114 research outputs found

    A Two-Stage Dynamic Programming Model for Nurse Rostering Problem Under Uncertainty

    Full text link
    No abstract provided.Master of Science in EngineeringIndustrial and Manufacturing Systems Engineering, College of Engineering and Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/140733/1/WENJIE WANG_Thesis_Embedded.pdfDescription of WENJIE WANG_Thesis_Embedded.pdf : Thesi

    The Second International Nurse Rostering Competition

    Get PDF
    This paper reports on the Second International Nurse Rostering Competition (INRC-II). Its contributions are (1) a new problem formulation which, differently from INRC-I, is a multi-stage procedure, (2) a competition environment that, as in INRC-I, will continue to serve as a growing testbed for search approaches to the INRC-II problem, and (3) final results of the competition. We discuss also the competition environment, which is an infrastructure including problem and instance definitions, testbeds, validation/simulation tools and rules. The hardness of the competition instances has been evaluated through the behaviour of our own solvers, and confirmed by the solvers of the participants. Finally, we discuss general issues about both nurse rostering problems and optimisation competitions in general.PostprintPeer reviewe

    Genetic based discrete particle swarm optimization for elderly day care center timetabling

    Get PDF
    The timetabling problem of local Elderly Day Care Centers (EDCCs) is formulated into a weighted maximum constraint satisfaction problem (Max-CSP) in this study. The EDCC timetabling problem is a multi-dimensional assignment problem, where users (elderly) are required to perform activities that require different venues and timeslots, depending on operational constraints. These constraints are categorized into two: hard constraints, which must be fulfilled strictly, and soft constraints, which may be violated but with a penalty. Numerous methods have been successfully applied to the weighted Max-CSP; these methods include exact algorithms based on branch and bound techniques, and approximation methods based on repair heuristics, such as the min-conflict heuristic. This study aims to explore the potential of evolutionary algorithms by proposing a genetic-based discrete particle swarm optimization (GDPSO) to solve the EDCC timetabling problem. The proposed method is compared with the min-conflict random-walk algorithm (MCRW), Tabu search (TS), standard particle swarm optimization (SPSO), and a guided genetic algorithm (GGA). Computational evidence shows that GDPSO significantly outperforms the other algorithms in terms of solution quality and efficiency

    Integration of operations research and artificial intelligence approaches to solve the nurse rostering problem

    Get PDF
    Please note, incorrect date on spine and title page (2016). Degree was awarded in 2019.Nurse Rostering can be defined as assigning a series of shift sequences (schedules)to several nurses over a planning horizon according to some limitations and preferences. The inherent benefits of generating higher-quality rosters are a reduction in outsourcing costs and an increase in job satisfaction of employees.This problem is often very dicult to solve in practice, particularly by applying a sole approach. This dissertation discusses two hybrid solution methods to solve the Nurse Rostering Problem which are designed based on Integer Programming,Constraint Programming, and Meta-heuristics. The current research contributes to the scientific and practical aspects of the state of the art of nurse rostering. The present dissertation tries to address two research questions. First, we study the extension of the reach of exact method through hybridisation. That said, we hybridise Integer and Constraint Programming to exploit their complementary strengths in finding optimal and feasible solutions, respectively. Second,we introduce a new solution evaluation mechanism designed based on the problem structure. That said, we hybridise Integer Programming and Variable Neighbourhood Search reinforced with the new solution evaluation method to efficiently deal with the problem. To benchmark the hybrid algorithms, three different datasets with different characteristics are used. Computational experiments illustrate the effectiveness and versatility of the proposed approaches on a large variety of benchmark instancesNurse Rostering can be defined as assigning a series of shift sequences (schedules)to several nurses over a planning horizon according to some limitations and preferences. The inherent benefits of generating higher-quality rosters are a reduction in outsourcing costs and an increase in job satisfaction of employees.This problem is often very dicult to solve in practice, particularly by applying a sole approach. This dissertation discusses two hybrid solution methods to solve the Nurse Rostering Problem which are designed based on Integer Programming,Constraint Programming, and Meta-heuristics. The current research contributes to the scientific and practical aspects of the state of the art of nurse rostering. The present dissertation tries to address two research questions. First, we study the extension of the reach of exact method through hybridisation. That said, we hybridise Integer and Constraint Programming to exploit their complementary strengths in finding optimal and feasible solutions, respectively. Second,we introduce a new solution evaluation mechanism designed based on the problem structure. That said, we hybridise Integer Programming and Variable Neighbourhood Search reinforced with the new solution evaluation method to efficiently deal with the problem. To benchmark the hybrid algorithms, three different datasets with different characteristics are used. Computational experiments illustrate the effectiveness and versatility of the proposed approaches on a large variety of benchmark instance

