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ABSTRACT

STRATEGIC NURSE ALLOCATION POLICIES UNDER DYNAMIC
PATIENT DEMAND

by

Osman T. Aydas

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Anthony D. Ross

Several studies have shown a strong association between nurse staffing and patient outcomes. When a nursing

unit is chronically short-staffed, nurses must maintain an intense pace in order to ensure that patients receive

timely care. Over time this can result in nurse burnout, as well as dissatisfied patients and even medical

errors. Improved accuracy in the allocation of nursing staff can mitigate these operational risks and improve

patient outcomes. Nursing care is identified as the single biggest factor in both the cost of hospital care and

patient satisfaction. Yet, there is widespread dissatisfaction with the current methods of determining nurse

staffing levels, including the most common one of using minimum nurse-to-patient ratios. Nurse shortage

implications go beyond healthcare quality, extending to health economics as well. In addition, implementa-

tion of mandatory nurse-to-patient ratios in some states creates a risk of under- or over-estimating required

nurse resources. With this motivation, this dissertation aims to develop methodologies that generate feasible

six-week nurse schedules and efficiently assign nurses from various profiles to these schedules while controlling

staffing costs and understaffing ratios in the medical unit. First, we develop and test various medium-term

staff allocation approaches using mixed-integer optimization and compare their performance with respect to

a hypothetical full information scenario. Second, using stochastic integer programming approach, we develop

a short-term staffing level adjustment model under a sizable list of patient admission scenarios. We begin

by providing an overview of the organization of the dissertation.
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Chapter 1 presents the problem context and we provide research questions for this dissertation.

Chapter 2 provides a review of the literature on nurse staffing and scheduling specifically from the Opera-

tions Management journals. We introduce the challenges of nursing care and nurse scheduling practices. We

identify major research areas and solution approaches. This is followed by a discussion of the complexities

associated with computing nursing requirements and creating rosters. Staffing requirements are the result of

a complex interaction between care-unit sizes, nurse-to-patient ratios, bed census distributions, and quality-

of-care requirements. Therefore, we review the literature on nursing workload measurement approaches

because workloads depend highly on patient arrivals and lengths of stay, both of which can vary greatly.

Thus, predicting these workloads and staffing nurses accordingly are essential to guaranteeing quality of

care in a cost-effective manner. For completeness a brief review of the literature on workforce planning and

scheduling that is linked to the nurse staffing and scheduling problem is also provided.

Chapter 3 develops a framework for estimating the daily number of nurses required in Intensive Care Units

(ICUs). Many patient care units, including ICUs, find it difficult to accurately estimate the number of

nurses needed. One factor contributing to this difficulty is not having a decision support tool to understand

the distribution of admissions to healthcare facilities. We statistically evaluate the existing staff allocation

system of an ICU using clinical operational data, then develop a predictive model for estimating the number

of admissions to the unit. We analyze clinical operational data covering 44 months for three wards of a pe-

diatric ICU. The existing staff allocation model does not accurately estimate the required number of nurses

required. This is due in part to not understanding the pattern and frequency of admissions, particularly

those which are not known 12 hours in advance. We show that these “unknown” admissions actually follow

a Poisson distribution. Thus, we can more accurately estimate the number of admissions overall. Analytical

predictive methods that complement intuition and experience can help to decrease unplanned requirements

for nurses and recommend more efficient nurse allocations. The model developed here can be inferred to

estimate admissions for other intensive care units, such as pediatric facilities.

Chapter 4 examines an integrated nurse staffing and scheduling model for a Pediatric Intensive Care Unit

(PICU). This model is targeted to recommend initial staffing plans and schedules for a six-week horizon given

a variety of nurse groups and nursing shift assignment types in the PICU. Nurse rostering is an NP-hard

combinatorial problem, which makes it extremely difficult to efficiently solve real life problems because of

their size and complexity. Usually, real-problem instances have complicated work rules related to safety and
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quality of service issues, as well as preferences of the personnel. In order to avoid the size and complexity

limitations, we generate feasible nurse schedules for the full-time equivalent (FTE) nurses, using algorithms

that will be employed in the mixed-integer programming models we develop. Pre-generated schedules elim-

inate the increased number of constraints, and reduce the number of decision variables of the integrated

nurse staffing and scheduling model. We also include a novel methodology for estimating nurse workloads

by considering the patient, and individual patients acuity, and activity in the unit. When the nursing ad-

ministration prepares the medium-term nurse schedules for the next staffing cycle (six weeks in our study),

one to two months before the actual patient demand realizations, it typically uses a general average staffing

level for the nursing care needs in the medical units. Using our mixed-integer optimization model, we ex-

amine fixed vs. dynamic medium-term nurse staffing and scheduling policy options for the medical units.

In the fixed staffing option, the medical unit is staffed by a fixed number of nurses throughout the staffing

horizon. In the dynamic staffing policy we propose, historical patient demand data enables us to suggest

a non-stationary staffing scheme. We compare the performance of both nurse allocation policy options, in

terms of cost savings and understaffing ratios, with the optimal staffing scheme reached by the actual patient

data. As a part of our experimental design, we evaluate our optimization model for the three medical units

of the PICU in the “as-is” state.

In Chapter 5, we conduct two-stage short-term staffing adjustments for the upcoming nursing shift. Our

proposed adjustments are first used at the beginning of each nursing shift for the upcoming 4-hour shift.

Then, after observing actual patient demand for nursing at the start of the next shift, we make our final

staffing adjustments to meet the patient demand for nursing. We model six different adjustment options for

the two-stage stochastic programming model – five options available as first-stage decisions and one option

available as the second-stage decision. Because the adjustment horizon is less than 12 hours, the current

patient census, patient acuity, and the number of scheduled admissions/discharges in the current and up-

coming shift are known to the unit nurse manager. We develop a two-stage stochastic integer programming

model which will minimize total nurse staffing costs (and the cost of adjustments to the original schedules

developed in the medium-term planning phase) while ensuring adequate coverage of nursing demand.

Chapter 6 provides conclusions from the study and identify both limitations and future research direc-

tions.
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Chapter 1

Problem Motivation & Statement of

the Research Questions

1.1 Problem Motivation

1.1.1 Rising Healthcare Costs, Quality of Patient Care and Nursing Short-

ages

The enactment of the Affordable Care Act (ACA) in 2010 brought significant changes to U.S. health care

policy (Altman and Frist, 2015). The legislation aimed to increase the number of individuals with health

insurance, improve the quality of care, and alleviate seemingly inevitable increases in the cost of care (The

Affordable Care Act, 2010). But, U.S. health care costs continue to rise, despite the advent of the Affordable

Care Act (Patton, 2015). Recent estimates suggest that national health care expenditures increased between

5% and 6% in both 2014 and 2015, and are estimated at $3.2 trillion. These rates are substantially higher

than inflation, and some experts suggest that similar increases will continue through 2024 (Bauchner and

Fontanarosa, 2016). Nursing care is identified as the single biggest factor in both the cost of hospital care

and patient satisfaction (Yankovic and Green, 2011). Several studies have shown that there exists a strong

association between nurse staffing and patient outcomes. When a nursing unit is chronically short-staffed,

nurses are forced to maintain an intense pace in order to ensure patients receive timely care. Over time, this

can result not only in nurse burnout, but also in patient dissatisfaction and even medical errors. Improved

accuracy in the allocation of nursing staff could mitigate these operational risks and improve patient out-
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comes.

Given the fact that wages and benefits for Registered Nurses (RNs) constitute a substantial portion of over-

all hospital costs, comprising approximately 25% of hospital operational costs (Maenhout and Vanhoucke,

2013b), hospital administrators have attempted to reduce nurse staffing as a means to reduce costs and in-

crease profitability (Rivers et al., 2005). On the other hand, projections suggest that by 2020 approximately

36% of nursing positions in the United States will remain unfilled (Wright and Bretthauer, 2010). Buerhaus

et al. (2009) suggest that the U.S. nursing shortage could reach half a million by 2025. Therefore, rising

healthcare costs and increasing nurse shortages make cost-effective nurse staffing of vital importance (Kort-

beek et al. 2015). The shortage of nurses has attracted considerable attention due to its direct impact on

the quality of patient care (Punnakitikashem et al. 2013). This issue is expected to worsen, especially given

the aging population of baby-boomers, who are also part of the nurse workforce. This has resulted in risk

exposure for hospitals, including patient safety issues, the inability to detect complications, and potential

mortality rate increases (Paul and MacDonald, 2013).

1.1.2 Complexity of Computing Nursing Requirements & Rostering

Staffing requirements are the result of a complex interaction between care-unit size, nurse-to-patient ratios,

bed census distributions, and the quality-of-care requirements. The optimal configuration strongly depends

on the particular characteristics of a specific case under study (Kortbeek et al., 2015a). In addition, Green et

al. (2013) indicate establishing the appropriate nursing level for a particular hospital unit during a specific

shift is complicated by the need to make staffing decisions well in advance (e.g., six to eight weeks) of that

shift, as well as labor constraints dealing with the number of consecutive and weekend shifts worked per

nurse, vacation schedules, personal days, and preferences (Miller et al. 1976, Wright et al. 2006). The man-

agement of the nursing workforce is typically seen as a multi-phase sequential planning and control process

that basically consists of a staffing period, a shift scheduling effort, and an allocation phase (Maenhout and

Vanhoucke, 2013). The decisions made in each phase of this hierarchical process constrain subsequent phases.

Maenhout and Vanhoucke (2013) define the staffing phase as a strategic, long-term budgeting phase that

determines the quantity and mix of nursing resources. The shift scheduling phase focuses on the mid-term

assignment of the budgeted nurses to workdays and/or daily work shifts (e.g., early, late or night shift).

This shift assignment aims to satisfy the minimum coverage requirements while meeting time-related rules
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and practices (e.g., personal time requirements, contract stipulations, specific workplace conditions, national

or state mandates) that define acceptable individual schedules for the nurses and the hospital. Burke et

al. (2013) also indicate that creating rosters is a challenging search problem requiring the satisfaction of

many constraints and the balancing of a variety of requirements. This time consuming and frustrating duty

often falls to a head nurse who would rather be concentrating on their primary duty of caring for patients.

Many scholars also underscore that regular rescheduling may also be required to deal with staff sickness and

absences. The study suggests that computerized, automated rostering can remove the vast majority of this

workload and create higher quality schedules that are fair, impartial and satisfy more preferences. Com-

pliance with legal requirements can also be ensured, management statistics collected and monthly reports

generated, all reducing paperwork (Burke et al., 2013).

Although nursing care is identified as the single biggest factor in both the cost of hospital care and patient

satisfaction, there still remains widespread dissatisfaction with the current methods of determining nurse

staffing levels, including the most common one of using minimum nurse-to-patient ratios (Yankovic and

Green, 2011). In many hospitals, staffing levels are a result of historical development, given that hospital

administrator lack the tools to base current staffing decisions on information about future patient demand

(Kortbeek et al. 2015). According to Paul and MacDonald (2013) nurse shortage implications go beyond

healthcare quality, extending to health economics as well. Inaccurate estimates of the nursing resources

required to satisfy patient demand in a hospital environment could make this already-challenging problem

worse. In addition, mandatory nurse-to-patient ratio methods implemented in some states, providing for

simplification from a demand estimation perspective, create a risk of under- or overestimating required nurse

resources. As a result of research demonstrating the positive impacts of higher nurse-to-patient ratios on the

quality of care, patient safety, mortality, etc. (Aiken et al. 2010, Needleman et al. 2006), some states have

made nurse-to-patient ratios mandatory. Even though high nurse-to-patient ratios may be a good strategy

from a health quality perspective, they are not a strategy every hospital and state can possibly afford, and it

is one that can also further exacerbate the nursing shortage (Paul and MacDonald, 2013). One shortcoming

of this method is that it is its assumption that demand for services and the requirement for nurse resources

in a hospital behaves in a linear manner, which is far from reality (Clancy, 2007).
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1.2 Potential Benefits of Efficient Nurse Scheduling & Need for

Decision Support Tools

Efficient, effective nurse scheduling can deliver significant benefits to healthcare environments. Burke et al.

(2013) suggest that high-quality nurse rosters benefit nurses, patients and managers. Patients receive better

healthcare if nurses are able to spend more time with them, and mistakes are less likely if nurses are not

stressed, tired and overworked due to poorly crafted schedules. Improved rosters not only decrease nurse

fatigue, but also help them to maximize the use of their leisure time and increase job satisfaction. From a

management point of view, better and more flexible scheduling can improve nurse retention, aid recruitment,

reduce tardiness and absenteeism, increase morale and productivity, and provide better patient service and

safety. The direct result is cost reduction. Given the perspectives outlined above, decision support methods

can help with efficient and effective nurse scheduling.

Many patient care units face challenges in accurately estimating the daily number of nurses needed. Ana-

lytical methods that complement intuition- and experience-based decisions on nurse staffing and workload

would help decrease the unplanned last-minute scheduling requirements for nurses, and improve healthcare

delivery through efficient nurse allocation. One factor making such estimates difficult is the lack of a decision

support tool for understanding the distribution of admissions to healthcare facilities. We aim to statistically

evaluate the existing staff allocation system of an ICU using clinical operational data, and then develop a

predictive model for estimating the number of admissions to the unit. It is difficult to understand the pattern

and frequency of admissions, particularly those admissions that are not known twelve hours in advance (i.e

unscheduled admissions). In Chapter 3, we first show that these “unknown” admissions can be modeled via

Poisson distributions. The purpose of this chapter is to provide a framework for accurately estimating the

number of nurses required in Intensive Care Units (ICUs) on a given day. The model developed there is

generalizable for implementation in other intensive care units.
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1.3 Statement of Research Questions

1.3.1 RQ 1: Medium-Term Integrated Nurse Staffing & Scheduling

The enactment of the Affordable Care Act (ACA) resulted in more and sicker patients entering the healthcare

system. This increases nursing workload, leading to higher risk of nurse burnout in an already short-staffed

environment. With this motivation, we study integrated nurse staffing and scheduling in Intensive Care

Units, a 7-day x 24-hour care environment facing unscheduled patient admissions with dynamic acuity lev-

els. Our research objective is to construct staffing patterns, which specify the number of nursing personnel

from various job profiles to be scheduled in the medical units and nursing shifts of a scheduling period. Our

solution approach aims to reduce nurse staffing costs while balancing the under- and over- staffing risks,

which will help mitigate nurse burn-out, improve patient outcomes and manage hospital staffing costs.

Nurse rostering is an NP-hard combinatorial problem that is extremely difficult to efficiently solve real-sized

problems. Usually, real-problem instances face complicated work rules related to safety and quality of service

issues, as well as rules about preferences of the personnel. In order to avoid the size and complexity limita-

tions, we generate feasible nurse schedules for the full-time equivalent (FTE) nurses using algorithms. These

algorithms will be used in the mixed-integer programming models developed in this work. Pre-generated

schedules reduce the increasing number of constraints and the number of decision variables of the integrated

model. Our optimization model recommends initial staffing plans and schedules for a six-week staffing hori-

zon. This is based on a variety of nurse groups and nursing shift assignment types, for the medical units

in the PICU. A novel methodology for estimating nurse workloads (due patient census, patient acuity, and

activity in the unit) is also incorporated.

When the nursing administration prepares the medium-term nurse schedules for the next staffing cycle, one

to two months before the actual patient demand realizations, target staffing levels for the upcoming nursing

shifts are typically determined by a general average staffing level for the nursing care needs in the medical

units. Using a mixed-integer optimization model, we evaluate fixed vs. dynamic medium-term nurse staffing

and scheduling policy options for the medical units. In the fixed staffing option, the medical unit staff is

fixed throughout the planning horizon. The dynamic staffing policy we propose uses historical patient de-

mand data to suggest a non-stationary staffing scheme during the staffing horizon. We test the fixed staffing

policy alternative using various staffing level options. Then, for the dynamic staffing alternative, we prepare
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a “heat map” of patient census, patient acuity, and admissions-discharges-transfers (ADT) in the medical

units of the PICU, for example, and compare the performance of dynamic heatmap-based policy against

the alternative fixed staffing policies. Chapter evaluates the performance of both nurse allocation policy op-

tions with the optimal staffing scheme reached by the actual patient data to study our first research question:

RQ 1: Do dynamic medium-term nurse staffing policies that use patient demand forecasts out-

perform the historically-employed fixed staffing policy for the intensive care medical units?

1.3.2 RQ 2: Controlling the Understaffing Levels in the Medical Units

As the nurse workload increases, overtime becomes more burdensome. In fact, nurses cite undesirable sched-

ules and overtime as primary reasons for burnout (Aiken et al., 2002). Additionally, unsatisfactory working

conditions and policies have contributed to higher turnover rates (Aiken et al., 2002; Cline, Reilly & Moore,

2003). Jones (2007) suggests that the cost of turnover in the United States is approximately 1.2-1.3 times the

average annual salary for each vacancy. U.S. hospitals spend approximately $300,000 annually for every 1%

increase in the turnover rate (Price Waterhouse Coopers, 2007). It is no surprise that some U.S. lawmakers

have proposed legislation that limits the use of overtime and the number of patients to whom a nurse can be

assigned. There are 21 states with restrictions on the use of overtime (American Nurses Association, 2011).

When a nursing unit is chronically short-staffed, patient care is at risk. Over time, this can result not only

in nurses burnout, dissatisfied patients, and even medical errors (www.americansentinel.edu).

Aiken et al. (2001) surveyed nurses in five countries and found that an increased workload causes basic

nursing interventions with patients went undone during the shift. The inability to provide the required level

of patient care was linked to lower job satisfaction and staff retention. High workloads and undesirable

schedules are two major reasons causing job dissatisfaction (Punnakitikashem et al. 2013). Penoyer (2010)

reviewed the literature on nurse staffing and patient outcomes in critical care units. The author examined

the major nursing and medical literature for 1998 to 2008 articles focused on intensive care units or critical

care populations. This review clearly demonstrates an association between nurse staffing in the intensive

care unit with patient outcomes. Since patient safety is jeopardized when medical care units are under-

staffed, a scarcity of nursing capacity can lead to both costly staff sourcing from third party agencies, and

to undesirable ad hoc bed closings in the ward (Kortbeek et al. 2015).
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Kuntz et al. (2014) estimate the association between the occupancy levels that patients experience during

a hospital stay and the probability of in-hospital survival. They suggest that when occupancy is very high,

the ability to respond by exploiting staffing buffer becomes constrained. The authors suggest that the strain

is passed on to employees, who are forced to ration limited resources to cope with excessive demand, and

the associated stress impairs their cognitive abilities. High occupancy levels and stress lead to safety tipping

points in hospitals. Neither the organization nor its clinical staff are able to absorb another increase in

occupancy beyond the safety tipping point without significant deterioration of the quality of care. Empirical

analysis from the Kuntz et al. (2014) article demonstrates that such tipping points exist. Mortality risk

begins to increase significantly when occupancy levels exceed a tipping point of 92.5%. Burnout and the

total workload experienced by nurses can usually be managed with scheduling shifts. Vericort and Jennings

(2011) suggest that these shifts should limit nurse working hours, allow for enough breaks, and consider

individual preferences. In fact, some hospitals offer flexible shifts with long recovery periods in order to

retain nurses. The authors suggest that, in conjunction with efficient scheduling systems, hospital managers

consider limiting the utilization rates experienced by nurses.

To mitigate nurse burnout and improve the appeal of ICU nursing, we incorporate “understaffing penalty”

as a mechanism to control the understaffing in the medical units. We analyze how various levels of under-

staffing penalty affects outcomes in the medical unit. We also evaluate the impact of the number of available

schedules (NAS) on understaffing ratios in the medical units. We explore whether there exists a saturation

level for the NAS. To study these aspects of the medium-term nurse staffing and scheduling problem, our

second research question is formulated as follows:

RQ 2: Can understaffing penalty cost be utilized as a mechanism to control the understaffing

levels and possibly mitigate nurse burnout and medical errors?

1.3.3 RQ 3: Short-Term Nurse Schedule Modifications to Better Mimic the

Patient Demand

Nurse schedules are constructed well ahead the occurrence of actual patient demand for nursing. In an envi-

ronment where 30 to 70% of patient admissions are not known 12-hours ahead of the actual admission and

where patient acuities are diverse, the nursing administration constantly face the challenge of adjusting the

nurse schedules. When a medical unit is understaffed, staffing alternatives available to the administration
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include: (1) general nurse float pool in the hospital, (2) on-call nurses (i.e. FTE overtime and additional

PRN hours) and (3) mandatory overtime. When the scheduled nursing hours exceed the hours required by

current loads, the charge nurse can: (1) float the nurse to another unit, (2) reassign her to a later day in

the same staffing horizon, (3) cancel the shift (and one of the following designations is used for the time off:

vacation, personal day, holiday, or unpaid leave; Bard and Purnomo, 2005a). Each option listed above has

its own unique cost implications. The central aspect of the short-term nurse schedule modification problem

is the requirement of a very efficient solution algorithm. Practically, the charge nurse will run the solution

algorithm at the beginning of each 4 to 8-hour shift and expect to have a solution in less than an hour,

preferably in less than 10 minutes.

As detailed in Chapter 5, we conduct two-stage short-term staffing adjustments for the upcoming nursing

shift. Our proposed adjustments are first conducted prior to each nursing shift, then following the obser-

vation of actual patient demand for nursing for the start of the next shift final staffing adjustments are

made. Since the adjustment horizon is less than 12 hours, the current patient census, acuity levels of the

existing patients, the number of scheduled admissions and discharges in the current and upcoming shift are

known to the unit nurse manager. A two-stage stochastic integer programming model minimizes the total

nurse staffing costs and cost of adjustments to the original schedules developed in the medium-term planning

phase, while ensuring the coverage of nursing demand of patients in the unit.

At the start of a current shift, we assume following patient information is available to the unit charge nurse:

(1) Current patient census, (2) Acuity assignments of the existing patients, (3) Scheduled and unscheduled

patient admissions and discharges and their associated acuity groups during the current shift, (4) Number

of scheduled patient admissions and discharges (and acuity scores of the discharged patients) in the upcom-

ing shift. On the other hand, (1) Number of unscheduled patient admissions in the upcoming shift, and

(2) Acuity assignments of patients from scheduled and unscheduled admissions in the upcoming shift are

unknown to the charge nurse at the start of the current shift. A stochastic integer programming model is

developed to address these shortcomings. A new expected nursing requirement is calculated and compared

to the provided nursing hours after using the available schedule adjustment options. Our decision variables

in both of the stages include the number of adjustment actions taken from each available adjustment type

(i.e. number of cancelled shifts, number of nurses requested from the float pool etc.).

In addition to the patient information described above, the two-stage stochastic integer programming model
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takes as an input: (1) the number of FTE and PRN nurses scheduled for the current and upcoming shift, (2)

the number of available float pool and on-call nurses in each shift, and (3) the nurse profiles and schedule

of the nurses for the previous and upcoming three shifts (for potential overtime requests). We also investi-

gate the scheduling flexibility needs of the medical units, and formulate our third research question as follows:

RQ 3: Can short-term schedule modifications that are based upon decisions attained from

two-stage stochastic integer programming model lower cost and reduce understaffing levels,

compared to original medium-term staffing plans?
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Chapter 2

Review of Nurse Staffing and

Scheduling Approaches

2.1 Introduction

This chapter provides a review of the relevant literature. Section 2.1 reviews the literature on nursing

workload measurement approaches. Staffing and scheduling healthcare personnel involves determining the

number of personnel of the required skills and assigning them to the predetermined shifts in order to meet

predicted patient demand requirements. It is often referred to as workforce planning and scheduling in other

personnel planning environments. The literature on nurse staffing and scheduling is significantly related to

the workforce planning and scheduling. Section 2.2 discusses the related literature from workforce planning

and scheduling. Section 2.3 provides a comprehensive review of the nurse staffing and scheduling literature

found in the Operations Management and Operations Research focused journals. In particular, the review

in Section 2.3 includes the areas of nurse planning stages, nurse staffing policy options, cyclic and non-

cyclic scheduling of nurses, algorithmic solution approaches to the nurse staffing and scheduling problems,

cross-utilization of nurses in medical units, nurse absenteeism, scheduling under demand uncertainty with

stochastic solution approaches, short-term nurse staffing and nurse-to-patient assignment.
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2.2 Nursing Workload Measurement

2.2.1 Dynamic Nature of Patient Demand in Hospital Environments

Workloads in nursing wards depend highly on patients arrival and their lengths of stay, both of which are

inherently variable. Predicting the workloads and staffing nurses accordingly are essential for guaranteeing

quality of care in a cost-effective manner (Kortbeek et al., 2015a). Measures of workload as used in the

literature includes characteristics of patients (e.g. casemix) and patient turnover, as well as patient acu-

ity/intensity (Duffield et al., 2011). Green et al. (2013) suggests that the problem of determining nurse

staffing levels in a hospital environment is a complex task because of variable patient census levels and

uncertain service capacity caused by nurse absenteeism. In determining staffing requirements, such factors

as total census, intensity-of-care levels, and type of ward must be estimated for appropriate planning to

be accomplished (Helmer et al., 1980). Hourly changes in patient census and acuity cause the demand for

nursing services to depart from the planned schedule several times a day, which requires hospitals to update

their staffing needs on a continuing basis (Bard and Purnomo, 2005b). Some additional factors of consider-

ation to achieve an effective nurse staffing system would be the nurse preferences regarding work schedules,

nurse absenteeism and patient acuity (Purnomo and Bard, 2007; Wang and Gupta, 2014). An acuity-based

staffing system regulates the number of nurses on a shift according to the patients’ needs, and not according

to raw patient numbers.

Among the earlier studies, Helmer et al. (1980) developed a series of multi-variate regression models, where

using ward, month, day, shift, and time as independent variables, the number of patients in each level of

care are predicted. The number of patients are then used to predict nursing man-hour requirements. De

Vries (1987) introduce a nursing workload measurement instrument. The study classified each patient into

one of four categories, i.e. self-care, medium, high and intensive care. There are nine indicators, such as

independency, need for help with bathing and/or feeding, need for observation, which determine the patient

category. Using sampling and observation studies for each category, a coefficient is determined for the

corresponding staff need. By classifying the daily patient mix and multiplying the number per category with

the input coefficients, the workload is determined (in nursing hours, or full-time equivalents). A measure for

the staff capacity utilization is then obtained by relating the assessed workload to the available staff. The

ratio of these variables is called “work pressure,” which is said to be 100% when the supply and demand of

nursing care are balanced.
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2.2.2 Nursing Workload Index, Patient Acuity and Predictability of Patient

Volume

Brusco and Showalter (1993) define patient service level in terms of the number of nurse labor hours required

to achieve a desired quality of patient care. They introduce a “workload index” (WI) and a “conversion

factor” (CF) to compute the number of daily recommended nursing hours for the patient care unit. The

WI is computed by summing up the product of relative acuity index and census of patients in that acuity

category. The CF represents the number of direct care hours which should be provided for a patient in the

baseline acuity category. It is used as a surrogate measure of quality of patient care. Siferd and Benton

(1994) define patient acuity mathematically, for an individual patient, as the number of nurses in the unit

needed by one patient during one shift. They represent the number of nurses needed in the unit during the

shift as a multiplicative model of mean patient acuity, number of patients, and the mean rate of change in

patient acuities. The study projects the number of nurses needed to staff the next shift as a function of the

number of patients expected to be assigned to the unit at the beginning of that shift, and the level of care

required by those patients. The authors show that changes in these factors interact to cause wide swings in

the number of nurses needed to staff the next shift.

Harper et al. (2010) extended a hospital capacity simulation tool that determines the required size and

skill mix of hospital nursing teams. Their approach incorporated discrete event simulation and stochastic

programming to determine optimal nursing requirements by staff grade. Outputs from the three-phase dis-

crete event simulation are fed into a stochastic program which recommends the optimal number of nurses

to employ (full-time equivalents) by skill-mix and by shift. A novel feature of the tool is its ability to pre-

dict and compare nursing needs based on different methods of capturing patient-to-nurse ratios as currently

adopted across the UK National Health Service. Yankovic and Green (2011) represent the nursing system

as a variable finite-source queuing model and develop a two-dimensional model to approximate the actual

interdependent dynamics of bed occupancy levels and demands for nursing. They use this model to show

how unit size, nursing intensity, occupancy levels, and unit length-of-stay affect the impact of nursing levels

on performance and thus how inflexible nurse-to-patient ratios frequently lead to either understaffing or

overstaffing.

Paul and MacDonald (2013) develop a series of process flow-based models that consider the inherent complex-

ity in key hospital departments and hence provide a basis for empirical models to estimate nurse demands.
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Using an illustrative example of a simple intensive care unit system, they demonstrate the challenges associ-

ated with mandatory nurse-to-patient ratios to address the nurse shortage crisis when subjected to varying

patient demand and hospital service quality goals. Results suggest that relying merely on mandatory nurse-

to-patient ratios is not an effective strategy, especially considering the issue of nursing shortages. Kim et al.

(2014) technical report evaluate the predictability of patient volume in Hospital Medicine (HM) groups using

a variety of known forecasting techniques. HM groups experience fluctuations in patient volume which may

be difficult to predict. Results from univariate and multivariate methods were compared with a benchmark

of historical means. The mean absolute percentage error (MAPE) was used to measure the accuracy of

forecast. Autocorrelations and cross-correlations of patient volume across the services were also analyzed.

Results from the study indicate that the forecasting models outperformed the historical average based ap-

proach by reducing MAPE from 17.2% to 6% in one-day-ahead forecast and to 8.8% MAPE in a month-ahead

forecast. The ARIMA method outperformed the other methods.

2.2.3 Advantages and Disadvantages of Mandatory Minimum Nurse-to-Patient

Ratios

Nurse-to-patient ratios are commonly applied when determining staffing levels (Yankovic and Green, 2011).

These ratios indicate how many patients a registered nurse can care for during a shift, taking into account

both direct and indirect patient care. Staffing based on nurse-to-patient ratios can be performed in two

ways. The ratios can be considered as mandatory lower bound, such as in California, or alternatively

nursing administration can use these ratios as guidelines that must be satisfied for a certain proportion

of time. The advantage of mandatory minimum nurse-to-patient ratios is that a consistently high level of

patient safety is guaranteed (Kane et al., 2007). The disadvantage, however, is that all beds need to be

continuously staffed because there is always a possibility that all beds are occupied and, as described, the

nurse rosters have to be settled in advance. Therefore, overstaffing is a threat because there is little flexibility

to adjust staffing levels to the predicted patient demand. Application of nurse-to-patient ratios as guidelines

help overcome the overstaffing threat. In such a case, the assumption is that there is slack in the time

window during which certain indirect patient care tasks can be performed, without having direct negative

consequences on patient safety or work stress. Kortbeek et al. (2015a) combine the advantages of both

approaches by using two nurse-to-patient ratio targets. Kortbeek et al. (2015b) present a generic analytical

approach to predict bed census on nursing wards by hour, as a function of the Master Surgical Schedule and

arrival patterns of emergency patients. Along these predictions, insight is gained on the impact of strategic

(case mix, care unit size, care unit partitioning), tactical (allocation of operating room time, misplacement
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rules), and operational decisions (time of admission/discharge). Results suggest that larger facilities can

operate under a higher occupancy level than smaller ones in trying to achieve a given patient service level,

since randomness balances out.
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2.3 Workforce Planning and Scheduling

In this section, we provide a brief review of the literature on workforce planning and scheduling that is linked

to the nurse staffing and scheduling problem. Defraeye and Van Nieuwenhuyse (2016) provide a state-of-

the-art literature review (1991 - 2013 time frame) on staffing and scheduling approaches that account for

non-stationary demand (i.e. the number of customers fluctuates over time according to a stochastic, though

to some extent predictable, pattern) for service. The authors categorize the literature according to system

assumptions, performance evaluation characteristics, optimization approaches and real-life application con-

texts. Van den Bergh et al. (2013) also reviewed the literature on personnel scheduling problems. They

identify different perspectives from which to classify the existing literature, which include: (1) Personnel char-

acteristics, decision delineation and shifts definition, (2) Constraints, performance measures and flexibility,

(3) Solution method and uncertainty incorporation, (4) Application area and applicability of research.

2.3.1 Classification of the Labor Scheduling Research

Ernst et al. (2004) presents a review of staff scheduling and rostering problems in specific application areas,

and the models and algorithms that have been reported in the literature for their solution. The authors

define personnel scheduling, or rostering as the process of constructing work timetables for staff so that

an organization can satisfy the demand for its goods or services. The first stage of this process involves

determining the number of staff, with particular skills, needed to meet the service demand. Individual staff

members are allocated to shifts so as to meet the required staffing levels at different times, and duties are

then assigned to individuals for each shift. All industrial regulations associated with the relevant work-

place agreements must be observed during the process. Hur et al. (2004) structure workforce staffing and

scheduling decisions as a three-stage hierarchical process. Stage one deals with deciding the size and com-

position of the workforce. Stage two focuses upon assigning the staff to work tours covering a given time

interval. Stage three concerns the process of modifying the work schedule while implementing it during a day.

Bechtold et al. (1991) classify the labor scheduling research into three categories: (1) days-off, (2) shift, and

(3) tour. Days-off research specifies work and non-work days for employees when the employee work week

is shorter than the operating week of the service delivery system. Shift scheduling research determines a set

of employee work schedules (as defined by start, finish, and rest/meal break times) across a daily planning

horizon. Tour scheduling research addresses both days-off and shift scheduling over a weekly planning
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horizon. Bechtold et al. (1991) list objective function criteria used in the literature on labor scheduling

research as: total labor hours scheduled, total number of employees, labor costs, unscheduled labor costs,

customer service, over-staffing, under-staffing, number of schedules with consecutive days off, number of

different work schedules used, or some combinations of the above. They also list variety of constraints that

were used for labor scheduling flexibility and resource limitations that relate to: labor requirements, labor

schedule duration, labor schedule start time, meal and rest breaks, consecutive/nonconsecutive days off,

labor productivity, number of employees, equipment capacity, labor availability, labor location site, hours

per day of operation, schedule planning horizon or some combination of the listed.

2.3.2 Algorithms for Shift Starting Times, Shift Lengths, and Break Place-

ment

Next, we provide a brief review of the methodology articles in the workforce planning and scheduling liter-

ature used in the nurse staffing and scheduling studies. Among the earlier studies, Baker (1974) presents

a simple algorithm for the problem of assigning days-off to full-time staff given a cyclic seven-day demand

pattern. The formulation assumes that employees are entitled to two consecutive days off each week with

the objective to find a minimum staff size capable of meeting the requirements. Baker and Magazine (1977)

examine the problem of scheduling days-off in continuous (seven-day-a-week) operations under a variety of

day-off policies, when demand for manpower change on weekdays and weekend days. The study consider a

number of policies governing employee work assignments and in each case give a formula for the minimum

workforce size and a schedule construction algorithm.

Bailey and Field (1985) present an LP model for personnel scheduling when alternative work hours are

permitted. They introduce the concept of ‘Flexshifts’, which develops schedules of 6-, 8-, and 10-hour

shifts against a 12- and 24-hour daily demand profile. Burns and Koop (1987) introduce a multiple-shift

manpower scheduling algorithm that constructs schedules that use no more than the minimum number of

workers necessary. Constraints include two off-days each week, a specified number of off-weekends in any

fixed number of consecutive weekends, a maximum of six consecutive work shifts and different staffing de-

mands for each type of shift. Bechtold and Showalter (1987) examine the problem of scheduling employees in

a service delivery system subject to demand variability. The manual heuristic proposed assigns full-time em-

ployees to weekly work schedules with the objective of minimizing the total number of labor hours scheduled.
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Brusco and Jacobs (1995) develop a local-search heuristic based on the simulated annealing algorithm to

generate feasible integer personnel schedules in continuously operating organizations. Thompson (1995)

presents an integer programming model for developing optimal shift schedules while allowing extensive

flexibility in terms of alternate shift starting times, shift lengths, and break placement. The model combines

the work of Moondra (1976) and Bechtold and Jacobs (1990) by implicitly matching meal breaks to implicitly

represented shifts. Moreover, the model extends the work of these authors to enable the scheduling of

overtime and the scheduling of rest breaks.

2.3.3 Work Tour Scheduling

Loucks and Jacobs (1991) examine the dual problem of work tour scheduling and task assignment involving

workers who differ in their times of availability and task qualifications. The problem is presented in the

context of a fast food restaurant. The authors indicate developing a week-long labor schedule is a nontrivial

problem, in terms of complexity and importance, which a manager spends as much as a full workday solving.

The primary scheduling objective (the manager’s concern) is the minimization of overstaffing in the face of

significant hourly and daily fluctuations in minimum staffing requirements. The secondary objective (the

workers’ concern) is the minimization of the sum of the squared differences between the number of work

hours scheduled and the number targeted for each employee. Contributing to scheduling complexity are

minimum and maximum shift lengths and a maximum number of workdays. They demonstrate that a goal

programming formulation of a representative problem is too large to be solved optimally. Subsequently,

they propose a computerized heuristic procedure capable of producing a labor schedule requiring at most

minor refinement by a manager. Easton and Rossin (1991) indicate policies governing employee scheduling

practices may permit millions of different tours in some service organizations. A common heuristic strategy

is to reformulate the problem from a small working subset of the feasible tours. Solution quality depends on

the number and types of schedules included in the model. They describe a working subset heuristic based

on column generation. The method accommodates a mix of full- and part-time employees. Experiments

revealed its formulations had similar objective values to the models using all feasible tours. They were also

significantly lower than those generated by alternative working subset procedures.

Bechtold et al. (1991) evaluate the performance of four LP-based and five construction heuristic methods

with respect to minimizing total labor hours scheduled. Each of the methods is applied to a tour scheduling

problem, subject to a variety of labor demand requirements distributions. Statistical analysis of the results
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indicate that effective tour schedule solutions are generated by both LP-based and construction methods.

The authors conclude that researchers should consider integrating these heuristic methods into a decision

support system. Brusco and Jacobs (1993) presents the application of a simulated annealing heuristic to

a cyclic staff-scheduling problem. The heuristic is designed for use in a continuously operating scheduling

environment with the objective of minimizing the number of employees necessary to satisfy forecast demand.

They suggest that the simulated annealing-based method tends to dominate the branch-and-bound algo-

rithms and the other heuristics in terms of solution quality and speed of convergence to a low-cost solution.

Bechtold and Brusco (1994) study working set generation methods for labor tour scheduling. Working set

generation method is selection of a subset of decision variables from the set of variables specified in the

complete problem, which alleviates the problem complexity. They classify previous working set genera-

tion procedures as being either structural, demand-based, or refinement. Two new working set procedures

are compared with previously published generation procedures within the context of a discontinuous tour

scheduling environment where the sole objective is minimization of total labor hours scheduled.

Brusco and Jacobs (1998) address the restricted starting-time tour-scheduling problem (RSTP), which in-

volves the determination of the hours of the day (shifts) and days of the week (days on) that employees

are assigned to work. RSTP is characterized by restrictions on the number of daily time periods in which

employees may begin their shifts. The authors propose a two-stage heuristic solution strategy for the RSTP.

The output of first stage is the set of shift starting times that yields the best LP shift scheduling solution

identified for RSSP. Once this set of starting times is determined, they are used to construct tours and the

problem is managed as an unrestricted starting-time tour- scheduling problem (USTP). The initial solution

to the tour-scheduling problem is constructed using a variation of a common greedy heuristic used in Morris

and Showalter (1983). At each iteration, the procedure begins by checking to see if a part-time employee

can be added to the schedule without violating the staffing mix constraint. To evaluate the solution strategy

for RSTP, study used the actual environmental conditions associated with plane-side (baggage handling,

etc.) operations at unionized United Airlines airport stations. Brusco and Jacobs (2000) present an im-

plicit tour-scheduling formulation of the “7x24” continuous tour scheduling problem that incorporates both

meal-break and start-time flexibility into an integer-programming model. The integer-programming model

extends Bechtold and Jacob’s (1990) implicit modeling of meal breaks to the continuous tour problem and

integrates Jacobs and Brusco’s (1996) implicit modeling of start-time bands. The model is generalized to

allow for specification of a start-time interval that indicates the number of periods between starting times.

The study suggests that real-world problems containing such flexibility can be solved optimally using general
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purpose integer-programming software.

2.3.4 Cross-Training Employees and Schedule Adjustment Problem

Brusco and Johns (1998) present an integer linear programming model for evaluating low-cost staffing plans

with appropriate cross-training configurations. The authors study a work environment where cross-trained

employees have different productivity levels in multiple work activity categories. The objective of the model

is to minimize workforce staffing costs subject to the satisfaction of minimum labor requirements across a

planning horizon of a single work shift. Cross-training structures and the labor requirement patterns were

established based on data collected from maintenance operations at a large paper mill in the United States.

The authors suggest that asymmetric cross-training structures that permit chaining of employee skill classes

across work activity categories are particularly useful.

Bhulai et al. (2008) present an efficient method for shift scheduling in a multiskill environment when con-

sidering a service-level constraint in each planning period. The study introduce a two-step method for

shift scheduling in multiskill call centers. First, staffing levels are determined, and next, the outcomes are

used as input for the scheduling problem. The scheduling problem relies on a linear programming model

that is easy to implement and has short computation times. The authors suggest, short computation times

potentially enable the method to be used as a part of an iterative procedure that combines shifts into rosters.

