1,250 research outputs found

    DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    Get PDF

    Grey Wolf Optimization Algorithm for Single Mobile Robot Scheduling

    Get PDF
    Development of reliable and efficient material transport system is one of the basic requirements for creating an intelligent manufacturing environment. Nowadays, intelligent mobile robots have been widely used as one of the components to satisfy this requirement. In this paper, a methodology based on Grey Wolf Optimization (GWO) algorithm is proposed in order to find the optimal solution of the nondeterministic polynomial-hard (NP-hard) single mobile robot scheduling problem. The performance criterion is to minimize total transportation time of the mobile robot while it performs internal transport of raw materials, goods, and parts in manufacturing system. The scheduling plans are obtained in Matlab environment and tested by Khepera II mobile robot system within a static laboratory model of manufacturing environment. Experimental results show the applicability and effectiveness of the developed intelligent approach in real world conditions

    Comparison of a bat and genetic algorithm generated sequence against lead through programming when assembling a PCB using a 6 axis robot with multiple motions and speeds

    Get PDF
    An optimal component feeder arrangement and robotic placement sequence are both important for improving assembly efficiency. Both problems are combinatorial in nature and known to be NP-hard. This paper presents a novel discrete hybrid bat-inspired algorithm for solving the feeder slot assignment and placement sequence problem encountered when planning robotic assembly of electronic components. In our method, we use the concepts of swap operators and swap sequence to redefine position, and velocity operators from the basic bat algorithm. Furthermore, we propose an improved local search method based on genetic operators of crossover and mutation enhanced by the 2-opt search procedure. The algorithm is formulated with the objective of minimizing the total traveling distance of the pick and place device. Through numerical experiments, using a real PCB assembly scenario, we demonstrate the considerable effectiveness of the proposed discrete Bat Algorithm (BA) to improve selection of feeder arrangement and placement sequence in PCB assembly operations and achieve high throughput production. The results also highlighted that the even though the algorithms out performed traditional lead through programming techniques, the programmer must consider the influence of different robot motions

    Simulation and optimization of robotic tasks for UV treatment of diseases in horticulture

    Get PDF
    Robotization is increasingly used in the agriculture since the last few decades. It is progressively replacing the human workforce that is deserting the agricultural sector, partly because of the harshness of its activities and health risks they may present. Moreover, robotization aims to improve efficiency and competitiveness of the agricultural sector. However, it leads to several research and development challenges regarding robots supervision, control and optimization. This paper presents a simulation and optimization approach for the optimization of robotized treatment tasks using type-c ultraviolet radiation in horticulture. The optimization of tasks scheduling problem is formalized and a heuristic and a genetic algorithms are proposed to solve it. These algorithms are evaluated compared to an exact method using a multiagent-based simulation approach. The simulator takes into account the evolution of the disease during time and simulates the execution of treatment tasks by the robot.Interreg North-West Europe Programme in context of UV-ROBOT

    A Coloured Petri Net- and D* Lite-Based Traffic Controller for Automated Guided Vehicles

    Get PDF
    Mobile robots, such as Automated Guided Vehicles (AGVs), are increasingly employed in automated manufacturing systems or automated warehouses. They are used for many kinds of applications, such as goods and material handling. These robots may also share industrial areas and routes with humans. Other industrial equipment (i.e., forklifts) could also obstruct the outlined routes. With this in mind, in this article, a coloured Petri net-based traffic controller is proposed for collision-free AGV navigation, in which other elements moving throughout the industrial area, such as humans, are also taken into account for the trajectory planning and obstacle avoidance. For the optimal path and collision-free trajectory planning and traffic control, the D* Lite algorithm was used. Moreover, a case study and an experimental validation of the suggested solution in an industrial shop floor are presented