    An Integrated Framework for Staffing and Shift Scheduling in Hospitals

    Get PDF
    Over the years, one of the main concerns confronting hospital management is optimising the staffing and scheduling decisions. Consequences of inappropriate staffing can adversely impact on hospital performance, patient experience and staff satisfaction alike. A comprehensive review of literature (more than 1300 journal articles) is presented in a new taxonomy of three dimensions; problem contextualisation, solution approach, evaluation perspective and uncertainty. Utilising Operations Research methods, solutions can provide a positive contribution in underpinning staffing and scheduling decisions. However, there are still opportunities to integrate decision levels; incorporate practitioners view in solution architectures; consider staff behaviour impact, and offer comprehensive applied frameworks. Practitioners’ perspectives have been collated using an extensive exploratory study in Irish hospitals. A preliminary questionnaire has indicated the need of effective staffing and scheduling decisions before semi-structured interviews have taken place with twenty-five managers (fourteen Directors and eleven head nurses) across eleven major acute Irish hospitals (about 50% of healthcare service deliverers). Thematic analysis has produced five key themes; demand for care, staffing and scheduling issues, organisational aspects, management concern, and technology-enabled. In addition to other factors that can contribute to the problem such as coordination, environment complexity, understaffing, variability and lack of decision support. A multi-method approach including data analytics, modelling and simulation, machine learning, and optimisation has been employed in order to deliver adequate staffing and shift scheduling framework. A comprehensive portfolio of critical factors regarding patients, staff and hospitals are included in the decision. The framework was piloted in the Emergency Department of one of the leading and busiest university hospitals in Dublin (Tallaght Hospital). Solutions resulted from the framework (i.e. new shifts, staff workload balance, increased demands) have showed significant improvement in all key performance measures (e.g. patient waiting time, staff utilisation). Management team of the hospital endorsed the solution framework and are currently discussing enablers to implement the recommendation

    A hybrid integer and constraint programming approach to solve nurse rostering problems

    Get PDF
    The Nurse Rostering Problem can be defined as assigning a series of shift sequences (schedules) to several nurses over a planning horizon according to some limitations and preferences. The inherent benefits of generating higher-quality schedules are a reduction in outsourcing costs and an increase in job satisfaction of employees. In this paper, we present a hybrid algorithm, which combines Integer Programming and Constraint Programming to efficiently solve the highly-constrained Nurse Rostering Problem. We exploit the strength of IP in obtaining lower-bounds and finding an optimal solution with the capability of CP in finding feasible solutions in a co-operative manner. To improve the performance of the algorithm, and therefore, to obtain high-quality solutions as well as strong lower-bounds for a relatively short time, we apply some innovative ways to extract useful information such as the computational difficulty of in- stances and constraints to adaptively set the search parameters. We test our algorithm using two different datasets consisting of various problem instances, and report competitive results benchmarked with the state-of-the-art algorithms from the recent literature as well as standard IP and CP solvers, showing that the proposed algorithm is able to solve a wide variety of instances effectively

    Effective learning hyper-heuristics for the course timetabling problem

    Get PDF
    Course timetabling is an important and recurring administrative activity in most educational institutions. This article combines a general modeling methodology with effective learning hyper-heuristics to solve this problem. The proposed hyper-heuristics are based on an iterated local search procedure that autonomously combines a set of move operators. Two types of learning for operator selection are contrasted: a static (offline) approach, with a clear distinction between training and execution phases; and a dynamic approach that learns on the fly. The resulting algorithms are tested over the set of real-world instances collected by the first and second International Timetabling competitions. The dynamic scheme statistically outperforms the static counterpart, and produces competitive results when compared to the state-of-the-art, even producing a new best-known solution. Importantly, our study illustrates that algorithms with increased autonomy and generality can outperform human designed problem-specific algorithms