Hur et al. (2004) presents a mathematical formulation of the real-time schedule adjustment problem for

settings with a heterogeneous workforce. The authors indicate that available worker capacity does not

match with actual demand during a given day, which requires modifications to the planned work schedule

in order to improve service and increase profitability. The study propose mathematical formulations for

this type of real-time work schedule adjustment decisions and develops efficient heuristic approaches for this

decision. The authors compare the effectiveness of these heuristics with the decisions of experienced service

managers. The study investigates the effect of the degree of schedule adjustment on profitability, and assesses

the effect of demand forecast update errors on the performance of the schedule adjustment efforts. Results

indicate that the computer based heuristics achieve higher profit improvement than experienced managers.

The authors also suggest that active adjustments of work schedules are beneficial as long as the direction of

demand change is accurately identified.

19



2.4 Nurse Staffing and Scheduling in OM Literature

Over the past 30-40 years, many different approaches have been used to solve nurse rostering problems of

varying forms and complexity. Among the earlier studies, Warner and Prawda (1972) defined the “Nursing

Personnel Scheduling Problem” as the identification of staffing pattern which specifies the number of nursing

personnel of each skill class to be scheduled among the wards and nursing shifts of a scheduling period,

and minimizes a “shortage cost” of nursing care services provided for the scheduling period. Solution ap-

proaches included mathematical programming, constraint programming, goal programming, multi objective

approaches, case-based reasoning and a great variety of local search and meta-heuristic approaches (Burke

et al., 2013). Nurse rostering is an NP-hard combinatorial problem which makes it extremely difficult to

efficiently solve real life problems (Valouxis et al., 2012). Usually real problem instances have complicated

work rules related to safety and quality of service issues in addition to rules about preferences of the per-

sonnel. This section reviews the literature on nurse staffing and scheduling specifically from the Operations

Management journals. We identify major research areas and also solution approaches to the problem.

Cheang et al. (2003) and Burke et al. (2004) provide a very detailed analysis of modeling approaches and

methods to the nurse staffing and scheduling problems in the literature. Tables 2.1 and 2.2 below detail

the articles related to nurse staffing and scheduling that appear in prominent operations management (OM)

journals. Kellogg and Walczak (2007) review the nurse scheduling literature from the implementation per-

spective. The authors examine the models that academia has produced and the models that hospitals have

actually used. The study use data from various sources, including research articles, e-mail and telephone

surveys, an industry database, and a software source catalog. The authors indicate that only 30% of systems

that research articles discuss are implemented, and there is very little academic involvement in systems that

third-party vendors offer. Below, we provide a list of nurse staffing and scheduling literature in Operations

Management journals.
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Authors, Year & Journal Title Subject Methodology

Kim et al. (2015) - OR Stochastic IP approach to integrated nurse staffing and scheduling Stochastic optimization; Heuristic algorithms

Kortbeek et al. (2015a) - IJPE Flexible nurse staffing based on hourly bed census predictions Stochastic demand prediction

Wang & Gupta (2014) - MSOM Nurse absenteeism and staffing strategies for hospital inpatient units Stochastic optimization; Heuristic algorithms

Yom-Tov & Mandelbaum (2014) - MSOM Healthcare staffing with time-varying queue with reentrant patients Queueing networks

Wong et al. (2014) - Comp. & OR Two-stage heuristic approach for nurse scheduling problem in ER Heuristic algorithms

Green et al. (2013) - MS Nurse staffing in the presence of endogenous nurse absenteeism Econometric analysis

Burke et al. (2013) - Informs J on Comp. A time predefined variable depth search for nurse rostering Heuristic algorithms

Wright & Mahar (2013) - Omega Centralized nurse scheduling to improve schedule cost and satisfaction Multi-criteria math programming

Maenhout & Vanhoucke (2013a) - Omega Longer term nurse allocation analysis Integer programming; Heuristics algorithms

Maenhout & Vanhoucke (2013b) - HCMS Analyzing the nursing organizational structure Linear programming, Set partitioning

Punnakitikashem et al. (2013) - IIE Tran. Integrated nurse staffing and assignment Stochastic optimization; Heuristic algorithms

He et al. (2012) - MSOM Timing of nurse staffing decisions with workload heterogeneity Econometric Analysis

Valouxis et al. (2012) - EJOR A systematic two phase approach for the nurse rostering problem Integer programming; Heuristic algorithms

Burke et al. (2012) - Annals of OR Pareto-based search methodology for multi-objective nurse scheduling Multi-objective optimization; Meta-heuristics

Vericourt & Jennings (2011) - OR Nurse staffing in medical units: A queueing perspective Queueing Theory

Glass & Knight (2010) - EJOR A critical appraisal of the nurse rostering problem Mixed-integer linear programming

Burke et al. (2010) - EJOR Variable neighborhood search for highly-constrained nurse rostering Integer programming, Heuristic Algorithms

Wright & Bretthauer (2010) - DS Strategies for addressing the nursing shortage Math programming, Heuristic algorithms

Li et al. (2009) - Informs J on Comp. Component-based heuristic search method for nurse scheduling Heuristic Algorithms

Maenhout & Vanhoucke (2009) - JORS Incorporating nurse-specific characteristics in cyclical scheduling Integer programming, Heuristic algorithms

Gnanlet & Gilland (2009) - DS Sequential decision making for optimizing nurse flexibilities Stochastic optimization

Punnakitikashem et al. (2008) - COA Stochastic programming for nurse assignment Stochastic prog., Bender’s decomposition

Kellogg & Walczak (2007) - Interfaces Review of implementation for published nurse scheduling articles Review article

Parr & Thompson (2007) - Annals of OR Multi-objective nurse scheduling problem with weighted cost function Meta-heuristic; Simulated annealing

Table 2.1: Nurse Staffing and Scheduling Literature in Operations Management Journals
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Authors, Year & Journal Title Subject Methodology

Purnomo & Bard (2007) - NRL Cyclic preference scheduling for nurses using branch and price Integer programming; Heuristic algorithms

Bard & Purnomo (2007) - J of Sched. Cyclic preference scheduling of nurses: A Lagrangian-based heuristic Integer programming; Heuristic algorithms

Li & Benton (2006) - JOM Hospital technology and nurse staffing management decisions Hypothesis Testing

Wright et al. (2006) - DS Nurse scheduling problem: Staffing ratios and nursing shortages Integer programming; Heuristic algorithms

Bard & Purnomo (2005a) - EJOR Preference scheduling for nurses using column generation Integer programming; Heuristic algorithms

Bard & Purnomo (2005b) - HCMS Short-term nurse scheduling with daily demand fluctuations Integer programming

Aickelin & Dowsland (2004)-Comp. & OR Genetic algorithm for a nurse-scheduling problem Heuristic algorithms

Aicklein & White (2004)-Annals of OR Building better nurse scheduling algorithms Integer programming, Heuristic algorithms

Bellanti et al. (2004) - EJOR Greedy neighborhood search approach to nurse rostering Heuristic algorithms

Burke et al. (2004) - J of Sched. The state of the art of nurse rostering Review article

Cheang et al. (2003) - EJOR Nurse rostering problems??a bibliographic survey Review article

Dowsland & Thompson (2000) - JORS Nurse scheduling with knapsacks and tabu search Integer programming; Heuristic algorithms

Dowsland (1998) - EJOR Nurse scheduling with tabu search and strategic oscillation Heuristic Algorithms

Bretthauer & Cǒté (1998) - DS Planning resource requirements in health care organizations Math Programming, Queuing Networks

Jaumard et al. (1998) - EJOR A generalized linear programming model for nurse scheduling Column generation; Constrained shortest path

Millar & Kiragu (1998) - EJOR Scheduling of 12 h shift nurses by network programming Math Programming

Venkataraman & Brusco (1996) - Omega An integrated analysis of nurse staffing and scheduling policies Mixed-integer linear programming

Brusco & Showalter (1993) - Omega Constrained nurse staffing analysis Linear programming, Response surface

Easton et al. (1992) - POM Analysis of alternative scheduling policies for hospital nurses Integer programming, simulation

Trivedi (1981) - OR A mixed-integer goal programming model for nurse budgeting Mixed-integer goal programming

Warner (1976) - OR Scheduling nursing personnel according to nursing preference Mathematical programming

Miller et al. (1976) - OR Nurse scheduling using mathematical programming Mathematical programming

Abernathy et al. (1973) - OR A three-stage nurse planning and scheduling model Stochastic programming, Heuristic algorithms

Warner & Prawda (1972) - MS A math programming model for scheduling nursing personnel Mixed-integer quadratic programming

Table 2.2: Nurse Staffing and Scheduling Literature in Operations Management Journals (Cont’d...)
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2.4.1 Stages of Nurse Planning

Warner (1976) structure three major areas of personnel planning decisions in nurse staffing and scheduling

research: staffing, scheduling and reallocation of nurses. For the scheduling phase of the problem study

introduces five criteria for evaluating alternative models: (1) Coverage: difference between the required and

the scheduled number of nurses, (2) Quality: schedules fairness, work stretch length for a particular schedule,

(3) Stability: perception of nurses in terms of consistency and predictability of days on and off and weekend

work, (4) Flexibility: system’s ability to adapt changes in the environment, (5) Cost: cost and number of

resources consumed in making the decision (Burke et al., 2004).

Warner et. al. (1990) define several aspects of scheduling nursing personnel within the general context

of nursing management and review the history of the application of operations research and computers to

scheduling nurses. The study also describe what nursing administration is looking for in an automated

scheduling system. The study divides the nurse management into patient-oriented issues, such as patient

care philosophy, care plans, task assignment, etc., and employee-oriented issues, such as budgeting, staffing,

scheduling, sick-leave tracking, productivity, etc. Venkataraman and Brusco (1996) present an integrated

nurse staffing and scheduling system for analyzing nurse workforce management policies. The authors study

the effects of staffing and scheduling policies on labor costs. Mixed-integer linear programming models are

used to develop a nurse staffing model, which is used to determine aggregate labor requirements for a 6-

month planning horizon; afterwards, another model disaggregates the nurse staffing plan into 2-week labor

schedules. Results of the study suggest important interactions between staffing and scheduling policies.

Punnakitikashem et al. (2008) describe four stages of nurse planning as nurse budgeting, nurse scheduling,

nurse rescheduling, and nurse assignment. Focusing on the last stage of nurse assignment, authors first

present a two-stage stochastic programming model that minimizes excess nurse workload, and algorithmic

approaches for solving the stochastic model. The authors solve the second-stage subproblem with a greedy

algorithm. The authors suggest that nurse assignment is usually performed within 30 minutes before each

shift. Consequently, the study focus is to find a good solution with the time limitation. Patient-to-nurse

ratio constraints are introduced to balance the workload of nurses as well as improve the overall performance

of the algorithm. Valouxis et al. (2012) use a two phase strategy where in the first phase the workload for

each nurse and for each day of the week was decided while in the second phase the specific daily shifts were

assigned. The study also applied local optimization techniques for searching across combinations of nurses’
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partial schedules.

2.4.2 Nurse Staffing Policy Options

Miller et al. (1976) formulated the nurse-scheduling problem as one of selecting a configuration of nurse

schedules that minimize an objective function that balances the trade-off between staffing coverage and

schedule preferences of individual nurses. Trivedi (1981) presents a mixed-integer goal programming model

that incorporates cost containment and provide appropriate nursing hours for delivering quality nursing care,

which considers trade-offs among full-time, part-time and overtime nurses on weekdays as well as weekends.

Easton et al. (1992) compare expected nursing expense and workforce requirements to staff medical and

surgical nursing units, under alternative scheduling policies alleged to improve nurse turnover. The authors

study alternative nurse scheduling patterns and present scheduling policies, reporting the number of distinct

schedules or tours (i.e. scheduling patterns in use involve shifts of 8, 10, 12, or 16 hours. These shifts are

combined to form tours with a variety of days-off patterns and compensation schemes.) that each policy

allows, the number of monthly (28 days) paid hours and working hours for each pattern, and a ratio that

reflects relative wage rates. Using simulation and an integrated staffing and scheduling methodology, the

study suggests that the expected nursing wages and workforce requirements for some policies differed by as

much as 33%. The study also indicates that the expected labor costs for certain policies could erode the

benefits expected from improved retention. In contrast, other policies in the study allow high utilization

of nursing resources, enhancing the expected benefits of reduced turnover with significant reductions in ex-

penses for labor, recruiting, training, and fringe benefits.

Brusco and Showalter (1993) evaluates the impact of nurse staffing policy options on annual nursing la-

bor costs. A linear programming staffing model served as the research vehicle for the study and response

surface methodology was used to investigate the relationship between labor costs and the policy options.

The primary nurse staffing policy options available to hospital management include: (1) staffing mix; (2)

overtime; (3) flex-staff; and (4) external staff assignment. Staffing mix refers to the work force composition

of registered nurses (RN), licensed practical nurses (LPN) and nurses’ assistants (NA). Overtime refers to

the use of nursing staff for more than 8 hr. per shift or more than 80 hr. per bi-weekly period. Flex-staffing

is the use of part-time (less than 80 hr. per bi-weekly period) employees working throughout the hospital.

External staffing consists of RNs signed to 13-week contracts as well as temporary nurse hires from local
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agencies. The impact of the nursing shortage was incorporated by assuming the currently available pool of

nurses. The available nurse hours of each skill class in each patient care unit was used as a measure of nurse

labor availability. The authors use a conversion factor (CF) as a surrogate measure of quality of patient care

for the service level. CF is multiplied by the workload index (WI) to compute the aggregate (across all skill

levels) nursing labor hour requirements for patient care units in each planning period. As their experimental

research methodology authors used “Response Surface Methodology (RSM)”, which employs a low-order

polynomial for approximating a response variable over a specified range of design variables. In this study,

the response variable is annual nursing labor costs and design variables are the policy decisions. The authors

chose to use a second-order model which would capture quadratic effects if they are present. Results from

the study indicate that service level, nurse labor availability, nurse staffing mix and flex-staff assignment had

the most significant effects on annual nursing labor costs.

Li and Benton (2006) investigates the relationship among hospital size, location, technology, nurse manage-

ment, and overall hospital performance using a comprehensive covariance structure model. The results of

the study suggest that nurse management decisions have a significant effect on hospital cost and quality

performance. Wright et al. (2006) develops a scheduling model to evaluate how mandatory nurse-to-patient

ratios and other policies impact schedule cost and schedule desirability from the nurses’ perspective. The

authors adapt a three-phase workforce management framework seen in Campbell (1999). In the planning

phase, the manager makes decisions concerning how many employees to hire, how many to dedicate to each

unit or area of the organization, and how many employees to schedule for each shift. The authors present

a “workload model” for determining these requirements. In the scheduling phase, the manager develops

a schedule that shows when each employee works over the scheduling horizon using the “tour assignment

model”. The authors used a bi-criteria objective function approach. The first objective function minimizes

total regular-time and overtime nurse wages. The second objective function minimizes the total number

of undesirable shift assignments and weekends worked for nurses who do not want weekends. The authors

indicate that nurse wage costs can be highly nonlinear with respect to changes in mandatory nurse-to-patient

ratios.

Wright and Bretthauer (2010) present strategies to help combat the U.S. nursing shortage by providing an

attractive work schedule and work environment, which help retaining existing nurses and attracting new

nurses to the profession, while at the same time using the set of available nurses as effectively as possible.

The authors develop a model that coordinates scheduling, schedule adjustment, and agency nurse decisions
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across various nurse labor pools, each of differing flexibility levels, capabilities, and costs, allowing a much

more desirable schedule to be constructed. The coordinated scheduling model assigns specific nurses to each

shift over the scheduling horizon (five weeks in this study). This model extends the model developed by

Wright et al. (2006) by incorporating the ability to take advantage of flexible float nurses and unit nurses

and the addition of agency nurses. Using the resulting schedules from the coordinated scheduling model,

a second model provides a method to account for forecast error and adjust the schedule at the beginning

of each shift by allocating float nurses to particular units and reassigning unit nurses. Results from the

study suggest that labor costs can be reduced substantially because, without coordination, labor costs on

average are 16.3% higher based on an actual hospital setting, leading to the availability of additional funds

for retaining and attracting nurses.

2.4.3 Cyclic and Non-Cyclic Scheduling of Nurses

Millar and Kiragu (1998) present a mathematical model for cyclic and non-cyclic scheduling of 12-hour shift

nurses. Cyclic scheduling refers to the scheduling approach, where fixed patterns of days on and days off

are established and the staff is rotated continuously through them. The authors introduce a “stint”, which

is a pattern characterized by a start date, a length, a ’cost’ and the shifts worked. Nurse schedules in the

model are composed of alternating sequence of “work-stretch” and “off-stretch” patterns. Using the stints

as nodes in a network, the authors construct an acyclic graph on which the nurse’s schedules can be defined.

The resulting model is a shortest-path problem with side constraints. With a minor modification, authors

use the network to define both the cyclic and non-cyclic scheduling problems.

Bard and Purnomo (2007) addresses the problem of developing cyclic schedules for nurses while taking into

account the quality of individual rosters. Quality of a given schedule is determined by the absence of certain

undesirable shift patterns. The study aims to offer management greater flexibility in constructing rosters by

combining the principal components of cyclic and preference scheduling in a single model. The problem is

formulated as an integer program (IP) and then decomposed using Lagrangian relaxation. To find solutions

to the large-scale integer program (IP), authors develop a hybrid algorithm comprising both heuristic and

exact procedures. Two approaches are explored, the first based on the relaxation of the preference constraints

and the second based on the relaxation of the demand constraints.

Purnomo and Bard (2007) also study cyclic and preference scheduling methodology on nurse rostering with
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the objective of striking a balance between satisfying individual preferences and minimizing personnel costs.

To find solutions, the authors develop a branch-and-price algorithm that makes use of several branching rules

and an effective rounding heuristic. Maenhout and Vanhoucke (2009) investigate the benefits of integrating

nurse-specific characteristics in the cyclic scheduling approach. The authors analyze to what extent these

characteristics should be incorporated and compare this approach with a general and more robust cyclical

scheduling approach and the flexible acyclical rostering of nursing personnel. The study suggests performance

improvements in terms of robustness, scheduling effort, and solution quality by constructing new individual

nurse schedules for each nurse separately incorporating nurse-specific characteristics.

2.4.4 Algorithmic Solution Approaches

Jaumard et al. (1998) presents a 0-1 column generation model with a resource constrained shortest path

auxiliary problem for nurse scheduling. The master problem finds a configuration of individual schedules to

satisfy the demand coverage constraints while minimizing salary costs and maximizing both employee pref-

erences and team balance. A feasible solution of the auxiliary problem is an acceptable schedule for a given

nurse, with respect to requirements such as seniority, workload, rotations and days off. Bretthauer and Cǒté

(1998) present a general model and solution methodology for planning resource requirements (i.e., capacity,

including nursing staff size) in health care organizations. The authors develop an optimization/queueing

network model that minimizes capacity costs while controlling customer service by enforcing a set of perfor-

mance constraints, such as setting an upper limit on the expected time a patient spends in the system.

Dowsland (1998) tackled the nurse staffing problem using tabu search with strategic oscillation. The ob-

jective ensures that enough nurses are on duty at all times while taking account of individual preferences

and requests for days off in a way that is seen to treat all employees fairly. To achieve this goal, the author

used a variant of tabu search which repeatedly oscillates between finding a feasible cover, and improving it

in terms of preference costs. Dowsland and Thompson (2000) then compared integer programming models

and heuristic methods in terms of providing good quality solutions to the nurse rostering problems. The

authors indicate that advanced IP packages can be memory intensive, and solution times may vary con-

siderably over different problem instances of a similar size. On the other hand, heuristics may not give

solutions of consistent quality, are often criticized for being slow, and may have difficulty in converging to

good feasible solutions when applied to highly constrained problems. The study illustrates how a modem

heuristic and two classical integer programming models have been combined to provide a solution to a nurse
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rostering problem at a major UK hospital. The authors use a variant of tabu search as the core method,

but applying knapsack and network flow models in pre- and post-processing phases. Bellanti et al. (2004)

introduce a local search approach, which is based on a neighborhood operating on partial solutions com-

pleted by means of a greedy procedure so as to avoid the generation of infeasible solutions. Both a tabu

search procedure and an iterated local search procedure are proposed for the studied nurse rostering problem.

Aicklein and White (2004) model and solve a complex nurse scheduling problem with an integer program-

ming formulation and evolutionary algorithms. The study introduces two different algorithmic approaches:

First, an encoding that follows directly from the IP formulation, which is also presented in Aickelin and

Dowsland (2000). A second approach is the combination of an indirect Genetic Algorithm (GA) with a sep-

arate heuristic decoder function. The authors also propose a statistical method of comparing nurse rostering

algorithms and hence build better scheduling algorithms by identifying successful algorithm modifications.

The comparison method captures the results of algorithms in a single figure that can then be compared using

traditional statistical techniques. Aickelin and Dowsland (2004) also describe a GA approach to the nurse

scheduling problem arising at a major UK hospital. The study use an indirect coding based on permutations

of the nurses, and a heuristic decoder that builds schedules from these permutations. Computational exper-

iments are used to evaluate three different decoders with varying levels of intelligence, and four well-known

crossover operators.

Parr and Thompson (2007) investigates the effectiveness of three meta-heuristic techniques based on local

search in producing suitable nurse schedules. The authors consider the nurse scheduling as a constraint sat-

isfaction problem where weights are associated with each constraint. The objective is then to minimize the

sum of the weights using iterative techniques. The study also examine many different objectives to consider

for the problem, each of differing importance and requires various strategies for dealing with. Combining the

objectives into a linear cost function and optimizing them using simulated annealing has been compared with

using the SAWing technique which places more emphasis on those constraints that are difficult to satisfy.

Additionally the noising method has been used to add random variation to the weights. The noising method

worked particularly well and produced schedules for a variety of real datasets that were superior to those

produced manually or generated using simulated annealing.

Li et al. (2009) aim to create weekly schedules for wards of nurses by assigning each nurse one of a number

of predefined shift patterns in the most efficient way. The authors report a new component-based heuristic

28



search approach with evolutionary eliminations, which implements optimization on the components within

single schedules. The main idea here is to decompose a schedule into its components (i.e., the allocated

shift pattern of each nurse), and then implement two evolutionary elimination strategies mimicking natural

selection and the natural mutation process on these components, respectively, to iteratively deliver better

schedules. Burke et al. (2010) present a decomposition technique by combining integer programming (IP)

and variable neighborhood search (VNS) to deal with complex constraints and requirements of the nurse

scheduling problem. The IP is first used to solve a subproblem including all hard constraints and a subset

of soft constraints. For the selection of a subset of soft constraints, more priority is given to the constraints

that have low complexity (i.e. the number of variables and constraints it may add in the IP model), high

importance (i.e. the degree to which the constraint is considered to be desirable by the hospital), or a

trade-off between complexity and importance. Glass and Knight (2010) provide a methodology for handling

rostering constraints and preferences arising from the continuity from one scheduling period to the next.

Burke et al. (2012) propose a Pareto-based search technique to solve the multi-objective nurse scheduling

problem. The authors first design a generating heuristic which randomly builds a set of legal shift patterns for

each nurse. The authors then employ an adaptive heuristic to quickly find a solution with the least violations

on coverage demands. Next, the authors apply a coverage repairing heuristic to make the resulting solution

feasible. Finally, the study proposes a simulated annealing based search method with two options to address

user preferences in different ways. Burke et al. (2013) review neighborhood search methods that have been

previously used to solve nurse rostering problems and present a variable depth search methodology. The algo-

rithm works by chaining together single neighborhood swaps into more effective compound moves. It achieves

this by using heuristics to decide whether to continue extending a chain, and which candidates to examine

as the next potential link in the chain. The problem requires the production of non-cyclical schedules which

satisfy all hard constraints and as many working preferences and requests as possible. The authors indicate

that there are so many conflicting constraints and requests that if they were all hard constraints, a feasible

solution would generally not exist. Instead, the authors model majority of constraints as soft constraints

and given relative priorities using weights. The authors suggest that today’s technology allows these larger

neighborhoods to be exhaustively searched very quickly. Wong et al. (2014) employ a spreadsheet-based

two-stage heuristic approach for the nurse scheduling problem in a local emergency department. First, an

initial schedule satisfying all hard constraints is generated by the simple shift assignment heuristic. Second,

the sequential local search algorithm is employed to improve the initial schedules by taking soft constraints

(nurse preferences) into account. The proposed approach is benchmarked with the existing approach and
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0-1 programming. The study focuses specifically on the emergency department, where the scheduling rules

are much more restrictive due to the intense and dynamic work environment.

2.4.5 Cross-Utilization of Nurses & Nurse Absenteeism

Maenhout and Vanhoucke (2013a) discuss an integrated methodology for allocating a given workforce over

multiple departments based on the hospital’s nurse staffing policies, each ward’s shift scheduling policies and

the nurses’ characteristics. The study examine the effects associated with two staffing policies, i.e., the use of

cross-used (float) nurses and the employment of part-time versus full-time personnel and two shift schedul-

ing policies, i.e., the minimum work stretch and the minimum assignment period of float nurses to a single

department. The baseline roster consists of a configuration of individual nurse schedules that is generated by

incorporating multiple objectives into the developed model, i.e., unit efficiency (cost), personnel job satisfac-

tion (schedule desirability) and unit effectiveness (providing quality nursing care). This approach is endorsed

by the confluence of the need to achieve a greater efficiency (due to the rising salaries of nursing personnel

and the increasing pressure on hospitals to contain costs), the shortage of well-trained nursing personnel,

the need to increasingly accommodate employee preferences and flexibility while maintaining high quality of

care provided to patients. The results indicate that nursing efficiency, effectiveness and nurses’ satisfaction

can be highly variable with respect to changes in staffing and shift scheduling policies. In general, the results

confirm the delicate trade-off, i.e., the higher the flexibility in scheduling, the higher the job satisfaction and

the unit’s efficiency and the lower the effectiveness of providing high-quality care.

Wright and Mahar (2013) investigate how centrally scheduling cross-trained nurses across multiple units in

a hospital can be used to reduce costs and improve nurse satisfaction. The centralized nurse scheduling

model proposed in the study is a bi-criteria integer scheduling model with objectives for schedule cost and

schedule desirability. The schedule desirability objective accommodates each nurse’s individual desirability

(undesirability) for certain shifts (i.e. overtime, weekends). Results of the study show how centralized nurse

scheduling in these hospitals improves the desirability of nurse schedules by approximately 34% and reduces

overtime by approximately 80% while simultaneously reducing costs by just under 11%.

Maenhout and Vanhoucke (2013b) investigate the impact of different nurse organization structures and dif-

ferent organizational processes. In these organization structures nurses can typically follow a fixed staffing

policy, i.e. a nurse is permanently assigned to a specific ward, or a variable staffing policy, i.e. a nurse is
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part of a pool of cross-trained nurses floating between different wards that require approximately the same

types of skills. The latter strategy is generally recognized as to be at the expense of the nurse (dissatis-

faction, stress, poor group dynamics, etc) and the patient’s quality of care and requires more training and

orientation. The study demonstrates how hospitals can substantially improve the nurse organization using a

methodology that is based on integration and centralization over decentralized and non-integrated decision

support systems. The authors suggest that the results confirm that it is best to incorporate the lower-level

staffing and shift scheduling policies and the characteristics of the available nurses in the staffing decision

process.

Green et al. (2013) combine an empirical investigation of the factors affecting nurse absenteeism rates with

an analytical treatment of nurse staffing decisions using a novel variant of the newsvendor model. Using

data from the emergency department of a large urban hospital, this study finds that nurse absenteeism

is exacerbated when fewer nurses are scheduled for a particular shift. This finding highlights the need

for hospital managers to use better methods to identify nurse staffing levels that are adequate to handle

the anticipated workload. Wang and Gupta (2014) use data from multiple inpatient units to study which

factors, including unit culture, short-term workload, and shift type, explain nurse absenteeism. The analysis

highlights the importance of paying attention to heterogeneous absentee rates among individual nurses. The

study develop models to investigate the impact of demand and absentee rate variability on the performance

of staffing plans and obtain some structural results.

2.4.6 Scheduling Under Demand Uncertainty: Stochastic Solution Approaches

Among the earlier studies, Abernathy et al. (1973) presents a staff planning and scheduling model that

has specific application in the nurse-staffing process in acute hospitals. The study formulates the planning

and scheduling stages as a stochastic programming problem, suggests an iterative solution procedure using

random loss functions, and develops a non-iterative solution procedure for a chance-constrained formulation

that considers alternative operating procedures and service criteria. Gnanlet and Gilland (2009) consider

two types of flexibility, demand upgrades and staff flexibility, which are used to coordinate patient beds

and nursing staff as resources and satisfy stochastic patient demand at minimum cost. Demand upgrades

refers to the flexibility of upgrading patients to a more acute unit if space is available in that unit. Under

staffing flexibility, nurses cross-trained to work in more than one unit are used in addition to dedicated and

contract nurses. The authors analyze four flexibility configurations (no flexibility, staffing flexibility, demand
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upgrades, and full flexibility) under simultaneous decision making (patient bed and staffing decisions are

made at a single point in time) and sequential decision making (bed and staffing decisions are conducted

at different points in time). The authors use two-stage stochastic programming to find optimal resource

levels for two non-homogeneous hospital units that face stochastic demand following a continuous, general

distribution. Results of the experiments suggest that benefit of using staffing flexibility on average is greater

than the benefit of using demand upgrades. However, the two types of flexibilities have a positive interaction

effect and they complement each other.

Vericourt and Jennings (2011) present a closed queueing model to determine efficient nurse staffing policies,

where each patient alternates between requiring assistance and not. The performance of the medical unit is

based on the probability of excessive delay, the relative frequency with which the delay between the onset

of patient neediness and the provision of care from a nurse exceeds a given time threshold. Yom-Tov and

Mandelbaum (2014) analyze a queueing model, named “Erlang-R”, where the “R” stands for reentrant cus-

tomers. Erlang-R accommodates customers who return to service several times during their visit within the

system. The study was motivated by healthcare systems, in which offered-loads vary over time and patients

often go through a repetitive service process. The authors use the developed Erlang-R model to answer

questions such as how many physicians and/or nurses are required to achieve predetermined service levels.

He et al. (2012) study the problem of setting nurse staffing levels in hospital operating rooms when there is

uncertainty about daily workload. The authors define the workload as the number of operating room hours

used by a medical specialty on a given day to perform surgical procedures. Variable costs consist of wages

at a regular (scheduled) rate and at an overtime rate when the realized workload exceeds the scheduled

time. Using a newsvendor framework, study determine optimal staffing levels with different information

sets available at the time of decision: no information, information on number of cases, and information on

number and types of cases. Kortbeek et al. (2015a) introduces a stochastic method that uses hourly census

predictions to derive efficient nurse staffing policies. The generic analytic approach minimizes staffing levels

while satisfying so-called nurse-to-patient ratios. The authors explore the potential of flexible staffing poli-

cies that allow hospitals to dynamically respond to their fluctuating patient population by employing float

nurses. The study evaluate the complex interaction between staffing requirements and several interrelated

planning issues such as case mix, care unit partitioning and size, as well as surgical block planning.

Kim and Mehrotra (2015) study the problem of integrated staffing and scheduling under demand uncertainty.
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The study aims to reduce overall labor costs by right-sizing staff by balancing under- and overstaffing costs.

Scheduling plans and staffing decisions are usually generated well ahead of time, and adjustments are made

when more accurate demand information is available. The “here-and-now” decision is to find initial staffing

levels and schedules. The “wait-and-see” decision is to adjust these schedules at a time closer to the actual

date of demand realization. The authors formulate the problem as a two-stage stochastic integer program

with mixed-integer recourse. The problem is a challenging large-scale one because the scheduling decisions

introduce a large number of integer variables due to possible shift combinations. It is also a two-stage

stochastic program because at a distant future adjustments to scheduling decisions are needed. At the

beginning of the planning horizon, the staffing and scheduling decisions are made to minimize the sum of

total staffing cost, expected adjustment cost, and expected overstaffing and understaffing cost. The authors

integrate the staffing, scheduling, and adjustment decisions since an understaffed shift requires additional

workers to maintain the desired quality of service, while an overstaffed shift results in lost wages because

of limited salvage value of the scheduled staff. Weekly scheduling patterns and eight adjustment patterns

were generated by using a recursive procedure. The results from the study suggest that compared with

a deterministic model, the two-stage stochastic model leads to significant cost savings. The cost savings

increase with mean absolute percentage errors in the patient volume forecast.

2.4.7 Short-Term Nurse Staffing and Nurse-to-Patient Assignment

Bard and Purnomo (2005a, 2005b) study efficient modifications to short-term nurse schedules due to dynamic

nature of patient demand and nurse availability constraints. The authors present an integer programming

model that takes the current set of rosters for regular and pool nurses and the expected demand for the

upcoming 24 hours as input, and produces a revised schedule that makes the most efficient use of the avail-

able resources, which involve the use of overtime, outside nurses, and floaters. The model is formulated and

solved at a hospital-wide level rather than for each unit separately. To improve retention, management must

now take into account individual preferences and requests for days off in a way that is perceived as fair, while

ensuring sufficient coverage at all times. Bard and Purnomo (2005a) solve this multi-objective problem with

a column generation approach that combines integer programming and heuristics. The integer program is

formulated as a set covering-type problem whose columns correspond to alternative schedules that a nurse

can work over the planning horizon. The two main criteria used to judge the quality of a schedule are the

number of preference violations and the number of outside nurses required. The implementation is judged in

part by the amount of time spent in finding solutions. One of the weaknesses of the presented model is that

it does not allow shifts to be split among time units (i.e. in 4-hour blocks). The authors indicate that the
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difficulty is that the size of the decision space grows exponentially with the number of periods over which

the regular and pool nurse variables are defined.

Punnakitikashem et al. (2013) study short-term nurse staffing and nurse-to-patient assignment problem. The

authors integrate these two problems within a stochastic programming model with an objective to minimize

an expected excess workload on nurses taking patient care uncertainty into consideration subject to the hard

budget constraint. The authors indicate that nurse staffing models in the literature have mainly focused on

nurse scheduling and ignored nurse-to-patient assignment. Based on the nurse staffing level, a charge nurse

assigns each patient to a nurse at the beginning of a shift, which is referred to as a nurse assignment. In

general, a nurse assignment is performed approximately 30 minutes prior to a shift. The authors indicate the

significance of taking patient information into consideration, which will enable the nursing administration to

meet patients’ needs while using nursing staff efficiently. The authors also suggest that most of the existing

models proposed in the optimization literature are deterministic and exclude uncertainty in patient care,

while patient care is stochastic in nature due to its fluctuations during the shift and its enormous variation.

The authors provide three Stochastic Integrated Nurse Staffing and Assignment (SINSA) decompositions

and solution methods based on the L-shaped method, which are (i) Benders’ decomposition; (ii) Lagrangian

relaxation with Benders’ decomposition; and (iii) nested Benders’ decomposition. By providing nurses several

non-dominated solutions with different staffing costs and different workloads, nurses can select what they

believe is the best solution from a set of quality ones. As a potential future research area, the authors suggest

that incorporating dynamic patient acuity in the nurse staffing and assignment model will provide better

results. As the progress of a patient’s condition changes over time, the acuity level is changed. Patients with

different levels of acuity require different amounts of required care from nurses.
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Chapter 3

Nurse Allocation Policy Evaluation

and Analysis of Admissions in an

ICU

The purpose of this chapter is to provide a framework for accurately estimating the number of nurses required

in Intensive Care Units (ICUs) on a given day. One factor making such estimates difficult is the lack of a

decision support tool for understanding the distribution of admissions to healthcare facilities. We aim to

statistically evaluate the existing staff allocation system of an ICU using clinical operational data, and

then develop a predictive model for estimating the number of admissions to the unit. We analyzed clinical

operational data of 3 ICU wards for a period of 44 months. The existing staff allocation models for these 3

units does not accurately estimate the required number of nurses. It is difficult to understand the pattern

and frequency of admissions, particularly those admissions that are not known 12 hours in advance. We

first show that these “unknown” admissions can actually be predicted fairly accurately by fitting the pattern

of admissions to a Poisson distribution. Then we provide improvements in estimating the overall number

of admissions. Analytical predictive methods that complement intuition and experience-based decisions

on nurse staffing and workload would help decrease the unplanned last-minute scheduling requirements for

nurses, and improve healthcare delivery with more efficient nurse allocation. The model developed here is

generalizable for implementation in other pediatric intensive care units.
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3.1 Introduction

Nurse staffing is crucial to providing quality healthcare because nurses are a critical component of a safe

health care delivery system (Barton, 2009). In a landmark report, the principal finding of the Institute of

Medicine’s Committee on the Adequacy of Nurse Staffing in Hospitals and Nursing Homes states: “Nurs-

ing is a critical factor in determining the quality of care in hospitals and the nature of patient outcomes”

(Wunderlich et al., 1996, p.92). However, many patient care units face challenges in accurately estimating

the number of nurses needed on a daily basis. The Pediatric Intensive Care Unit (PICU) that is the focus

of this study experiences this problem.

One of the challenges in identifying the required number of nurses stems from the fact that the subject PICU,

like many patient care units, has difficulty estimating accurately the number of admissions to each ward.

Some admissions are known 12 or more hours in advance and are hereafter called ’scheduled’ admission.

However, the remaining admissions are ’unscheduled.’ admissions. PICUs have a very high rate of unsched-

uled admissions due to the acute and critical nature of the population served. Among the unscheduled

admissions, some are known fewer than 12 hours in advance: for example, a patient that requires emergent,

unscheduled surgery only 8 hours prior to needing an ICU bed. Other unscheduled admissions are not known

in advance: for example, when an admitted acute care patient’s health condition deteriorates. In both types

of unscheduled admissions, there is not enough time to modify nursing work schedules to accommodate the

unforeseen needs. The lack of an analytical decision support tool to analyze unscheduled admissions, and to

assist the charge nurses in their decision-making, results in either chronically short-staffed wards (increasing

the workload for nurses) or over-staffed wards (costly and inefficient).

In this manuscript we analyze the operations of a PICU by using clinical operational data extracted from two

different databases. We develop a robust model for reliable estimation of the unscheduled PICU admissions,

thereby estimating more accurately the number of nurses required for patient care in each work shift. This

two-phase study first evaluates the accuracy of the existing nurse staffing allocation system, then uses a

second data set to model and predict the unscheduled patient population for this PICU. The ability to

accurately estimate admissions will prove to be a valuable input for building accurate cyclical nurse staffing

schedules.
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3.2 Materials and Methods

The PICU under consideration is a 72-bed unit with three 24-bed wards in a free-standing children’s hospital.

Wards A and B focus primarily on cardiac and non-cardiac surgery patients, respectively, and Ward C is the

medical intensive care unit. Although planning for staffing is based on three 8-hour shifts (Day, Evening,

Night), the administrators prefer to use six consecutive 4-hour shifts (Day 1, Day 2, Evening 1, Evening 2,

Night 1, and Night 2. starting at 7:00AM, 11:00AM, 3:00PM, 7:00PM, 11:00PM and 3:00AM, respectively).

The study consists of two phases. In phase one we use data from the PICU’s internally-developed staff

allocation tool (called “Staff Assist”) and from a national clinical database called Virtual PICU Performance

System (VPS) (VPS LLC, Los Angeles, CA), to evaluate the accuracy of the existing staff allocation tool. In

the second phase, we use the VPS data to develop a reliable decision support tool for estimating the number

of unscheduled admissions. That is, we estimate the expected number of admissions for work shifts at each

ward of the PICU, then compare these expected values with the actual number of admissions.

StaffAssist records the estimated number of admissions and recommended/desired/agreed number of nurses.

VPS is dedicated to standardized data sharing/ benchmarking among pediatric ICUs, and records the actual

admissions data for the PICU. Importantly, every admission in the VPS is classified as scheduled or unsched-

uled based on whether the admission was known 12 or more hours prior to patient arrival in the PICU. Data

for the period 02/01/11-12/31/12 was collected from StaffAssist and for the period 04/01/2009-12/31/2012

from VPS. We obtained institutional Research Ethics Board approval to use the data.

3.2.1 Evaluation of StaffAssist Performance and Descriptive Statistics for Ad-

missions

This section provides an overview of the current approach to staff planning at the medical units. StaffAssist

first combines the existing census (number of patients in the unit at a given nursing shift) and the expected

admission/transfer in/discharge numbers entered by charge nurses (head nurses), to compute the predicted

census. It then uses the ward-specific work load factor WHPUOS (worked hours per unit of service) to

recommend the number of nurses for each daily shift based on predicted census for the ward. WHPOUS is

based on historical data entered into the StaffAssist system. WHPUOS is a measure of productivity, which

is computed by the ratio of actual hours worked divided by the volume of service for the same period.
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Each PICU ward is assigned a specific number of nurses, called the “agreed” number of nurses. For each

4-hour shift, charge nurses enter into StaffAssist the current patient census and the expected number of

admissions. Expected admissions include the scheduled and unscheduled admissions that are known (in less

than 12 hours) to be coming to the PICU. The StaffAssist tool then recommends the number of nurses to

use for each shift at each ward (Rather StaffAssist does not incorporate the unscheduled admissions into the

nurse requirement estimates). Each charge nurse, enters their “desired” number of nurses. They consider

the PICU census and the expected unscheduled admissions. If an unscheduled admission becomes known,

the charge nurses will account for this patient in their entry request. However, charge nurses neither use an

analytical method to estimate the number of unscheduled admissions, nor address the issue of “unknown” un-

scheduled admissions. To obtain the “agreed” number of nurses, the “recommended” number of nurses from

StaffAssist is compared with the “desired” number of nurses. Finally, the nurse staffing office review both

entries to allocate an agreed number of nurses to work shifts at each ward throughout the PICU and hospital.

