINDINGS 

Introduction 

After setting up both the mechanical and electrical system, it is the time to test the 

each component of the system. The input signal from the encoder will be tested first, 

followed by the output PWM signals. Different duty cycles will be assigned to test if the 

width of the pulse train can be modified accordingly. Then, the motor will be driven by 

the mutative PWM signal. The motor speed should change with duty cycle changes. 

After the motor can be well controlled by the PWM signal, the change of angle will be 

directly used to control the speed of motor. This means that the disturbance of angle is 

able to be converted to the change of the duty cycle of PWM signal, and then the new 

duty cycle will be reflected on the width of the PWM signal so that the voltage across the 

motor will be changed and therefore the motor will run at a new speed. Finally, whether 

the newly built inverted pendulum system can balance itself will be tested. 

Testing 

l. The encoder. 

Run the Lab VIEW program and tum the shaft of the encoder manually. The 

real-time curve in Figure 4.1 shows the angle can be sensed precisely and the 

response time is acceptable. 



Figure 4.1. Test of the Encoder. 

2. The PWM signal. 

Run the Lab VIEW program and change the value of duty cycle on the front 

panel of the program. The PWM signal shown on the oscilloscope indicates that the 

PWM signal is well adjusted by the assigned duty cycle. 

Figure 4.2. PWM Signal with Duty Cycle of0.61 
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Figure 4.3. PWM Signal with Duty Cycle of0.23. 

3. The speed control of the motor. 

Run the Lab VIEW program and change the value of duty cycle on the front 

panel of the program. The speed of the motor increases and decreases with the duty 

cycle goes higher and lower. When the direction is set to be 1, the motor will rotate 

clockwise, and O for the counter-clockwise. 
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Figure 4.4. Test the Motor Controlling by Setting the Duty Cycle. 

4. Control the speed of the motor by changing the angle. 

Run the Lab VIEW program and manually rotate the shaft of the encoder, the 
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speed of the motor can be well modified. When the angle becomes negative, the 

direction of the motor gets changed immediately. Also, the more offset on the angle, 

the higher speed the motor will get. In Figure 4.5, the angle varies like a sine 

function to maintain a continuous change both on angular position and direction. 

•,!-------!---+---+---+---!---+---+---!-------!!---~ 
rn.oou ... o 

Figure 4.5. Motor Speed Varies from the Angular Position. 

5. Let the inverted pendulum balances itself. 

In order to let the inverted pendulum get balanced, proper PID parameters 

should be assigned. The values of PID parameters can be obtained by PID tuning. 

However, the tests show that the real system fails to fulfill the initial task which is to 

balance a single inverted pendulum system; this failure is due to poor mechanical 

design of the real system. Generally speaking, the track on which the cart slides 

should be longer. And the friction between the cart and the track should be as low as 

possible so that once the pendulum falls, the cart could slide in the opposite direction 
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immediately. Also, due to the difficulty of installing another encoder to sense the 

position of the cart, the double closed loop feedback control was not able to be used. 

Surely the single closed loop feedback control will work and can balance the system 

theoretically, but the lack of the outer loop will increase the difficulty of control. 

Besides, the PID tuning techniques are based more on experience and repeated 

testing. So, all these reasons led to the failure of the real system. 

Advantages & Disadvantages 

Due to the time limits and conditions in the lab, the two control methods cannot be 

tested on the real inverted pendulum system. However, from the simulation, it is apparent 

that both methods have advantages and disadvantages. 