    Strategic Nurse Allocation Policies Under Dynamic Patient Demand

    Get PDF
    ABSTRACT STRATEGIC NURSE ALLOCATION POLICIES UNDER DYNAMIC PATIENT DEMAND by Osman T. Aydas The University of Wisconsin-Milwaukee, 2017 Under the Supervision of Professor Anthony D. Ross Several studies have shown a strong association between nurse staffing and patient outcomes. When a nursing unit is chronically short-staffed, nurses must maintain an intense pace to ensure that patients receive timely care. Over time this can result in nurse burnout, as well as dissatisfied patients and even medical errors. Improved accuracy in the allocation of nursing staff can mitigate these operational risks and improve patient outcomes. Nursing care is identified as the single biggest factor in both the cost of hospital care and patient satisfaction. Yet, there is widespread dissatisfaction with the current methods of determining nurse staffing levels, including the most common one of using minimum nurse-to-patient ratios. Nurse shortage implications go beyond healthcare quality, extending to health economics as well. In addition, implementation of mandatory nurse-to-patient ratios in some states creates a risk of under- or over-estimating required nurse resources. With this motivation, this dissertation aims to develop methodologies that generate feasible six-week nurse schedules and efficiently assign nurses from various profiles to these schedules while controlling staffing costs and understaffing ratios in the medical unit. First, we develop and test various medium-term staff allocation approaches using mixed-integer optimization and compare their performance with respect to a hypothetical full information scenario. Second, using stochastic integer programming approach, we develop a short-term staffing level adjustment model under a sizable list of patient admission scenarios. We begin by providing an overview of the organization of the dissertation. Chapter 1 presents the problem context and we provide research questions for this dissertation. Chapter 2 provides a review of the literature on nurse staffing and scheduling specifically from the Operations Management journals. We introduce the challenges of nursing care and nurse scheduling practices. We identify major research areas and solution approaches. This is followed by a discussion of the complexities associated with computing nursing requirements and creating rosters. Staffing requirements are the result of a complex interaction between care-unit sizes, nurse-to-patient ratios, bed census distributions, and quality-of-care requirements. Therefore, we review the literature on nursing workload measurement approaches because workloads depend highly on patient arrivals and lengths of stay, both of which can vary greatly. Thus, predicting these workloads and staffing nurses accordingly are essential to guaranteeing quality of care in a cost-effective manner. For completeness, a brief review of the literature on workforce planning and scheduling that is linked to the nurse staffing and scheduling problem is also provided. Chapter 3 develops a framework for estimating the daily number of nurses required in Intensive Care Units (ICUs). Many patient care units, including ICUs, find it difficult to accurately estimate the number of nurses needed. One factor contributing to this difficulty is not having a decision support tool to understand the distribution of admissions to healthcare facilities. We statistically evaluate the existing staff allocation system of an ICU using clinical operational data, then develop a predictive model for estimating the number of admissions to the unit. We analyze clinical operational data covering 44 months for three wards of a pediatric ICU. The existing staff allocation model does not accurately estimate the required number of nurses required. This is due in part to not understanding the pattern and frequency of admissions, particularly those which are not known 12 hours in advance. We show that these “unknown” admissions actually follow a Poisson distribution. Thus, we can more accurately estimate the number of admissions overall. Analytical predictive methods that complement intuition and experience can help to decrease unplanned requirements for nurses and recommend more efficient nurse allocations. The model developed here can be inferred to estimate admissions for other intensive care units, such as pediatric facilities. Chapter 4 examines an integrated nurse staffing and scheduling model for a Pediatric Intensive Care Unit (PICU). This model is targeted to recommend initial staffing plans and schedules for a six-week horizon given a variety of nurse groups and nursing shift assignment types in the PICU. Nurse rostering is an NP-hard combinatorial problem, which makes it extremely difficult to efficiently solve life-sized problems due to their complexity. Usually, real problem instances have complicated work rules related to safety and quality of service issues, as well as preferences of the personnel. To avoid the size and complexity limitations, we generate feasible nurse schedules for the full-time equivalent (FTE) nurses, using algorithms that will be employed in the mixed-integer programming models we develop. Pre-generated schedules eliminate the increased number of constraints, and reduce the number of decision variables of the integrated nurse staffing and scheduling model. We also include a novel methodology for estimating nurse workloads by considering the patient, and individual patient’s acuity, and activity in the unit. When the nursing administration prepares the medium-term nurse schedules for the next staffing cycle (six weeks in our study), one to two months before the actual patient demand realizations, it typically uses a general average staffing level for the nursing care needs in the medical units. Using our mixed-integer optimization model, we examine fixed vs. dynamic medium-term nurse staffing and scheduling policy options for the medical units. In the fixed staffing option, the medical unit is staffed by a fixed number of nurses throughout the staffing horizon. In the dynamic staffing policy, we propose, historical patient demand data enables us to suggest a non-stationary staffing scheme. We compare the performance of both nurse allocation policy options, in terms of cost savings and understaffing ratios, with the optimal staffing scheme reached by the actual patient data. As a part of our experimental design, we evaluate our optimization model for the three medical units of the PICU in the “as-is” state. In Chapter 5, we conduct two-stage short-term staffing adjustments for the upcoming nursing shift. Our proposed adjustments are first used at the beginning of each nursing shift for the upcoming 4-hour shift. Then, after observing actual patient demand for nursing at the start of the next shift, we make our final staffing adjustments to meet the patient demand for nursing. We model six different adjustment options for the two-stage stochastic programming model (five options available as first-stage decisions and one option available as the second-stage decision). Because the adjustment horizon is less than 12 hours, the current patient census, patient acuity, and the number of scheduled admissions/discharges in the current and upcoming shift are known to the unit nurse manager. We develop a two-stage stochastic integer programming model which will minimize total nurse staffing costs (and the cost of adjustments to the original schedules developed in the medium-term planning phase) while ensuring adequate coverage of nursing demand. Chapter 6 provides conclusions from the study and identify both limitations and future research directions
    • …
    corecore