To achieve our phase one goals, we extracted the historical data for the recommended, desired and agreed

number of nurses from StaffAssist as well as the data for the actual number of admissions from VPS. Using

these data, we evaluated the accuracy of the existing staff allocation system by comparing the number of

nurses recommended by StaffAssist to the number desired by charge nurses. Then we analyzed the admis-

sions (scheduled and unscheduled) data to obtain descriptive statistics and inferences on the distribution

of unscheduled admissions data. All phase one analyses were completed using Microsoft® Excel® 2010

(Microsoft, Redmond, WA).

3.2.2 Development of a Decision Support Tool to Estimate the Unscheduled

Admissions

In this step, we used the unscheduled admissions data from the VPS database to develop a reliable estimation

tool for the number of unscheduled admissions. This tool might improve the accuracy for nurse staffing. We

classified the unscheduled admissions data abstracted from VPS by shift, day of the week and ward. Analysis

of the number of unscheduled admissions on each day of the week (see Table 4 and Figure 5) indicated that

the weekday admissions (Monday through Friday) are higher than those on weekends (Saturday and Sun-

day). Therefore, we combined all the admissions into two day groups and fit distributions that characterize

the number of unscheduled admissions on six daily shifts for each ward. In other words, we fit individual
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distributions for each one of 6¨2¨3 = 36 subsets of the data (e.g., D1-weekday-WardA, N2-weekend-WardB,

etc.). We fit distributions by using JMP® Pro 11.1.1 (SAS, Cary, NC).

In each data subset, Poisson distribution emerged as the best fit for characterizing the distribution of

unscheduled admissions. Poisson distribution is widely used for modeling arrivals to a medical unit. A

discrete random variable is said to have a Poisson distribution with parameter λ, if the probability mass

function is given by:

f pk;λq “ P pX “ kq “
λk ¨ e´λ

k!
for k “ 0, 1, 2... p1q

where e is the Euler’s number and k! represents the factorial of k. The positive real number λ is equal to

both the expected value and the variance of X, i.e λ = E[X] = Var[X]. In our context, λ is the estimator

for the average number of unscheduled admissions in each subset. Finally, k is the number of unscheduled

admissions.

After obtaining the value of λ for each such subset, we generate the cumulative probability distribution

(CDF) for the number of unscheduled admissions in each subset. The probability mass function obtained by

plugging λ into equation (1) and evaluating this function for k = 0, 1, 2 ... is used to generate its CDF for

the number of unscheduled admissions in each subset. After obtaining these probability distributions, we

constructed a simulation model to imitate the unscheduled admissions in all three wards of the PICU and

to verify the accuracy of the estimates obtained by the probability distributions.

3.2.3 Simulation Model

This section describes the simulation model used to generate the unscheduled patient admissions in all three

wards of the PICU. Let F(X) denote the CDF for the number of unscheduled admissions variable. For

each subset, we simulated the number of unscheduled admissions by using the inverse function, i.e. for

Y„U(0,1), we generated a uniform random variate y (a realization of Y ) and found the corresponding

number of unscheduled arrivals for y by using F´1pyq. For example, for shift E1 on weekdays in Ward B,

the arrival rate λ is estimated as 0.7381 (i.e., on average 0.7381 admissions occur for shift E1 on weekdays
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in Ward B). Therefore, we obtain the probability mass function values as:

P p0q “
e´0.7381 ¨ p0.7381q0

p0q!
“ 0.4780; P p1q “

e´0.7381 ¨ p0.7381q1

p1q!
“ 0.3528;

P p2q “
e´0.7381 ¨ p0.7381q2

p2q!
“ 0.1302; P p3q “

e´0.7381 ¨ p0.7381q3

p3q!
“ 0.0320;

P p4q “
e´0.7381 ¨ p0.7381q4

p4q!
“ 0.0070.

In this example P pX “ kq denotes the probability that there are k unscheduled admissions in shift E1 on a

weekday in Ward B. Using the probability mass function values, we obtain the following CDF for the number

of unscheduled admissions to Ward B during shift E1 on weekdays:

F pxq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

0.4780;x ă 1

0.8308; 1 ď x ă 2

0.9610; 2 ď x ă 3

1.0000;x ď 4

where x is a realization of X and X follows Poisson distribution with rate 0.7381. Now, to generate a

simulated number of arrivals for this shift, we generated a uniform random variate y and found the corre-

sponding number of arrivals for y using F´1pyq. For example, when y is equal to 0.9854 we estimate that

two unscheduled admissions will occur.

We organized the VPS data into the “Training” and “Testing” sets. The Training set covered the period

from 04/01/2009 to 12/31/2011 and the Testing set covered the period from 01/01/2012 to 12/31/2012.

We simulated the unscheduled admissions in each subset for 100 times. Following this, we obtained the

average number of unscheduled admissions and compared these average values with the actual number of

admissions. Appendix A provides a flow chart for depicting the estimation method described above. The

simulation program for estimation of admissions was developed in Microsoft® Excel® 2010 (Microsoft,

Redmond, WA).
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3.3 Results

This section summarizes the evaluation of the existing staff allocation system and the descriptive statistics

for the admissions data. We then present the results analyzing the accuracy of our estimation tool used for

predicting the number of admissions.

3.3.1 Phase I Results

Table 3.1 reports the comparison of the number of nurses recommended by StaffAssist versus that desired

by charge nurses where ‘n’ represents the frequency of cases with the specified condition in that ward and %

values represent the proportion of cases among the overall number of observations for that ward. The data

show that StaffAssist overestimates the required number of nurses in Ward A, while it underestimates that

in Wards B and C. We also compared the recommended and agreed upon number of nurses from StaffAssist

and found that StaffAssist recommends the same number of nurses as the agreed upon number of nurses

only at 26.5%, 31.0% and 32.3% of the time for Wards A, B, and C, respectively, and is thus fairly inaccurate.

Registered Nurses (RNs)
Ward A Ward B Ward C

n1 %2 n % n %

Recommended ą Desired 2,218 52.7% 369 8.9% 825 19.6%

Recommended “ Desired 1,159 27.6% 1,306 31.3% 1,396 33.2%

Recommended ă Desired 830 19.7% 2,493 59.8% 1,987 47.2%

1 n values represent the number of cases with the specified condition in each ward.

2 % values represent the % of cases among all observations within that ward.

Table 3.1: StaffAssist Recommendation vs. Desired Number of Nurses

The magnitude of the underestimation/overestimation is also a point of interest. On average, StaffAssist

overestimates the number of nurses by 0.50 in Ward A, while it underestimates the number of nurses by

0.85 and 0.48 in Wards B and C, respectively. Also, among the cases that underestimation/overestimation

of required number of nurses occurs, the average values of the underestimation/overestimation are provided

in Table 3.2. Table 3.2 indicates that the average value for the underestimation in StaffAssist is higher than

that for the overestimation in all wards.

41



Work Shift
Total

Day 1 Day 2 Evening 1 Evening 2 Night 1 Night 2

Ward A

Underestimate 17.68% 22.91% 25.21% 20.51% 17.99% 13.80% 19.73%

Equal 26.31% 28.85% 31.02% 30.41% 24.65% 23.89% 27.55%

Overestimate 56.01% 48.23% 43.77% 49.08% 57.37% 62.31% 52.72%

Ward B

Underestimate 66.20% 59.97% 54.67% 63.93% 63.55% 49.53% 59.81%

Equal 28.29% 27.44% 33.43% 31.40% 30.78% 37.26% 31.33%

Overestimate 5.52% 12.59% 11.90% 4.67% 5.67% 13.21% 8.85%

Ward C

Underestimate 50.64% 44.48% 44.84% 53.18% 50.00% 39.82% 47.22%

Equal 32.53% 32.01% 36.49% 35.08% 31.92% 30.91% 33.17%

Overestimate 16.83% 23.51% 18.67% 11.74% 18.08% 29.27% 19.61%

Table 3.2: Accuracy of Nursing Requirements in Each Work Shift for the Wards

Figure 3.1(a)-(c) display the accuracy of StaffAssist in identifying the number of nurses in each shift for

Wards A-C, respectively. In Ward A, StaffAssist overestimates the nurse requirements mostly in the night

shifts, and underestimates mostly in the evening shifts (see Figure 3.1(a)). In Wards B and C, StaffAssist

underestimates the nurse requirements in all the shifts and more noticeably so at D1, E2 and N1 (see Figures

3.1(b) and 1(c)).

In summary, the overestimation of nurse requirements in Ward A and the underestimation in Wards B and

C cause significant difficulties in managing the PICU nursing staff. This analysis shows that improvements

to the current decision support tool may offer more accurate estimations of nurse requirements.

One of the inputs for StaffAssist is the number of admissions to each ward. Table 3.3 shows the number of

scheduled and unscheduled admissions at each ward and as a total for the PICU. VPS data shows that about

69% of admissions to the PICU are unscheduled. Ward A has a higher percentage of scheduled admissions

(61.3%) whereas Wards B and C have significantly higher percentages of unscheduled admissions (67.4 and

87.9%, respectively).

Table 3.4 shows the shift and day based number of unscheduled admissions for the PICU. Most unscheduled

admissions occur in E1, D2 and E2 shifts with a peak in E1 shift, and during the weekdays (Monday-Friday)
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Figure 3.1: Accuracy of Nursing Requirements in Each Shift
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(c) Ward C

with a peak on Wednesday.

Figure 3.2(a) shows the breakdown of the number of unscheduled admissions by ward for each shift and

Figure 3.2(b) shows that for each day of the week. The majority of the unscheduled admissions are for

Wards B and C. Unscheduled admissions numbers in D1 and N2 shifts are considerably smaller than their

counterparts in the other shifts. Figure 3.2(b) displays that the unscheduled admissions occur with higher
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Data Category
Ward A Ward B Ward C PICU Total

n1 %2 n % n % n %

Scheduled Admissions 993 61.3% 1,235 32.6% 353 12.1% 2,581 31.0%

Unscheduled Admissions 627 38.7% 2,556 67.4% 2,555 87.9% 5,738 69.0%

Total Admissions 1,620 3,791 2,908 8,319

Total Discharges 1,596 3,764 2,889 8,249

1 n values represent the number of cases with the specified condition in each ward.

2 % values represent the % of cases among all observations within that ward.

Table 3.3: Scheduled vs. Unscheduled Admissions Recorded in VPS

Shift Mon Tue Wed Thu Fri Sat Sun Shift Total

Day1 64 83 85 58 66 63 65 484

Day2 196 195 215 212 206 124 108 1,256

Evening1 246 229 249 255 240 136 155 1,510

Evening2 182 171 170 164 159 132 161 1,139

Night1 127 141 146 107 128 132 124 905

Night2 51 68 71 59 55 73 67 444

Day Total 866 887 936 855 854 660 680 5,738

Table 3.4: Number of Unscheduled Admissions in Each Shift on Each Day at the PICU

frequency during the weekdays (Monday-Friday) than they do during the weekends. Other than Wednesday,

the remaining weekdays have similar unscheduled admission frequencies. Saturday and Sunday frequencies

also resemble each other.

Although unscheduled admissions are hard to predict, they have a significant impact on the accuracy of the

nursing requirements in StaffAssist. Figures 3.3(a)-(c) indicate the challenges the nurses have in accurately

estimating the total (scheduled and unscheduled) number of admissions for each shift. In Ward A, charge

nurses significantly overestimate the number of admissions in shifts D2 and E1 by 59.69% and 23.89%, re-

spectively. In Ward B, charge nurses overestimate the number of admissions for shifts D2 and E1 (by 37.99%

and 18.90%, respectively), while underestimate that in all the other shifts (on average by 35.64%). In Ward

C, charge nurses underestimate the number of admissions in all shifts with a significant margin (ranging

from 36.15% to 47.54%). This analysis shows that the charge nurses do not properly adjust the expected
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Figure 3.2: Unscheduled Patient Admissions

(a) by Shifts in a Day
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admissions with the unscheduled admissions number and signals the need for a more reliable and objective

decision support tool.
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Figure 3.3: Accuracy in Estimating Admissions

(a) Ward A
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(c) Ward C

3.3.2 Phase II Results

Following the evaluation of the existing staffing system, we focused on the development of an improved tool

estimating unscheduled admissions. Using the method described in Phase II of the study, we predicted the

number of unscheduled admissions in each ward (and the PICU as total) and compared these estimated

values with the actual number of unscheduled admissions from the VPS database. Figure 3.4(a)-(d) display

these comparisons where the values listed are the aggregated values for the shifts (combining the weekday

and weekend values to be able to compare with values in Figures 3.3(a)-(c)).
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Figure 3.4: Actual vs. Predicted Number of Unscheduled Admissions

(a) Ward A
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As seen in Figures 3.4(a)-(d), the unscheduled admissions can be predicted with reasonable accuracy by

characterizing their distribution with Poisson distribution. We computed the % deviation in the number of

unscheduled admissions by using the following formula:

pPredicted Unscheduled Admissions´Actual Unscheduled Admissionsq

pActual Unscheduled Admissionsq
¨ 100%.

The % deviation in Wards A, B, and C ranged from -7.25% to 18.82% (on average 3.48%), from -7.48% to

3.55% (on average -2.94%), and from -14.06% to -2.80% (on average -5.74%), respectively.

In addition, Tables 3.5 - 3.7 show the day of week and shift based accuracy computations for Wards A-C.
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When we disaggregate the data points (i.e. analyze weekdays and weekends separately), the prediction accu-

racy deteriorates, but still manages to provide good estimations for the number of unscheduled admissions.

The high deviation values for Ward A, especially in the weekends, are due to the lack of data points to

properly estimate the corresponding λ values. Prediction accuracy in weekends for Wards B and C are also

slightly worse than those for weekdays, again due to the small sample size. The overall % deviation for the

PICU ranges from -7.61% to 0.86% and from -17.64% to 5.51% on the weekdays and weekends, respectively.

Ward A Weekday Weekend

Shift Actual Predicted % Deviation Actual Predicted % Deviation

Day1 14 14.41 2.93% 8 6.69 -16.38%

Day2 56 54.75 -2.23% 9 12.87 43.00%

Evening1 62 73.79 19.02% 11 12.95 17.73%

Evening2 34 30.19 -11.21% 4 6.23 55.75%

Night1 20 21.57 7.85% 6 7.94 32.33%

Night2 6 7.69 28.17% 6 3.44 -42.67%

Table 3.5: Prediction Accuracy by Work Shift and Day of Week - Ward A

Ward B Weekday Weekend

Shift Actual Predicted % Deviation Actual Predicted % Deviation

Day1 42 40.66 -3.19% 19 19.27 1.42%

Day2 164 153.56 -6.37% 40 36.34 -9.15%

Evening1 214 195.45 -8.67% 46 53.04 15.30%

Evening2 158 155.38 -1.66% 52 53.28 2.46%

Night1 102 106.19 4.11% 39 39.81 2.08%

Night2 61 58.62 -3.90% 32 27.42 -14.31%

Table 3.6: Prediction Accuracy by Work Shift and Day of Week - Ward B
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Ward C Weekday Weekend

Shift Actual Predicted % Deviation Actual Predicted % Deviation

Day1 57 58.90 3.33% 23 17.26 -24.96%

Day2 166 162.42 -2.16% 31 29.07 -6.23%

Evening1 194 190.06 -2.03% 45 40.23 -10.60%

Evening2 168 157.13 -6.47% 46 44.45 -3.37%

Night1 128 120.61 -5.77% 38 39.82 4.79%

Night2 76 65.81 -13.41% 26 21.85 -15.96%

Table 3.7: Prediction Accuracy by Work Shift and Day of Week - Ward C
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3.4 Discussion

In this study we develop a reliable tool for estimating the number of unscheduled admissions. This will,

in turn, improve the accuracy of identifying the nursing needs for work shifts at the PICU. Several studies

have shown that a strong association exists between nurse staffing and patient outcomes (Blegen & Vaughn,

1998; Kovner & Gergen, 1998; Aiken et al., 2002; Needleman & Buerhaus, 2003). When a nursing unit is

chronically short-staffed, nurses are forced to keep up an intense pace in order to ensure patients receive

timely care. Over time, this can result in nurse burn-out,patient dissatisfaction, and even medical errors

(American Sentinel University - Healthcare, 2015). Improved accuracy in the allocation of nursing staff could

mitigate these operational risks and improve patient outcomes.

Nursing care is identified as the single biggest factor in both the cost of hospital care and patient satisfaction

(Yankovic & Green, 2011). Yet, there is widespread dissatisfaction with the current methods of determining

nurse staffing levels, including the most common one of using minimum nurse-to-patient ratios (Yankovic

& Green, 2011). Nurse shortage implications go beyond healthcare quality, extending to health economics

as well. In addition, implementation of mandatory nurse-to-patient ratios in some states creates a risk of

underestimating or overestimating required nurse resources (Paul & MacDonald, 2013).

Green et al. (2013) suggest that the task of determining nurse staffing levels in hospitals is complex because

of variable patient census levels and uncertain service capacity caused by nurse absenteeism (Green et al.,

2013). To determine appropriate staffing requirements, factors such as total census, care intensity levels,

and ward type must be estimated (Helmer et al., 1980). Hourly changes in patient census and patient acuity

levels cause frequent fluctuations in the number of nurses required vs. the initial planned levels, forcing the

healthcare providers to revise the staffing needs on a continuing basis (Bard & Purnomo, 2005). Additional

factors to consider for effective nurse staffing include nurse preferences regarding work schedules and nurse

absenteeism (Purnomo & Bard, 2007; Wang & Gupta, 2014).

Penoyer (2010) provided an annotated review of major nursing and medical literature to demonstrate the

association of nurse staffing with patient outcomes in critical care units and populations. Coro et al. (2013)

employed a large multi-center PICU database to investigate the characteristics associated with mortality in

unplanned and planned pediatric cardiac intensive care unit (ICU) admissions. The mortality rate in the car-
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diac ICU was significantly higher among the unplanned admissions than the planned admissions. This study

develops a decision support tool to understand the distribution and timing of unscheduled (unplanned) ad-

missions in the PICU to mitigate such risks. The methods used here are easy to replicate in various healthcare

settings. However, the accuracy of estimations will depend on obtaining reliable and sufficient historical data.

There are significant economic implications for optimizing nurse staffing based on an improved understand-

ing of patient volume. While the cost of overstaffing can easily be viewed as waste, there are also costs

for understaffing patient care units. Understaffing has been linked to hospital-acquired infections and their

significant preventable costs (Cimiotti et al., 2012). Additionally, the loss of nurses through burnout is

estimated to cost $300,000 per year for each percentage of annual nurse turnover (PriceWaterhouseCoopers,

2007). Thus, applying novel models to the chronic problems may lead to significant reductions in healthcare

costs.

There are limitations to our findings. First, the findings reflect data from one PICU. Until our methods are

applied to other PICUs (or even acute care units, if necessary data are available), our findings are provocative

at best. A second limitation is the influence of charge nurse behavior on our evaluation of predicted versus

desired nurses. In the absence of a “gold standard” for the true number of nurses needed at any moment, the

“desired” number is prone to gaming and may reflect other factors beyond what the true perceived needs are.

A final limitation is the role of infectious disease outbreaks and disasters on staffing needs. As evidenced in

outbreaks of Influenza A H1N1, Enterovirus D68 or even the international spread of Ebola, it is unlikely any

model can anticipate staffing needs created by unforeseen demands on staffing. Future work might couple

models such as the one described here with machine learning to allow recalibration in the face of emerging

diseases.
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3.5 Conclusions

Determining accurate nurse staffing levels has been a topic of interest due to healthcare quality require-

ments, financial constraints, limited resources, patient safety requirements, and nurse shortages. This study

confirms the influence of unscheduled admissions on the accuracy of predicting PICU admissions. We show

that estimating the number of unscheduled admissions by obtaining the probability distribution of historical

unscheduled admissions will provide higher precision compared to using only experience and intuition to

do so. We propose a convenient, objective, simulation-based statistical methodology to assist healthcare

providers in estimating the number of admissions and required number of nurses. Further research should be

carried out to understand the nature of scheduled admissions before StaffAssist can be refined. In addition,

the investigators also identified gaps between the expected admission and discharge numbers, and additional

research will focus on understanding discharge patterns to resolve this discrepancy.

The potential contribution of this study is improved nurse staffing models, which in turn will enable nurses to

deliver better quality care and improve patient outcomes. To our knowledge, predictability of unscheduled

admissions has yet to appear in the literature in general, and in PICU literature specifically. Analytical

predictive methods that complement intuition and experience-based decisions on nurse staffing and workload

would help to decrease the unplanned/last-minute scheduling requirements for nurses, and to decrease costs

with more efficient nurse staffing planning. Our model is generalizable to implement in other (pediatric)

intensive care units for nurse staffing and could be a valuable input for future nurse staffing models.
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Chapter 4

Integrated Nurse Staffing and

Scheduling: Medium-Term Staffing

Strategies

4.1 Introduction

The Affordable Care Act (ACA) is the comprehensive health care reform law enacted in March, 2010). The

law has three primary goals. First, it seeks to make affordable health insurance available to more people. It

does this by providing consumers with subsidies, or “premium tax credits”, which lower costs for households

with incomes between 100% and 400% of the federal poverty level. Second, it expands the Medicaid program

to cover all adults with income below 138% of the federal poverty level. Third, the ACA supports innovative

medical care delivery methods designed to lower the costs of health care generally (www.healthcare.gov).

ACA led to more and sicker patients entering the healthcare system. This increased the nursing workload,

leading to a higher risk of nurse burnout in already short-staffed hospital medical units. Over time, this

can result in dissatisfied patients and even medical errors (www.americansentinel.edu). These developments

require the hospital administrations to better control understaffing in the medical units while keeping a

balance of the staffing costs.

This chapter focuses on integrated nurse staffing and scheduling in Intensive Care Units (ICUs), which are
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7-day x 24-hour care environments facing unscheduled patient admissions with dynamic acuity levels. Our

research objective is to construct staffing patterns, which specify the number of nursing personnel from var-

ious job profiles to be scheduled in the medical units and nursing shifts of a scheduling period. Our solution

approach targets reducing the nurse staffing costs while balancing the under- and over- staffing risks, which

will help mitigate nurse burn-out, improve patient outcomes and manage hospital staffing costs. Nurse ros-

tering is an NP-hard combinatorial problem which makes it extremely difficult to efficiently solve real-life

problems due to their size and complexity. Usually real problem instances have complicated work rules

related to safety and quality of service issues as well as rules about preferences of the personnel. In order to

avoid the size and complexity limitations, we generate feasible nurse schedules for the full-time equivalent

(FTE) nurses using algorithms that will be used in the mixed-integer programming (MIP) models developed

in Chapter 3. Pre-generated schedules eliminate the increased number of constraints and reduce the number

of decision variables of the integrated nurse staffing and scheduling model. The MIP model recommends

initial staffing plans and schedules for a six-week staffing horizon for the medical units, given a variety of

nurse groups and nursing shift assignment types. We also include a novel methodology for estimating nurse

workloads by considering patient census, acuity and activity in the unit.

When the nursing administration prepares the medium-term nurse schedules for the next staffing cycle, one

to two months prior to the actual patient demand realizations, target staffing levels for the upcoming nursing

shifts are typically determined using historical average staffing levels for the nursing care needs. Using the

MIP model, we examine fixed vs. dynamic medium-term nurse staffing and scheduling policy options for

the medical units. In the fixed staffing option, the medical unit is targeted to be staffed at a fixed level

throughout the staffing horizon. This chapter proposes a dynamic staffing policy option which uses historical

patient demand data to instead suggest a non-stationary staffing scheme during the staffing horizon. We

evaluate the fixed staffing policy alternative with various staffing level options (i.e. by staffing the medical

unit with 11, 13 or 15 nurses throughout the staffing horizon). As an example, for the dynamic staffing

alternative, we prepare a “heat map” of patient census and acuity, as well as admission-discharge-transfer

(ADT) activity, in the medical units and compare the performance of dynamic heat map based policy vs.

the alternative fixed staffing policies. We compare the performance of both nurse allocation policy options,

in terms of cost savings and understaffing ratios, with the optimal staffing scheme reached by the actual

patient data. We evaluate whether the dynamic medium-term nurse staffing policies that use patient demand

forecasts outperform the historically employed fixed staffing policy for the intensive care medical units. In

order to reduce nurse burnout and make the job more appealing to the new RN candidates, we introduce
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the concept of “understaffing penalty” as a mechanism to control the understaffing in the medical units. We

analyze how various levels of understaffing penalty (the cost of understaffed hours given as a ratio to the

cost to the FTE nurse staffing) affect the outcomes (in terms of staffing costs and understaffing levels) in

the medical unit. We also evaluate the effect of the number of available schedules (NAS) per FTE nurse

profile on the objective function costs and understaffing ratios in the medical units. We explore whether

there exists a saturation level for the NAS, where increases in the NAS do not bring any additional cost

savings. We use the MIP model as a mechanism to control the understaffing levels in the medical units that

often trigger nurse burnout and medical errors.

Chapter 3 confirmed the influence of unscheduled admissions on the accuracy of predicting PICU admissions

and demonstrates that using the probability distribution of historical unscheduled admissions improves the

accuracy of estimating the number of unscheduled admissions. This in turn improves the nursing workload

requirement estimations. The performance of the scheduling models discussed in the chapters that follow

relies on the forecast accuracy for nursing workload estimates, which is complicated by the nature of un-

scheduled admissions to the PICU. Therefore, it is critical that models discussed in later sections use the

enhanced forecasting methodologies developed in this chapter. Next, we discuss the motivation and signif-

icance of using the desired modeling approaches. The PICU Wards A and B mainly focus on cardiac and

non-cardiac surgery patients, respectively, and Ward C is the medical intensive care unit. Each unit has a

capacity of 24 beds for inpatients. Two data sources described in Chapter 3 are used for this study (i.e.

VPS and StaffAssist). We use the distribution of patient acuities at the admissions in each medical unit as

a proxy to estimate the acuity score of each patient in the unit.
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4.2 Current Scheduling Practices at the PICU

There are multiple planning stages for nurse scheduling at the PICU. Figure 4.1 below illustrates a summary

of current practices for nurse staffing and scheduling. There is a 12-week planning horizon, among which

weeks 9 to 12 constitute the actual staffing horizon for the medical units. Major phases of this planning

horizon are discussed next.

Figure 4.1: Illustration of Current Scheduling Implementation at the PICU

1. Prepare Core Schedules: The first phase of the scheduling prepares and publishes the core schedules for

each medical unit. These core schedules list how many nurses are needed for each nursing shift in each

day of the four-week staffing horizon, W9 - W12. These core schedules are targeted to be published

during the week before the self-scheduling period begins (i.e. in week 1 as indicated in Figure 4.1),

seven weeks before the actual staffing horizon. During the preparation phase, administrators attempt

to maintain a predetermined level of staffing throughout the staffing horizon for each medical unit.

2. Self-Schedule: Following the publication of core schedules, the next three weeks are self-scheduling

periods for the nurses (i.e. weeks two, three and four in Figure 4.1). The nurses are divided into three

priority groups for self-scheduling. Group A gets to select the desired schedule first, then Group B,

then Group C. These groups are rotated among the nurses in each scheduling cycle for fairness (i.e. a

group A nurse will be in Group B in next cycle and in Group C in the following cycle). All the nurses

have day and night nurse classifications (i.e. some nurses are designated to day shifts, 7:00 AM to 7:00

PM, and some are designated to night shifts, 7:00 PM to 7:00 AM) and they will pick their desired
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schedule accordingly. If schedulers want the nurses to rotate for the benefit of maintaining the staffing

level, they query nurses before they self-schedule, using the anticipated leaves and resignations to help

guide that decision. When the schedule opens for self-scheduling, one of the unit schedulers has already

“mastered” in (i.e. fixed the assignment) of that particular nurse’s weekends and any holidays that

fall during the schedule period. The nurse then selects the preferred shift and enters that as a pending

assignment code so that the unit schedulers know which are “masters” and which are “self-schedule”.

Each medical unit/ward in the hospital has a target (core) nurse staffing level, which is modified annu-

ally depending on the “Budgeted Average Daily Census” and “Required Care Hours.” Previous-year

patient census and acuity scores are used to estimate the levels of nursing workload indicators. Once

calculated, these “core” staffing levels serve as caps for nurse assignments. Occasionally, some units

use caps which are one above the core staffing levels. During the self-scheduling period, the staffing

caps constrain too many nurses to select a specific set of nursing shifts (i.e. once the cap is reached for

a nursing shift, no additional nurses can self-schedule for that specific shift any more).

3. Finalize Schedules with Nurse Choices: When the self-scheduling period closes (Week 5), the unit

schedulers attempt to smooth the staffing levels, following the predefined scheduling rules (i.e. none

of the nurses can be scheduled for four 4-hour shifts in a row unless they choose that, or schedulers

cannot put them on a Friday, Saturday, or Sunday that’s not their assigned weekend). The staffing

office finalizes the schedules in week six, two and a half weeks before the staffing horizon begins. Once

they are finished, it is reviewed by a unit leader and published for all to view. Figure 4.2 provides a

sample chart demonstrating the first three phases of the current PICU scheduling process.

Figure 4.2: Screenshot from PICU Scheduling Office for the First Three Stages
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4. Adjust the Schedule Phase: During the four-week staffing horizon nurse schedulers adjust the finalized

schedules, but must inform the nurses, ideally 72 hours prior the time of adjustment. Schedulers are

assumed firmed and fixed 24 hours prior to the actual staffing shift.

5. Staffing the Next Nursing Shift Using StaffAssist : The schedulers currently use PICUs internally de-

veloped staff allocation tool StaffAssist for adjusting staffing levels for the next nursing shift. While

the majority of nurses work in 12-hours shifts, planning for staffing is based on three 8-hour shifts

(Day, Evening, Night). However, because of the ever-changing unit census, the schedulers prefer to

use six consecutive 4-hour shifts – Day 1 (starting at 7:00AM), Day 2, Evening 1, Evening 2, Night 1,

and Night 2) to identify the required number of nurses for each shift more accurately. The details of

StaffAssist procedures are already discussed in Section 3.2.

During the StaffAssist adjustments phase, when the scheduled nurses are more than the recommended

and/or agreed upon nurses, the extra nurses are noted in StaffAssist and they will be floated to another

unit if needed there. If not, downtime is granted based on requests and seniority. If the scheduled

nurses are fewer than the recommended and/or agreed upon nurses, the resources for the required extra

nurses will be the float pool (called CRU - Clinical Resource Unit) or any staff members able to float

from other units. Competencies must be matched (i.e. an acute care floor RN is not able to take many

patient assignments in the PICU’s). If the shortage persists, the unit works short. All nursing staff are

assigned to a specific unit/ward and within the PICU there are three different staffs (W3, W4, W5).

If a ward is overstaffed, preference is to send extra staff to another PICU ward. However, the ultimate

decision is made by the Patient Care Manager on-call for that shift, as part of the house-wide staffing

assignment process.

6. Nurse-to-Patient Assignment Phase: The final stage is the nurse-to-patient assignment phase occurring

during the shift. Nursing assignments to specific patients are made in 4-hour increments. Although

every attempt is made to keep a nurse with the same assignment for the duration of his or her shift,

both for patient safety as well as nurse satisfaction, assignments may need to change based on the staff

level.
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4.3 Nurse Classification and Job Profiles

While the majority of nurses work 12-hour shifts, staffing plans are based on three 8-hour shift formats

(Day, Evening, and Night). However, because of the ever-changing unit census, schedulers prefer to use

six consecutive 4-hour shift blocks of time – Day 1 (D1) starting at 7:00AM, Day 2 (D2), Evening 1 (E1),

Evening 2 (E2), Night 1 (N1) and Night 2 (N2) – to more accurately identify the required number of nurses

for each shift. Below we discuss various classifications for the nurses:

Employment Types: There are two main Employment Type classifications for PICU nurses working: FTE

(full-time equivalent) nurses, and PRN (“pro re nata,” a Latin phrase that roughly translates to “as needed”

or “as the situation arises”) nurses. FTE nurses are further defined in clusters. An FTE - 1.0 nurse will work

40 hours per week, an FTE - 0.9 nurse will work 36 hours per week, etc. The work hours per week and shift

types for the FTE nurses are given in the table below. PRN nurses also have three tiers: Tier-I nurses will

work at least 20 hours, Tier-II nurses will work at least 44 hours and Tier-III nurses will work at least 76

hours during a scheduling period (i.e. 4 weeks). Details on nurse job profiles and associated shift patterns

for each job class appear in Table 4.1, and we present nurse job profile distributions for the PICU in Table 4.2:

Self-Scheduling and Weekend Assignment Groups: The nurses are divided into three priority groups for

self-scheduling: A, B, and C as detailed in Section 4.2. During the scheduling cycle, each nurse group de-

termines the self-scheduling rank and week for each nurse to select his or her shift assignments (from here

forward “his or her” will be presented only as “her”). The self-scheduling priority group assignments also

determine the weekends on which the nurse is assigned to work. For example, a Group A nurse will work the

first Friday, Saturday and Sunday, which is the technical definition of a weekend at the hospital (D1 shift on

Friday through an N2 shift on Monday). She will then be assigned to another weekend shift three weeks later.

Day and Night Shift Assignment Groups: All the nurses have day shift and night shift classifications. Some

nurses are designated to day shifts, working 7:00 AM to 7:00 PM, and others to night shifts, working 7:00

PM to 7:00 AM). Nurses pick their desired schedule accordingly.
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Profile Employment Type Shift Description Shift Type Weekend Gr.
1 FTE - 0.9 Three 12-hour shifts; 36 hrs/wk Day Group A
2 FTE - 0.9 Three 12-hour shifts; 36 hrs/wk Day Group B
3 FTE - 0.9 Three 12-hour shifts; 36 hrs/wk Day Group C
4 FTE - 0.9 Three 12-hour shifts; 36 hrs/wk Night Group A
5 FTE - 0.9 Three 12-hour shifts; 36 hrs/wk Night Group B
6 FTE - 0.9 Three 12-hour shifts; 36 hrs/wk Night Group C
7 FTE - 0.8 Two 12-hour, one 8-hour shifts; 32 hrs/wk Day Group A
8 FTE - 0.8 Two 12-hour, one 8-hour shifts; 32 hrs/wk Day Group B
9 FTE - 0.8 Two 12-hour, one 8-hour shifts; 32 hrs/wk Day Group C
10 FTE - 0.8 Two 12-hour, one 8-hour shifts; 32 hrs/wk Night Group A
11 FTE - 0.8 Two 12-hour, one 8-hour shifts; 32 hrs/wk Night Group B
12 FTE - 0.8 Two 12-hour, one 8-hour shifts; 32 hrs/wk Night Group C
13 FTE - 0.6 Two 12-hour shifts; 24 hrs/wk Day Group A
14 FTE - 0.6 Two 12-hour shifts; 24 hrs/wk Day Group B
15 FTE - 0.6 Two 12-hour shifts; 24 hrs/wk Day Group C
16 FTE - 0.6 Two 12-hour shifts; 24 hrs/wk Night Group A
17 FTE - 0.6 Two 12-hour shifts; 24 hrs/wk Night Group B
18 FTE - 0.6 Two 12-hour shifts; 24 hrs/wk Night Group C
19 FTE - 0.5 One 12-hour, one 8-hour shift; 20 hrs/wk Day Group A
20 FTE - 0.5 One 12-hour, one 8-hour shift; 20 hrs/wk Day Group B
21 FTE - 0.5 One 12-hour, one 8-hour shift; 20 hrs/wk Day Group C
22 FTE - 0.5 One 12-hour, one 8-hour shift; 20 hrs/wk Night Group A
23 FTE - 0.5 One 12-hour, one 8-hour shift; 20 hrs/wk Night Group B
24 FTE - 0.5 One 12-hour, one 8-hour shift; 20 hrs/wk Night Group C
25 FTE - 0.3 One 12-hour shift; 12 hrs/wk Day Group A
26 FTE - 0.3 One 12-hour shift; 12 hrs/wk Day Group B
27 FTE - 0.3 One 12-hour shift; 12 hrs/wk Day Group C
28 FTE - 0.3 One 12-hour shift; 12 hrs/wk Night Group A
29 FTE - 0.3 One 12-hour shift; 12 hrs/wk Night Group B
30 FTE - 0.3 One 12-hour shift; 12 hrs/wk Night Group C
31 PRN - Tier I 32+ hr/schedule; ď 40 hrs/wk
32 PRN - Tier II 68+ hr/schedule; ď 40hrs/wk
33 PRN - Tier III 116+ hr/schedule; ď 40hrs/wk

Table 4.1: Job Profiles for Nurses

Job Profile Ward A Ward B Ward C PICU % in PICU Hours

FTE - 0.9 59 48 50 157 62.8% 36 hrs. per week

FTE - 0.8 4 0 1 5 2.0% 32 hrs. per week

FTE - 0.6 20 11 18 49 19.6% 24 hrs. per week

FTE - 0.5 2 1 1 4 1.6% 20 hrs. per week

FTE - 0.3 2 1 0 3 1.2% 12 hrs. per week

PRN - I 0 0 0 0 0% 32+ hr/schedule

PRN - II 4 2 2 8 3.2% 68+ hr/schedule

PRN - III 12 8 4 24 9.6% 116+ hr/schedule

Table 4.2: Nurse Job Profile Distributions in the PICU

60



4.4 Two-Phase Procedure for Optimal Nurse Assignments

Chapter 3 evaluated the existing staff allocation system of a PICU, and we developed a method to reliably

estimate the number of unscheduled admissions to the PICU. The following sections of Chapter 4, now focus

on developing optimization methods that will more accurately identify the PICU nursing needs. Our main

objective for the optimization model we have developed is to reduce nurse staffing costs while balancing the

under- and over-staffing risks. To do this we use a two-phase procedure for optimal nurse assignments. Phase

1 of our solution procedure generates feasible FTE nurse schedules for the staffing horizon of six weeks, while

satisfying the constraints imposed by the nurse profile. Phase 2 assigns FTE nurses to the pre-generated

feasible nurse schedules and PRN nurses to the nursing shifts, using mixed-integer optimization models. We

first develop a “heat map” of patient census and ADT activity in the medical units for the dynamic staffing

policy option. To develop the heat map we estimate monthly seasonality index for Patient Census, Acuity

and ADT Activity. Then we estimate Patient Census, Acuity and ADT Activity averages for all Day of Week

and Shift of the Day combinations. The desired heat map of patient demand is generated by multiplying

the monthly seasonality factors with the historical Day-Shift averages for the medical units. Using the heat

map and the mixed-integer optimization models we analyze whether dynamic staffing policies outperform

the currently-used fixed staffing policy. We also compare the performance of both options with the optimal

staffing scheme reached by the actual patient data.

The Dynamic Staffing Model aims to minimize the staffing costs from FTE and PRN nurses, along with un-

derstaffing penalty costs. The Fixed Staffing Model minimizes the total difference between a predetermined

target staffing level and actual staffing levels resulting from nurse assignments. Figure 4.3 below summa-

rizes the modeling approaches adopted in this chapter. The first distinction among alternative models is a

fixed vs. dynamic medium-term nurse staffing target for the staffing horizon. For the alternative that uses

fixed staffing targets, we use the Fixed Staffing Model and historical patient demand data. For the dynamic

staffing targets,we use the optimal staffing model as a benchmark for model performance measurement. This

uses actual patient demand observed during the studied staffing horizon. Our Dynamic Staffing Model uses

the heat map approach outlined above for the patient demand forecast throughout the staffing horizon. We

give a description of these models in Section 4.6.

The output of the optimization using our integrated nurse staffing and scheduling models will be available

schedules for nurses to pick from among the suitable ones to their profiles. We then can have “open”, “firm”
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Figure 4.3: Modeling Approaches

and “frozen” phases of nurse assignments. In the “open phase”, we allow nurses to have a period similar

to their current self-scheduling period, in which they will be allowed to pick a schedule that meets their job

class and type. We can assume this selection of schedules process to be completed in a manner similar to the

current self-scheduling process in use (i.e., certain nurse groups might be allowed to select from the available

schedules depending on a rotating priority scheme). To enhance nurse satisfaction with the schedules even

further, unit nurse managers can allow nurses, in the “firm phase” to switch some blocks within their initial

assignments among each other. Following the firm phase, the schedules are final and no further changes are

allowed in the “frozen phase”.

4.4.1 Determination of Required Staffing Levels

While research has established that staffing is associated with patient safety, few studies have examined ways

to measure nurse workload and its impact on patient safety (Laschinger & Leiter, 2006). Various method-

ologies and staffing management tools are used at different hospitals to calculate the nursing workload and

good staffing levels for clinical units. Average Daily Census (ADC), counted as the number of patients at

midnight, has been used by hospitals to determine capacity needs, budgeting, and staffing, but it is not clear

that this measure captures the full extent of demand for beds or its dynamic nature (Kosnik, 2006). Midnight

census (MC) undercounts the workload for high-occupancy hospitals that have the most beds occupied at

any given time, but also often discharge a patient in the morning, then admit a different patient later in the

day in the same bed (Baernholdt et al., 2010). Although there is debate on how much time nurses spend on
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admitting, transferring, or discharging patients, previous studies agree that services required for ADT activ-

ities is a major component of the nursing workload (Baernholdt et al., 2010). Significant improvements have

been made in capturing patient acuity, but staffing management systems still often underestimate workload

in terms of dynamic patient flows (Wagner, 2005), and nurse managers lack the tools to reliably measure

nursing workload (Lee & Cummings, 2008). Once based solely on volume-driven ratios, the number of nurses

scheduled for each shift was dependent upon the number of patients occupying the unit during MC. This

approach proved to be imprecise, and over time more factors such as patient acuity, admissions, discharges

and transfers were taken into account (Harper, 2012).