For the PID control, the principle and algorithm of the control method are quite 

straightforward. Each part of the controller has different functions and as long as they 

can coordinate perfectly, the system will become stable. What's more, it is also quite easy 

for people to tune the PID parameters while the system is working and the performance 

of the response is fast and clear. This is a quite classic and traditional control method and 

all the analysis of the system is in the time domain. However, the calculation of each 

parameter of the controller is very complicated. That requires the designer to be very 

familiar with not only classic control theory but also physics and mathematics. Once 

some of the parameters like w, , ( or K are not taken properly, almost all the work 

should be redone. Usually it will consume a lot of time to finally find suitable and proper 



parameters for the system. As a matter of fact, the work I have done in the previous 

chapter also includes the pole placement of root locus in time domain. When choosing 

the proper controllers for the system, I got help from the root locus to decide whether to 

use PI control or PD control. 
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For the pole placement, the calculation is not a problem any more. The calcnlations 

involved in the PID control method sometimes require a lot of skill, bnt the full state 

feedback makes the calculation mnch easier to understand. The full state feedback 

requires that the system be written in a different way, which to most people is a little bit 

awkward and difficult to understand. However, once one fully understands the theory and 

how the full state feedback can revise an unstable system, it will not be a problem to 

design the controller at all. In a word, this method tries to find a feedback matrix K to 

modify the state matrix A so that the new system can be stable. Nevertheless, not all the 

sate variables are easily measured. Some of them even have no way to measured. That 

makes this control method not practicable directly. But, with the introduction of a "state 

observer", this shortcoming can be overcome. So, the non-measurable nature of the state 

variables is one of the biggest disadvantages it has. 
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CHAPTER V CONCLUSION 

Theoretical Study 

A single inverted pendulum system is an unstable, higher-order, multivariable and 

strongly coupled non-linear system. It is a model that has been abstracted from the areas 

of robotics, aerospace, and nonlinear control among others. This study shows two ways 

to control the system, PID control and pole placement. 

Apparently, from the previous study and designs, to control the system in a classic 

way like PID control is feasible. But there has to be a series of simplifications to reduce 

the order of the system. Without the simplifications, the theoretical calculation for the 

controller will be even more difficult and complicated. Also, trying to find out the proper 

way to make the simplifications needs several trials and cannot be done at one time. 

Controller should be designed and tested and then modified by observing and analyzing 

the response curves. Unlike the traditional way of finding out the PID parameters of a 

PID controller, root locus is used as an aid to design the controller. By relocating the 

poles of the system, whether the system is stable or not can be directly demonstrated, 

instead of studying the mathematical equations. 

Pole placement, or full state feedback, is based on the modem control theory. Since 

a system can only be stable when all of its poles are in the left half side of the complex 

plane, what has to be done is to relocate the poles and just move them to left half side of 

the complex plane by adding a feedback matrix K. It does not involve too much 



mathematical calculation and obviously does not need simplification when dealing with 

the higher order systems as compared with the PID control. In some more complicated 

systems, some of their outputs might even be immeasurable. It would be a little difficult 

to make use of the full state feedback. However, by designing the state observer, this 

control method can be implemented anyway. 

Practical Implementation 
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Even though the theoretical study has taken many practical environments and 

conditions into consideration, there will always be a difference between the mathematical 

model and the real system. In real world, some of the parameters obtained from an ideal 

condition need to be modified while testing the system. For the real system in this study, 

it does not accomplish the goal of balancing itself because of the poor mechanical design 

of the real system. For the other parts in the system, however, they work pretty well. The 

system successfully generates the controllable PWM signals that follow the change of 

angle. By taking advantage of the PWM technology, the change of angle can directly 

control not only the speed but also the direction of the DC motor. 

Therefore, once some improvements could be done on the mechanical design of the 

whole system, for example lightening the cart and reducing the friction, it would 

definitely be good for the system to balance itself. 
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Summary 

The study of a single inverted pendulum system is basically successful, even though 

the pendulum cannot balance itself due to time limitation and the poor mechanical design 

of the system. Two control methods are implemented and used to design the controller of 

a single inverted pendulum system. The simulation results indicate that the design has 

reached the expected targets, and the two different control methods are compared, which 

are the two main goals of the whole study. 
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APPENDIX 
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Figure 3.7. Simulation Diagram of the Single Inverted Pendulum System. 
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Figure 3.8. Step Response of the System. 
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Figure 3.10. Simulation Diagram of the Single Inverted Pendulum System. 
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Figure 3.11. Step Response of the System. 
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