    Route Planning for Long-Term Robotics Missions

    Get PDF
    Many future robotic applications such as the operation in large uncertain environment depend on a more autonomous robot. The robotics long term autonomy presents challenges on how to plan and schedule goal locations across multiple days of mission duration. This is an NP-hard problem that is infeasible to solve for an optimal solution due to the large number of vertices to visit. In some cases the robot hardware constraints also adds the requirement to return to a charging station multiple times in a long term mission. The uncertainties in the robot model and environment require the robot planner to account for them beforehand or to adapt and improve its plan during runtime. The problem to be solved in this work is how to plan multiple day routes for a robot where all predefined locations must be visited only a single time and at each route the robot must start and return to the same initial position while respecting the daily maximum operation time constraint. The proposed solution uses problem definitions from the delivery industry and compares various metaheuristic based techniques for planning and scheduling the multiple day routes for a robotic mission. Therefore the problem of planning multiple day routes for a robot is modeled as a time constrained Vehicle Routing Problem where the robot daily plan is limited by how long the robot with a full charge can operate. The costs are modeled as the time a robot takes to move among locations considering robot and environment characteristics. The solution for this method is obtained in a two step process where a greedy initial solution is generated and then a local search is performed using meta-heuristic based methods. A custom time window formulation with respect to the theoretical maximum daily route is presented to add human expert input, priorities or expiration time to the planned routes allowing the planner to be flexible to various robotic applications. This thesis also proposes an intermediary mission control layer, that connects the daily route plan to the robot navigation layer. The goal of the Mission Control is to monitor the robot operation, continuously improve its route and adapt to unexpected events by dropping waypoints according to some defined penalties. This is an iterative process where optimization is performed locally in real time as the robot traverse its goals and offline at the end of each day with the remaining vertices. The performance of the various meta-heuristic and how optimization improves over time are analysed in several robotic route planning and scheduling scenarios. Two robotic simulation environments were built to demonstrate practical application of these methods. An unmanned ground vehicle operated fully autonomously using the presented methods in a simulated underground stone mine environment where the goal is to inspect the pillars for structural failures and a farm environment where the goal is to pollinate flowers with an attached robotic arm. All the optimization methods tested presented significant improvement in the total route costs compared to the initial Path-Cheapest-Arc solution. However the Guided Local Search presented a smaller standard deviation among the methods in most situations. The time-windows allowed for a seamless integration with an expert human input and the mission control layer, forced the robot to operate within the mission constraints by dynamically choosing the routes and the necessity of dropping some of the vertices

    A one decade survey of autonomous mobile robot systems

    Get PDF
    Recently, autonomous mobile robots have gained popularity in the modern world due to their relevance technology and application in real world situations. The global market for mobile robots will grow significantly over the next 20 years. Autonomous mobile robots are found in many fields including institutions, industry, business, hospitals, agriculture as well as private households for the purpose of improving day-to-day activities and services. The development of technology has increased in the requirements for mobile robots because of the services and tasks provided by them, like rescue and research operations, surveillance, carry heavy objects and so on. Researchers have conducted many works on the importance of robots, their uses, and problems. This article aims to analyze the control system of mobile robots and the way robots have the ability of moving in real-world to achieve their goals. It should be noted that there are several technological directions in a mobile robot industry. It must be observed and integrated so that the robot functions properly: Navigation systems, localization systems, detection systems (sensors) along with motion and kinematics and dynamics systems. All such systems should be united through a control unit; thus, the mission or work of mobile robots are conducted with reliability

    A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions

    Get PDF
    In this paper, a review on the three most important communication techniques (ground, aerial, and underwater vehicles) has been presented that throws light on trajectory planning, its optimization, and various issues in a summarized way. This kind of extensive research is not often seen in the literature, so an effort has been made for readers interested in path planning to fill the gap. Moreover, optimization techniques suitable for implementing ground, aerial, and underwater vehicles are also a part of this review. This paper covers the numerical, bio-inspired techniques and their hybridization with each other for each of the dimensions mentioned. The paper provides a consolidated platform, where plenty of available research on-ground autonomous vehicle and their trajectory optimization with the extension for aerial and underwater vehicles are documented

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance
    • …
    corecore