Nurse staffing requirements in a medical unit are the result of a complex interaction between care unit

sizes, nurse-to-patient ratios, bed census distributions, and quality-of-care requirements. The optimal con-

figuration strongly depends on the particular characteristics of a specific case under study (Kortbeek et

al., 2015a). In addition, Green et al. (2013) indicate that establishing the appropriate staffing level for a

particular hospital unit during a specific shift is complicated by the need to make staffing decisions well in

advance (e.g., six to eight weeks) of that shift, and labor constraints. These limits include the number of

consecutive and weekend shifts worked per nurse, vacation schedules, personal days and preferences (Miller

et al. 1976, Wright et al. 2006). Furthermore, hospital location (urban vs. rural), population density and

hospital type (trauma, general rehab, children’s) also influence decisions. Management of the nursing work-

force is typically seen as a multi-phase, sequential planning and control process consisting of staffing, shift

scheduling and allocation phases (Maenhout and Vanhoucke, 2013). The decisions made in each phase of

this hierarchical process constrain subsequent phases. Workloads in nursing wards depend highly on patient

arrivals and lengths of stay, both of which are inherently variable. Predicting these workloads and staffing

nurses accordingly are essential to guaranteeing quality of care in a cost-effective manner (Kortbeek et al.,

2015a). Measures of workload as used in the literature includes characteristics of patients (e.g., Case Mix),

patient turnover, and patient acuity/intensity (Duffield et al., 2011). In many hospitals, staffing levels are a

result of historical development because hospital managers lack the tools to base current staffing decisions

on information about future patient demand (Kortbeek et al., 2015a).

We use a nursing requirement computation which takes into account the patient census, acuity mix, and total

ADT activity in the unit for a given shift. PICUs in our focal children’s hospital use a six-class categorization

for patient acuity levels, say A to F, with F the category of the most nursing-workload-intense group. For

Critical Care, the rough guidelines for nursing time requirement for each acuity group per 8 hour shift are:
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A=1 hour, B=2 hours, C=3 hours, D=4-5 hours, E=8 hours, F=16 hours. (For 16 hours, 2 RNs are assigned

for 1 patient.) PICUs generally don’t admit patients with acuity levels A and B , and only occasionally admit

C patients. For the purpose of this study, we assume the nursing time required for the ADT activities occur

during a given shift. Studies in the literature suggest roughly one-half hour nursing time for each ADT

activity. Using patient census, patient acuity, and ADT activity occurring during a specific shift, allows us

to compute the required total nursing workload for the unit for a specific nursing shift.

4.4.2 Incorporating Unscheduled Admissions & Extending Staffing Horizon

Another improvement target for the intended model is to incorporate unexpected admissions in the expected

census estimations using historical patient data. Currently, StaffAssist does not incorporate the unexpected

admissions number in the nurse requirement estimates. Charge nurses, using their own intuition and ex-

perience, enter the “desired” number of nurses in the StaffAssist system based on the current census and

their estimate of unscheduled admissions. If an unscheduled admission is known, such as the patient going

to the operating room 8 hours prior to needing a bed, the charge nurse will account for this patient in her

request. However, in both these steps, the charge nurses use no analytical method to estimate the number

of unscheduled admissions, nor do they address the issue of unscheduled admissions.

Current nurse weekend shift definitions also create complexities in terms of nurse job classes. As mentioned

earlier, technically a weekend shift starts with a D1 shift on Friday and ends with an N2 shift on the following

Monday. However, for job class definition, Fridays and Saturdays belong to one week and the following

Sunday and Monday shifts belong to the following week. We propose starting a week with Monday D1 shift

and ending the week with a Monday N2 shift. This scheme allows all the weekend assignments to belong

to the last 18 shifts of a certain week. The PICU currently uses a staffing horizon of four weeks, but there

are three self-scheduling and weekend assignment groups for nurses: A, B and C. Using a four-week staffing

horizon complicates the tracking of self-scheduling priority among the three groups. We propose extending

the staffing horizon to six weeks, which will allow for two full cycles of rotation among the three nurse groups.

Then every new staffing horizon will begin with a group A nurse priority and weekend assignment. Figure

4.4 below presents an illustration of the timeline of our proposed scheduling approach:
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Figure 4.4: Illustration of Proposed Scheduling Approach
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4.5 Phase 1: Pre-Generation of Feasible Nurse Schedules

The nurse scheduling problem in this study involves many requirements depending on the nurse job profile,

employment type, shift type and weekend assignment groups. Ensuring that any candidate solution satisfies

these requirements is no trivial task. Here we name those requirements:

1. 12-hour break between two successive shift assignments for each nurse,

2. No nurse can work more than 3 consecutive 4-hour shifts at a time,

3. No nurse can work more than 40 hours/week,

4. All FTE nurses will be scheduled at least for two consecutive shifts (i.e., they cannot be scheduled only

for a single 4-hour shift),

5. No FTE nurse can be scheduled more than 4 work days per week,

6. Minimum and maximum work hours allowances per week and per staffing horizon for different classes

of PRN and FTE nurses,

7. Day shift nurse, Night shift nurse assignment limitations,

8. Holiday and/or weekend shifts assignment rotations,

9. All FTE nurses must be scheduled in compliance with their shift structure defined in their job profile.

Any life-sized tour assignment model that addresses these requirements will suffer from too many constraints

caused by the growing size of these requirements. In addition, the larger the unit, the larger the problem

dimensionality. This decreases the odds of solving the problem. For that reason, we use an algorithm that

generates alternative nurse schedules for each FTE nurse group, while making sure the schedules are feasible.

The schedule generation algorithm ( used in C++ environment for one sample nurse job profile, job profile

#1 as defined in Table 4.1: FTE - 0.9 nurses with “Day” shift assignments and weekend group of “Group

A”) appears in Figure 4.5. A step-by-step description for the developed algorithm follows below. Samples

from the code appear in Appendices D.

Step 1 - Defining functions to be used in the program: First we define a function “comb” that generates all

combinations of a set of numbers given an array of numbers. Array “b” is the input array that has “n”

elements. Using the “comb” function we generate all possible combinations of size “r”; and output them into
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Read the Nurse Profile & Shift Data

Identify Feasible Work Shifts for the Nurse Profile

Identify Start Shifts for Two/Three
Consecutive Shift Assignments

Generate Combinations of Start Shifts in each Week

Merge Start Shift Combinations for the Staffing Horizon

Convert Start Shift Combinations to Full Schedules

Proceed to the Next Nurse Profile

Figure 4.5: Schedule Generation Steps for FTE Nurses

an array. We use this function to generate all possible shift start time combinations, given alternative shift

start times. We also define the “factorial” function that computes the factorial of a given integer. Finally,

we define function “combination”, which computes the number of subsets size “m” of a set with size “n”.

We use these functions to generate a schedule for the staffing horizon of six weeks given available start times

for each week individually. Appendix Figure D.1 presents the partial code for this step.

Step 2 - Defining variables and parameters; reading the shift data: In step 2, we start the main program and

define our variables, parameters and arrays. Then we read the shift data from a text file: “Shift Data.txt”,

which contains the information on: “Week #”, “Shift #”, “Shift Name”, “Shift Type”, “Day Type” for a

given shift (i.e. For any shift from 0 to 251, this file contains the week number for the shift; shift number

in the week, shift 1 to shift 42; shift name as D1, D2, E1, E2, N1 and N2; type of the shift as a “day” or

“night” shift and weekend or weekday classification for the shift. This information is used when evaluat-

ing available shifts for a specific nurse job profile. Appendix Figure D.2 presents the partial code for this step.

Step 3 - Reading the nurse job profiles from the data: Step 3 reads the nurse job profile data from a text file:

“Nurse Types.txt”. This file has the information on the “Job Class” (i.e. ID number for each unique nurse
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profile), “Employment Type” (i.e. FTE - 0.9 or PRN-Tier III), “Shift Category” (i.e. “Day” shift nurses)

and “Weekend Group” (i.e. weekend assignment group A, works during the weekends in weeks 1 and 4 only

throughout the staffing horizon) for each nurse job profile. Appendix Figure D.3 presents the partial code

for this step.

Step 4 - Identifying available work shifts for the given nurse profile: Step 4 assigns a “0” to all shifts that are

classified as night shifts, as this code generates schedules for nurses that work the day shifts. We assign zeros

to weekday shifts in weeks 1 and 4 because nurses from the given profile can only work weekend shifts for

those weeks. We assign a “1” to all other shifts, since these are available work shifts for this nurse job profile.

Figure 4.6 below present the identification of feasible work shifts for the studied nurse profile. Appendix

Figure D.4 presents the partial code for this step.
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Figure 4.6: Identifying Feasible Work Shifts for the Given Nurse Profile

Step 5 - Identifying the shifts that are available for three consecutive assignments: Step 5 identifies the shifts

which are available to start a three consecutive four-hour shift assignments. The reason for this is, the

nurse job profile we are studying in this example will only assigned to work three times for three consecutive

four-hour shifts. Then we label those shifts “start times” and list the IDs for those shifts. Figure 4.6 marks

examples of these shifts with a star. Appendix Figure D.5 presents the partial code for this step.

Step 6 - Build sets of available start times for the individual weeks: In step 6, we separate the potential start

times in each week and generate a set of available start times for each week. This is needed to generate

combinations of those start times for alternative schedules. Appendix Figures 3.6 (a) and (b) present the
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Week #1
(24, 30, 36)

Week #2
(42, 48, 54)
(42, 48, 60)
(42, 54, 60)
(48, 54, 60)

Week #3
(84, 90, 96)
(84, 90, 102)
(84, 96, 102)
(90, 96, 102)

Week #4
(150, 156, 162)

Week #5
(168, 174, 180)
(168, 174, 186)
(168, 180, 186)
(174, 180, 186)

Week #6
(210, 216, 222)
(210, 216, 228)
(210, 222, 228)
(216, 222, 228)

Figure 4.7: Generating Combinations of Start Shifts

pieces of codes used for this step. Appendix Figure D.6 and D.7 presents the partial code for this step.

Step 7 - Generate potential start time combinations for each week: Step 7 generates potential start time

combinations for each week using the pre-defined “comb” function. The nurse job profile we study will be

assigned three shift start times for each generated combination. Resulting bundles of three start times will

mark the starting shifts for each of three consecutive four-hour shift assignments. This nurse profile will be

assigned three of those assignments in each week. Figure 4.7 present an example of the process described in

this step. Appendix Figure D.8 presents the partial code for this step.

Step 8 - Combining weekly start time combinations to a complete schedule: Step 8 generates combinations

of potential start times for the entire planning horizon. We combine the weekly start time combinations

to a complete schedule. The output from this step will list (3*6=) 18 start times among the set of shifts.

This results in a complete enumeration of possible schedules for the nurse job profile. Appendix Figure D.9

presents the partial code for this step. Figure 4.8 present sample start time combinations for some FTE-0.9

nurse profiles.

Step 9 - Converting the potential start time combination arrays to the full set of schedules: The final step

converts the potential start time combination arrays into the full set of schedules containing assignments for

each shift using a boolean variable (i.e. the code generated 256 different schedules for the presented nurse

profile. Appendix Figure D.9 presents the partial code for this step.
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Figure 4.8: Sample start time combinations for some FTE-0.9 nurse profiles

We generated codes for 30 different nurse job profiles and identified the total number of available schedules

for each nurse job profile. Figure 4.9 lists total number of start time alternatives in each week and total

number of resulting schedules for each nurse job profile. As we can observe from the results in the figure,

total available schedules for FTE classes 0.8 and 0.5 generate millions of available schedules, which negates

their use in an optimization model. Next section presents the optimization model.
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Figure 4.9: Total Available Schedule Alternatives for each Nurse Job Profile
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4.6 Phase 2: Optimal Nurse Assignments to Pre-Generated Sched-

ules - Model Description

This section provides a detailed description of the model used for optimal nurse assignments to pre-generated

feasible schedules. The model integrates staffing with scheduling by assigning nurses to pre-generated full

nurse schedules covering the six-week horizon. We also describe two alternative models for the integrated

nurse staffing and scheduling in Appendices B and C. The initial model in Appendix B falls into the class of

tour-assignment models described in Chapter 2. The tour-assignment model contains a significant number

of constraints and a very large number of decision variables, which makes it inefficient in terms of computa-

tional complexity. The second model uses assignment of nurses to pre-generated schedules, and assigns PRN

nurses from three tiers to the nursing shifts. This model enjoys the reduced constraint and decision variable

sizes, but suffers from the problem of ensuring the requirement of not assigning any specific PRN nurse to

four consecutive nursing shifts. Details of the model and the problem regarding the PRN nurse assignments

are discussed in Appendix C.

For the reasons described above, we use pre-generated FTE nurse schedules as an input for the optimization

model. This eliminates the increased number of constraints and reduces the number of decision variables.

We use PRN nurses to reduce the risk of understaffing. We present a detailed nurse job profile portfolio

which offers great flexibility for the nurses working at the PICU. Offering flexible nurse schedules is a crucial

enhancement for high nurse retention and avoidance of burnout.

Appendix E presents the AMPL modeling code to be used in our optimization experiments for the developed

medium-term nurse assignment model. Appendix F presents a step-by-step description of a small problem

instance of the developed medium-term optimization model in AMPL environment. The small problem

instance presented involves 120 alternative schedules for nurses from 30 different job profiles (i.e., four sched-

ule alternatives for each FTE nurse profile). Schedules are generated using the C++ codes developed and

selected among 16 randomly selected schedules for the given nurse job profiles using the presented AMPL

maximally different schedule selection model described in next section of this chapter. Next, we present the

mixed-integer programming models we use for medium-term integrated nurse staffing and scheduling.
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4.6.1 Sets and Nurse Job Profiles

J : Set of alternative FTE nurse job profiles for the medical unit; (i.e. J = t1, 2, 3, ..., 30u )

Sj : Set of all available schedules for nurses from job profile j

P: Set of all PRN nurses.

We assume PRN nurses t1...PT1u are PRN Tier-1 nurses, nurses t(PT1+1)...(PT1+PT2)u are PRN Tier-2

nurses, nurses t(PT1+PT2+1)...(PT1+PT2+PT3)u are PRN Tier-3 nurses.

T : Set of four-hour nursing shifts during the scheduling period of six week T = t0, 1, 2, 3, ..., 251u (i.e. 42

shifts a week, six weeks in a schedule; 252 four-hour shifts in total).

i.e. A typical week starts with the nursing shift l = 1, which is a Monday D1 shift and ends with shift l =

42, which is a Monday N2 shift.

w P t1, 2, ..., 6u, is the index of weeks during the staffing horizon and Tw is the subset of shifts during week

w.

G : Set of patient acuity categories G = {1, 2, 3, 4, 5, 6}

i.e. For g P G acuity category g =1 indicates that patient belongs to the acuity designation A in hospital

terminology, similarly g =2 indicates acuity group B, g=3 indicates acuity group C, g=4 indicates acuity

group D, g=5 indicates acuity group E, g=6 indicates acuity group F.

4.6.2 Model Parameters

as,t : 1 if for schedule s P Sj can be assigned to work at shift t ; 0 otherwise.

ϑg,t : Vector keeping the number of patients in acuity group g P G at the unit for shift t P T .

hg : Nursing hours required for patient care for acuity group g in a four-hour nursing shift (i.e. h = [0.5,

1, 1.5, 2.5, 4, 8] ; a patient with acuity ‘F’, g=6, will require eight hours of nursing care in a four-hour

shift).

αt: Number of admission and transfer-in activities to a unit for shift t

βt: Number of discharge and transfer-out activities to a unit for shift t

cj : Staffing cost per four-hour shift for the FTE nurses from job profile j

bp : Staffing cost per four-hour shift for PRN nurse p P P
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γ : Nursing hours required for one patient admission / transfer-in activity

δ : Nursing hours required for one patient discharge / transfer-out activity

cp
u : Penalty cost of one hour understaffed nursing care

nj : Number of FTE nurses from job profile j P J

4.6.3 Decision Variables

xs : number of FTE nurses from that are assigned to work for schedule s P Sj ; xs P Z.

yp,t : 1 if PRN nurse p P P is assigned to work for shift t P T; 0 otherwise.

zp : 1 if PRN nurse p P P is assigned to work for any shift t P T during the staffing horizon of six weeks; 0

otherwise.

Ut : Total understaffing for shift t P T; Ut P R.

We are introducing the binary decision variable yp,t for each individual PRN nurse for each nursing shift.

We also introduce decision variable zp just to gain control over the PRN assignment hours during the staffing

horizon. We want to make sure if a PRN nurse is assigned to any shift during the staffing horizon, then that

same nurse is assigned at least the required minimum number of nursing hours depending upon the PRN

tier.

4.6.4 Dynamic Staffing Model

Objective Function Cost Components

Minimize {FTE Staffing Costs + PRN Staffing Costs + Total Understaffing Penalty Costs }:

«

ÿ

jPJ

ÿ

sPSj

ÿ

tPT

cj ¨ xs ¨ as,t

loooooooooooooomoooooooooooooon

FTE Staffing Cost

`
ÿ

pPP

ÿ

tPT

bp ¨ yp,t

loooooooomoooooooon

PRN Staffing Cost

`
ÿ

tPT

cp
u ¨Ut

loooomoooon

Understaffing Penalty

ff

Our objective in this optimization problem is to minimize total costs of FTE and PRN nurse staffing and

total penalty costs associated with the understaffing levels in the unit throughout the staffing horizon.

Model Constraints

• Understaffing Constraint:
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We set the lower bound for the understaffing variable (Ut):

«

Required Nursing Hrs.
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

γ ¨ αt ` δ ¨ βt `
ÿ

gPG

ϑg,t ¨ hg ´

Sch. FTE Hrs.
hkkkkkkkkkkikkkkkkkkkkj

ÿ

jPJ

ÿ

sPSj

4 ¨ xs ¨ as,t ´

Sch. PRN Hrs.
hkkkkikkkkj

ÿ

pPP

4 ¨ yp,t

ff

ď Ut

and Ut ě 0 @ t P T .

Required nursing hours minus the provided nursing hours from FTE and PRN nurses should define

the lower bound for the understaffing variable Ut . As mentioned earlier, we measure the nursing

requirement in a shift by multiplying the number of patients in each acuity group by the associated

nursing hours and aggregate the nursing hours required due to the admissions and discharge, ADT,

activities. Provided nursing hours come from the FTE Staffing which are assignments to pre-generated

schedules and assignment of individual PRN nurses to specific nursing shift depending on the foreseen

patient demand.

• Constraints related to the number of available FTE nurses from each job profile j P J :

ÿ

sPSj

xs ď nj @ j P J;

We cannot assign more than available number of FTE nurses from each job profile j P J.

• Constraints related to the rule of avoiding four consecutive four-hour shift assignments for the PRN

nurses:

pyp,t ` yp,pt`1q ` yp,pt`2q ` yp,pt`3qq ď 3 @ p P P, t P t1 ...pT ´ 3 qu;

• Constraints related to avoiding single four-hour shift breaks between two consecutive assignments of

PRN nurses:

pyp,t ´ yp,pt`1qq ` pyp,pt`2q ´ yp,pt`1qq ď 1 @ p P P, t P t1 ...pT ´ 2 qu;

• Constraints related to avoiding two four-hour shift breaks between two consecutive assignments of PRN

nurses:

pyp,t ´ yp,pt`1qq ` pyp,pt`3q ´ yp,pt`2qq ď 1 @ p P P, t P t1 ...pT ´ 3 qu;
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• Available maximum PRN hours for a given week during staffing horizon:

ÿ

tPTw

yp,t ď 10 @ p P P,w P t1 , 2 , ..., 6 u.

For any PRN nurse p P P shift assignments should be smaller than 10 four-hour shifts for a given week

during the staffing horizon of six weeks, where w is the index for the weeks and Tw is the subset of

shifts during week w.

• Constraint related to the minimum work hours requirement of PRN nurses:

Assignments for the PRN nurses in a tier shouldn’t be less than the minimum work hours required for

that PRN tier.

For Tier-1:

8 ¨ zp ď
ÿ

tPT

yp,t @ p P t1 ...PT1 u

Tier-1 PRN nurses should be assigned to a minimum of eight four-hour shifts during the staffing horizon

of six weeks. Or no assignments.

For Tier-2:

17 ¨ zp ď
ÿ

tPT

yp,t @ p P tpPT1 ` 1 q...pPT1 ` PT2 qu

Tier-2 PRN nurses should be assigned to a minimum of 17 four-hour shifts during the staffing horizon

of six weeks. Or no assignments.

For Tier-3:

29 ¨ zp ď
ÿ

tPT

yp,t @ p P tpPT1 ` PT2 ` 1 q...pPT1 ` PT2 ` PT3 qu

Tier-3 PRN nurses should be assigned to a minimum of 29 four-hour shifts during the staffing horizon

of six weeks. Or no assignments.

• We leave the option of no assignment for specific PRN nurses open during the staffing horizon.

ÿ

tPT

yp,t ď zp ¨M @ p P t1 ...pPT1 ` PT2 ` PT3 qu

where, M is a large enough positive integer. The constraint ensures that if any PRN nurse p P
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t1...pPT1 ` PT2 ` PT3qu was not assigned to work during the staffing horizon, all shift assignments

yp,t are forced to be zero.
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We can present the developed Dynamic Staffing Model, with PRN nurses modeled individually, as

follows:

Minimize {FTE Staffing Costs + PRN Staffing Costs + Total Understaffing Penalty Costs }:

«

ÿ

jPJ

ÿ

sPSj

ÿ

tPT

cj ¨ xs ¨ as,t

loooooooooooooomoooooooooooooon

FTE Staffing Cost

`
ÿ

pPP

ÿ

tPT

bp ¨ yp,t

loooooooomoooooooon

PRN Staffing Cost

`
ÿ

tPT

cp
u ¨Ut

loooomoooon

Understaffing Penalty

ff

subject to

«

Required Nursing Hrs.
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

γ ¨ αt ` δ ¨ βt `
ÿ

gPG

ϑg,t ¨ hg ´

Sch. FTE Hrs.
hkkkkkkkkkkikkkkkkkkkkj

ÿ

jPJ

ÿ

sPSj

4 ¨ xs ¨ as,t ´

Sch. PRN Hrs.
hkkkkikkkkj

ÿ

pPP

4 ¨ yp,t

ff

ď Ut

ÿ

sPSj

xs ď nj @ j P J;

pyp,t ` yp,pt`1q ` yp,pt`2q ` yp,pt`3qq ď 3 @ p P P, t P t1 ...pT ´ 3 qu;

pyp,t ´ yp,pt`1qq ` pyp,pt`2q ´ yp,pt`1qq ď 1 @ p P P, t P t1 ...pT ´ 2 qu;

pyp,t ´ yp,pt`1qq ` pyp,pt`3q ´ yp,pt`2qq ď 1 @ p P P, t P t1 ...pT ´ 3 qu;

ÿ

tPTw

yp,t ď 10 @ p P P,w P t1 , 2 , ..., 6 u.

8 ¨ zp ď
ÿ

tPT

yp,t @ p P t1 , ...,PT1 u

17 ¨ zp ď
ÿ

tPT

yp,t @ p P tpPT1 ` 1 q, ..., pPT1 ` PT2 qu

29 ¨ zp ď
ÿ

tPT

yp,t @ p P tpPT1 ` PT2 ` 1 q, ..., pPT1 ` PT2 ` PT3 qu

ÿ

tPT

yp,t ď zp ¨M @ p P t1 , ..., pPT1 ` PT2 ` PT3 qu

Ut P R and Ut ě 0 @ t P T ;

Ot P R and Ot ě 0 @ t P T ;

xs P Z and xs ě 0 @ s P Sj ;

zp , yp,t P {0, 1} @ p P P, t P T
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4.6.5 Fixed Staffing Model

For the fixed staffing model our objective is to minimize the total difference between FTE and PRN staffing

levels in each nursing shift and a pre-determined, targeted fixed staffing level throughout the staffing horizon.

In addition to the original constraints presented in the dynamic model above, we add another constraint

which limits the total staffing level in each shift with the target staffing level. We present the objective

function and the additional constraints as follows:

• Objective Function:

Minimize: Total Staffing Difference w.r.t. Target Staffing Level

«

pntarget ¨ T q ´ p
ÿ

tPT

FTE Staffing
hkkkkkkkkikkkkkkkkj

ÿ

jPJ

ÿ

sPSj

xs ¨ as,t `

PRN Staffing
hkkikkj

ÿ

pPP

yp,t

looooooooooooooooomooooooooooooooooon

Staffing Level at Shift t

q

ff

;

• Additional Constraints:

ÿ

jPJ

ÿ

sPSj

xs ¨ as,t `
ÿ

pPP

yp,t ď ntarget @ t P t1 ...Tu;

, where ‘ntarget’ is the target fixed staffing level for all shifts throughout the staffing horizon. The

additional constraint is in the form of an inequality, since in many cases staffing all nursing shifts with

the fixed staffing level may not be a feasible option. As a result of this optimization, we might observe

some shifts having less than target staffing level, especially in the medical units with less PRN nurses.

We test the performance of both static and dynamic models against the perfect information scenario, where

assumed that the patient demand is perfectly known at the time of scheduling. Patient demand pattern for

nursing for a typical 6-week staffing horizon consists of census data for each patient acuity group and ADT

activity during each nursing shift for the staffing horizon.
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The Fixed Staffing Model, with PRN nurses modeled individually, is as follows:

Minimize: Total Staffing Difference w.r.t. Target Staffing Level

«

pntarget ¨ T q ´ p
ÿ

tPT

FTE Staffing
hkkkkkkkkikkkkkkkkj

ÿ

jPJ

ÿ

sPSj

xs ¨ as,t `

PRN Staffing
hkkikkj

ÿ

pPP

yp,t

looooooooooooooooomooooooooooooooooon

Staffing Level at Shift t

q

ff

;

subject to
ÿ

jPJ

ÿ

sPSj

xs ¨ as,t `
ÿ

pPP

yp,t ď ntarget @ t P t1 ...Tu;

«

Required Nursing Hrs.
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

γ ¨ αt ` δ ¨ βt `
ÿ

gPG

ϑg,t ¨ hg ´

Sch. FTE Hrs.
hkkkkkkkkkkikkkkkkkkkkj

ÿ

jPJ

ÿ

sPSj

4 ¨ xs ¨ as,t ´

Sch. PRN Hrs.
hkkkkikkkkj

ÿ

pPP

4 ¨ yp,t

ff

ď Ut

ÿ

sPSj

xs ď nj @ j P J;

pyp,t ` yp,pt`1q ` yp,pt`2q ` yp,pt`3qq ď 3 @ p P P, t P t1 ...pT ´ 3 qu;

pyp,t ´ yp,pt`1qq ` pyp,pt`2q ´ yp,pt`1qq ď 1 @ p P P, t P t1 ...pT ´ 2 qu;

pyp,t ´ yp,pt`1qq ` pyp,pt`3q ´ yp,pt`2qq ď 1 @ p P P, t P t1 ...pT ´ 3 qu;

ÿ

tPTw

yp,t ď 10 @ p P P,w P t1 , 2 , ..., 6 u.

8 ¨ zp ď
ÿ

tPT

yp,t @ p P t1 , ...,PT1 u

17 ¨ zp ď
ÿ

tPT

yp,t @ p P tpPT1 ` 1 q, ..., pPT1 ` PT2 qu

29 ¨ zp ď
ÿ

tPT

yp,t @ p P tpPT1 ` PT2 ` 1 q, ..., pPT1 ` PT2 ` PT3 qu

ÿ

tPT

yp,t ď zp ¨M @ p P t1 , ..., pPT1 ` PT2 ` PT3 qu

Ut P R and Ut ě 0 @ t P T ;

Ot P R and Ot ě 0 @ t P T ;

xs P Z and xs ě 0 @ s P Sj ;

zp , yp,t P {0, 1} @ p P P, t P T

ntarget P Z
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4.7 Schedule Selection for the Optimization Experiments

In order to select a subset of available schedules for each FTE nurse profile to feed into the optimization

model, we create two sub models: the Maximum Difference Model and the Random Schedule Model. For

the Maximal Difference Model we select a subset of schedules of maximally different given size from the

pool of schedules. These schedules are mutually compared for each nursing shift, and a difference score

is computed for each comparison. The sum of all difference scores becomes the objective value of the

maximization problem. The idea is that, as the schedules become more diverse, the optimization model will

generate better results in terms of cost minimization and nursing demand coverage. Below we present the

mathematical representation of the Maximum Difference Model.

(1) Maximum Difference Model:

• Parameters:

– S : Total number of available schedules to the nurses

– T : Number of four-hour shifts in the scheduling period

– N : Size of desired subset of schedules to feed in optimization model

– as,t : 1 if a nurse for schedule s P S can be assigned to work at shift t P T; 0 otherwise.

• Decision Variables:

– Xs binary, s P t1...Su; 1 if schedule s P S is selected within the subset, 0 otherwise.

– Ds,k ,t binary, s P t1...(S-1)u, k P t2...S)u, t P t1..T u; 1 if assignment of two compared schedules,

s and k , in shift t different from each other, 0 otherwise.

– Ws,k binary, s P t1...(S-1)u, k P t2...S)u; 1 if schedules s and k are selected within the subset, 0

otherwise.

– ∆s,k ,t , binary s P t1...(S-1)u, k P t2...S)u, t P t1..T u; 1 if assignment of two compared schedules,

s and k , in shift t different from each other and schedules s and k are selected within the subset

, 0 otherwise.

• Objective Function: Maximize Total Mutual Difference of Schedules within the Selected Subset of

Schedules:
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Max
ÿ

s,k,t

∆s,k,t, @ s P t1...pS ´ 1qu, k P tps` 1q...Su, t P t1...T u

• Constraints:
ÿ

sPt1...Su

Xs “ N ;

@ s P t1...pS ´ 1qu, k P tps` 1q...Su, t P t1...T u :

ras,t ´ ak,ts
2 “ Ds,k,t;

Ws,k ď Xs;

Ws,k ď Xk;

∆s,k,t ď Ds,k,t;

∆s,k,t ďWs,k;

We solve the optimization problem using CPLEX solver in the AMPL environment. The optimization model

gives a desired size of subset of schedules that are maximally different among each other. Figure 4.10 below

presents the AMPL model of the optimization model that selects maximally different schedules. We also

present a sample data file in Figure 4.11 that shows an instance where we select four schedules among the

available 16.

(2) Random Schedule Selection Model:

The Maximum Difference Model is not efficient for large size schedule selections (e.g., selecting 256 schedules

from 10,000 available schedules). Multi-index decision variables and a large set of constraints make it difficult

to obtain a solution in a reasonable period of time. So we use a second technique, the Random Schedule

Model, in which we select a given size of random schedules from the pool of all available schedules. We

model the random selection routine in C++ using the Mersenne-Twister random-number engine.

Figure 4.12 presents a sample selection code for FTE nurses from FTE ´ 0.6 employment working in day
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Figure 4.10: Selecting Maximally Different Schedules - Model Description

shifts and have weekend assignment Group A. Among the available 11,664 schedules for this nurse profile,

we are randomly selecting 256 schedules that will feed into our optimization model. The experimental

results presented in the next section, show that randomly selecting 256 schedules for each nurse profile (i.e.

256 schedules/nurse profile * 30 nurse profiles = 7680 schedules for each optimization model) provides a

sufficiently large selection of schedules for the optimization experiments. Increasing the number of available

schedules further would yield minimal benefits in terms of incremental cost savings, but would increase the
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Figure 4.11: Selecting Maximally Different Schedules - Data File

computational complexity and solution time dramatically.

85



Figure 4.12: Random Schedule Selection Using C++
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4.8 Experimental Design for RQ1 and RQ2

The efficient and effective management of nursing personnel is of critical importance in a hospital’s envi-

ronment, comprising a vast share of operational costs. Burke et al. (2013) suggest that high-quality nurse

rosters benefit nurses, patients and managers. From a management point of view, better and more flexible

scheduling can help retain nurses and aid recruitment, reduce tardiness and absenteeism, increase morale and

productivity, and provide better patient service and safety. Costs can be reduced by needing to hire fewer

agency nurses and by lowering staff turnover. A lack of methodologies and decision support tools to improve

scheduling is still a strategic problem to the hospital administrations. The adopted nurse workforce practices

and policies highly affect nurses’ working conditions and quality of care (Maenhout & Vanhoucke, 2013).

Healthcare managers are seriously challenged as all these issues converge. One way to ease this pressure is to

develop better decision support systems that provide insight into the consequences and outcomes of various

nurse staffing and shift scheduling policies. All these elements affect personnel management. Managing a

proper personnel policy has a positive impact on nurses’ working conditions, which are strongly related to

quality of care (Wright et al., 2006).

We study the interaction between various factors affecting nurse staffing and scheduling process, as well

as alternative performance measures, using the optimization models presented earlier. We propose an ex-

perimental design to identify penalty costs, which will be used in the optimization model for understaffing

reduction in the medical units. We also determine how robust the nurse staffing and scheduling models are,

using different nurse mix and patient demand in the medical units. Our experimental design presented in

this section is intended to explore answers for our first two research questions in this study:

• RQ 1: Do dynamic medium-term nurse staffing policies that use patient demand forecasts outperform

the historically-employed fixed staffing policy for the intensive care medical units?

• RQ 2: Can understaffing penalty cost be utilized as a mechanism to control the understaffing levels

which possibly mitigate nurse burnout and medical errors?

Next, we identify the significant factors and build an experimental design using those factors, which enables

us study their impact on desired performance measures.
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4.8.1 Identifying Significant Design Factors

In order to evaluate the impact of various design factors on nurse staff scheduling approaches and performance

measures, we develop an experimental design that is based upon the following significant factors:

1. Nurse Profile Mix (NMIX): Nurse mix for the studied three PICU Wards (i.e. distribution of nurses

over FTE and PRN groups in the medical units). Cases used in the experimental design are presented

in Nurse Profile Mix table, Table 4.4, below.

2. Number of available schedules for each FTE nurse profile (NAS): (i.e. Number of schedules provided

as an input for the optimization model).

3. Understaffing Penalty Cost (UPC): Penalty cost for one nursing hour understaffing at the medical unit.

FTE nurse hourly rate is normalized to one unit. Base level of UPC is determined as 1.5, due to the

fact that mandatory overtime cost of a nurse is typically 50% higher than regular hourly rate.

4. Staffing Policy (SPO): Fixed versus dynamic staffing policy, compared against the perfect information

optimal staffing scenario.

5. Patient Demand (PD): Patient demand pattern used in the optimization models for nursing for a typical

6-week staffing horizon. Consists of census data for each patient acuity group and ADT activity during

each nursing shift for the staffing horizon.

Table 4.3 below present the experimental design factors and various levels of these factors used in this study.

Next, we discuss the significance of these design factors.

Nurse Mix # of Schedules Understaffing Staffing Policy Patient Demand

(NMIX) (NAS) Penalty (UPC) (SPO) PD

Ward A 4 1.5 Optimal Staffing Actual Demand

Ward B 16 2.0 Fixed Staffing - L1 Fixed Demand - L1

Ward C 64 3.0 Fixed Staffing - L2 Fixed Demand - L2

256 10.0 Dynamic Staffing Heat-Map Demand

Table 4.3: Experimental Design Factors

Implications of Understaffing in Medical Units

There are significant economic implications for optimizing nurse staffing based on an improved understand-

ing of patient volume. When a nursing unit is chronically short-staffed, nurses are forced to maintain an
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intense pace in order to ensure patients receive timely care. According to Paul and MacDonald (2013) nurse

shortage implications go beyond healthcare quality, also extending to health economics. While the cost of

overstaffing can easily be viewed as waste, there are also costs for understaffing patient care units. Under-

staffing has been linked to hospital-acquired infections and their significant preventable costs (Cimiotti et

al., 2012). Additionally, the loss of nurses through burnout is estimated to cost $300,000 per year for each

percentage of annual nurse turnover (PriceWaterhouseCoopers, 2007). Thus, applying novel models to the

chronic problem of understaffing in medical units may lead to significant reductions in healthcare costs, nurse

job satisfaction and patient safety.

Nursing Shortage, Nurse Turnover, Fatigue and Burn-out:

Burnout and the total workload experienced by nurses are usually managed by adequately scheduling shifts.

Cline et al. (2003) examine the results of a qualitative study designed to enhance the understanding of RNs’

perceptions of the factors prompting them to leave employment in acute care settings. The authors sought

to identify any disparity between what RNs gave employers as their reasons for leaving and what they would

reveal to a neutral third party. Two major themes emerged from the discussion: management and staffing

concerns. Because of the staffing shortages, nurses felt patient care was compromised and their licenses were

at risk due to their inability to provide appropriate, necessary care. The sheer cost of turnover - $64,000 for

an ICU nurse and $42,000 for a medical, surgical nurse coupled with low morale and potentially dangerous

situations caused by inadequate staffing, compels managers to examine ways to decrease turnover (Kerfoot,

2000). Unattractive schedules, poor practice environments and high workloads are identified as important

factors leading to discontentment and a high nursing turnover. This initiate hospitals to adopt policies that

increasingly accommodate preferences and requests of their nursing staff while ensuring suitably qualified

staff on duty at the right time (Maenhout & Vanhoucke, 2013).

Patient Safety and Outcomes:

The shortage of nurses has attracted considerable attention due to its direct impact on the quality of patient

care (Punnakitikashem et al. 2013). This issue is expected to worsen, especially given the aging population

of baby-boomers, which includes those that are part of the nurse workforce. This has resulted in a wide

variety of problems, including patient safety issues, inability to detect complications, and potential patient

mortality rate increases (Paul and MacDonald, 2013). Penoyer (2010) reviewed the literature evaluating

the association of nurse staffing with patient outcomes in critical care units and populations. An annotated
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review of major nursing and medical literature from 1998 to 2008 was performed to find research studies

conducted in intensive care units or critical care populations where nurse staffing and patient outcomes were

addressed. Findings from this review clearly demonstrate an association of nurse staffing in the intensive

care unit with patient outcomes. Patients receive better healthcare if nurses are able to spend more time

with them and mistakes are less likely if nurses are not stressed, tired and overworked due to poor schedul-

ing and understaffing (Burke et al., 2013). Since patient safety is jeopardized when medical care units are

understaffed, a scarcity of nursing capacity can lead to expensive hiring of nurses from external agencies and

to undesirable ad hoc bed closings (Kortbeek et al. 2015a).

Nurse Job Satisfaction and Absenteeism:

Improved rosters not only decrease nurse fatigue but also help maximize the use of their leisure time and

satisfy more of their personal requests (Burke et al., 2013). Aiken et al. (2001) surveyed nurses in five

countries and found that one result of increased workload was that basic nursing interventions were left

undone. Being unable to provide the required level of patient care was linked to lower job satisfaction and

staff retention. High workloads and undesirable schedules are two major reasons for nurses to report job

dissatisfaction (Punnakitikashem et al. 2013). Green et al. (2013) combine an empirical investigation of

the factors affecting nurse absenteeism rates with an analytical treatment of nurse staffing decisions using a

novel variant of the newsvendor model. Using data from the emergency department of a large urban hospital,

this study finds that absenteeism rates are consistent with nurses exhibiting an aversion to higher levels of

anticipated workload. Kuntz et al. (2014) argue that safety tipping points occur when managerial escala-

tion policies are exhausted and workload variability buffers are depleted. Front-line clinical staff is forced to

ration resources and, at the same time, becomes more error prone as a result of elevated stress hormone levels.

As our design factor related to the understaffing levels, we use the Understaffing Penalty Cost (UPC). Penalty

cost for one nursing hour understaffing at the medical unit. We first normalize all the cost parameters by

the FTE nurse hourly rate (i.e. FTE nurse hourly cost is assumed to be one unit). Base level of UPC is

determined as 1.5, due to the fact that mandatory overtime cost of a nurse is typically 50% higher than

regular hourly rate and mandatory overtime is the frequently used method to cover understaffing in the

medical unit. Cost of understaffing cannot be limited with the nursing cost of mandatory overtime. The

impact of understaffing on the nursing staff, nurse turnover and patient outcomes needs to be addressed as

a part of the penalty cost. For that reason, as demonstrated in the experimental design factors table above

(i.e Table 4.3), we study four different levels for the UPC: 1.5, 2, 3 and 10. Understaffing cost (or penalty)

90



is not an observable factor in the day-to-day operations of the PICU medical units. The sensitivity of the

nursing administration for avoiding potential understaffing will be reflected to our experiments as various

levels of Understaffing Penalty Cost. We analyze how the performance measures (mean, median, max of

understaffing percentage in each nursing shift) are impacted by various levels of understaffing penalty cost.

We seek to minimize potential understaffing risk under 5% level, given that medical units under consideration

for this specific study are part of a Pediatric Intensive Care Unit. We evaluate which penalty costs keep

the understaffing under desired levels given various patient demand patterns (PD) and nurse mix (NMIX),

while keeping the total staffing costs at a reasonable level.

Nursing Care is Costly:

U.S. health care costs continue to rise, despite the advent of the Affordable Care Act (Patton, 2015). Nurs-

ing care is identified as the single biggest factor in both the cost of hospital care and patient satisfaction

(Yankovic and Green, 2011). Recent estimates suggest that national health care expenditures increased

between 5% and 6% in 2014 and 2015 and are estimated at $3.2 trillion. Given the fact that registered nurse

wages and benefits constitute a substantial portion of overall hospital costs, comprising approximately 25%

of the hospital’s operational costs (Maenhout and Vanhoucke, 2013b), hospitals have attempted to reduce

nurse staffing as a means to reduce costs and increase profitability (Rivers et al., 2004). On the other hand,

projections suggest that by 2020 approximately 36% of nursing positions in the United States will remain

unfilled (Wright and Bretthauer, 2010). Rising healthcare costs and increasing nurse shortages make cost-

effective nurse staffing of vital importance (Kortbeek et al. 2015a).

Mandatory Nurse-to-Patient Ratios Create a Risk of Overstaffing :

There is widespread dissatisfaction with the current methods of determining nurse staffing levels, including

the most common one of using minimum nurse-to-patient ratios (Needleman and Buerhaus, 2003). Manda-

tory nurse-to-patient ratios implemented in some states also create a risk of underestimating or overestimating

required nurse resources. Yankovic and Green (2011) represent the nursing system as a queuing model and

develop a two-dimensional model to approximate the actual interdependent dynamics of bed occupancy lev-

els and demands for nursing. The authors use this model to show how unit size, nursing intensity, occupancy

levels, and unit length-of-stay affect the impact of nursing levels on performance and thus how inflexible

nurse-to-patient ratios can lead to either understaffing or overstaffing. Paul and MacDonald (2013) demon-

strate the issues with mandatory nurse-to-patient ratios in addressing the nurse shortage crisis when subject
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to varying patient demand and hospital service quality goals. Results from the study suggest that relying

merely on mandatory nurse-to-patient ratios is not an effective strategy, especially considering the issue of

nursing shortages. Even though high nurse-to-patient ratios may be a good strategy from a health quality

perspective, it is not a strategy every hospital and state can possibly afford, and it is one that can also

further exacerbate the nursing shortage (Paul and MacDonald, 2013). One shortcoming of this strategy is

the assumption that demand for services and the requirement for nurse resources in a hospital behave in a

linear manner, which is far from reality (Clancy, 2007).

In summary, due to the budget constraints faced by the hospital administrations and costly nature of nursing

care, avoiding overstaffing by better matching patient demand has a crucial importance. We analyze how the

performance measures like mean, median, max of overstaffing percentage in each nursing shift is impacted

by various levels of UPC and other design factors. Note that overstaffing cost is imposed in the objective

function cost components in the form of additional staffing cost from the extra nurses used.

Nurse Mix - Ward Size and Structure

There are more than sixty-five hundred hospitals in the United States that are described as short-stay or

long-term, depending on the length of patient stay. Short-stay facilities include community, teaching, and

public hospitals. Sometimes short-stay hospitals are referred to as acute care facilities because the services

provided within them aim to help resolve pressing problems or medical conditions, such as a heart attack,

rather than long-term chronic conditions such as the need for rehabilitation following a head injury. There

are various nurse profiles working within these different types of hospitals. Next is a short list of main cate-

gories for nurse profiles: (1) Registered Nurses (RNs): RNs are nurses with an associate or bachelor’s degree

in nursing. They assist physicians in hospitals and a variety of medical settings and help in treating patients

with illnesses, injuries and medical conditions. RNs constitute the largest population of employment in most

U.S. hospitals. (2) PRN (Pro-Re-Nata) or Per Diem (per day) Nurses: PRN nurses carry out the same

essential duties of an RN but on a part-time or temporary basis. Some per diem nurses work in this capacity

to gain additional hours, some to have shorter working hours and some may just want to gain a variety of

experiences to explore their opportunities. (3) Travel (or agency) Nurses: Travel nurses work temporary

jobs nationally and internationally, sometimes for weeks at a time and sometimes for a few years. Travel

nurses perform many of the same duties as standard RN, often working for an agency that supplements

staff to facilities in need. (4) Licensed Practical Nurses (LPNs): LPNs perform a variety of tasks under the

supervision of an RN. They administer medicine, check vital signs and give injections.
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Brusco and Showalter (1993) suggest that staffing mix and the assignment of flex-pool nursing hours were

the two most important nurse staffing policy options for affecting annual nursing labor costs. Nurse staffing

policy options are defined in terms of the flexibility they provide to hospital management to match nursing

staff to demand requirements overtime. The primary nurse staffing policy options included in the study

and available to hospital management include: (1) Staffing Mix; (2) Over-Time; (3) Flex-Staff; and (4)

External Staff Assignment (Brusco and Showalter, 1993). Staffing mix refers to the workforce composition

of registered nurses (RN), licensed practical nurses (LPN) and nurses’ assistants (NA). Overtime refers to

the use of nursing staff for more than 40 hrs per week and more than 12 hrs. per day. Flex-staffing is the

use of part-time employees working throughout the hospital. External staffing consists of the RNs signed

to 13-weeks contracts as well as temporary nurse hires from local agencies. Staffing patterns differ across

nursing care units in hospitals. This affects nursing intensity and the direct costs of nursing care. For ex-

ample, patients admitted to an intensive care unit typically have patient-to-RN staffing ratios of 2:1 or 1:1.

An adult medical/surgical ward may have ratios between 4:1 and 8:1. The patient-to-nurse ratio determines

the mean hours of care delivered on the unit, yet individual patients may require more or less care than the

mean (Welton et al., 2006).

As revealed from the discussion above, there are various types of hospitals with a variety of nurse job pro-

files. Any nurse staffing and scheduling model should address the variety in the nature of this problem. Our

model includes 30 different FTE nurse job profiles, which consider the day-night shift assignment of nurses,

weekly work hour limits, unique shift structures and weekend job assignment rotations. We also consider

PRN nurses with three different job tiers, depending on total lowest work hours limit per schedule, which

help the nursing administration fill in the gaps of their schedules. As a part of our experimental design,

we evaluate our optimization model for the three medical units of the PICU in the as-is state. These three

different wards will enable us to test our model with respect to three different instances of nurse mix (i.e.

three different sets of FTE and PRN nurse combinations, which will help us validate the reliability of the

developed model. We observe how variations in the nurse mix impact the schedule cost, computational time

and number of iterations for an optimal or near-optimal solution. From the nursing administration perspec-

tive, testing the model with three different nurse mix instances will demonstrate how the range of under and

overstaffing percentages is impacted by the changing size and combination of FTE and PRN nurses, as the

administration would like to keep these ratios within a certain range. We also evaluate how the size of PRN

nurse pool impact the performance measures and problem complexity. Results will provide insights with
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respect to the role PRN nurses play in the medical units. Table 4.4 below summarize the current nurse mix

in the three PICU wards that are used in our experiments.

Nurse Employment Shift Weekend Number of RNs
Profile Type Type Group Ward A Ward B Ward C

1 FTE - 0.9 Day Group A 10 8 8
2 FTE - 0.9 Day Group B 10 8 8
3 FTE - 0.9 Day Group C 10 8 9
4 FTE - 0.9 Night Group A 10 8 9
5 FTE - 0.9 Night Group B 9 8 8
6 FTE - 0.9 Night Group C 10 8 8
7 FTE - 0.8 Day Group A 1 0 0
8 FTE - 0.8 Day Group B 1 0 1
9 FTE - 0.8 Day Group C 0 0 0
10 FTE - 0.8 Night Group A 0 0 0
11 FTE - 0.8 Night Group B 1 0 0
12 FTE - 0.8 Night Group C 1 0 0
13 FTE - 0.6 Day Group A 3 2 3
14 FTE - 0.6 Day Group B 3 2 3
15 FTE - 0.6 Day Group C 4 2 3
16 FTE - 0.6 Night Group A 4 2 3
17 FTE - 0.6 Night Group B 3 2 3
18 FTE - 0.6 Night Group C 3 1 3
19 FTE - 0.5 Day Group A 0 0 0
20 FTE - 0.5 Day Group B 0 0 0
21 FTE - 0.5 Day Group C 1 0 0
22 FTE - 0.5 Night Group A 0 0 0
23 FTE - 0.5 Night Group B 1 0 0
24 FTE - 0.5 Night Group C 0 1 1
25 FTE - 0.3 Day Group A 1 0 0
26 FTE - 0.3 Day Group B 0 0 0
27 FTE - 0.3 Day Group C 0 1 0
28 FTE - 0.3 Night Group A 0 0 0
29 FTE - 0.3 Night Group B 1 0 0
30 FTE - 0.3 Night Group C 0 0 0
31 PRN - Tier I 0 0 0
32 PRN - Tier II 4 2 2
33 PRN - Tier III 12 8 4

Total # of RNs 103 71 76

Table 4.4: Nurse Mix at the PICU Wards

Dynamic Patient Demand for Nursing

Workloads in nursing wards depend highly on patient arrivals and lengths of stay, both of which are inherently

variable. Predicting these workloads and staffing nurses accordingly are essential for guaranteeing quality

of care in a cost-effective manner (Kortbeek et al., 2015a). Measures of workload as used in the literature

includes characteristics of patients (e.g. casemix) and patient turnover, as well as patient acuity/intensity
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(Duffield et al., 2011). Green et al. (2013) suggests that the problem of determining nurse staffing levels

in a hospital environment is a complex task because of variable patient census levels and uncertain service

capacity caused by nurse absenteeism. In determining staffing requirements, such factors as total census,

intensity-of-care levels, and type of ward must be estimated for appropriate planning to be accomplished

(Helmer et al., 1980). Hourly changes in patient census and acuity cause the demand for nursing services to

depart from the planned schedule several times a day, This requires hospitals to update their staffing needs

on a continuing basis (Bard and Purnomo, 2005b). Some additional factors of consideration to achieve an

effective nurse staffing system would be the nurse preferences regarding work schedules, nurse absenteeism

and patient acuity (Purnomo and Bard, 2007; Wang and Gupta, 2014).

Kim et al.’s (2014) technical report evaluated the predictability of patient volume in Hospital Medicine

(HM) groups using a variety of known forecasting techniques. HM groups experience fluctuations in patient

volume which may be difficult to predict. Results from univariate and multivariate methods were compared

with a benchmark of historical means. The mean absolute percentage error (MAPE) was used to measure

forecast accuracy. Autocorrelations and cross-correlations of patient volume across the services were also

analyzed. Results from the study indicate that the forecasting models outperformed the historical average

based approach by reducing MAPE from 17.2% to 6% in one day ahead forecast and to 8.8% MAPE in

a month ahead forecast. The ARIMA method outperformed the other methods a day (or beyond) ahead

forecast.

Given the dynamic nature of patient demand for nursing in medical units, we consider patient demand

generated by various periods of six-week staffing horizon data for patient census, mix and ADT activity in

the medical units. As outlined by the previous literature above, an acuity-based staffing system regulates

the number of nurses on a shift according to the patients’ needs, and not according to raw patient numbers.

We study different six-week time periods for each medical unit in the PICU. While Fixed Staffing mod-

els use a fixed level of patient demand throughout the staffing horizon, Dynamic Staffing models use heat

map approach for better mimicking the dynamic nature of patient demand. All results are compared with

the outcomes of the Optimal Staffing model, which use actual patient demand data. We evaluate how the

performance measures of schedule costs, computational time and under- and over-staffing percentages are

impacted with different instances of patient demand data.

Number of Available Schedules for FTE RNs (NAS)
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Appropriate staffing and shift scheduling of the healthcare workforce are central components and are essen-

tial for the delivery of care to patients. Moreover, as labor costs typically represent more than 40% of a

hospital’s total budget, hospitals are under increasing pressure to manage their nursing workforce efficiently

(Maenhout and Vanhoucke, 2013). Vericort and Jennings (2011) suggest that these shifts should limit nurse

working hours, allow for enough breaks, and consider individual preferences. In fact, some hospitals offer

flexible shifts with long recovery periods in order to retain nurses. The authors suggest in conjunction with

efficient scheduling systems, hospital managers might also want to limit the utilization rates experienced by

nurses.

Given the pressures hospitals face to manage their nursing workforce efficiently, offering a sizable number of

alternative schedules to each nurse profile could help nursing administration better match patient demand.

In this respect, we also investigate the impact of number of available schedules (NAS) on the schedule

performance. In this context, it is possible to then observe how increasing the number of schedules impact

our performance measures. We explore answers for questions as follows: Does increasing the number of

available schedules bring significant objective function cost savings? How does problem complexity and

solution time is impacted by various levels of available schedules per nurse group? How does the understaffing

and overstaffing levels are impacted by the number of available schedules in the optimization model? Four

distinct levels on the NAS factor are used to evaluate schedule performance; 4 schedules, 16 schedules, 64

schedules, 256 schedules per FTE nurse group. We use the random selection routine in C++ using the

Mersenne-Twister random-number engine to select 16, 64 and 256 schedules among the available schedule

pool. Selecting 4 schedules out of randomly selected 16 schedules is conducted by the maximally different

selection using the optimization model in AMPL environment.

4.8.2 Description of Performance Measures

Below is a summary of the performance measures to be evaluated from the experimental design:

Description of the Performance Measures for the Optimization Model Experiments

• Obj. Value (Total Cost): Resulting objective function cost of the optimization model. It is the total

cost of FTE and PRN staffing costs and understaffing penalty costs.

• Optimality Gap (%): The percentage gap between the best integer solution achieved and the objective

value of the relaxed LP model.
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• FTE Staffing Cost: Total staffing cost for the FTE nurses, in the medium-term, during the scheduling

horizon of 6 weeks.

• PRN Staffing Cost: Total staffing cost for the PRN nurses, in the medium-term, during the scheduling

horizon of 6 weeks.

• Understaffing Penalty Cost: Total penalty cost for understaffing during the scheduling horizon of 6

weeks.

• Median Ut: Median percentage understaffing during the scheduling horizon of 6 weeks.

• Average Ut: Average percentage understaffing during the scheduling horizon of 6 weeks.

• Max Ut: Maximum level of percentage understaffing observed during the scheduling horizon of 6 weeks.

• Median Ot: Median percentage overstaffing during the scheduling horizon of 6 weeks.

• Average Ot: Average percentage overstaffing during the scheduling horizon of 6 weeks.

• Max Ot: Maximum level of percentage overstaffing observed during the scheduling horizon of 6 weeks.

• # FTEs: Total number of FTE nurses assigned to work in the unit (among the total available FTE

nurse pool) during the scheduling horizon of 6 weeks.

• FTE % Utilization: Percentage of FTE nurses assigned to work in the unit (among the total available

FTE nurse pool) during the scheduling horizon of 6 weeks.

• # PRNs: Total number of PRN nurses assigned to work in the unit (among the total available PRN

nurse pool) during the scheduling horizon of 6 weeks.

• Avg. PRN Hours per Week: Average hours of work assignment for the PRN nurses per week during

the scheduling horizon of 6 weeks.

• PRN % Utilization: Average percentage utilization of PRN nurses per week during the scheduling

horizon of 6 weeks, compared to a 40 hours work week.

• Minimum Staffing per Shift: Minimum number of total nursing personnel in one shift, including both

FTE and PRN nurses, during the scheduling horizon of 6 weeks.

• Average Staffing per Shift: Average number of total nursing personnel in one shift, including both

FTE and PRN nurses, during the scheduling horizon of 6 weeks.

• Maximum Staffing per Shift: Maximum number of total nursing personnel in one shift, including both

FTE and PRN nurses, during the scheduling horizon of 6 weeks.
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4.8.3 Preparation Steps of Heat-Map for Patient Demand

In this section, we provide a description of patient demand data used in the optimization experiments in

this chapter. Then, we provide a description of the steps we used to develop the heat map approach used

for forecasting input data for the dynamic staffing model. Table 4.5 present the description of the sample

and full dataset of the three PICU Wards used in this study. We use three different six-week time period

for each medical unit. Mean, median, minimum, maximum, standard deviation and coefficient of variation

of the patient demand for nursing hours (i.e. the nursing requirement based on our computation approach

that use patient acuities and ADT activity) are presented for the used sample and the full dataset in Table

4.5. As can be observed from the summary statistics, all three samples used in the study closely mimic the

characteristics of the full dataset spanning more than four years of time period.

Next, we describe the steps used to develop the heat map for the studied three PICU wards as an example.

A similar approach can be followed to produce a unit specific heat map for any medical unit.

Step 1: Search for Monthly Seasonality

As a first step of preparing the patient demand heat map, we search for monthly seasonality in patient data.

Figure 4.13 below presents the monthly seasonality in patient census data for the three PICU wards. The

averages are computed using the full dataset. The figure clearly suggests a monthly seasonality for average

patient census, which has to be addressed in the heat map preparation. We also check average monthly ADT

activity as a part of nursing requirements. Figure 4.14 below presents the monthly seasonality in patient

ADT activity for the three PICU wards. The ADT averages are also computed using the full dataset. Figure

4.14 also suggests a monthly seasonality for average ADT activity, more significant for Ward C.

Step 2: Computing the Monthly Seasonality Index for Patient Census and ADT activity

In order to calculate the monthly seasonality index, we first count the nursing shifts that matches the

searched month of the year, then we sum the census data for all those shifts. Dividing the total census with

total count of the shifts give us average census for the month. We repeat the same process for all months

to compute the general census average. Then, we divide the average monthly census data to the overall

average census to find the monthly seasonality index. Table 4.6 below demonstrates the discussed compu-

tations for Ward A. We repeat the same procedure to calculate the seasonality index for patient ADT activity.
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Figure 4.13: Average Patient Census by Months
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Figure 4.14: Average Patient ADT Activity by Months
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Sample Data Period Ward A Ward B Ward C

Start Date 11/19/12 4/9/12 10/19/13

End Date 12/31/12 5/21/12 11/30/13

Patient Demand per Shift (hrs.)

Mean (hrs.) 72.98 51.54 46.09

Median (hrs.) 74.50 51.50 47.50

(Min, Max) (hrs.) (51.0, 90.0) (27.0, 74.0) (25.0, 71.5)

Std. Deviation (hrs.) 8.88 9.29 8.59

Coefficient of Var. (CV) 12.17% 18.02% 18.64%

Full Dataset Period Ward A Ward B Ward C

Start Date 4/7/09 4/7/09 4/7/09

End Date 12/22/13 12/22/13 12/22/13

Patient Demand per Shift (hrs.)

Mean (hrs.) 77.31 45.55 46.77

Median (hrs.) 78.49 45.37 46.99

(Min, Max) (hrs.) (37.4, 92.1) (15.5, 75.3) (17.4, 71.7)

Std. Deviation (hrs.) 8.70 9.49 9.77

Coefficient of Var. (CV) 11.26% 20.84% 20.88%

Table 4.5: Data Summary & Patient Demand per Shift (hrs.) - Wards A, B & C

Step 3: Search for Seasonality in Days of the Week and Shifts in a Day

In step 3, we search for seasonality in days of the week and shifts in a day. Figure 4.15 presents the average

census data with respect to days of a week. Figure indicates a gradual increase in patient census as the we

move from Monday to Thursday, followed by a decrease in the census as we move towards the weekend. The

pattern is pretty similar for all three PICU wards. Figure 4.16 presents the average patient ADT activity

by days of the week. The ADT activities appear to be fairly stable during the weekdays, followed by a sig-

nificant drop in the weekends. Both of these characteristics has to be addressed in the heat map development.

Next, we check the seasonality of patient census and ADT with respect to the six nursing shifts in a day.

Figure 4.17 presents the average patient census by nurse shifts in a day. The average census decrease with
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Figure 4.15: Average Patient Census by Days of Week

Mon Tue Wed Thu Fri Sat Sun

13

14

15

16

17

18

19

20

21

22

23

20.3

20.78
20.99

21.17 21.31
21.13

20.49

14.27

15.17

15.63
15.84 15.69

14.78

13.84

15.49

16.08
16.43 16.54 16.44

15.93

15.34

A
v
g.

P
at

ie
n
t

C
en

su
s

Ward A
Ward B
Ward C

Figure 4.16: Average Patient ADT Activity by Days of Week
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MONTH CENSUS TOTAL # of SHIFTS AVG. CENSUS S. INDEX

Jan 16,084 744 21.618 1.035

Feb 14,454 678 21.319 1.021

Mar 15,209 744 20.442 0.979

Apr 18,129 863 21.007 1.006

May 19,969 930 21.472 1.028

Jun 18,434 900 20.482 0.981

Jul 19,228 930 20.675 0.990

Aug 20,382 930 21.916 1.050

Sep 18,541 900 20.601 0.987

Oct 19,099 930 20.537 0.983

Nov 17,982 900 19.980 0.957

Dec 18,116 877 20.657 0.989

Grand Avg. 215,627 10,326 20.882

Table 4.6: Computing Monthly Seasonality Index for Patient Census - Ward A

the discharges in shifts E1 and E2, then start to increase again with the unscheduled admissions starting

from shift E2. Patient ADT in nurse shifts is presented in Figure 4.18. ADT level starts with a low level at

shift D1, reaches it’s peak at shift D2, and starts to decrease beginning from shift E1, an expected pattern

since majority of the scheduled admissions and discharges occur during the daytime. We decide to compute

the average census and ADT for each day-shift combination (i.e. 7 days a week, 6 shifts in a day), resulting

in 42 different options. Next, we discuss how to compute the day-shift averages for patient census and ADT.

Step 4: Computing Average Census and ADT activity for each Day-Shift Combination

In step 4, we compute the average census and ADT for each day and shift combination. We search the data

for a specific day and shift combination and add to the sum and count if the shift matches. Then, we divide

the summation by the count to find the average census and ADT for each option. Table 4.7 demonstrates

an example of average census computation for each day-shift combination for Ward A. We repeat the same

procedure for other medical units and for computing the average ADT values.

Step 5: Adjusting Day-Shift Averages by Monthly Seasonality Index

In Step 5, we adjust each average census and ADT value for day-shift combinations via multiplying with
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Figure 4.17: Average Patient Census by Nurse Shifts
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Figure 4.18: Average Patient ADT by Nurse Shifts
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DAY SHIFT CENSUS TOTAL # of SHIFTS AVG. CENSUS

1- Monday 1- D1 - 7:00 AM to 11:00 AM 4,955 245 20.224

1- Monday 2- D2 - 11:00 AM to 3:00 PM 4,952 245 20.212

1- Monday 3- E1 - 3:00 PM to 7:00 PM 4,911 245 20.045

1- Monday 4- E2 - 7:00 PM to 11:00 PM 5,010 245 20.449

1- Monday 5- N1 - 11:00 PM to 3:00 PM 5,074 245 20.710

1- Monday 6- N2 - 3:00 PM to 7:00 PM 4,965 246 20.183

2- Tuesday 1- D1 - 7:00 AM to 11:00 AM 5,123 246 20.825

2- Tuesday 2- D2 - 11:00 AM to 3:00 PM 5,110 246 20.772

2- Tuesday 3- E1 - 3:00 PM to 7:00 PM 5,045 246 20.508

2- Tuesday 4- E2 - 7:00 PM to 11:00 PM 5,120 246 20.813

2- Tuesday 5- N1 - 11:00 PM to 3:00 PM 5,162 246 20.984

2- Tuesday 6- N2 - 3:00 PM to 7:00 PM 5,094 245 20.792

3- Wednesday 1- D1 - 7:00 AM to 11:00 AM 5,197 246 21.126

3- Wednesday 2- D2 - 11:00 AM to 3:00 PM 5,184 246 21.073

3- Wednesday 3- E1 - 3:00 PM to 7:00 PM 5,077 246 20.638

3- Wednesday 4- E2 - 7:00 PM to 11:00 PM 5,130 246 20.854

3- Wednesday 5- N1 - 11:00 PM to 3:00 PM 5,202 246 21.146

3- Wednesday 6- N2 - 3:00 PM to 7:00 PM 5,186 246 21.081

4- Thursday 1- D1 - 7:00 AM to 11:00 AM 5,228 246 21.252

4- Thursday 2- D2 - 11:00 AM to 3:00 PM 5,213 246 21.191

4- Thursday 3- E1 - 3:00 PM to 7:00 PM 5,128 246 20.846

4- Thursday 4- E2 - 7:00 PM to 11:00 PM 5,200 246 21.138

4- Thursday 5- N1 - 11:00 PM to 3:00 PM 5,255 246 21.362

4- Thursday 6- N2 - 3:00 PM to 7:00 PM 5,223 246 21.232

5 - Friday 1- D1 - 7:00 AM to 11:00 AM 5,280 246 21.463

5 - Friday 2- D2 - 11:00 AM to 3:00 PM 5,261 246 21.386

5 - Friday 3- E1 - 3:00 PM to 7:00 PM 5,173 246 21.028

5 - Friday 4- E2 - 7:00 PM to 11:00 PM 5,211 246 21.183

5 - Friday 5- N1 - 11:00 PM to 3:00 PM 5,260 246 21.382

5 - Friday 6- N2 - 3:00 PM to 7:00 PM 5,271 246 21.427

6- Saturday 1- D1 - 7:00 AM to 11:00 AM 5,289 246 21.500

6- Saturday 2- D2 - 11:00 AM to 3:00 PM 5,283 246 21.476

6- Saturday 3- E1 - 3:00 PM to 7:00 PM 5,132 246 20.862

6- Saturday 4- E2 - 7:00 PM to 11:00 PM 5,096 246 20.715

6- Saturday 5- N1 - 11:00 PM to 3:00 PM 5,107 246 20.760

6- Saturday 6- N2 - 3:00 PM to 7:00 PM 5,280 246 21.463

7 - Sunday 1- D1 - 7:00 AM to 11:00 AM 5,133 246 20.866

7 - Sunday 2- D2 - 11:00 AM to 3:00 PM 5,124 246 20.829

7 - Sunday 3- E1 - 3:00 PM to 7:00 PM 4,963 246 20.175

7 - Sunday 4- E2 - 7:00 PM to 11:00 PM 4,944 246 20.098

7 - Sunday 5- N1 - 11:00 PM to 3:00 PM 4,951 246 20.126

7 - Sunday 6- N2 - 3:00 PM to 7:00 PM 5,125 246 20.833

Table 4.7: Computing Average Census for each Day-Shift Combination - Ward A
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the associated monthly seasonality index generated in Step 2. Now, we have a monthly adjusted census and

ADT average for each day of a week and shift in a day combination.

Step 6: Distributing Average Census over Individual Acuity Groups

In Step 6, we distribute average census values into individual acuity categories using historical acuity distri-

bution of admits at the medical units. Table 4.8 below presents the distribution of patient admissions over

the acuity groups throughout the full data period. We use the computed percentages to forecast number

of patients in each acuity group in the medical unit. Seasonally adjusted census of day-shift averages are

multiplied by associated percentages to forecast the number of patients in each acuity group in the unit.

Ward A Ward B Ward C

Acuity # Admits % # Admits % # Admits %

A 0 0.00% 0 0.00% 0 0.00%

B 1 0.04% 12 0.16% 2 0.04%

C 7 0.25% 73 1.04% 131 2.51%

D 1,184 42.53% 4,592 68.21% 3,709 71.18%

E 1,375 49.39% 1,991 29.48% 1,320 25.34%

F 217 7.79% 81 1.12% 48 0.93%

Total Admits 2,784 6,749 5,211

Table 4.8: Historical Acuity Distribution in PICU Wards

Step 7: Combining Acuity Distribution and ADT Activity to Calculate Patient Demand

In Step 7, we combine the forecasted number of patients in each acuity group with the seasonally adjusted

ADT activity forecasts to compute an estimated patient demand (i.e. nursing requirement) for each nursing

shift throughout the targeted staffing horizon. Figure 4.19 below, summarizes the preparation steps of

heat-map for patient demand.
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Step 1: Search for
Monthly Seasonality

Step 2: Compute the Monthly Seasonality In-
dex for Patient Census and ADT activity

Step 3: Search for Seasonality in
Days of the Week and Shifts in a Day

Step 4: Compute Average Census and ADT
Activity for each Day-Shift Combination

Step 5: Adjust Day-Shift Aver-
ages by Monthly Seasonality Index

Step 6: Distribute Average Cen-
sus over Individual Acuity Groups

Step 7: Combine Acuity Dis-
tribution and ADT Activity
to Calculate Patient Demand

Figure 4.19: Preparation Steps of Heat-Map for Patient Demand
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4.9 Results & Discussion

We present and discuss the results of our experiments in this section. We used AMPL programming interface

to develop our optimization models. Our preferred solver for the optimization problems is IBM’s CPLEX

v12.6.3 Solver and the developed models in this chapter are in the class of mixed-integer programming

models. We use three alternative stopping criteria for the optimization experiments: (1) Optimality gap of

0.1% is reached; (2) Time limit of 6 hours is reached; (3) Tree memory size limit of 100 GB is reached. Next,

we discuss the results of the experiments with respect to each design factor and evaluate some performance

measures.

4.9.1 Impact of Number of Available Schedules (NAS)

To test the impact of an increase in NAS on performance measures and objective value, we used the Optimal

Staffing model for Ward A, where we used the actual patient data for the staffing horizon. We tested the

model for three different levels of understaffing penalty (UPC) (or Cpu as presented in the table below). Base

level of UPC is determined as 1.5, due to the fact that mandatory overtime cost of a nurse is typically

50% higher than regular hourly rate. We also tested for UPC = 2 and UPC = 3 cases. We test for 4, 16,

64 and 256 different schedules per nurse profile in each experiment. Total number of schedules range from

120 schedules (i.e for the 4 schedule per nurse profile case) to 7680 schedules (i.e for the 256 schedule per

nurse profile case) since we model for 30 different nurse profiles. We use random schedule selection tech-

nique for selecting 16, 64 and 256 schedules from the available feasible schedule pool; we select 4 schedules

using the maximum difference model presented in the schedule selection section. Since we use the maximum

difference model, selected 4 schedules are a subset of the 16 schedule set; which is not the case for other

scenarios (i.e. randomly selected 16 or 64 schedules may not be a subset of randomly selected 256 schedules).

As presented in Table 4.9 below, objective value (i.e. the total cost for the objective function) is either

slightly reduced or kept stable as we increase the NAS from 4 to 256. We conclude that feeding the al-

ternative staffing models with 256 schedules per FTE profile (i.e. 7,680 total different schedules for the

optimization model) is sufficiently large for providing schedule diversity. Even suggested maximally different

four schedules per nurse profile approach seems to be providing efficient solutions. Further increases in the

NAS, above 256 schedules per nurse profile, would not bring any cost savings but will increase the problem

complexity, hurting the solution performance of the developed models. As a result, the rest of the experi-
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ments in this chapter, use standard 256 schedules per FTE profile in all optimization problems. In addition,

observe that in all experiments cost savings are realized due to a reduced level of overstaffing in the unit.

All experiments presented in Table 4.9 are solved to 0.1% or less optimality gap before reaching the time

and memory size limit.

Design Factors Cost Elements Staffing Summary

Objective FTE PRN Understaffing % Under. % Over. Staffing

NAS Cp
u Value Staffing Staffing Penalty Avg. Avg. Avg.

4 1.5 19,338.15 14,712.00 3,524.40 1,101.75 3.67% 2.20% 17.77

16 1.5 19,338.15 14,688.00 3,524.40 1,125.75 3.79% 2.12% 17.75

64 1.5 19,338.15 14,712.00 3,524.40 1,101.75 3.67% 2.18% 17.77

256 1.5 19,338.15 14,688.00 3,524.40 1,125.75 3.77% 2.10% 17.75

4 2.0 19,579.60 15,312.00 3,471.60 796.00 1.98% 3.75% 18.32

16 2.0 19,573.60 15,264.00 3,493.60 816.00 2.02% 3.62% 18.29

64 2.0 19,573.40 15,240.00 3,502.40 831.00 2.04% 3.58% 18.28

256 2.0 19,574.40 15,240.00 3,502.40 832.00 2.05% 3.58% 18.28

4 3.0 19,808.40 16,296.00 3,128.40 384.00 0.64% 6.42% 18.99

16 3.0 19,807.70 16,272.00 3,159.20 376.50 0.63% 6.41% 18.99

64 3.0 19,807.70 16,272.00 3,159.20 376.50 0.63% 6.32% 18.99

256 3.0 19,810.70 16,272.00 3,159.20 379.50 0.63% 6.40% 18.99

Table 4.9: Impact of NAS: Optimal Staffing, Ward A

4.9.2 Staffing Policy Evaluation for PICU Wards

Our first research question in this study was: “Does dynamic medium-term nurse staffing policies that use

patient demand forecasts outperform the historically employed fixed staffing policy for the intensive care

medical units?” In this section, we evaluate the results of our experiments involving a comparison of alter-

native staffing policies with the aim of finding answers to our first research question. Table 4.10 present the

results of experiments for Ward A under various understaffing penalty costs. For the base case of UPC =

1.5, Dynamic Staffing policy provided better outcomes in terms of objective value compared to two Fixed

Staffing policy alternatives with 19 and 20 nurses. The objective value under Dynamic Staffing policy is

only 3.97% more than the objective value under Optimal Staffing. Median understaffing under the Dynamic

Policy is 0%, with an average understaffing of 3.01%. Median and average understaffing percentages are

lower for the Fixed Staffing policies at a cost of average overstaffing percentages of 8.45% and 12.23%. As
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can be observed from the “Staffing Summary” section of the table, Dynamic Staffing policy achieved the cost

savings via lowering the average staffing level throughout the staffing horizon. Also note that, even under

Fixed Staffing policies achieving a stable level of staffing throughout the staffing horizon may not be feasible

given the unit specific nurse mix and profiles. That is why we observe a staffing average of 18.99 under

Fixed Staffing policy with a staff size target of 19 and a staffing average of 19.98 with a staff size target of

20. As the UPC is increased to 2.0, average staff size under Dynamic Staffing policy is slightly increased to

18.88 and the objective value is still less than Fixed Staffing alternatives (i.e. cost savings are 2.11% and

3.70%, respectively). Median understaffing is kept stable at 0% and average understaffing ratio is decreased

to 2.67%, well below the acceptable 5% level, via increased staff size to alleviate the increased UPC. For the

scenario of UPC = 3.0, Dynamic Staffing policy continue to provide cost savings at 1.01% and 0.90% levels

compared to the two Fixed Staffing policy options. Now, the average staff size is increased to 19.21, which

brings the average understaffing to 2% level. As the UPC is further increased to 10.0, the Fixed Staffing

policy with 20 nurses provides slightly better objective values compared to the Dynamic Policy. Note that,

we only use Optimal Staffing as a means of measuring the performance of alternative models. Optimal

Staffing assumes perfectly known patient acuities and ADT activity for the upcoming staffing horizon, which

makes it a hypothetical alternative.

Table 4.11 present the results of experiments for Ward B under various understaffing penalty costs. For Ward

B, we test two alternative Fixed Staffing alternatives with staff sizes 11 and 12 against the Dynamic Staffing.

For all UPC alternatives Dynamic Staffing policy provided cost savings compared to the Fixed Staffing al-

ternatives. Savings range from 0.62% to a staggering 32.25% for UPC = 10.0 scenario and with respect to

the Fixed Staffing with 11 nurses alternative. Objective values attained using the Dynamic Staffing model

compared to the Optimal Staffing was comparable for lower UPC values (i.e. 3.61% and 5.95% for UPC =

1.5 and 2.0, respectively). As the UPC is further increased to 3.0 and 10.0 the gap between Optimal and

Dynamic Staffing alternatives become more significant. Average staff size remained between 11.69 and 12.29

under the Dynamic Staffing policy. Understaffing percentages are higher for this Ward, compared to Ward

A, for both Dynamic and Fixed Staffing policy alternatives. This observation indicates a higher than usual

patient demand level for the studied specific staffing horizon. While median understaffing percentages under

the Dynamic Policy ranged between 3.16% to 8.01%, the average understaffing percentages realized between

8% and 10.74%. Dynamic Staffing policy understaffing percentages are lower compared to the Fixed Staffing

alternatives under same scenarios. Overall, we can conclude that Dynamic Staffing policy demonstrated

superior performance compared to Fixed Staffing models for both cost savings and stable understaffing per-
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Design Factors Objective Understaffing Overstaffing Staffing Summary

Staffing Policy Cp
u Value Savings Med. Avg. Med. Avg. Min. Avg. Max.

Optimal Staffing 1.5 19,338.15 -3.97% 1.45% 3.77% 0.00% 2.10% 12.00 17.75 22.00

Dynamic Staffing 1.5 20,137.00 0.00% 0.00% 3.01% 2.01% 7.59% 17.00 18.78 20.00

Fixed Staffing - 19 nurse 1.5 20,288.50 0.75% 0.00% 2.64% 2.01% 8.45% 18.00 18.99 19.00

Fixed Staffing - 20 nurse 1.5 20,781.75 3.20% 0.00% 0.97% 7.38% 12.23% 19.00 19.98 20.00

Optimal Staffing 2.0 19,574.40 -2.80% 1.23% 2.05% 0.00% 3.58% 14.00 18.28 22.00

Dynamic Staffing 2.0 20,139.00 0.00% 0.00% 2.67% 2.01% 7.75% 18.00 18.88 20.00

Fixed Staffing - 19 nurse 2.0 20,564.00 2.11% 0.00% 2.64% 2.01% 8.45% 18.00 18.99 19.00

Fixed Staffing - 20 nurse 2.0 20,885.00 3.70% 0.00% 0.97% 7.38% 12.23% 19.00 19.98 20.00

Optimal Staffing 3.0 19,810.70 -5.23% 0.00% 0.63% 2.56% 6.40% 14.00 18.99 22.00

Dynamic Staffing 3.0 20,903.00 0.00% 0.00% 2.00% 4.11% 8.88% 18.00 19.21 21.00

Fixed Staffing - 19 nurse 3.0 21,115.00 1.01% 0.00% 2.64% 2.01% 8.45% 18.00 18.99 19.00

Fixed Staffing - 20 nurse 3.0 21,091.50 0.90% 0.00% 0.97% 7.38% 12.23% 19.00 19.98 20.00

Optimal Staffing 10.0 20,164.80 -13.49% 0.00% 0.15% 3.70% 8.42% 14.00 19.43 24.00

Dynamic Staffing 10.0 23,310.00 0.00% 0.00% 1.67% 5.26% 9.28% 18.00 19.35 20.00

Fixed Staffing - 19 nurse 10.0 24,972.00 7.13% 0.00% 2.64% 2.01% 8.45% 18.00 18.99 19.00

Fixed Staffing - 20 nurse 10.0 22,537.00 -3.32% 0.00% 0.97% 7.38% 12.23% 19.00 19.98 20.00

Table 4.10: Staffing Policy Evaluation: Ward A

centages for Ward B.

Next, we evaluate the performance of staffing policy alternatives using the results of experiments for Ward C

under various understaffing penalty costs in Table 4.12. For Ward C, we test the performance of the Dynamic

Staffing model with respect to two alternative levels of Fixed Staffing, with 12 and 13 nurses throughout the

staffing horizon. For the case of UPC = 1.5, objective values of Dynamic staffing policy and Fixed Staffing

policy with 12 nurses is similar. Dynamic Staffing provided cost savings of 2.94% compared to the Fixed

Staffing policy with 13 nurses. When UPC is increased to 2.0, the performance of Dynamic Staffing policy

differentiates from both alternative Fixed Staffing policies. Associated cost savings are 2.93% and 4.70% for

the 12 and 13 nurse alternatives, respectively. For the highest level of UPC = 10.0, cost savings with the

Dynamic Staffing policy is significantly different than both alternative Fixed Staffing policies (i.e. 18.69%

and 5.42%). Objective values realized under the Dynamic Policy get as close as 1.88% to the Optimal Staffing

objective levels. Observe that average staffing level for the Fixed Staffing policies are not in line with the

intended staff size targets (i.e. 11.57 average staff size instead of 12 and 12.43 average staff size instead of
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Design Factors Objective Understaffing Overstaffing Staffing Summary

Staffing Policy Cp
u Value Savings Med. Avg. Med. Avg. Min. Avg. Max.

Optimal Staffing 1.5 13,845.70 -3.61% 2.22% 7.19% 0.00% 3.05% 2.00 11.97 17.00

Dynamic Staffing 1.5 14,363.85 0.00% 8.01% 10.74% 0.00% 4.22% 10.00 11.69 13.00

Fixed Staffing - 11 nurse 1.5 14,482.80 0.83% 14.56% 14.49% 0.00% 2.88% 11.00 11.00 11.00

Fixed Staffing - 12 nurse 1.5 14,482.35 0.82% 6.80% 9.56% 0.00% 5.98% 12.00 12.00 12.00

Optimal Staffing 2.0 14,219.80 -5.95% 0.00% 3.54% 2.36% 7.00% 8.00 12.87 17.00

Dynamic Staffing 2.0 15,120.20 0.00% 6.80% 10.08% 0.00% 4.58% 10.00 11.82 13.00

Fixed Staffing - 11 nurse 2.0 15,560.80 2.91% 14.56% 14.49% 0.00% 2.88% 11.00 11.00 11.00

Fixed Staffing - 12 nurse 2.0 15,214.60 0.62% 6.80% 9.56% 0.00% 5.98% 12.00 12.00 12.00

Optimal Staffing 3.0 14,658.40 -11.23% 0.00% 2.00% 4.71% 10.65% 8.00 13.45 18.00

Dynamic Staffing 3.0 16,512.10 0.00% 5.42% 9.41% 0.00% 5.05% 10.00 11.96 13.00

Fixed Staffing - 11 nurse 3.0 17,716.80 7.30% 14.56% 14.49% 0.00% 2.88% 11.00 11.00 11.00

Fixed Staffing - 12 nurse 3.0 16,679.10 1.01% 6.80% 9.56% 0.00% 5.98% 12.00 12.00 12.00

Optimal Staffing 10.0 16,686.20 -32.74% 0.00% 1.74% 6.12% 11.50% 8.00 13.59 17.00

Dynamic Staffing 10.0 24,808.00 0.00% 3.16% 8.00% 0.00% 6.28% 11.00 12.29 14.00

Fixed Staffing - 11 nurse 10.0 32,808.80 32.25% 14.56% 14.49% 0.00% 2.88% 11.00 11.00 11.00

Fixed Staffing - 12 nurse 10.0 26,930.60 8.56% 6.80% 9.56% 0.00% 5.98% 12.00 12.00 12.00

Table 4.11: Staffing Policy Evaluation: Ward B

13). It seems Ward C employs the minimum number of PRN nurses compared to the number of total nurses

employed in the unit (i.e. 6 out of 76 nurses) and having fewer PRN nurses limits the scheduling flexibility

for the unit. Realized average understaffing percentages for the Dynamic Staffing policy are in the range

of 2.3% and 6.95%, median understaffing being kept stable at 0%. Overstaffing percentages are also lower

under the Dynamic Staffing policy compared to both Fixed Staffing policy for the base UPC level. As the

UPC level is increased, Dynamic Staffing average staff size is increased to alleviate the understaffing penalty

levels, which comes at the cost of increased overstaffing percentages.

In summary, for the experiments we conducted with the three PICU wards, the performance of Dynamic

Staffing policy was either superior to the Fixed Staffing alternatives or similar. The power of Dynamic

Staffing policy lies in the accuracy of forecasted heat map. As the forecasting performance in preparing the

unit specific heat map is improved, the more cost savings and alleviated understaffing percentages will be

observed under Dynamic Staffing policy. Regarding the Fixed Staffing policy, we need to first note that

perfectly stable staff size may not be feasible in many cases, especially with a limited number of PRN nurse
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Design Factors Objective Understaffing Overstaffing Staffing Summary

Staffing Policy Cp
u Value Savings Med. Avg. Med. Avg. Min. Avg. Max.

Optimal Staffing 1.5 12,429.70 -5.14% 3.61% 8.40% 0.00% 2.60% 5.00 10.54 16.00

Dynamic Staffing 1.5 13,103.35 0.00% 0.00% 6.95% 0.00% 9.80% 8.00 11.42 13.00

Fixed Staffing - 12 nurse 1.5 13,097.85 -0.04% 0.00% 6.11% 1.05% 10.29% 10.00 11.57 12.00

Fixed Staffing - 13 nurse 1.5 13,488.60 2.94% 0.00% 3.76% 9.47% 15.59% 11.00 12.43 13.00

Optimal Staffing 2.0 12,900.40 -1.88% 0.41% 6.02% 2.11% 5.04% 5.00 11.05 17.00

Dynamic Staffing 2.0 13,147.05 0.00% 0.00% 5.88% 1.15% 10.85% 9.00 11.68 13.00

Fixed Staffing - 12 nurse 2.0 13,532.60 2.93% 0.00% 6.11% 1.05% 10.29% 10.00 11.57 12.00

Fixed Staffing - 13 nurse 2.0 13,765.60 4.70% 0.00% 3.76% 9.47% 15.59% 11.00 12.43 13.00

Optimal Staffing 3.0 13,543.80 -5.42% 0.00% 3.36% 5.80% 10.00% 6.00 11.87 17.00

Dynamic Staffing 3.0 14,319.60 0.00% 0.00% 4.07% 5.76% 14.76% 10.00 12.31 16.00

Fixed Staffing - 12 nurse 3.0 14,402.10 0.58% 0.00% 6.11% 1.05% 10.29% 10.00 11.57 12.00

Fixed Staffing - 13 nurse 3.0 14,319.60 0.00% 0.00% 3.76% 9.47% 15.59% 11.00 12.43 13.00

Optimal Staffing 10.0 14,853.80 -13.95% 0.00% 0.69% 10.53% 23.94% 8.00 13.59 21.00

Dynamic Staffing 10.0 17,262.20 0.00% 0.00% 2.30% 15.66% 23.79% 12.00 13.52 18.00

Fixed Staffing - 12 nurse 10.0 20,488.60 18.69% 0.00% 6.11% 1.05% 10.29% 10.00 11.57 12.00

Fixed Staffing - 13 nurse 10.0 18,197.60 5.42% 0.00% 3.76% 9.47% 15.59% 11.00 12.43 13.00

Table 4.12: Staffing Policy Evaluation: Ward C

body. But eventually, our proposed Fixed Staffing modeling approach provides a reliable and efficient way

of scheduling the nursing workforce. Medical units with higher variation in patient demand levels would

benefit the most using the Dynamic Staffing policy proposed in this study.

4.9.3 Controlling for Understaffing Levels in the Medical Units

This section presents our experimental results regarding the use of UPC as a mechanism for controlling the

understaffing levels in the medical units. Our second research question in this chapter was: “Can under-

staffing penalty cost be utilized as a mechanism to control the understaffing levels which possibly mitigate

nurse burnout and medical errors?”. We evaluate the results of our experiments in this section to gain in-

sights to better control the understaffing levels to alleviate nurse burnout, overtime and last minute schedule

adjustments. We test the impact of understaffing penalty cost (UPC), primarily on understaffing ratios in

the medical units, under alternative staffing policies. We test the use of understaffing penalty cost as a

mechanism to control the understaffing levels under the Dynamic Staffing policy. Next, we evaluate the

impact of UPC on understaffing percentages in Ward A.
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Table 4.13 presents the results of experiments under alternative staffing policies and UPC for Ward A. Under

the Optimal Staffing, increasing the UPC from the base level of 1.5 to 10.0 reduce the average understaffing

from 3.77% to 0.15%. This is achieved via an increase in the average staff size from 17.75 to 19.43. Aver-

age overstaffing in the unit is realized between 2.10% to 8.42% for various levels of UPC. Under Dynamic

Staffing, average understaffing percentages occurred between 1.67% and 3.01%, with a median understaffing

level of 0% for all UPC levels in Ward A. For the base level UPC of 1.5, Dynamic Staffing policy resulted

in 3.01% average understaffing in the nursing shifts throughout the staffing horizon, which is less than the

average understaffing attained under the Optimal Staffing. As the UPC is increased to 2.0, 3.0 and 10.0, the

average understaffing levels slightly decreased to 2.67%, 2.00% and 1.67% for the Dynamic Staffing policy.

Average staff size remained between 18.78 and 19.35, a slightly smaller variation in staff size compared to

the Optimal Staffing outcomes. Average overstaffing percentages remained between 7.59% and 9.28%. The

most cost savings are achieved via Dynamic Staffing policy for the cases of UPC = 1.5, 2.0 and 3.0, when

compared with the Fixed Staffing alternatives. All experiments are solved to an optimality gap less than

0.33%.

For the Fixed Staffing alternatives with 19 and 20 nurses for Ward A, we observe an average understaffing of

2.64% and 0.97%. Objective values for the two alternatives are relatively close to the Dynamic Staffing policy

outcomes. This might be due to the relatively stable nature of patient demand for this unit (i.e. Coefficient

of Variation for this unit is 12.17% for the sample and 11.26% for the full dataset, see Table 4.5). Overstaffing

ratios for the Fixed Staffing alternatives are higher compared to the Dynamic Staffing for UPC = 1.5 and

2.0. We can conclude using a UPC of 1.5 suffices to expect less than 5% average understaffing ratios for this

medical unit under the Dynamic Staffing policy for the studied staffing horizon. Due to the static nature

of nursing staff size under the Fixed Staffing policy alternatives, the under and overstaffing ratios are kept

stable with respect to the UPC levels. As a result, under the Fixed Staffing policy nursing administration

can only change the level of targeted fixed staff size, which create the risk of excess overstaffing levels in case

of an increased staff size.

Table 4.14 presents the results of experiments for Ward B. All experiments are solved to an optimality gap

less than 0.09%. Under Optimal Staffing policy, where we test our models with actual patient data, increas-

ing the UPC increased the average staffing level (i.e. average staffing level in a nursing shift throughout the

staffing horizon of six weeks), decreasing the average understaffing ratios in the medical unit. For the base
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Design Factors Opt. Objective Staffing Understaffing Overstaffing

Staffing Policy Cp
u Gap Value Avg. Penalty Med. Avg. Med Avg

Optimal Staffing 1.5 0.13% 19,338.15 17.75 1,125.75 1.45% 3.77% 0.00% 2.10%

Optimal Staffing 2.0 0.00% 19,574.40 18.28 832.00 1.23% 2.05% 0.00% 3.58%

Optimal Staffing 3.0 0.00% 19,810.70 18.99 379.50 0.00% 0.63% 2.56% 6.40%

Optimal Staffing 10.0 0.00% 20,164.80 19.43 300.00 0.00% 0.15% 3.70% 8.42%

Dynamic Staffing 1.5 0.29% 20,137.00 18.78 939.00 0.00% 3.01% 2.01% 7.59%

Dynamic Staffing 2.0 0.33% 20,139.00 18.88 831.00 0.00% 2.67% 2.01% 7.75%

Dynamic Staffing 3.0 0.18% 20,903.00 19.21 1,251.00 0.00% 2.00% 4.11% 8.88%

Dynamic Staffing 10.0 0.01% 23,310.00 19.35 3,490.00 0.00% 1.67% 5.26% 9.28%

Fixed Staffing - 19 nurse 1.5 0.10% 20,288.50 18.99 826.50 0.00% 2.64% 2.01% 8.45%

Fixed Staffing - 19 nurse 2.0 0.10% 20,564.00 18.99 1,102.00 0.00% 2.64% 2.01% 8.45%

Fixed Staffing - 19 nurse 3.0 0.10% 21,115.00 18.99 1,653.00 0.00% 2.64% 2.01% 8.45%

Fixed Staffing - 19 nurse 10.0 0.10% 24,972.00 18.99 5,510.00 0.00% 2.64% 2.01% 8.45%

Fixed Staffing - 20 nurse 1.5 0.01% 20,781.75 19.98 309.75 0.00% 0.97% 7.38% 12.23%

Fixed Staffing - 20 nurse 2.0 0.01% 20,885.00 19.98 413.00 0.00% 0.97% 7.38% 12.23%

Fixed Staffing - 20 nurse 3.0 0.01% 21,091.50 19.98 619.50 0.00% 0.97% 7.38% 12.23%

Fixed Staffing - 20 nurse 10.0 0.01% 22,537.00 19.98 2,065.00 0.00% 0.97% 7.38% 12.23%

Table 4.13: Controlling for Understaffing in Ward A

case of UPC = 1.5, under Optimal Staffing, the average understaffing in the medical unit is 7.19%, which is

reduced to 1.74% for the extreme case of UPC = 10.0. The gains in observed understaffing levels come at a

cost of over 20% increase in the objective value. For the base case of UPC = 1.5 the median understaffing

is observed as 2.22%, which is an acceptable level for medium-term planning. Average staff size, under the

Optimal Staffing, changed between 11.97 and 13.59.

Under Dynamic Staffing policy, increasing UPC from the base level of 1.5 to 10.0 causes 72.7% increase

in objective value in Table 4.14. The median understaffing percentage is realized as 8.01% for the base

case, with an average understaffing level of 10.74%. The average understaffing drops to 8.00% when UPC

is increased to 10.0. The gain in average understaffing (i.e. from 10.74% to 8.00%) when increasing UPC

from 1.5 to 10.0 is realized at the cost of significant increase in the total understaffing penalty cost (i.e. from

2,414.25 for UPC=1.5 to 12,230 for UPC=10). Average staff size is kept at a stable level with a minimum

of 11.69 and maximum of 12.29 nurses under the Dynamic Staffing policy for Ward B.
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Design Factors Opt. Objective Staffing Understaffing Overstaffing

Staffing Policy Cp
u Gap Value Avg. Penalty Med. Avg. Med Avg

Optimal Staffing 1.5 0.09% 13,845.70 11.97 1,612.50 2.22% 7.19% 0.00% 3.05%

Optimal Staffing 2.0 0.01% 14,219.80 12.87 1,093.00 0.00% 3.54% 2.36% 7.00%

Optimal Staffing 3.0 0.05% 14,658.40 13.45 954.00 0.00% 2.00% 4.71% 10.65%

Optimal Staffing 10.0 0.09% 16,686.20 13.59 2,835.00 0.00% 1.74% 6.12% 11.50%

Dynamic Staffing 1.5 0.03% 14,363.85 11.69 2,414.25 8.01% 10.74% 0.00% 4.22%

Dynamic Staffing 2.0 0.03% 15,120.20 11.82 3,037.00 6.80% 10.08% 0.00% 4.58%

Dynamic Staffing 3.0 0.05% 16,512.10 11.96 4,270.50 5.42% 9.41% 0.00% 5.05%

Dynamic Staffing 10.0 0.04% 24,808.00 12.29 12,230.00 3.16% 8.00% 0.00% 6.28%

Fixed Staffing - 11 nurse 1.5 0.00% 14,482.80 11.00 3,234.00 14.56% 14.49% 0.00% 2.88%

Fixed Staffing - 11 nurse 2.0 0.00% 15,560.80 11.00 4,312.00 14.56% 14.49% 0.00% 2.88%

Fixed Staffing - 11 nurse 3.0 0.00% 17,716.80 11.00 6,468.00 14.56% 14.49% 0.00% 2.88%

Fixed Staffing - 11 nurse 10.0 0.00% 32,808.80 11.00 21,560.00 14.56% 14.49% 0.00% 2.88%

Fixed Staffing - 12 nurse 1.5 0.00% 14,482.35 12.00 2,196.75 6.80% 9.56% 0.00% 5.98%

Fixed Staffing - 12 nurse 2.0 0.00% 15,214.60 12.00 2,929.00 6.80% 9.56% 0.00% 5.98%

Fixed Staffing - 12 nurse 3.0 0.00% 16,679.10 12.00 4,393.50 6.80% 9.56% 0.00% 5.98%

Fixed Staffing - 12 nurse 10.0 0.00% 26,930.60 12.00 14,645.00 6.80% 9.56% 0.00% 5.98%

Table 4.14: Controlling for Understaffing in Ward B

We test Fixed Staffing policy with two alternative staff size for Ward B, results are presented in Table 4.14.

Under the eleven nurse alternative objective value is realized at 14,482.80 for the base case of UPC = 1.5.

Increasing the UPC to 10.0 triggers an over 128% increase in the objective value to 32,808.80. Median under-

staffing is observed as 14.56% with an average understaffing level of 14.49%. When the staff size is increased

to twelve nurse for the Fixed Staffing Model, median understaffing percentages drop to 6.80%, with an av-

erage understaffing percentage of 9.56%. Among the two alternatives of Fixed Staffing policy, staffing unit

with twelve nurse provided better outcomes for this staffing horizon. Comparing alternative staffing policies

with the Optimal Staffing outcomes, we can conclude that Dynamic Staffing policy provided better results in

terms of both objective value and observed median and average understaffing percentages in the medical unit.

Higher than desired understaffing percentages are observed for both Dynamic and Fixed Staffing models for

the studied staffing horizon in Ward B. The results reflect the “higher than usual” patient demand for the

medical unit during the studied staffing horizon. Depending on the observed levels of understaffing percent-

age, nursing administration can determine an appropriate level of UPC, which will help reduce nurse burnout.
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Table 4.15 presents the results of experiments for Ward C. Under Optimal Staffing, observed average un-

derstaffing percentages ranged between 0.69% and 8.40%. Average staff size started at a low of 10.54 for

the base UPC case and go up to 13.59 for the maximum UPC of 10. The range of staff size under Optimal

Staffing reflect the need for a dynamic staff size to control understaffing levels in the medical units. Under

the Dynamic Staffing policy, average staff size range between 11.42 and 13.52. Average understaffing per-

centages ranged between 2.30% and 6.95%. While Fixed Staffing with 12 nurses provide better performance

compared to the Fixed Staffing alternative with 13 nurses for lower UPC levels, Fixed Staffing with 13 nurses

appears to be a better option for higher UPC levels. Observe that, given the listed stopping criteria for the

optimization experiments, best optimality gaps achieved for the Fixed Staffing levels remain above 25% for

both alternatives, which demonstrates the achieving perfectly stable staff size may not be even feasible for

specific medical units. Overall, we can conclude, Dynamic Staffing policy provided cost savings and lower

understaffing levels for the unit compared to the Fixed Staffing alternatives. Difference in objective value

drastically increase when UPC is at it’s highest level. Dynamic Staffing policy successfully retained the

average understaffing levels between the 2.30% and 6.95% range for the medical unit, which closely follows

the Optimal Staffing outcomes.

In summary, Dynamic Staffing provide a more reliable, in terms of acceptable understaffing ratios, and flex-

ible staffing policy which also bring cost savings for the medical units. Depending on the tolerable levels

of understaffing for the medical unit, the nursing administration can determine the appropriate UPC level

to be used. For unexpectedly high patient demand periods, higher understaffing levels might be observed,

as the Dynamic Staffing policy is based on historical patient demand based heat maps. Heat maps can

be dynamically adjusted as new demand patterns are observed for the upcoming staffing horizons. As the

accuracy of patient demand forecasts are enhanced, the better performance outcomes will be achieved using

Dynamic Staffing policy. Historically employed Fixed Staffing policies do not provide the required staff size

flexibility to alleviate understaffing in the medical units which trigger nurse burnout. Fixed Staffing policies

would also increase the need for short term schedule adjustment costs to better match the patient demand

due to the static nature of staff size. In addition, for medical units with limited PRN nurse body, achieving

perfectly stable staff size may not be even feasible as demonstrated in our experiments.
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Design Factors Opt. Objective Staffing Understaffing Overstaffing

Staffing Policy Cp
u Gap Value Avg. Penalty Med. Avg. Med Avg

Optimal Staffing 1.5 0.02% 12,429.70 10.54 1,684.50 3.61% 8.40% 0.00% 2.60%

Optimal Staffing 2.0 0.02% 12,900.40 11.05 1,654.00 0.41% 6.02% 2.11% 5.04%

Optimal Staffing 3.0 0.01% 13,543.80 11.87 1,473.00 0.00% 3.36% 5.80% 10.00%

Optimal Staffing 10.0 0.11% 14,853.80 13.59 1,075.00 0.00% 0.69% 10.53% 23.94%

Dynamic Staffing 1.5 0.26% 13,103.35 11.42 1,455.75 0.00% 6.95% 0.00% 9.80%

Dynamic Staffing 2.0 0.35% 13,147.05 11.68 1,244.25 0.00% 5.88% 1.15% 10.85%

Dynamic Staffing 3.0 2.02% 14,319.60 12.31 1,782.00 0.00% 4.07% 5.76% 14.76%

Dynamic Staffing 10.0 0.19% 17,262.20 13.52 3,505.00 0.00% 2.30% 15.66% 23.79%

Fixed Staffing - 12 nurse 1.5 33.30% 13,097.85 11.57 1,304.25 0.00% 6.11% 1.05% 10.29%

Fixed Staffing - 12 nurse 2.0 33.30% 13,532.60 11.57 1,739.00 0.00% 6.11% 1.05% 10.29%

Fixed Staffing - 12 nurse 3.0 33.30% 14,402.10 11.57 2,608.50 0.00% 6.11% 1.05% 10.29%

Fixed Staffing - 12 nurse 10.0 33.30% 20,488.60 11.57 8,695.00 0.00% 6.11% 1.05% 10.29%

Fixed Staffing - 13 nurse 1.5 25.00% 13,488.60 12.43 831.00 0.00% 3.76% 9.47% 15.59%

Fixed Staffing - 13 nurse 2.0 25.00% 13,765.60 12.43 1,108.00 0.00% 3.76% 9.47% 15.59%

Fixed Staffing - 13 nurse 3.0 25.00% 14,319.60 12.43 1,662.00 0.00% 3.76% 9.47% 15.59%

Fixed Staffing - 13 nurse 10.0 25.00% 18,197.60 12.43 5,540.00 0.00% 3.76% 9.47% 15.59%

Table 4.15: Controlling for Understaffing in Ward C

4.9.4 Analysis of Nurse Utilization

In this section we review the utilization of nurses in medical units. Table 4.16 presents the results of exper-

iments for nurse utilization in Ward A. Ward A has 87 FTE and 16 PRN nurses (i.e. 18.4% PRN to FTE

ratio). We test the number of nurses used under different scenarios and staffing policies because our opti-

mization modeling approach does not force the assignment of all available nurses in the medical unit. In the

tables that follow we present the percentage of FTE nurses used among the available pool and the percentage

of average weekly PRN nurse assignment hours compared to a 40 hour per work week. All PRN nurses are

used in all staffing policies under all UPC levels. Our results indicate that the PRN nurse pool, even with

a 10% higher cost compared to the FTE nurses, provides crucial flexibility for the nursing administration

to match patient demand with staffing levels. PRN utilizations in terms of average hours of assignment per

week is also kept at higher levels, from a low of 27.71 hours per week to 35 hours per week, indicating PRN

utilizations higher than 70% for all experiments. Minimum FTE nurses used during the staffing horizon is 81.

The average staff size in the unit ranged between 17.75 and 19.98 nurses per shift. Nursing administration
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can use these observations for long-term planning (i.e., planning for hiring additional nurses) to determine

whether the current nurse pool is large enough to satisfy patient demand. Under Optimal Staffing, as the

UPC is increased from the base level of 1.5 to 10.0, nurse utilization from the available FTE pool starts at

86.2% and reaches 100.0%. Under the Dynamic Staffing policy FTE utilization remains stable at 96.6%,

with 84 of 87 available nurses used. Under the Fixed Staffing policy, 81 nurses are used for the 19-nurse

alternative and all 87 nurses are used for the 20-nurse alternative, which means that an additional 6 FTE

nurses are needed to increase the fixed staff size by one nurse.

Design Factors FTE Utilization PRN Utilization Staffing Levels

Staffing Policy Cp
u # FTEs % Util. # PRNs hrs/wk % Util. Min. Avg. Max.

Optimal Staffing 1.5 75 86.2% 16 33.38 83.4% 12.00 17.75 22.00

Optimal Staffing 2.0 79 90.8% 16 33.17 82.9% 14.00 18.28 22.00

Optimal Staffing 3.0 84 96.6% 16 29.92 74.8% 14.00 18.99 22.00

Optimal Staffing 10.0 87 100.0% 16 29.25 73.1% 14.00 19.43 24.00

Dynamic Staffing 1.5 84 96.6% 16 27.71 69.3% 17.00 18.78 20.00

Dynamic Staffing 2.0 84 96.6% 16 28.75 71.9% 18.00 18.88 20.00

Dynamic Staffing 3.0 84 96.6% 16 30.42 76.0% 18.00 19.21 21.00

Dynamic Staffing 10.0 84 96.6% 16 32.92 82.3% 18.00 19.35 20.00

Fixed Staffing - 19 nurse 1.5 81 93.1% 16 32.71 81.8% 18.00 18.99 19.00

Fixed Staffing - 19 nurse 2.0 81 93.1% 16 32.71 81.8% 18.00 18.99 19.00

Fixed Staffing - 19 nurse 3.0 81 93.1% 16 32.71 81.8% 18.00 18.99 19.00

Fixed Staffing - 19 nurse 10.0 81 93.1% 16 32.71 81.8% 18.00 18.99 19.00

Fixed Staffing - 20 nurse 1.5 87 100.0% 16 35.00 87.5% 19.00 19.98 20.00

Fixed Staffing - 20 nurse 2.0 87 100.0% 16 35.00 87.5% 19.00 19.98 20.00

Fixed Staffing - 20 nurse 3.0 87 100.0% 16 35.00 87.5% 19.00 19.98 20.00

Fixed Staffing - 20 nurse 10.0 87 100.0% 16 35.00 87.5% 19.00 19.98 20.00

Table 4.16: Nurse Utilization, Ward A

Table 4.17 presents the results of experiments for nurse utilization in Ward B. Ward B has 61 FTE and 10

PRN nurses (i.e. 16.4% PRN to FTE ratio). Similar to Ward A, all PRN nurses are used in all staffing

policies under all UPC levels for Ward B, as well. FTE nurse utilization starts from 85.2 % and reaches

100% under the Optimal Staffing for various levels of UPC. For the Dynamic Staffing policy, percentage of

used FTE nurses stay stable in the 82% and 85.2% range. The difference in utilizations between the two

staffing policies indicate that patient demand for this specific staffing horizon is “higher than usual”, which
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indicates 61 FTE nurses offer a significant size capacity buffer for this medical unit. Under the Fixed Staffing

alternatives, 48 and 49 nurses are used for 11 and 12 nurse alternatives, respectively. PRN to FTE ratio of

16.4% allowed the Fixed Staffing models to perfectly match their associated target staff size. PRN weekly

utilization remained in the 61.8% to 79% for the tested staffing models.

Design Factors FTE Utilization PRN Utilization Staffing Levels

Staffing Policy Cp
u # FTEs % Util. # PRNs hrs/wk % Util. Min. Avg. Max.

Optimal Staffing 1.5 52 85.2% 10 27.53 68.8% 2.00 11.97 17.00

Optimal Staffing 2.0 56 91.8% 10 25.80 64.5% 8.00 12.87 17.00

Optimal Staffing 3.0 60 98.4% 10 24.73 61.8% 8.00 13.45 18.00

Optimal Staffing 10.0 61 100.0% 10 25.87 64.7% 8.00 13.59 17.00

Dynamic Staffing 1.5 50 82.0% 10 27.60 69.0% 10.00 11.69 13.00

Dynamic Staffing 2.0 50 82.0% 10 28.53 71.3% 10.00 11.82 13.00

Dynamic Staffing 3.0 50 82.0% 10 30.93 77.3% 10.00 11.96 13.00

Dynamic Staffing 10.0 52 85.2% 10 31.67 79.2% 11.00 12.29 14.00

Fixed Staffing - 11 nurse 1.5 48 78.7% 10 26.80 67.0% 11.00 11.00 11.00

Fixed Staffing - 11 nurse 2.0 48 78.7% 10 26.80 67.0% 11.00 11.00 11.00

Fixed Staffing - 11 nurse 3.0 48 78.7% 10 26.80 67.0% 11.00 11.00 11.00

Fixed Staffing - 11 nurse 10.0 48 78.7% 10 26.80 67.0% 11.00 11.00 11.00

Fixed Staffing - 12 nurse 1.5 49 80.3% 10 31.60 79.0% 12.00 12.00 12.00

Fixed Staffing - 12 nurse 2.0 49 80.3% 10 31.60 79.0% 12.00 12.00 12.00

Fixed Staffing - 12 nurse 3.0 49 80.3% 10 31.60 79.0% 12.00 12.00 12.00

Fixed Staffing - 12 nurse 10.0 49 80.3% 10 31.60 79.0% 12.00 12.00 12.00

Table 4.17: Nurse Utilization, Ward B

Table 4.18 presents the results of experiments for nurse utilization in Ward C. Ward C has 70 FTE and 6

PRN nurses (i.e. 8.57% PRN to FTE ratio). Similar to Wards A and B, all PRN nurses are used in all

staffing policies under all UPC levels for Ward C, as well. Due to the lower PRN to FTE ratio of 8.57%,

the Fixed Staffing models couldn’t perfectly match their associated target staff size (i.e. average staff size

realized as 11.57 and 12.43 for 12 nurse and 13 nurse alternatives, respectively). FTE nurse utilization

starts from 70% and reaches 94.3% under the Optimal Staffing for various levels of UPC. For the Dynamic

Staffing policy, percentage of used FTE nurses realized in the range of 74.3% and 90%. For both Fixed

Staffing alternatives, 54 FTE nurses were used (i.e. 77.1% of the available FTE nurse pool). PRN weekly

assignment utilization observed in 90% range for both Dynamic Staffing and Fixed Staffing alternatives.
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Under the Optimal Staffing, PRN utilization started at 81.4% for the base level and gradually reduced to

54.7% for the scenario of UPC=10.0. Average staff size changed between 10.54 and 13.59, under the Optimal

Staffing, which demonstrates that fixed staff size doesn’t really reflect the staff size needs in the medical unit.

Design Factors FTE Utilization PRN Utilization Staffing Levels

Staffing Policy Cp
u # FTEs % Util. # PRNs hrs/wk % Util. Min. Avg. Max.

Optimal Staffing 1.5 49 70.0% 6 32.56 81.4% 5.00 10.54 16.00

Optimal Staffing 2.0 51 72.9% 6 30.67 76.7% 5.00 11.05 17.00

Optimal Staffing 3.0 57 81.4% 6 29.67 74.2% 6.00 11.87 17.00

Optimal Staffing 10.0 66 94.3% 6 21.89 54.7% 8.00 13.59 21.00

Dynamic Staffing 1.5 52 74.3% 6 36.56 91.4% 8.00 11.42 13.00

Dynamic Staffing 2.0 53 75.7% 6 36.33 90.8% 9.00 11.68 13.00

Dynamic Staffing 3.0 57 81.4% 6 36.00 90.0% 10.00 12.31 16.00

Dynamic Staffing 10.0 63 90.0% 6 35.89 89.7% 12.00 13.52 18.00

Fixed Staffing - 12 nurse 1.5 54 77.1% 6 36.00 90.0% 10.00 11.57 12.00

Fixed Staffing - 12 nurse 2.0 54 77.1% 6 36.00 90.0% 10.00 11.57 12.00

Fixed Staffing - 12 nurse 3.0 54 77.1% 6 36.00 90.0% 10.00 11.57 12.00

Fixed Staffing - 12 nurse 10.0 54 77.1% 6 36.00 90.0% 10.00 11.57 12.00

Fixed Staffing - 13 nurse 1.5 54 77.1% 6 36.00 90.0% 11.00 12.43 13.00

Fixed Staffing - 13 nurse 2.0 54 77.1% 6 36.00 90.0% 11.00 12.43 13.00

Fixed Staffing - 13 nurse 3.0 54 77.1% 6 36.00 90.0% 11.00 12.43 13.00

Fixed Staffing - 13 nurse 10.0 54 77.1% 6 36.00 90.0% 11.00 12.43 13.00

Table 4.18: Nurse Utilization, Ward C

4.9.5 Objective Function Cost Elements

We evaluate the cost elements that form the objective function in our optimization models in this section.

Table 4.19 presents the cost elements that contribute to the objective value for Ward A. Under Optimal

Staffing, when the UPC is increased from 1.5 to 10.0, first reaction is to increase available FTE staffing

level, which is reflected in the increased FTE staffing cost in the table. Understaffing penalty cost is kept

between 300.00 and 1,125.75 using the staff size flexibility. The results suggest why a Dynamic Staffing policy

would help reduce staffing costs in a medical unit while balancing for understaffing risks. Dynamic Staffing

policy follows a similar path to the Optimal Staffing. FTE staff size is increased to alleviate the increased

understaffing penalty cost. For UPC = 1.5, 2.0 and 3.0 Dynamic Staffing provide cost savings compared to
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both alternatives of the Fixed Staffing model. As the UPC is increased to 10, Fixed Staffing with 20 nurses

become less costly due to the increased staff size. We can conclude, Dynamic Staffing policy provide the

required staff size flexibility in the medical units to reduce staffing costs while balancing understaffing risks.

Design Factors Cost Elements

Optimality Objective FTE Staffing PRN Staffing Understaffing

Staffing Policy Cp
u Gap % Value Cost Cost Penalty

Optimal Staffing 1.5 0.13% 19,338.15 14,688.00 3,524.40 1,125.75

Optimal Staffing 2.0 0.00% 19,574.40 15,240.00 3,502.40 832.00

Optimal Staffing 3.0 0.00% 19,810.70 16,272.00 3,159.20 379.50

Optimal Staffing 10.0 0.00% 20,164.80 16,776.00 3,088.80 300.00

Dynamic Staffing 1.5 0.29% 20,137.00 16,272.00 2,926.00 939.00

Dynamic Staffing 2.0 0.33% 20,139.00 16,272.00 3,036.00 831.00

Dynamic Staffing 3.0 0.18% 20,903.00 16,440.00 3,212.00 1,251.00

Dynamic Staffing 10.0 0.01% 23,310.00 16,344.00 3,476.00 3,490.00

Fixed Staffing - 19 nurse 1.5 0.10% 20,288.50 16,008.00 3,454.00 826.50

Fixed Staffing - 19 nurse 2.0 0.10% 20,564.00 16,008.00 3,454.00 1,102.00

Fixed Staffing - 19 nurse 3.0 0.10% 21,115.00 16,008.00 3,454.00 1,653.00

Fixed Staffing - 19 nurse 10.0 0.10% 24,972.00 16,008.00 3,454.00 5,510.00

Fixed Staffing - 20 nurse 1.5 0.01% 20,781.75 16,776.00 3,696.00 309.75

Fixed Staffing - 20 nurse 2.0 0.01% 20,885.00 16,776.00 3,696.00 413.00

Fixed Staffing - 20 nurse 3.0 0.01% 21,091.50 16,776.00 3,696.00 619.50

Fixed Staffing - 20 nurse 10.0 0.01% 22,537.00 16,776.00 3,696.00 2,065.00

Table 4.19: Cost Elements, Ward A

Table 4.20 presents the cost elements that contribute to the objective value for Ward B. Under Optimal

Staffing, increased UPC triggers additional FTE nurse assignments, reflected in the increased FTE staffing

cost levels. PRN staff size is kept stable under the Optimal Policy. Dynamic Staffing policy provides cost

savings for all UPC levels for this medical unit, compared to both Fixed Staffing alternatives. Under the

Dynamic Policy, FTE and PRN staffing costs are gradually elevated as the UPC is increased from the base

level of 1.5 to 10.0. All experiments are solved to less than 0.1% optimality gap for the medical unit, re-

flecting the capacity cushion the unit has in terms of the available nurse pool. Differences in staffing policy

objective values are mostly determined by the level of understaffing penalty.
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Design Factors Cost Elements

Optimality Objective FTE Staffing PRN Staffing Understaffing

Staffing Policy Cp
u Gap % Value Cost Cost Penalty

Optimal Staffing 1.5 0.09% 13,845.70 10,416.00 1,817.20 1,612.50

Optimal Staffing 2.0 0.01% 14,219.80 11,424.00 1,702.80 1,093.00

Optimal Staffing 3.0 0.05% 14,658.40 12,072.00 1,632.40 954.00

Optimal Staffing 10.0 0.09% 16,686.20 12,144.00 1,707.20 2,835.00

Dynamic Staffing 1.5 0.03% 14,363.85 10,128.00 1,821.60 2,414.25

Dynamic Staffing 2.0 0.03% 15,120.20 10,200.00 1,883.20 3,037.00

Dynamic Staffing 3.0 0.05% 16,512.10 10,200.00 2,041.60 4,270.50

Dynamic Staffing 10.0 0.04% 24,808.00 10,488.00 2,090.00 12,230.00

Fixed Staffing - 11 nurse 1.5 0.00% 14,482.80 9,480.00 1,768.80 3,234.00

Fixed Staffing - 11 nurse 2.0 0.00% 15,560.80 9,480.00 1,768.80 4,312.00

Fixed Staffing - 11 nurse 3.0 0.00% 17,716.80 9,480.00 1,768.80 6,468.00

Fixed Staffing - 11 nurse 10.0 0.00% 32,808.80 9,480.00 1,768.80 21,560.00

Fixed Staffing - 12 nurse 1.5 0.00% 14,482.35 10,200.00 2,085.60 2,196.75

Fixed Staffing - 12 nurse 2.0 0.00% 15,214.60 10,200.00 2,085.60 2,929.00

Fixed Staffing - 12 nurse 3.0 0.00% 16,679.10 10,200.00 2,085.60 4,393.50

Fixed Staffing - 12 nurse 10.0 0.00% 26,930.60 10,200.00 2,085.60 14,645.00

Table 4.20: Cost Elements, Ward B

Table 4.21 presents the cost elements that contribute to the objective value for Ward C. Similar to Wards

A and B, Dynamic Staffing policy provides cost savings for all UPC levels for this medical unit or demon-

strates similar levels, compared to both Fixed Staffing alternatives. Again, similar to Ward B, under Optimal

Staffing, increased UPC triggers additional FTE nurse assignments, reflected in the increased FTE staffing

cost levels. PRN staff size is gradually reduced under the Optimal Policy, in order to achieve some gains

from the 10% difference in staffing costs. Under Dynamic Staffing policy, increased UPC triggers additional

FTE nurse assignments, reflected in the increased FTE staffing cost levels. PRN staff size is kept stable

under the Dynamic Staffing policy. Understaffing penalty is kept below 1,800 level for UPC = 1.5, 2.0 and

3.0 for the Dynamic Staffing. For UPC = 10.0, Dynamic Staffing provide significant cost savings compared

to both Fixed Staffing alternatives.
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Design Factors Cost Elements

Optimality Objective FTE Staffing PRN Staffing Understaffing

Staffing Policy Cp
u Gap % Value Cost Cost Penalty

Optimal Staffing 1.5 0.02% 12,429.70 9,456.00 1,289.20 1,684.50

Optimal Staffing 2.0 0.02% 12,900.40 10,032.00 1,214.40 1,654.00

Optimal Staffing 3.0 0.01% 13,543.80 10,896.00 1,174.80 1,473.00

Optimal Staffing 10.0 0.11% 14,853.80 12,912.00 866.80 1,075.00

Dynamic Staffing 1.5 0.26% 13,103.35 10,200.00 1,447.60 1,455.75

Dynamic Staffing 2.0 0.35% 13,147.05 10,464.00 1,438.80 1,244.25

Dynamic Staffing 3.0 2.02% 14,319.60 11,112.00 1,425.60 1,782.00

Dynamic Staffing 10.0 0.19% 17,262.20 12,336.00 1,421.20 3,505.00

Fixed Staffing - 12 nurse 1.5 33.30% 13,097.85 10,368.00 1,425.60 1,304.25

Fixed Staffing - 12 nurse 2.0 33.30% 13,532.60 10,368.00 1,425.60 1,739.00

Fixed Staffing - 12 nurse 3.0 33.30% 14,402.10 10,368.00 1,425.60 2,608.50

Fixed Staffing - 12 nurse 10.0 33.30% 20,488.60 10,368.00 1,425.60 8,695.00

Fixed Staffing - 13 nurse 1.5 25.00% 13,488.60 11,232.00 1,425.60 831.00

Fixed Staffing - 13 nurse 2.0 25.00% 13,765.60 11,232.00 1,425.60 1,108.00

Fixed Staffing - 13 nurse 3.0 25.00% 14,319.60 11,232.00 1,425.60 1,662.00

Fixed Staffing - 13 nurse 10.0 25.00% 18,197.60 11,232.00 1,425.60 5,540.00

Table 4.21: Cost Elements, Ward C
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4.10 Conclusions

This chapter studied medium-term integrated nurse staffing and scheduling in Intensive Care Units, a 7-day

x 24-hour care environment facing unscheduled patient admissions with dynamic acuity levels. We use a

two-phase procedure to determine optimal nurse assignments. In Phase 1 we generate feasible FTE nurse

schedules for the staffing horizon of six weeks, while satisfying the constraints imposed by the nurse profile.

In Phase 2 we assign FTE nurses to pre-generated feasible nurse schedules, and PRN nurses to the nursing

shifts, using mixed-integer optimization models. Pre-generated schedules eliminate the increased number

of constraints and reduces the number of decision variables of the integrated nurse staffing and scheduling

model. The optimization model we developed recommends initial staffing plans and schedules for a six-week

staffing horizon for the medical units, given the variety of nurse groups and nursing shift assignment types.

Our solution aims to reduce nurse staffing costs while balancing the under- and over-staffing risks. This

helps mitigate nurse burn-out, improve patient outcomes, and manage hospital staffing costs. We also de-

velop an optimization model to generate Fixed Staffing policy schedules for nurses that will help increase

the scheduling efficiency of the hospital administration.

Target staffing levels for nursing shifts are typically determined by a retrospective average staffing level for

the nursing care needs in medium-term scheduling. Using the mixed-integer optimization model in this

chapter, we examined fixed vs. dynamic medium-term nurse staffing and scheduling policy options for the

medical units. Under the Fixed Staffing policy, the medical unit is targeted to be staffed a fixed number of

nurses throughout the staffing horizon. We propose a Dynamic Staffing policy, which uses historical patient

demand to suggest a non-stationary staffing scheme for the staffing horizon. We test the Fixed Staffing

policy with various staffing level options. For the Dynamic Staffing alternative, we prepare a “heat map”

of patient census and acuity, as well as admission, discharge and transfer (ADT) activity, using Pediatric

Intensive Care Units as an example. We compare the performance of the dynamic heat map-based policy vs.

the alternative fixed staffing policies. In order to develop the heat map we estimate a monthly seasonality

index for patient census, patient acuity, and ADT Activity. Then we estimate patient census, patient acuity,

and ADT activity averages for all Day of Week and Shift of the Day combinations. The desired heat map of

patient demand is generated by multiplying the monthly seasonality factors with the historical “Day-Shift”

averages for the medical units. Using the heat map and the mixed-integer optimization models, we analyze

whether proposed Dynamic Staffing policies outperform the currently-used Fixed Staffing policy. We also

compare the performance of Dynamic and Fixed Staffing policy options with the Optimal Staffing scheme
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reached by the actual patient data. We introduced the concept of “understaffing penalty” as a mechanism

to control the understaffing in the medical units. We analyze how various levels of understaffing penalty cost

affect staffing costs and understaffing levels in the medical unit. We also evaluate, the impact of number of

available schedules (NAS) per FTE nurse profile on the objective function costs and understaffing ratios in

the medical units.

Our results suggest that the total objective function cost for the optimization experiments is either slightly

reduced or kept stable as we increase the number of available schedules for each nurse profile from 4 to

256. We conclude that feeding the alternative staffing models with 256 schedules per FTE profile (7,680

total different schedules for the optimization model) is large enough to provide schedule diversity. Even

the suggested, maximally different four schedules per nurse profile approach seems to be providing efficient

solutions. Further increases in the NAS, above 256 schedules per nurse profile, would not bring any cost

savings but would increase the problem complexity, hurting the solution performance of the developed models.

Regarding the staffing policy evaluation, our results for the experiments we conducted with the three PICU

wards suggest that the performance of Dynamic Staffing policy was mostly superior to the Fixed Staffing

alternatives (or similar for a few problem instances) in terms of understaffing percentages and total costs.

The power of Dynamic Staffing policy lies in the accuracy of the forecasted heat map. As the forecasting

performance using the specific heat map is improved, more cost savings and alleviated understaffing percent-

ages will be observed. Regarding the Fixed Staffing policy, we must first note that perfectly stable staff size

may not be feasible in many cases, especially with a limited number of PRN nurse body. In addition, our

proposed Fixed Staffing modeling approach provides a reliable and efficient way of scheduling the nursing

workforce. Medical units with higher variations in patient demand levels would benefit the most by using

the Dynamic Staffing policy proposed in this study.

The results of experiments using the Dynamic Staffing policy suggest that understaffing penalty cost (UPC)

be used as a reliable mechanism for controlling understaffing ratios in medical units. Depending on how

much understaffing can be tolerated, the nursing administration can determine the appropriate UPC level.

For unexpectedly-high patient demand periods, higher understaffing levels might be observed because the

Dynamic Staffing policy is based on historical patient demand-based heat maps. Heat maps can be dynam-

ically adjusted as new demand patterns are observed for new staffing horizons. As the accuracy of patient

demand forecasts improves, the better performance outcomes will be achieved using Dynamic Staffing pol-
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icy. Historically-used Fixed Staffing policies do not provide the required staff size flexibility to alleviate

understaffing in the medical units, triggering nurse burnout. Because of the static nature of staff size, Fixed

Staffing policies would also increase the need for short-term schedule adjustment costs to more closely match

patient demand.

All PRN nurses were assigned to work in all experiments, demonstrating that PRN nurses are critical for

cost savings because of the flexibility they provide for minimizing under- and over-staffing in the nursing

shifts. We conclude that having a sizable PRN nurse group will alleviate nursing shortages and provide the

flexibility required for the nursing administration in the medical units. Nursing administration can use the

results of medium-term staffing experiments for long-term planning to determine whether the current nurse

pool is large enough to satisfy patient demand. Our analysis of objective function cost elements also suggests

that the Dynamic Staffing policy provides the staff size flexibility required in the medical units to reduce

staffing costs while balancing understaffing risks.
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Chapter 5

A Two-Stage Stochastic

Mixed-Integer Programming

Approach for Short-Term Nurse

Schedule Adjustments

5.1 Introduction

Nurse schedules are constructed well before the actual patient demand for nursing is observed. In intensive

care environments, 30 to 70% of patient admissions are not known 12 hours before the actual admission time

and patient acuity is diverse. Because patient demand fluctuates, nursing administration must constantly

adjust existing nurse schedules in the short-term. In Chapter 4 we developed alternative medium-term inte-

grated staffing and scheduling policies. Our results suggest that matching patient demand with medium-term

planning in a dynamic intensive care environment is not an easy task. Hospitals use short-term schedule and

staff allocation adjustments to better match patient demand for nursing.

Kim and Mehrotra (2015) also studied the short-term nurse schedule adjustments problem using two-stage

stochastic programming model with mixed-integer recourse. The first-stage “here-and-now” decision is to
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find medium-term initial staffing levels and schedules for a 12-week staffing horizon. The authors consider

an 18-week planning horizon and assume that the scheduling patterns repeat from week to week during the

12-week staffing horizon. The staffing and scheduling decisions are made 6 weeks in advance of this 12-week

horizon. The second- stage “wait-and-see” decision is to adjust these schedules at a time closer to the actual

date of demand, at the beginning of each week. Weekly scheduling patterns and eight adjustment patterns

are generated by using a recursive procedure. In many healthcare settings, being 7 to 14 days away from

the actual demand realization doesn’t provide a close enough time window for an accurate demand estimate.

Especially, in an intensive care setting, where over 30% to 70% of patients are categorized as “unscheduled

admissions” (i.e. unexpected 12-hours prior), patient demand forecasts for short-term nurse schedules a week

in advance are not reliable.

As an alternative solution approach to the problem, we study the medium-term integrated nurse scheduling

and staffing as a separate problem, as presented in Chapter 4; then in the short-term we make adjustment

decisions for the upcoming 4-hour nursing shift when we are 4 to 8 hours away from actual patient demand

realizations. As described in Chapters 3 and 4, the PICU we study uses a fixed staffing level for medium-term

staffing and scheduling. Our approach is to make short-term adjustments every four hours for the upcoming

nursing shift. The short-term schedule adjustment tool currently in use considers only the scheduled patient

admissions. This does not exploit the historical forecasts of unscheduled patient admissions. To the best of

our knowledge, this is the first study to apply a two-stage stochastic programming approach to short-term

schedule adjustments, where the adjustments are conducted for the upcoming 4-hour nursing shift. Chapter

5 now extends the work on medium-term nurse staffing and scheduling to address short-term adjustments.

We conduct two-stage short-term staffing adjustments to schedules developed at the medium-term planning

phase. After observing actual patient demand for nursing at the start of the next shift, we consider final

staffing adjustments for nurse requirements.

At the start of any current shift, we assume the following patient information is available to the nursing

administration: (1) current patient census (total patients staying in the unit); (2) acuity assignments of the

existing patients (total patients in each acuity group); (3) the number of scheduled and unscheduled patient

admissions for the current nursing shift; (4) the number of patient discharges and their associated acuity

groups during the current shift and in the upcoming shift; and (5) total scheduled patient admissions for the

upcoming shift. However, the following information is not known by the administration at the start of the

current shift: (1) the acuity assignments of scheduled and unscheduled patients for the current shift (i.e.,
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we know the number of scheduled and unscheduled patients to be admitted to the unit for the current shift,

but we don’t know their acuity assignments since the patients have not arrived yet), and (2) the number of

unscheduled patient admissions for the upcoming shift.

We develop a two-stage stochastic integer programming model that minimizes the total nurse staffing costs

and the cost of adjustments to the original medium-term schedules while ensuring coverage of nursing

demand. A stochastic integer programming model is attractive because the number of the unscheduled

patient admissions and acuity assignments in the upcoming shift are unknown at the time of adjustments.

The unscheduled patient admission and acuity distributions analyzed in Chapter 3 are used to determine the

expected nursing requirement. This value is compared to the provided nursing hours after conducting the

short-term schedule adjustments. We model the current 4-hour nursing shift as the first stage of adjustments,

when the actual patient demand is not revealed. We model the upcoming nursing shift as the second stage of

adjustments, when the actual patient demand is known. In the second stage, we make corrective actions (i.e.,

requesting mandatory nurse overtime) to cover the required patient demand. Using the two-stage stochastic

short-term staffing adjustment model, we study our third research question:

RQ 3: Can short-term schedule modifications that are based upon decisions attained from two-stage stochas-

tic integer programming model lower cost and reduce understaffing levels, compared to original medium-term

staffing plans?

There are several available first-stage adjustment options available to hospital nursing administration for

short-term adjustments. These include: (1) requesting nurses from the general float pool of the hospital,

(2) using on-call nurses from FTE overtime and (3) requesting additional on-call PRN nurses. When the

scheduled nursing hours are expected to exceed the hours demanded by the existing patient levels in the

upcoming shift, the charge nurse can: (1) float some of the nurses to other units, (2) reassign some nurses to

a later day in the same staffing horizon or (3) cancel the shift and use one of the following designations for

the time off: vacation, personal day, holiday, or unpaid leave (Bard and Purnomo, 2005a). We combine the

three alternative adjustment types into one adjustment alternative available separately to the FTE and PRN

nurses. So, the charge nurse can either (1) float, reassign or cancel some FTE nurses for the upcoming shift

or (2) float, reassign or cancel some PRN nurse for the upcoming shift, as two separate available options.

Each adjustment option has a different cost implication, which we discuss later in this chapter.
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After observing actual patient demand at the beginning of the nursing shift (i.e. stage two), the charge

nurse can request that a nurse on the previous shift, who is not originally scheduled for the current shift,

stay for the current shift as a mandatory overtime, in the case of observing a nursing shortage. We leave

the option of excessive staffing open in the second-stage of the problem, since cancelling shifts at this stage

will not yield cost savings to the hospital. The mandatory overtime adjustment option is implemented as a

second-stage corrective action after the observance of actual patient demand for nursing. Thus, we model

six different adjustment options for the two-stage stochastic programming model, five options available as

first-stage decisions and one option available as the second-stage decision. We note that, the model en-

sures sufficient coverage of patient demand for nursing hours after the two-stage adjustments are complete.

It is assumed that mandatory overtime hours are unlimited for ensuring the coverage of patient demand.

Table 5.1 below presents the available adjustment options available in the first and second stages of the model.

First-Stage Adjustments - Increase the Staffing Level:

(1) Request nurses from the general float pool of the hospital

(2) Request on-call nurses from FTE pool as overtime

(3) Request additional on-call PRN nurses

First-Stage Adjustments - Reduce the Staffing Level:

(4) Float, reassign or cancel some FTE nurses

(5) Float, reassign or cancel some PRN nurses

Second-Stage Adjustment - Increase the Staffing Level:

(6) Request mandatory overtime from existing nurses in previous shift

Table 5.1: Available Short-Term Schedule Adjustment Options

One important aspect of the short-term nurse schedule modification is the need for a very efficient solution

algorithm. Practically, the charge nurse will run the solution algorithm 21 - 42 times/week, at the beginning

of each 4 to 8-hour shift depending on nursing shift structure, and expect to have a solution in less than 10

minutes. The decision variables introduced here apply to both stages and relate to the number of adjustment

actions taken for each available adjustment type (i.e. number of cancelled shifts, number of nurses requested

from the float pool etc.). We ensure that the nursing constraints implied by the nurse profile and employment

type are maintained by the stochastic integer programming model. In addition to the patient information
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listed above, the two-stage stochastic integer programming model takes as an input: (1) number of FTE

and PRN nurses scheduled for the current and upcoming shift, (2) number of available float pool and on-call

nurses in each shift, (3) nurse profiles and schedule of the nurses for the previous and upcoming three shifts

(for potential overtime requests).
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5.2 Model Description

In this section, we provide a description of the two-stage stochastic programming model used in this study.

A detailed description of the decision variables, parameters, objective function and constraints are provided.

At the end of the section, the full representation of the mathematical model is presented.

5.2.1 Sets, Parameters, Probability Spaces and Random Variables

J : Set of alternative FTE nurse job profiles for the medical unit; (i.e. J = t1, 2, 3, ..., 30u )

Sj : Set of all available schedules for nurses from job profile j

P: Set of all PRN nurses.

We assume PRN nurses t1...PT1u are PRN Tier-1 nurses, nurses t(PT1+1)...(PT1+PT2)u are PRN Tier-2

nurses, nurses t(PT1+PT2+1)...(PT1+PT2+PT3)u are PRN Tier-3 nurses.

T : Set of four-hour nursing shifts during the scheduling period of six week T = t0, 1, 2, 3, ..., 251u (i.e. 42

shifts a week, six weeks in a schedule; 252 four-hour shifts in total).

i.e. A typical week starts with the nursing shift l = 1, which is a Monday D1 shift and ends with shift l =

42, which is a Monday N2 shift.

w P t1, 2, ..., 6u, is the index of weeks during the staffing horizon and Tw is the subset of shifts during week

w.

G : Set of patient acuity categories G = {1, 2, 3, 4, 5, 6}

i.e. For g P G acuity category g=1 indicates that patient belongs to the acuity designation A in hospital

terminology, similarly g=2 indicates acuity group B, g=3 indicates acuity group C, g=4 indicates acuity

group D, g=5 indicates acuity group E, g=6 indicates acuity group F.

Parameters, Probability Spaces and Random Variables

ϑg,t : the vector keeping the number of patients in acuity group g P G at the unit for shift t P T.

hg : nursing hours required for patient care for acuity group g in a four-hour nursing shift (i.e. h = [0.5, 1, 1.5,

2.5, 4, 8] ; a patient with acuity F, g=6, will require eight hours of nursing care in a four-hour shift).

αSt : number of scheduled patient admission and transfer-in activities to a unit in shift t
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αSg,t: number of scheduled patient admission and transfer-in activities from acuity group g to a unit in shift

t

αUg,t: number of unscheduled patient admission and transfer-in activities from acuity group g to a unit in

shift t

βSg,t: number of scheduled patient discharges and transfer-out activities from acuity group g from a unit in

shift t

cj : staffing cost per four-hour shift for the FTE nurses from job profile j

bp : staffing cost per four-hour shift for PRN nurse p P P

xs : number of FTE nurses that are assigned to work for schedule s P Sj ; xs P Z. Note that xs is fed into this

model as a parameter from the medium-term staffing decisions.

yp,t : 1 if PRN nurse p P P is assigned to work for shift t P T; 0 otherwise. yp,t is also fed into this model as

a parameter from the medium-term staffing decisions.

as,t : 1 if for schedule s P Sj can be assigned to work at shift t ; 0 otherwise.

Unit cost of each schedule modification type:

Cost parameters related to short-term schedule modifications available to the nursing administration in the

first-stage:

Cost parameters related to generating extra nursing hours for the upcoming shift:

c`h : cost of additional nurses requested from the general float pool of the hospital for one shift

c`f : cost of additional FTE nurses requested from available on-call list for one shift

c`p : cost of additional PRN nurses requested from available on-call list for one shift

Cost parameters related to eliminating excess nursing hours available to the nursing administration:

c´f : savings incurred by floating, reassigning or cancelling one FTE nurse for the upcoming shift

c´p : savings incurred by floating, reassigning or cancelling one PRN nurse for the upcoming shift

Cost parameters related to the second-stage decisions:

q`m : cost of mandatory overtime for nurses on the current shift to stay for the next shift who were not

originally scheduled for the next shift.

Parameters defining the upper bound for total number of adjustments:

n`h,pt`1q: total number of available nurses in the general float pool of the hospital that can be assigned to
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work for the medical unit for shift pt ` 1 q, requested at shift t

n`f ,pt`1q: maximum number of additional FTE nurses that can be requested from available on-call list for

shift pt ` 1 q at shift t

n`p,pt`1q: maximum number of additional PRN nurses that can be requested from available on-call list for

shift pt ` 1 q at shift t

Probability Spaces and Random Variables

Uncertainty is represented in terms of random experiments with outcomes denoted by ‘ω’ (i.e. state of the

world).

The set of all outcomes is represented by ‘Ω’: ω P Ω.

As usual, the particular values the various random variables will take are only known after the random

experiment, i.e. , the vector ξ = ξpωq is only known after the experiments.

Here in our case, the random vector ξpωq has 13 elements, six from number of scheduled patient admissions

in six acuity groups for the current shift; another six from the number of unscheduled patient admissions in

six acuity groups in the current shift; and an additional 13th element for the number of unscheduled patient

admissions for the upcoming shift.

For a given realization ω, the second-stage problem data become known and combining the stochastic com-

ponents of the second-stage data, we obtain the vector ξpωq. The random event ω influences all components

of ξpωq.

In this study, second-stage decisions are represented by ypωq in order to stress that these decisions differ as

functions of the outcome of the random experiment, and of course first-stage decisions.

5.2.2 Decision Variables

First-stage decision variables for generating additional nursing hours:

x`h,pt`1q: number of additional nurses requested from the general float pool of the hospital for shift pt ` 1 q

at shift t

x`f ,pt`1q: number of additional FTE nurses requested from available on-call list for shift pt ` 1 q at shift t

x`p,pt`1q: number of additional PRN nurses requested from available on-call list for shift pt ` 1 q at shift

t
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First-stage decision variables for eliminating excess nursing hours:

x´f ,pt`1q: number of FTE nurses floated to another unit, reassigned to a later day or cancelled for the shift

pt ` 1 q at shift t

x´p,pt`1q: number of PRN nurses floated to another unit, reassigned to a later day or cancelled for the shift

pt ` 1 q at shift t

Second-stage decision variables for generating additional nursing hours: y`m,pt`1qpωq: number of nurses from

shift t , who are not originally scheduled for the shift pt ` 1 q, that stay for shift pt ` 1 q as a mandatory

overtime.

5.2.3 Computation of Understaffing Penalty Cost

We assume the patient demand is realized by the total of nursing demand generated by patient mix present

at the unit right at the start time point of the shift and the ADT activity that occurs during that shift.

We also assume that, by definition, the total number of scheduled patient admissions are know to the unit

charge nurses within a 12-hour window, but the acuity assignments of those patients are not clear, since they

didn’t arrive at the unit yet.

Expected number of patients in acuity group g in a unit at the upcoming shift (i.e. shift (t+1)):

Erϑg,pt`1qs “ ϑg,t `ErαSg,ts `ErαUg,ts ´ β
S
g,t

Expected nursing requirement during the upcoming shift:

«

γ ¨ pαSt`1 `
ÿ

gPG

ErαUg,pt`1qsq ` δ ¨ β
S
t`1 `

ÿ

gPG

Erϑg,pt`1qs ¨ hg

ff

, plugging in the expression for Erϑg,pt`1qs from the equation above we get:

«

γ ¨ pαSt`1 `
ÿ

gPG

ErαUg,pt`1qsq ` δ ¨ β
S
t`1 `

ÿ

gPG

pϑg,t `ErαSg,ts `ErαUg,ts ´ β
S
g,tq ¨ hg

ff

Total supply of nursing hours for the upcoming shift pt ` 1 q after the adjustments will be then:

«

´

ÿ

jPJ

ÿ

sPSj

xs ¨as,pt`1q`
ÿ

pPP

yp,pt`1q

¯

`

´

x`h,pt`1q`x`f ,pt`1q`x`p,pt`1q

¯

´

´

x´f ,pt`1q`x´p,pt`1q

¯

`

´

y`m,pt`1qpωq
¯

ff

¨4

, since every nurse is scheduled for the 4-hour block shift.
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We can calculate the total costs incurred by the first-stage adjustments for shift pt ` 1 q at shift t as fol-

lows:
«

´

c`h ¨ x
`

h,pt`1q

¯

`

´

c`f ¨ x
`

f ,pt`1q

¯

`

´

c`p ¨ x
`

p,pt`1q

¯

ff

We can calculate the total savings achieved by the first-stage adjustments for shift pt ` 1 q at shift t as

follows:
«

´

c´f ¨ x
´

f ,pt`1q

¯

`

´

c´p ¨ x
´

p,pt`1q

¯

ff

We can also calculate the expected total costs incurred by the second-stage adjustments for shift pt ` 1 q at

shift pt ` 1 q as follows:

Eξ

«

´

q`m ¨ y
`

m,pt`1qpωq
¯

ff

Then total costs of adjustments in the first and second stages can be calculates as follows:

«

´

c`h ¨x
`

h,pt`1q

¯

`

´

c`f ¨x
`

f ,pt`1q

¯

`

´

c`p ¨x
`

p,pt`1q

¯

ff

´

«

´

c´f ¨x
´

f ,pt`1q

¯

`

´

c´p ¨x
´

p,pt`1q

¯

ff

`Eξ

«

´

q`m ¨y
`

m,pt`1qpωq
¯

ff

5.2.4 Objective Function & Model Constraints

Our objective is then minimizing the total costs of nurse staffing and schedule adjustments (both from the

first and second stages), while satisfying the nursing demand coverage at the second stage of the model when

the actual patient demand is realized:

Minimize:

«

´

ÿ

jPJ

ÿ

sPSj

cj ¨ xs ¨ as,pt`1q `
ÿ

pPP

bp ¨ yp,pt`1q

¯

ff

`

«

´

c`h ¨ x
`

h,pt`1q

¯

`

´

c`f ¨ x
`

f ,pt`1q

¯

`

´

c`p ¨ x
`

p,pt`1q

¯

ff

´

«

´

c´f ¨ x
´

f ,pt`1q

¯

`

´

c´p ¨ x
´

p,pt`1q

¯

ff

`Eξ

«

min
´

q`m ¨ y
`

m,pt`1qpωq
¯

ff

Note that the objective function contains several deterministic terms and the expectation of the second-stage

objective
´

q`m ¨ y
`

m,pt`1qpωq
¯

taken over all realizations of the random event ω.

xs and yp,t , FTE and PRN nurse schedules assignments, are fed into this model as a parameter from the

medium-term staffing decisions. The feasible schedule sets, i.e. as,pt`1q, are also input model parame-
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ters.

Model Constraints

Our first set of constraints are related to the limits on number of adjustments.

• Total number of nurses that can be requested at shift t , to work in shift t ` 1 , from the general float

pool of the hospital is limited by n`h,pt`1q:

x`h,pt`1q ď n`h,pt`1q

• Total number of FTE nurses that can be requested at shift t , to work in shift t ` 1 , from the on-call

list of the unit is limited by n`f ,pt`1q:

x`f ,pt`1q ď n`f ,pt`1q

• Total number of PRN nurses that can be requested at shift t , to work in shift t ` 1 , from the on-call

list of the unit is limited by n`p,pt`1q:

x`p,pt`1q ď n`p,pt`1q

• Total number of FTE nurses floated to another unit, reassigned to a later day or cancelled for the shift

pt ` 1 q at shift t is limited by the medium-term total FTE nurse assignments for shift pt ` 1 q:

x´f ,pt`1q ď
ÿ

jPJ

ÿ

sPSj

xs ¨ as,pt`1q

• Total number of PRN nurses floated to another unit, reassigned to a later day or cancelled for the shift

pt ` 1 q at shift t is limited by the medium-term total PRN nurse assignments for shift pt ` 1 q:

x´p,pt`1q ď
ÿ

pPP

yp,pt`1q

• Second-stage sufficient coverage constraint: As a constraint at the second stage of the model, we require

that the nursing hours supply after second stage adjustments will be large enough to cover the nursing

requirement realized after observing the actual patient demand:
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Total supply of nursing hours for the upcoming shift pt ` 1 q after the adjustments:

«

´

ÿ

jPJ

ÿ

sPSj

xs ¨as,pt`1q`
ÿ

pPP

yp,pt`1q

¯

`

´

x`h,pt`1q`x`f ,pt`1q`x`p,pt`1q

¯

´

´

x´f ,pt`1q`x´p,pt`1q

¯

`

´

y`m,pt`1qpωq
¯

ff

¨4

, since every nurse is scheduled for the 4-hour block shifts.

Expected nursing requirement during the upcoming shift pt ` 1 q:

«

γ ¨ pαSt`1 `
ÿ

gPG

ErαUg,pt`1qsq ` δ ¨ β
S
t`1 `

ÿ

gPG

pϑg,t `ErαSg,ts `ErαUg,ts ´ β
S
g,tq ¨ hg

ff

Then our constraint is listed as:

«

´

ÿ

jPJ

ÿ

sPSj

xs ¨as,pt`1q`
ÿ

pPP

yp,pt`1q

¯

`

´

x`h,pt`1q`x`f ,pt`1q`x`p,pt`1q

¯

´

´

x´f ,pt`1q`x´p,pt`1q

¯

`

´

y`m,pt`1qpωq
¯

ff

¨4

ě

«

γ ¨ pαSt`1 `
ÿ

gPG

ErαUg,pt`1qsq ` δ ¨ β
S
t`1 `

ÿ

gPG

pϑg,t `ErαSg,ts `ErαUg,ts ´ β
S
g,tq ¨ hg

ff

• Total number of second-stage mandatory overtime adjustments at shift pt ` 1 q is limited by total nurse

assignments from previous stage, at shift t :

y`m,pt`1qpωq ď
ÿ

jPJ

ÿ

sPSj

xs ¨ as,pt`1q `
ÿ

pPP

yp,pt`1q
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5.2.5 Two-Stage Stochastic Programming Model

Merging the individual items presented in the previous subsection, we can present the full two-stage stochastic

programming model as follows:

Minimize:

«

´

ÿ

jPJ

ÿ

sPSj

cj ¨ xs ¨ as,pt`1q `
ÿ

pPP

bp ¨ yp,pt`1q

¯

ff

`

«

´

c`h ¨ x
`

h,pt`1q

¯

`

´

c`f ¨ x
`

f ,pt`1q

¯

`

´

c`p ¨ x
`

p,pt`1q

¯

ff

´

«

´

c´f ¨ x
´

f ,pt`1q

¯

`

´

c´p ¨ x
´

p,pt`1q

¯

ff

`Eξ

«

min
´

q`m ¨ y
`

m,pt`1qpωq
¯

ff

subject to

x`h,pt`1q ď n`h,pt`1q

x`f ,pt`1q ď n`f ,pt`1q

x`p,pt`1q ď n`p,pt`1q

x´f ,pt`1q ď
ÿ

jPJ

ÿ

sPSj

xs ¨ as,pt`1q

x´p,pt`1q ď
ÿ

pPP

yp,pt`1q

«

´

ÿ

jPJ

ÿ

sPSj

xs ¨as,pt`1q`
ÿ

pPP

yp,pt`1q

¯

`

´

x`h,pt`1q`x`f ,pt`1q`x`p,pt`1q

¯

´

´

x´f ,pt`1q`x´p,pt`1q

¯

`

´

y`m,pt`1qpωq
¯

ff

¨4

ě

«

γ ¨ pαSt`1 `
ÿ

gPG

ErαUg,pt`1qsq ` δ ¨ β
S
t`1 `

ÿ

gPG

pϑg,t `ErαSg,ts `ErαUg,ts ´ β
S
g,tq ¨ hg

ff

y`m,pt`1qpωq ď
ÿ

jPJ

ÿ

sPSj

xs ¨ as,pt`1q `
ÿ

pPP

yp,pt`1q

x`h,pt`1q, x
`

f ,pt`1q, x
`

p,pt`1q, x
´

f ,pt`1q, x
´

p,pt`1q, y
`

m,pt`1qpωq P Z

x`h,pt`1q, x
`

f ,pt`1q, x
`

p,pt`1q, x
´

f ,pt`1q, x
´

p,pt`1q, y
`

m,pt`1qpωq ě 0

Next we discuss the solution algorithm for the two-stage stochastic model presented.
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5.3 Solution Algorithm for Two-Stage Stochastic Programming

Models with Fixed Recourse: The L-Shaped Method

In this section we present the solution algorithm for two-stage stochastic programs with fixed and finite

number of realizations described in Birge & Louveaux (2011). Birge & Louveaux (2011) define “Stochastic

linear programs” as linear programs in which some problem data may be considered uncertain. “Recourse

programs” are those linear programs in which some decisions or recourse actions can be taken after uncer-

tainty is disclosed. In a recourse problem, the decision maker has one question before the uncertainty is

revealed and one after it. The decision taken after uncertainty is revealed is the decision maker’s recourse.

The term “Data uncertainty” implies that some of the problem data can be represented as random vari-

ables. As presented in the previous section, let the random vector ξpωq represent the particular values the

random variables take, where ω denote the outcomes, realizations, of the random vector ξ. The set of all

outcomes is represented by Ω. The random vector ξpωq is revealed, known, only after the random experiment.

The set of decisions is then divided into two main stages. The period before the uncertainty is revealed

is called the first stage. During this stage decisions must be made before the realizations of the random

experiments are referred to as first-stage decisions. The period after the experiment is called the second

stage, and the decisions that are made during this stage (after realization of the experiments, are referred

to as second-stage decisions. First-stage decisions are represented by the vector x, second-stage recourse

decisions are represented by the vector y, or ypωq or even ypω, x q, to indicate that second-stage decisions

depend on the outcome of the random experiment and the first-stage decisions. Note that these definitions

of first and second stages are only related to the realization of random experiments, and each stage may

contain sequences of time periods, decisions and events. The sequence of events and decision processes can

then be summarized as follows:

x ÝÑ ξpωq ÝÑ ypω, xq.

Two-stage stochastic linear programs with fixed recourse, that are originated by Dantzig(1955) and Beale(1955),

can be represented as follows:
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min z “ cT ¨ x` Eξrmin qpωq
T ¨ ypωqs

s.t.

A ¨ x “ b ,

T pωq ¨ x`W ¨ ypωq “ hpωq ,

x ě 0, ypωq ě 0 .

Here in the presented stochastic linear program program above, first-stage decisions are represented by the

n1 ˆ 1 vector x. For a given realization ω, the second-stage problem data qpωq, hpωq and T pωq become

known, where qpωq is n2 ˆ 1, hpωq is m2 ˆ 1, and T pωq is m2 ˆ n1. In this stochastic linear program, “Fixed

Recourse” occurs when the constraint matrix W has fixed, non-random, coefficients. The objective function

of the stochastic linear program program above contains a deterministic term cT ¨ x , which is the cost of

first-stage decisions, and the expectation of the second-stage recourse problem objective qpωqT ¨ ypωq taken

over all realizations of the random event ω. Note that, for each random event ω, the value of second-stage

decision variable ypωq is determined by the solution of a separate deterministic linear program.

The solution algorithm for the two-stage stochastic linear programs with fixed recourse involves making

some initial decisions that minimize current costs plus the expected value of future recourse actions. One

can always form a full deterministic equivalent linear program, which is called the extensive form, of the

original stochastic model under finite number of second stage realizations. With a large set of second stage

realizations, the extensive form of the problem gets quite large, which prevents achieving an efficient solution.

The frequently used solution technique, the L-shaped method, is a family of algorithms that are based on

developing an outer linearization of the recourse function. This method is a cutting plane method in that

linear cuts, supporting hyperplanes, are generated to create the linearization of the recourse function. The

algorithm is primarily based on generating an outer linearization of the recourse cost function and finding

a solution of the first-stage problem plus this linearization. This method is a direct application of Bender’s

Decomposition of the stochastic program primal, or equivalently a Dantzig-Wolfe decomposition of the dual.

The block structure of the extensive form has given rise to the name “L-Shaped” for the algorithm. The

method has been developed by Van Slyke & Wets (1969) in stochastic programming to take care of the

feasibility questions. The main principle in the L-shaped method is to approximate the nonlinear term in

the objective of the stochastic programs. Since the nonlinear objective term, the recourse function, involves

a solution of all second-stage recourse linear programs, we avoid numerous function evaluations by assuming

an initial fixed value, θ, for it. Using the fixed term θ, we build a master problem that involves first-stage
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decision variables, x , only. Then, we evaluate the recourse function in the exact original form as a subprob-

lem for each realization of the random event ω.

We use the extensive form (EF ) of the two-stage stochastic model to present the L-shaped method. Let k =

1,...,K be the index for possible realizations of the random vector ξ and let pk be the associated probabilities.

We create the extensive form by assigning one set of second-stage decision, yk , for each realization of ξ, where

each realization is associated with a specific value for qk , hk and Tk . Below we present the described extensive

form of the large scale stochastic model:

pEF q min cT ¨ x`
K
ÿ

k“1

pk ¨ q
T
k ¨ yk

s.t.

A ¨ x “ b ,

Tk ¨ x`W ¨ yk “ hk , k “ 1, ...,K ;

x ě 0, yk ě 0 , k “ 1, ...,K .

Solution Algorithm of the L-Shaped Method

Step 0. Initialization

Set r = s = v = 0 .

Step 1. Define and Solve the Master Program

Set v = v+1 and solve the following linear program called the “Master Program” :

(Master Program)
min z “ cT ¨ x` θ

s.t.

A ¨ x “ b ,

D` ¨ x ě d` , ` “ 1, ..., r ;

E` ¨ x` θ ě e` , ` “ 1, ..., s ;

x ě 0 , θ P R.

Master program is used to figure out a proposal first-stage decision variable x, to be sent to the second stage.

Let (xv, θv) be an optimal solution. The following constraint in the master problem defines a new optimality
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cut constraint at each iteration:

E` ¨ x` θ ě e` , ` “ 1, ..., s ;

Note that, while solving the very first master problem, since there is no optimality cut constraint present,

θv is set equal to -8 and is not considered in the computation of xv.

Step 2. Feasibility Cuts

The following constraint in the master program above introduces a feasibility cut for the problem:

D` ¨ x ě d` , ` “ 1, ..., r ;

In order to generate the feasibility cut, for each realization of the random vector k = 1,...,K, we solve the

following linear program:

Min w
1

= eT ¨ v` + eT ¨ v´

s.t.

W ¨ y + I ¨ v` - I ¨ v´ = hk - Tk ¨ x v

y ě 0, v` ě 0, v´ ě 0,

where eT = (1,...,1) until for some k, the optimal value w
1

ą 0. In this case let σv be the associated simplex

multiplier (i.e. the simplex multiplier or shadow price of a constraint is the difference between the optimized

value of the objective function and the value of the objective function, evaluated at the optional basis, when

the right hand side (RHS) of a constraint is increased by one unit), then define:

Dr`1 “ pσ
vqT ¨ Tk

dr`1 “ pσ
vqT ¨ hk

The defined values are used to generate the introduced feasibility cut constraints. Set r = r+1, add the

generated feasibility cut constraint to the master program and return to Step 1. If for all k, w
1

ą 0 then

proceed to Step 3. Observe that, in our two-stage stochastic problem introduced in the previous section, the

second-stage is always feasible since there is no limit on the second-stage recourse decision variable y (i.e.

any nursing shortage will be covered by the mandatory nurse overtime in the second-stage). Thus, Step 2 is
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omitted from the solution algorithm used in our problem.

Step 3. Subproblem / Optimality Cuts

For each realization of the random vector k = 1,...,K, we solve the following linear program:

Min w = qT
k ¨ y

s.t.

W ¨ y = hk - Tk ¨ x v ,

y ě 0,

Let πvk be the simplex multipliers associated with the optimal solution of subproblem for realization k of the

random vector. Define,

Es`1 “

K
ÿ

k“1

pk ¨ pπ
v
kq
T ¨ Tk

and,

es`1 “

K
ÿ

k“1

pk ¨ pπ
v
kq
T ¨ hk.

Let wv = es`1 - Es`1 ¨ x v . If θv ě wv , stop; x v is an optimal solution. Otherwise, set s = s+1, add to

the master program constraint set an optimality cut using the latest computed values of es`1 and Es`1 ,

and return to Step 1. As presented in the L-shaped algorithm description above, two types of constraints

are sequentially added to the master program: (i) feasibility cuts and (ii) optimality cuts, until an optimal

solution is reached. Next, in 5.1 below, we provide a summary of the algorithmic steps for the L-Shaped

method.
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Step 0. Initialization
Set r = s = v = 0 .

Step 1. Define and Solve the Master Program
Set v = v+1 and solve the “Master Program”

min z “ cT ¨ x` θ pMaster Programq

s.t. A ¨ x “ b ,

D` ¨ x ě d` , ` “ 1, ..., r ;

E` ¨ x` θ ě e` , ` “ 1, ..., s ;

x ě 0 , θ P R.

Note: If v = 0, then θv is set equal to -8 and
is not considered in the computation of xv.

Let (xv, θv) be an optimal solution

2nd-Stage
feasible?

Step 2. Feasibility Cuts:
Set r = r+1, add feasibility cut to

the master program, return to Step 1.

Step 3. Optimality Cuts
For each realization of the random

vector solve the 2nd-stage Subproblem

πvk : simplex multipliers of subproblem for realization k.

Es`1 “

K
ÿ

k“1

pk ¨ pπ
v
kq
T ¨ Tk, es`1 “

K
ÿ

k“1

pk ¨ pπ
v
kq
T ¨ hk

Let wv = es`1 - Es`1 ¨ x v

θv ě wv ?
Stop;

x v is an optimal
solution.

Set s “ s ` 1 , add a new optimality
cut using the latest computed values of
es`1 and Es`1 , and return to Step 1.

No

Yes

Yes

No

Figure 5.1: Solution Algorithm for the L-Shaped Method
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5.4 Description of the Probability Matrix Generation Algorithm

As we explained in the introductory section of this chapter, the following patient data is assumed to be

available to the nursing administration at the start of current shift: (1) current patient census (total patients

staying in the unit); (2) acuity assignments of the existing patients (total patients in each acuity group); (3)

the number of scheduled and unscheduled patient admissions for the current nursing shift; (4) the number of

patient discharges and their associated acuity groups during the current shift and in the upcoming shift; and

(5) total scheduled patient admissions for the upcoming shift. Howeveer, the following information is not

known by the administration at the start of the current shift: (1) the acuity assignments of scheduled and

unscheduled patients for the current shift (i.e., we know the number of scheduled and unscheduled patients

to be admitted to the unit for the current shift, but we don’t know their acuity assignments since the patients

have not arrived yet), and (2) the number of unscheduled patient admissions for the upcoming shift.

In Chapter 4 we used a nursing requirement computation that takes into account the patient census, acuity

mix and total Admission/Discharge/Transfer (ADT) activity in the unit for a given shift. We use a six-class

categorization for patient acuities, from acuity levels A to F, F being the category of the most nursing

workload-intense group. For Critical Care, the rough guidelines for nursing time requirement for each acuity

group per 4-hour shift are: A=0.5 hour, B=1 hour, C=1.5 hours, D=2.5 hours, E=4 hours, F=8 hours (for

patients associated with acuity F, 2 RNs are assigned for 1 patient). The PICU, like many intensive care

units, generally does not admit patients with acuity levels A and B (and occasionally a C). Therefore, we

expect patients only from acuity groups D, E, and F. We also consider the nursing time required for the

ADT activities occurring in a given shift. Studies published in literature roughly suggest one-half hour of

nursing time for each ADT activity. Given patient census, acuity assignments of the patients in the unit,

and ADT activity in a specific shift, we will be able to compute the required workload for the unit for a

specific nursing shift. As an example, assume that the patient mix in a medical unit at the start of a shift

is as follows: 5 patients from acuity group D; 6 patients from acuity group E; 2 patients from acuity group

F; and no patients from acuity groups A, B and C. Also assume that there will be 3 admissions to the unit

(from scheduled or unscheduled patients) and 2 discharge. The required nursing hours for the unit will be

calculated as follows:

p2.5 hrs. ¨ 5q ` p4 hrs. ¨ 6q ` p8 hrs. ¨ 2q ` p0.5 hrs. ¨ 3q ` p0.5 hrs. ¨ 2q “ 55 hours

146



In order to calculate the nursing requirement for the upcoming shift, since the stochastic adjustments model

is used for matching the patient demand in the upcoming shift, we need to know the patient census and mix

at the start of the upcoming shift and the total number of patient admissions (i.e. scheduled and unsched-

uled) and discharges (i.e. all patient discharges are scheduled). In order to know the patient census and

mix at the start of the upcoming shift, we need to start with the patient census and mix at the beginning

of the current shift and add or subtract the patient admissions and discharges from each acuity group to

be realized in the current shift. We know the current patient census and mix, we know the admissions and

discharges that will occur at the current shift, but we don’t know the associated acuities of these patients.

For the upcoming shift, we know the number of patient discharges, but we don’t know the number of un-

scheduled patient admissions. As a result, stochastic data in our model can be summarized as: (1) Acuity

assignments of scheduled admissions in the current shift, (2) Acuity assignments of unscheduled admissions

in the current shift and (3) Number of unscheduled patient admissions for the upcoming shift. We keep

the available six acuity groups (A, B, C and D) for the probability matrix generation algorithm, not to

loose the broader use of the methodology in non-intensive care medical units (i.e. we keep the option of

admitting a patient associated with acuity group A, B and C open, but we will assume a zero probability for

the event). Uncertainty is represented in terms of random experiments with outcomes denoted by ‘ω’ (i.e.

state of the world). The set of all outcomes is represented by ‘Ω’: ω P Ω. The particular values the various

random variables will take are only known after the random experiment, i.e. , the vector ξ = ξpωq is only

known after the experiments. Then, in our model, the random vector ξpωq has 13 elements, six from number

of scheduled patient admissions in six acuity groups for the current shift; another six from the number of

unscheduled patient admissions in six acuity groups in the current shift; and an additional 13th element

for the number of unscheduled patient admissions for the upcoming shift. For a given realization ω, the

second-stage problem data become known and second-stage recourse decisions are conducted accordingly.

Table 5.2 below summarizes the factors contributing to the generation of full set of scenarios Ω in our model:

Scheduled Admits Unscheduled Admits Unscheduled Admits

Current Shift Current Shift Upcoming Shift

Acuity Groups D E F D E F

Set of Alternatives {0, 1, 2} {0, 1, 2} {0, 1} {0, 1, 2} {0, 1, 2} {0, 1} {0, 1, 2, 3, 4, 5}

# of Alternatives 3 3 2 3 3 2 6

Table 5.2: Stochastic Elements of the Random Vector

As discussed above, we have three main categories for the stochastic elements in the random vector: (1)
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scheduled admits to the current shift (number of admits to each acuity group) , (2) unscheduled admits

to the current shift (number of admits to each acuity group) and (3) unscheduled admits to the upcoming

shift (total number of unscheduled admits from all acuity groups). We assume there is no scheduled and

unscheduled admissions to the current shift for acuity groups A, B and C. So, the associated elements in

the random vector always assume value 0. We also assume, scheduled and unscheduled admissions to acuity

groups D and E for the current shift are limited with maximum two patients (i.e. there will be 0, 1 or 2

scheduled patient admissions to the unit for acuity groups D and E at the current shift, same holds true

for unscheduled admissions as well). For the acuity group F, scheduled and unscheduled admissions for

the current shift are limited with maximum one patient (i.e. there will be either 0 or 1 scheduled patient

admissions to the unit for acuity group F at the current shift, same holds true for unscheduled admissions as

well). Total unscheduled admits to any shift is limited by 5 admissions in total, which results in 6 different

alternatives for the unscheduled patient admissions for the upcoming shift. Table 5.2 lists the number of

alternatives generated by each stochastic element. The presented design results in 1944 different scenarios

for the two-stage stochastic model. Presented alternatives and assumptions are inline with the historical pa-

tient admission patterns at the studied PICU. Any other patient admission pattern, for a different medical

unit/hospital, can be formulated using the same algorithm that is presented in this section.

Since we know the exact number of scheduled and unscheduled admissions to the unit for the current shift

at the start of the shift, the probability of each scenario ‘ω’ (i.e. a specific realization of the random vector)

is conditional on that information. We refer to each scheduled and unscheduled admission alternative as

“Case ID”. Since both the number of scheduled and unscheduled admits to the unit can assume values

from the set {0, 1, 2, 3, 4, 5}, there are 36 different Case ID options. Table 5.3 presents the Case ID

assignment for each scheduled and unscheduled admission option (i.e. Case ID 13 refers to the alterna-

tive where we are expecting 2 scheduled admits and 1 unscheduled admits to the unit within the current

shift). Table 5.3 also present the total number of unique scenarios that are feasible under each Case ID.

Below we present how we attain number of different alternatives for each stochastic factor listed in Table 5.3.

Given the number of patient admissions and set of admissions options to each acuity group, we present

feasible patient admission patterns for both scheduled and unscheduled admissions. We also present the

associated probabilities for each alternative for Ward A, as an example. Presented probability scores for

each feasible alternative is estimated from the historical patient acuity and admissions data of the studied

PICU.
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Case # Sch Adm # Unsch Adm Case # Alt. # Alt. # Unsch Adm # of

ID Current Shf Current Shf Info Sch Adm Unsch Adm Upcoming Shf Scenarios

0 0 0 (0,0) 1 1 6 6

1 0 1 (0,1) 1 3 6 18

2 0 2 (0,2) 1 5 6 30

3 0 3 (0,3) 1 5 6 30

4 0 4 (0,4) 1 3 6 18

5 0 5 (0,5) 1 1 6 6

6 1 0 (1,0) 3 1 6 18

7 1 1 (1,1) 3 3 6 54

8 1 2 (1,2) 3 5 6 90

9 1 3 (1,3) 3 5 6 90

10 1 4 (1,4) 3 3 6 54

11 1 5 (1,5) 3 1 6 18

12 2 0 (2,0) 5 1 6 30

13 2 1 (2,1) 5 3 6 90

14 2 2 (2,2) 5 5 6 150

15 2 3 (2,3) 5 5 6 150

16 2 4 (2,4) 5 3 6 90

17 2 5 (2,5) 5 1 6 30

18 3 0 (3,0) 5 1 6 30

19 3 1 (3,1) 5 3 6 90

20 3 2 (3,2) 5 5 6 150

21 3 3 (3,3) 5 5 6 150

22 3 4 (3,4) 5 3 6 90

23 3 5 (3,5) 5 1 6 30

24 4 0 (4,0) 3 1 6 18

25 4 1 (4,1) 3 3 6 54

26 4 2 (4,2) 3 5 6 90

27 4 3 (4,3) 3 5 6 90

28 4 4 (4,4) 3 3 6 54

29 4 5 (4,5) 3 1 6 18

30 5 0 (5,0) 1 1 6 6

31 5 1 (5,1) 1 3 6 18

32 5 2 (5,2) 1 5 6 30

33 5 3 (5,3) 1 5 6 30

34 5 4 (5,4) 1 3 6 18

35 5 5 (5,5) 1 1 6 6

Table 5.3: Definition of Case IDs and Number of Associated Scenarios
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• 0 Admissions Case: If the number of scheduled or unscheduled admissions to the unit for the

current shift is known to be zero, then there is only one alternative for acuity combinations under our

assumptions listed in Table 5.2. Table 5.4 presents the feasible alternative and associated probability

for Ward A.

0 Admission Case

Acuity Groups A B C D E F Prob.

Alt # 1 0 0 0 0 0 0 1.00

Table 5.4: Feasible Patient Acuity Assignment Alternatives Under 0 Admissions - Ward A

• 1 Admission Case: If the number of scheduled or unscheduled admissions to the unit for the current

shift is known to be one, then there are three alternatives for acuity combinations under the assumptions

listed in Table 5.2. Table 5.5 presents these alternatives and associated probabilities for Ward A.

1 Admission Case

Acuity Groups A B C D E F Prob.

Alt # 1 0 0 0 1 0 0 0.42

Alt # 2 0 0 0 0 1 0 0.50

Alt # 3 0 0 0 0 0 1 0.08

Table 5.5: Feasible Patient Acuity Assignment Alternatives Under 1 Admission - Ward A

• 2 Admissions Case: If the number of scheduled or unscheduled admissions to the unit for the current

shift is known to be two, then there are five alternatives for acuity combinations under the assumptions

listed in Table 5.2. Table 5.6 presents these alternatives and associated probabilities for Ward A.

2 Admissions Case

Acuity Groups A B C D E F Prob.

Alt # 1 0 0 0 1 1 0 0.24

Alt # 2 0 0 0 1 0 1 0.13

Alt # 3 0 0 0 0 1 1 0.15

Alt # 4 0 0 0 2 0 0 0.22

Alt # 5 0 0 0 0 2 0 0.26

Table 5.6: Feasible Patient Acuity Assignment Alternatives Under 2 Admissions - Ward A

• 3 Admissions Case: If the number of scheduled or unscheduled admissions to the unit for the

current shift is known to be three, then there are five alternatives for acuity combinations under the
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assumptions listed in Table 5.2. Table 5.7 presents these alternatives and associated probabilities for

Ward A.

3 Admissions Case

Acuity Groups A B C D E F Prob.

Alt # 1 0 0 0 2 1 0 0.28

Alt # 2 0 0 0 2 0 1 0.13

Alt # 3 0 0 0 1 2 0 0.29

Alt # 4 0 0 0 1 1 1 0.14

Alt # 5 0 0 0 0 2 1 0.16

Table 5.7: Feasible Patient Acuity Assignment Alternatives Under 3 Admissions - Ward A

• 4 Admissions Case: If the number of scheduled or unscheduled admissions to the unit for the

current shift is known to be four, then there are three alternatives for acuity combinations under the

assumptions listed in Table 5.2. Table 5.8 presents these alternatives and associated probabilities for

Ward A.

4 Admissions Case

Acuity Groups A B C D E F Prob.

Alt # 1 0 0 0 2 2 0 0.42

Alt # 2 0 0 0 2 1 1 0.28

Alt # 3 0 0 0 1 2 1 0.30

Table 5.8: Feasible Patient Acuity Assignment Alternatives Under 4 Admissions - Ward A

• 5 Admissions Case: If the number of scheduled or unscheduled admissions to the unit for the current

shift is known to be five, then there is only one single alternative for acuity combinations under the

assumptions listed in Table 5.2. Table 5.9 presents the single alternative and associated probability for

the Ward A.

5 Admissions Case

Acuity Groups A B C D E F Prob.

Alt # 1 0 0 0 2 2 1 1.00

Table 5.9: Feasible Patient Acuity Assignment Alternatives Under 5 Admissions - Ward A

As an example, let’s assume we have two scheduled and four unscheduled admissions to the medical unit for

the current shift (i.e. Case ID 16). The two scheduled admissions can have five alternative acuity assign-
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ment combinations as presented in Table 5.6, and the four unscheduled admissions can have three alternative

acuity assignment combinations as presented in Table 5.8. The unscheduled admissions to the upcoming

shift can assume one of six feasible values (i.e. {0,1, 2, 3, 4, 5}) as presented in Table 5.2. Combining all

combinations from the three stochastic elements we get 5 x 3 x 6 = 90 different scenarios under Case ID 16.

The total number of scenarios in Table 5.3 are computed using this logic.

Our ultimate goal in section is to present the probability matrix generation algorithm, where the probability

matrix lists the probability of each scenario under a given Case ID. The resulting probability matrix has

36 rows (i.e. one row for each Case ID) and 1944 columns (i.e. one column for each scenario). Given

(1) the probability information presented in Table 5.4 through Table 5.9, (2) the probability of scheduled

vs. unscheduled admissions presented in Table 5.10 and (3) the probability of having 0 to 5 unscheduled

admissions for the upcoming shift presented in Table 5.11, we generate the desired unique probability matrix

for each medical unit to be used in the two-stage stochastic optimization model using a C++ code.

Data Category
Ward A Ward B Ward C PICU Total

n1 %2 n % n % n %

Scheduled Admissions 993 61.3% 1,235 32.6% 353 12.1% 2,581 31.0%

Unscheduled Admissions 627 38.7% 2,556 67.4% 2,555 87.9% 5,738 69.0%

Total Admissions 1,620 3,791 2,908 8,319

Total Discharges 1,596 3,764 2,889 8,249

1 n values represent the number of cases with the specified condition in each ward.

2 % values represent the % of cases among all observations within that ward.

Table 5.10: Scheduled vs. Unscheduled Admissions in PICU

Table 5.10 shows the number of scheduled and unscheduled admissions at each ward and as a total for the

PICU. Presented data shows that about 69% of admissions to the PICU are unscheduled. Ward A has a

higher percentage of scheduled admissions (61.3%) whereas Wards B and C have significantly higher per-

centages of unscheduled admissions (67.4 and 87.9%, respectively). Below we also present the probability of

unscheduled patient admissions for the upcoming shift for Ward A, as an example, in Table 5.11.

Below, we present the algorithmic steps of the developed probability matrix generating code. We include

parts of a sample code developed for Ward A in the studied PICU in the Appendices G for reference.
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Unscheduled Patient Admissions

Admits in the Upcoming Shift Probability

0 Unscheduled Admit 0.786

1 Unscheduled Admit 0.171

2 Unscheduled Admits 0.035

3 Unscheduled Admits 0.006

4 Unscheduled Admits 0.001

5 Unscheduled Admits 0.001

Table 5.11: Probability of Unscheduled Patient Admissions for the Upcoming Shift - Ward A

Step 1: Define the Cardinality of the Sets, Variables for Scheduled and Unscheduled Admissions and Asso-

ciated Probabilities

In the first step of the algorithm, we define the cardinality (i.e. size) of the sets for scheduled and unscheduled

admissions alternatives as presented in Table 5.2 (i.e. const int card´ Sch´ Admits´ t = 6 : Cardinality

(size) of the scheduled admissions set (current shift), Sch´Admits´ t = {0,1,2,3,4,5}). We also introduce

the variables representing the number of scheduled and unscheduled admissions to the current shift, number

of unscheduled admissions to the upcoming shift (stochastic data), number of scheduled admissions to the

current shift for acuity groups A to F (stochastic data) and number of unscheduled admissions to the current

shift for acuity groups A to F (stochastic data). We define the integer variables representing the Case ID

(i.e. Case ID = {0,1,2,...,35}) and the Scenario ID (i.e. Scenario ID = {0,1,2,...,1943}). We also define the

probability matrix listing the probability of each scenario given the Case ID, probability of a specific acuity

distribution for scheduled and unscheduled patient admissions for the current shift and probability of having

{0,1,...5} unscheduled admissions in the upcoming shift. Appendix Figure G.1 presents the code for Step 1.

Step 2: Provide the Probability Estimates of Each Scheduled and Unscheduled Admission Combination

In the second step of the algorithm, given the total number of scheduled and unscheduled admissions to the

current shift, we provide the estimates of each scheduled and unscheduled admission combination in terms of

the patient acuities (i.e. given that there will be two scheduled patient admissions to the unit in the current

shift, what is the probability of having one patient in acuity group D and second one in acuity group F). Since

each medical unit has its own patient characteristics in terms of scheduled and unscheduled admissions and

patient acuity patterns, we estimate these probabilities separately for each medical unit using the historical

153



patient data. Appendix Figure G.2 presents parts of the code for Step 2.

Step 3: Generate Case ID and Scenario ID for Each Scheduled and Unscheduled Admission Combination

and Acuity Assignment

In the third step of the algorithm, we first introduce the probabilities of unscheduled patient admissions

for the upcoming shift as presented in Table 5.11. Then we generate the Case ID for each scheduled and

unscheduled admission combination to the current shift (i.e. Case ID 13 refers to the alternative where the

medical unit expects 2 scheduled admits and 1 unscheduled admits to the unit within the current shift) as

presented in Table 5.3. We then generate a “Scenario ID” for each acuity combination for the scheduled and

unscheduled admissions to the current shift and number of unscheduled admissions for the upcoming shift.

Table 5.3 also presents the total number of unique scenarios that are feasible under each Case ID. Appendix

Figure G.3 presents a sample part of the code used for Step 3.

Step 4: Print the Scheduled and Unscheduled Admission Numbers for Each Acuity Group, Under Each

Scenario, in the Current Shift

In the fourth step of the algorithm, we print the scheduled and unscheduled admission numbers for each

acuity group, under each scenario, in the current shift. We need this data to be fed into the two-stage

stochastic optimization model, since nursing requirement in the second-stage of the problem is computed

accordingly. Our both first and second-stage decisions in the stochastic model use this scenario dependent

data. Appendix Figure G.4 presents a sample part of the code used for Step 4.

Step 5: Print the Number of Unscheduled Admissions, Under Each Scenario, for the Upcoming Shift

In the fifth step of the algorithm, we print the number of unscheduled admissions, under each scenario, for

the upcoming shift. Similar to Step 4, this stochastic data also constitute part of our nursing requirement

computations and is used for decision making in the two-stage stochastic model as presented earlier in this

section. Appendix Figure G.5 presents a sample part of the code used for Step 5.

Step 6: Compute the Probability of Each Scenario Given the Probability Estimates of Each Scheduled and

Unscheduled Admission Combination and Case ID

In the sixth step of the algorithm, given the probability estimates of each scheduled and unscheduled admis-
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sion combination in Step 2 and the Case ID and Scenario ID information generated in Step 3, we compute

the probability of each scenario. In order to do so, we multiply the probability of the specific scheduled

admissions acuity pattern for the current shift with the probability of the specific unscheduled admissions

acuity pattern for the current shift and the probability of the specific number of unscheduled admissions in

the upcoming shift, associated with each Scenario ID. Appendix Figure G.6 presents a sample part of the

code used for Step 6.

Step 7: Generate the Probability Matrix for Each Scenario Given the Case ID

In the seventh and final step, we put the computed probabilities in Step 6 into a matrix, which has 36

rows (i.e. one row for each Case ID) and 1944 columns (i.e. one column for each scenario). We print the

generated matrix to be used in the developed two-stage stochastic optimization model. Appendix Figure

G.7 presents a sample part of the code used for Step 7. As an example, for Case ID = 13 (i.e. 2 scheduled

and 1 unscheduled admits to the unit within the current shift), Table 5.12 below lists the scenarios with

probabilities greater than 2%. Next, we present our experimental design that is used to test the developed

stochastic model and evaluate the results.

Sch Admits - Shift t Unsch Admits - Shift t Unsch Adm

Scenario A B C D E F A B C D E F Shift (t+1) Prob

336 0 0 0 0 1 1 0 0 0 0 1 0 0 0.0590

360 0 0 0 0 1 1 0 0 0 1 0 0 0 0.0495

444 0 0 0 0 2 0 0 0 0 0 1 0 0 0.1022

445 0 0 0 0 2 0 0 0 0 0 1 0 1 0.0222

468 0 0 0 0 2 0 0 0 0 1 0 0 0 0.0858

768 0 0 0 1 0 1 0 0 0 0 1 0 0 0.0511

792 0 0 0 1 0 1 0 0 0 1 0 0 0 0.0429

876 0 0 0 1 1 0 0 0 0 0 1 0 0 0.0943

877 0 0 0 1 1 0 0 0 0 0 1 0 1 0.0205

900 0 0 0 1 1 0 0 0 0 1 0 0 0 0.0792

1308 0 0 0 2 0 0 0 0 0 0 1 0 0 0.0865

1332 0 0 0 2 0 0 0 0 0 1 0 0 0 0.0726

Table 5.12: Sample Probability Matrix, Ward A
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5.5 Experimental Design for RQ3

To evaluate the impact of various design factors on short-term schedule adjustment decisions and performance

measures, we develop an experimental design, based on the following factors, for the two-stage stochastic

short-term nurse schedule adjustment problem:

1. Nurse Profile Mix (NMIX): Nurse mix for the three PICU wards we studied (i.e., distribution of

nurses over FTE and PRN groups in the medical units). The cases used in the experimental design

are presented in the Nurse Profile Mix table, Table 4.4. We study three different time periods, listed

in the data description provided in Table 4.5, for the three PICU wards.

2. Mandatory Nurse Overtime / Understaffing Penalty Cost (UPC): As outlined in the stochas-

tic model description, we make first-stage adjustment decisions at the start of a new shift for the

upcoming shift. Any nursing shortage in the upcoming shift is then satisfied using mandatory nurse

overtime. UPC is designed as a penalty cost for one nursing hour of understaffing at the medical unit.

The FTE nurse hourly rate is normalized to one unit. The base level of UPC is determined as 1.5

because mandatory overtime cost of a nurse is typically 50% higher than at the regular hourly rate.

We use two additional levels for the UPC, since implications of understaffing in the second stage go

farther than the nurse overtime cost.

3. Staffing Policy (SPO): We test the performance of the developed two-stage stochastic short-term

adjustments model with respect to the medium-term staffing models developed in Chapter 4. Perfor-

mance measures of Fixed, Dynamic and Optimal Staffing policies with no short-term adjustments are

used for comparison. The short-term adjustment model is based on the schedules developed in the

medium term using the Dynamic Staffing policy.

4. Patient Demand (PD): The patient demand pattern used in the optimization models for nursing

for a typical 6-week staffing horizon. It consists of census data for each patient acuity group and

ADT activity during each nursing shift for the staffing horizon. The Optimal Staffing model assumes

that actual patient data is known at the time of building medium-term schedules (i.e., hypothetical

option for performance comparison), The Fixed Staffing models use a pre-determined fixed level of

patient demand for nursing. The Dynamic Staffing model with no adjustments uses the “heat map”

data presented in Chapter 4. The two-stage stochastic adjustments model uses the heat map data for

developing medium-term schedules, then uses the patient data available in the short term at the start

time of a shift (i.e., available patient data in the short-term is described in the introduction section of
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this chapter).

Table 5.13 below presents the experimental design factors and various levels of these factors used in this

study.

Nurse Mix Understaffing Staffing Policy Patient Demand

(NMIX) Penalty (UPC) (SPO) PD

Ward A 1.5 Optimal Staffing - No Adjustments Actual Demand

Ward B 2.0 Fixed Staffing - L1 - No Adjustments Fixed Demand - L1

Ward C 3.0 Fixed Staffing - L2 - No Adjustments Fixed Demand - L2

Dynamic Staffing - No Adjustments Heat-Map Demand

Dynamic Staffing with Short-Term Adjustments Heat-Map Demand + Short-Term Data

Table 5.13: Experimental Design Factors for RQ3

Using the developed two-stage stochastic short-term staffing adjustment model and the presented experi-

mental design in Table 5.13 we study our third research question:

RQ 3: “Can short-term schedule modifications that are based upon decisions attained from two-stage stochas-

tic integer programming model bring cost savings and reduction in understaffing levels, compared to keeping

original medium-term staffing plans, during the nursing shifts for the medical units?”

In addition to the cost savings and reduction in understaffing levels, using the performance measures pre-

sented below, we also evaluate the scheduling flexibility needs of the medical unit using the developed

two-stage stochastic adjustments model. Number of first-stage adjustments, the ratio of shifts with any

adjustments provide insights regarding the flexibility needed when building and adjusting nurse schedules.

We run the developed two-stage Stochastic Adjustments model for each nursing shift throughout the staffing

horizon (i.e. 252 shifts in a staffing horizon of 6 weeks). Each experimental run consists of multiple opti-

mality cuts and for each cut the second-stage subproblem is solved for each scenario option given the Case

ID information. For computational efficiency, we combined 21 nursing shifts in one single run (i.e. a single

staffing horizon of 252 shifts requires 12 separate runs). Each experimental run, for the 21 shifts, is completed

within two hours of run time. The whole experimental design required 9 x 12 = 108 individual runs. Next,

we present the measures we use to test the performance of presented models.
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5.5.1 Description of Performance Measures

Below is a summary of the performance measures to be evaluated for the results of our experimental de-

sign:

• Obj. Value (Total Cost): Resulting objective function cost of the optimization model. It is the total

cost of FTE and PRN staffing costs and understaffing penalty costs. In the case of stochastic model,

the objective also includes costs from first-stage adjustment decisions.

• Objective Value (O.V.) Comparison (%): Percentage difference of alternative model objective function

costs with respect to the Stochastic Adjustments model objective value.

• FTE Staffing Cost: Total staffing cost for the FTE nurses, in the medium-term, during the scheduling

horizon of 6 weeks.

• PRN Staffing Cost: Total staffing cost for the PRN nurses, in the medium-term, during the scheduling

horizon of 6 weeks.

• Understaffing Penalty / Mandatory Overtime Cost: Total penalty cost for understaffing during the

scheduling horizon of 6 weeks. In the stochastic adjustments model, the understaffing penalty is

applied in the form of a mandatory overtime cost for nurses. The expected penalty is estimated by the

stochastic model (i.e. sum of second-stage recourse action cost, given by θ, for the staffing horizon).

The realized understaffing penalty is computed using the actual patient data during the staffing horizon

and provided staffing levels, after the first-stage adjustment decisions.

• 1st Stage Staff Addition Cost: Cost of Float Pool, FTE-On-Call and PRN-On-Call nurse additions to

the staff size in the first stage of stochastic adjustments model.

• 1st Stage Staff Reduction Savings: Savings from schedule cancellations for the FTE and PRN nurses

to the staff size in the first stage of stochastic adjustments model.

• Median Ut: Median percentage understaffing during the scheduling horizon of 6 weeks.

• Average Ut: Average percentage understaffing during the scheduling horizon of 6 weeks.

• Max Ut: Maximum level of percentage understaffing observed during the scheduling horizon of 6 weeks.

• Median Ot: Median percentage overstaffing during the scheduling horizon of 6 weeks.

• Average Ot: Average percentage overstaffing during the scheduling horizon of 6 weeks.

• Max Ot: Maximum level of percentage overstaffing observed during the scheduling horizon of 6 weeks.
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Performance measures below are used to analyze the scheduling flexibility needs of the medical units:

• Average Float Pool Request per Shift (Average X`h )

• Average Float Pool Request per Shift (Average X`h ) per Average Staff Size

• Ratio of Shifts with Float Pool Request

• Average FTE-On-Call Request per Shift (Average X`f )

• Average FTE-On-Call Request per Shift (Average X`f ) per Average Staff Size

• Ratio of Shifts with FTE-On-Call Request

• Average PRN-On-Call Request per Shift (Average X`p )

• Average PRN-On-Call Request per Shift (Average X`p ) per Average Staff Size

• Ratio of Shifts with PRN-On-Call Request

• Average FTE Shift Cancel per Shift (Average X´f )

• Average FTE Shift Cancel per Shift (Average X´f ) per Average Staff Size

• Ratio of Shifts with FTE Shift Cancel

• Average PRN Shift Cancel per Shift (Average X´p )

• Average PRN Shift Cancel per Shift (Average X´p ) per Average Staff Size

• Ratio of Shifts with PRN Shift Cancel

• Ratio of Shifts with First-Stage Adjustments

• Average Nursing Hours Satisfied with Mandatory Overtime in 2nd Stage

• Average Number of Nurses Needed for the Mandatory Overtime (Average Nurse Request per Shift for

Mandatory Overtime)

• Ratio of Shifts that Utilized Mandatory Overtime

• Average Mandatory Overtime Cost Per Shift

5.5.2 Parameters Utilized in the Experiments

Below, we present the fixed parameter values used in the experiments:
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• param h := [1 0.5, 2 1.0, 3 1.5, 4 2.5, 5 4.0, 6 8.0 ]; nursing hours required for patient care for each

acuity group in a four-hour nursing shift.

• param c := 4 ; staffing cost per four-hour shift for the FTE nurses.

• param b := 4.4 ; staffing cost per four-hour shift for the PRN nurses.

• param gamma := 0.5; nursing hours required for one patient admission or transfer-in activity.

• param delta:= 0.5; nursing hours required for one patient discharge or transfer-out activity.

• param S := 7680; total number of available schedules to the nurses from all job profiles.

Below, we present the cost parameters related to short-term schedule modifications available to the

nursing administration in the first-stage.

Cost parameters related to generating extra nursing hours for the upcoming shift:

• c`h := 4.8; cost of additional nurses requested from the general float pool of the hospital for one shift.

• c`f := 4.8; cost of additional FTE nurses requested from available on-call list for one shift.

• c`p := 5.2; cost of additional PRN nurses requested from available on-call list for one shift.

Cost parameters related to eliminating excess nursing hours available to the nursing administration:

• c´f := 3.2; savings incurred by floating, reassigning or cancelling one FTE nurse for the upcoming shift.

• c´p := 3.6; savings incurred by floating, reassigning or cancelling one PRN nurse for the upcoming shift.

Cost parameters related to the second-stage decisions:

• q`m := 6.0, 8.0, 12.0; cost of mandatory overtime for nurses on the current shift to stay for the next shift

who were not originally scheduled for the next shift. We used three levels as a part of the experimental

design. Listed values represent per shift cost of mandatory overtime (i.e. $1.5/hour ¨ 4 hours/shift =

$6/shift).

Parameters defining the upper bound for total number of adjustments:

• n`h,pt`1q := 3; total number of available nurses in the general float pool of the hospital that can be

assigned to work for the medical unit for shift pt ` 1 q, requested at shift t .

• n`f ,pt`1q := 2; maximum number of additional FTE nurses that can be requested from available on-call

list for shift pt ` 1 q at shift t .
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• n`p,pt`1q := 2; maximum number of additional PRN nurses that can be requested from available on-call

list for shift pt ` 1 q at shift t .

Next, we present the results of our experiments.
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5.6 Results & Discussion

In this section we present and discuss the results of our experiments. First of all, we need to remind that

one important aspect of the short-term nurse schedule modification problem is the requirement of a very

efficient solution algorithm. Practically, the charge nurse will run the solution algorithm at the beginning

of each 4 to 8-hour shift and expect to have a solution in less than an hour, preferably in less than 10

minutes. All experiments conducted in this chapter reached a near-optimal solution, with an optimality gap

less than 0.1%, in less than 10 minutes for one nursing shift. Table 5.14 presents the results of experiments

for Ward A. We compare the results of experiments for the two-stage stochastic short-term schedule adjust-

ments model (Stochastic Adjustments Model) with the medium-term staffing policies presented in Chapter

4. The stochastic adjustments model is based on Dynamic Staffing medium-term schedules, and introduces

short-term staffing adjustments based on forecasts of the stochastic patient demand for nursing. Regarding

the Objective Value, we observe that the Stochastic Adjustments model provides the least costly solution

under all UPC options when compared to medium-term no-adjustment models. Even when compared to the

Optimal Staffing model, which assumes patient demand data is perfectly known to the administration, the

Stochastic Adjustments model brings cost savings. Savings are in the range of 0.90% to 2.09% for various

UPC levels when compared with the hypothetical Optimal Staffing option. The savings increase as the UPC

level is increased from 1.5 to 3.0. When compared with the Dynamic Staffing policy results, the Stochastic

Adjustments model cost savings increase to a range of 5.07% to 7.72%. We compare the Stochastic Adjust-

ment model performance with respect to two Fixed Staffing alternative policies with 19 and 20 nurses for

Ward A. Our results indicate cost savings of approximately 8% for the Stochastic Adjustments model for

various levels of UPC. Since staffing costs make up a considerable portion of hospital operational budgets,

the savings obtained using the short-term Stochastic Adjustments model in the range of 5% to 9% seems

promising.

Expected Understaffing Penalty listed in Table 5.14 is the expected total second-stage sub-problem objective

function cost (i.e. Given as θ in the presented model) for the staffing horizon of six weeks. Realized Under-

staffing Penalty is computed using the difference between the nursing levels after the first-stage adjustments

and the patient demand resulting from the actual patient data. Objective Value listed in the table is com-

puted using the realized Understaffing Penalty levels, and is the sum of presented FTE and PRN Staffing

Costs, first-stage staff addition and reductions (i.e. savings in the case of reductions, presented as negative

numbers in the table) and the realized understaffing penalty level. Understaffing levels are reduced as the

162



UPC level is increased, for the Stochastic Adjustments model. Median and average understaffing levels

observed in the shifts throughout the staffing horizon are less than 1.14% for all UPC levels, significantly

lower than all medium-term staffing model alternatives. Average overstaffing level is also reduced to less

than 1.54% for all UPC levels. Difference in overstaffing levels, comparing the Stochastic Adjustments and

medium-term no adjustment models, is even more significant compared to the difference in understaffing

levels. We can conclude that Objective Value cost savings are achieved both reducing the understaffing

penalty and excessive staff size for the Stochastic Adjustments model. While first-stage staff addition costs

constitute less than 3% of the objective value, first-stage staff reduction savings are realized around 5% in the

Stochastic Adjustments model. Realized understaffing penalty costs, on the other hand, constitute roughly

1% of the total Objective Value of the Stochastic Adjustments model.

Table 5.15 presents the results of our experiments with the Stochastic Adjustments model for Ward B.

For UPC = 1.5 cost savings of the Stochastic Adjustments model are similar to the savings observed in

Ward A (i.e. 0.83% compared to Optimal Staffing, 4.60% for the Dynamic Staffing and 5.47% for the two

Fixed Staffing alternatives). As the UPC level is increased to 2.0 and 3.0, cost savings achieved through

the Stochastic Adjustments model drastically increase (i.e. For UPC = 2.0 observed savings for Ward B

increase to 2.87% for the Optimal Staffing model, 9.39% for the Dynamic Staffing model, 10.07% for the

Fixed Staffing model with 12 nurses and 12.58% for the Fixed Staffing model with 11 nurses; for UPC = 3.0

savings for Ward B even further increase to 5.05% for the Optimal Staffing model, 18.33% for the Dynamic

Staffing model, 19.53% for the Fixed Staffing model with 12 nurses and 26.96% for the Fixed Staffing model

with 11 nurses). We explain the drastic increase in cost savings for Ward B due to the higher levels of

coefficient of variation in patient demand data for the unit, see Table 5.17, compared to the Ward A levels.

Average understaffing levels are observed in the range of 0.66% to 1.99%, decreasing with an increasing

UPC value. Average overstaffing levels are also observed in the range of 0.93% to 2.11%, increasing with

an increasing UPC value. Similar to Ward A results, Ward B results under Stochastic Adjustments model

indicate very reasonable levels of under and overstaffing, compared to all other medium-term no adjustments

models. For Ward B, both staff addition and reduction adjustments costs (savings) are observed in the less

than 2.5% level. Expected and realized understaffing penalty values are observed in less than 3% range for

the Stochastic Adjustments model.

Table 5.16 presents the results of our experiments with the Stochastic Adjustments model for Ward C. The

objective value of the Stochastic Adjustments model is significantly less than the objective value of any other
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medium-term staffing model, including the hypothetical Optimal Staffing model, for all levels of UPC. For

UPC = 1.5, when compared to the Optimal Staffing model, Stochastic Adjustments model results indicate

cost savings of 1.04%. The difference between the objective value of the two models drastically increase,

for the benefit of Stochastic Adjustments model, as the UPC is increased to 2.0 and 3.0 (i.e. cost savings

increase to 4.14% for UPC = 2.0 and to 7.97% for UPC = 3.0). Similar to Ward B patient data, the sample

patient demand data used for Ward C experiments demonstrate higher levels of coefficient of variation (i.e.

18.64% for the sample and 20.88% for the full dataset) compared to Ward A. As the patient demand data

demonstrate higher levels of variation, matching patient demand becomes more problematic and cost savings

attained via the short-term Stochastic Adjustments model become more significant. Average understaffing

ratios are in the range of 0.57% to 1.29% for the Stochastic Adjustments model. Average overstaffing ratios

are in the range of 1.29% to 3.01% for the Stochastic Adjustments model. Slightly larger levels of overstaffing

are observed for Ward C, compared to Ward A and Ward B. We explain this observation again due to the

higher variation levels in patient demand data, but in addition to that the more limited PRN pool in Ward

C limits the scheduling flexibility of the unit in the medium-term, causing larger differences between the

nursing demand and supply (i.e. observe the PRN nurse ratio for Ward C in Table 5.17).

For the sake of generalizability of our results, we present some underlying factors that make short-term

Stochastic Adjustments models more attractive to the nursing administration of any medical unit in Table

5.17. In addition, Table 5.18 presents a comparison of performance measures for the evaluated alternative

models. Next, we provide insights on the impact of listed significant factors on the short-term stochastic

adjustments model performance:

1. Ratio of Unscheduled Patient Admissions to the Unit: The more unscheduled patients admis-

sions observed in a medical unit, the higher is the need for scheduling flexibility for the medium-term

scheduling models and also the more frequently short-term schedule adjustments needed in order to

better mimic patient demand for nursing. As presented in Table 5.17, Ward A observes mostly sched-

uled patient admissions, 61.3%, a significantly higher level compared to the scheduled admissions ratio

of 32.6% for Ward B and 12.1% for Ward C. As observed in the results presented in Table 5.14, lower

level of cost savings are observed compared to the values for Ward B in Table 5.15 and values for Ward

C in Table 5.16. The higher level of scheduled admissions create a smoother patient demand data

associated with lower levels of coefficient of variation, making it easier to match patient demand for

nursing.
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2. PRN Nurse Ratio in the General Nurse Pool of the Unit: PRN nurses are critical for cost

savings due to the flexibility they provide for the minimization of under and overstaffing in the nursing

shifts. Having a sizable PRN nurse body will alleviate the nursing shortages and provide the required

flexibility for the nursing administration in the medical units with their scheduling process. As an

example from our experiments, Ward C has the most limited PRN nurse body with 7.89% PRN nurse

ratio and the short-term Stochastic Adjustments model brings significant cost savings to the unit. Due

to the limited medium-term scheduling flexibility of the unit, more room for efficiency gains are left

for the short-term adjustments for the unit. We conclude, the smaller PRN nurse ratio in a medical

unit, the larger cost savings will be realized using the short-term Stochastic Adjustments model.

3. Nurse Pool Size Compared to the Average Staff Size Utilized in a Shift: The size of the

available nurse pool is also an important factor, providing a capacity cushion for the desired nurse

staffing levels. In order to get a non-unit specific measure, we divide the available nurse pool size

for scheduling to the unit with the average staff size used in a shift throughout the staffing horizon.

Smaller the ratio of used nurses to available nurses, the more scheduling flexibility the unit will observe

due to the extra nurse availability for scheduling. For the PICU Wards, the used nurse ratios are in

the range of 16 to 18%, very close to each other.

4. Coefficient of Variation in the Patient Demand Data: Coefficient of variation in patient data

determines the required level of scheduling flexibility for the medical unit. We are using the coeffi-

cient of variation measure as a normalized measure with respect to the mean of patient demand data.

Units observing higher levels of variation in patient demand will benefit the most using the Dynamic

Staffing approach in the medium-term and the Stochastic Adjustments model in the short-term. The

smoother the patient data for a medical unit, the lower cost savings will be observed using the two-

stage Stochastic Adjustments model. In our case, Ward A, demonstrates lower levels of coefficient of

variation compared to Wards B and C, as presented in Table 5.17, and due to that reason cost savings

in terms of objective value are smaller for this unit.

In order to better understand the scheduling flexibility needs of the medical units, we evaluate some per-

formance measures related to the frequency and size of the first and second-stage adjustment decisions and

associated costs. Table 5.19 presents our experimental results related to these measures. We first provide the

average medium-term no adjustment staff size for each experimental setting. We use this value to normalize

some of the measures we present, since the unit nurse size would impact the magnitude of the adjustments.

First measure we analyze is the average float pool request per shift. Ward A used around 0.5 requests per
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shift on average, a lower level compared to the 1.2 average requests per shift of Ward B. Ward C average float

pool requests also realized around 0.6, similar to the Ward A patterns. The float pool requests are limited

with three requests per shift and cost 20% higher than regular time FTE rate. In order to normalize with

the unit size, we divide the average requests with the staff size used in the associated shift. The normalized

results indicate higher levels of float pool request for Wards B and C, where we observe higher levels of

patient demand variation. We also check the ratio of shifts with any amount of float pool request. Ward B

observed the most requests around 52% to 55%, Ward C follows with 28.5% to 37.70% and Ward A average

requests realized between 30.5% to 31.5%.
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WARD A Stochastic Dynamic Optimal Fixed Staffing Fixed Staffing

UPC = 1.5 Adjustments Staffing Staffing 19 Nurses 20 Nurses

FTE Staffing Cost 16,272.00 16,272.00 14,688.00 16,008.00 16,776.00

PRN Staffing Cost 2,926.00 2,926.00 3,524.40 3,454.00 3,696.00

1st Stage Staff Addition Cost 556.80

1st Stage Staff Reduction Savings -923.20

Understaffing Penalty (Expected) 374.46

Understaffing Penalty (Realized) 334.50 939.00 1,125.75 826.50 309.75

Objective Value (O.V.) 19,166.10 20,137.00 19,338.15 20,288.50 20,781.75

O.V. Comparison (%) 0.00% 5.07% 0.90% 5.86% 8.43%

Median Understaffing % 0.88% 0.00% 1.45% 0.00% 0.00%

Average Understaffing % 1.14% 3.01% 3.77% 2.64% 0.97%

Max Understaffing % 8.11% 15.79% 35.57% 15.56% 11.11%

Median Overstaffing % 0.00% 2.01% 0.00% 2.01% 7.38%

Average Overstaffing % 0.64% 7.59% 2.10% 8.45% 12.23%

Max Overstaffing % 38.18% 47.57% 24.39% 49.02% 56.86%

WARD A Stochastic Dynamic Optimal Fixed Staffing Fixed Staffing

UPC = 2.0 Adjustments Staffing Staffing 19 Nurses 20 Nurses

FTE Staffing Cost 16,272.00 16,272.00 15,240.00 16,008.00 16,776.00

PRN Staffing Cost 3,036.00 3,036.00 3,502.40 3,454.00 3,696.00

1st Stage Staff Addition Cost 643.20

1st Stage Staff Reduction Savings -910.40

Understaffing Penalty (Expected) 262.35

Understaffing Penalty (Realized) 223.00 1,108.00 832.00 1,102.00 413.00

Objective Value (O.V.) 19,263.80 20,416.00 19,574.40 20,564.00 20,885.00

O.V. Comparison (%) 0.00% 5.98% 1.61% 6.75% 8.42%

Median Understaffing % 0.00% 0.00% 1.23% 0.00% 0.00%

Average Understaffing % 0.58% 2.67% 2.05% 2.64% 0.97%

Max Understaffing % 7.51% 15.29% 22.42% 15.56% 11.11%

Median Overstaffing % 0.00% 2.01% 0.00% 2.01% 7.38%

Average Overstaffing % 1.04% 7.75% 3.58% 8.45% 12.23%

Max Overstaffing % 30.91% 49.02% 60.00% 49.02% 56.86%

WARD A Stochastic Dynamic Optimal Fixed Staffing Fixed Staffing

UPC = 3.0 Adjustments Staffing Staffing 19 Nurses 20 Nurses

FTE Staffing Cost 16,440.00 16,440.00 16,272.00 16,008.00 16,776.00

PRN Staffing Cost 3,212.00 3,212.00 3,159.20 3,454.00 3,696.00

1st Stage Staff Addition Cost 566.40

1st Stage Staff Reduction Savings -1,022.00

Understaffing Penalty (Expected) 243.21

Understaffing Penalty (Realized) 208.50 1,251.00 379.50 1,653.00 619.50

Objective Value (O.V.) 19,404.90 20,903.00 19,810.70 21,115.00 21,091.50

O.V. Comparison (%) 0.00% 7.72% 2.09% 8.81% 8.69%

Median Understaffing % 0.00% 0.00% 0.00% 0.00% 0.00%

Average Understaffing % 0.36% 2.00% 0.63% 2.64% 0.97%

Max Understaffing % 6.75% 12.73% 4.48% 15.56% 11.11%

Median Overstaffing % 1.27% 4.11% 2.56% 2.01% 7.38%

Average Overstaffing % 1.54% 8.88% 6.40% 8.45% 12.23%

Max Overstaffing % 30.91% 56.86% 56.86% 49.02% 56.86%

Table 5.14: Comparison of Two-Stage Stochastic Short Term Schedule Adjustments Model w.r.t. Medium-
Term Schedules with No Adjustments - Ward A
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WARD B Stochastic Dynamic Optimal Fixed Staffing Fixed Staffing

UPC = 1.5 Adjustments Staffing Staffing 11 Nurses 12 Nurses

FTE Staffing Cost 10,128.00 10,128.00 10,416.00 9,480.00 10,200.00

PRN Staffing Cost 1,821.60 1,821.60 1,817.20 1,768.80 2,085.60

1st Stage Staff Addition Cost 1,694.80

1st Stage Staff Reduction Savings -310.00

Understaffing Penalty (Expected) 417.69

Understaffing Penalty (Realized) 397.50 2,414.25 1,612.50 3,234.00 2,196.75

Objective Value (O.V.) 13,731.90 14,363.85 13,845.70 14,482.80 14,482.35

O.V. Comparison (%) 0.00% 4.60% 0.83% 5.47% 5.47%

Median Understaffing % 1.49% 8.01% 2.22% 14.56% 6.80%

Average Understaffing % 1.99% 10.74% 7.19% 14.49% 9.56%

Max Understaffing % 13.73% 35.14% 88.06% 40.54% 35.14%

Median Overstaffing % 0.00% 0.00% 0.00% 0.00% 0.00%

Average Overstaffing % 0.93% 4.22% 3.05% 2.88% 5.98%

Max Overstaffing % 8.47% 57.14% 40.00% 62.96% 77.78%

WARD B Stochastic Dynamic Optimal Fixed Staffing Fixed Staffing

UPC = 2.0 Adjustments Staffing Staffing 11 Nurses 12 Nurses

FTE Staffing Cost 10,200.00 10,200.00 11,424.00 9,480.00 10,200.00

PRN Staffing Cost 1,883.20 1,883.20 1,702.80 1,768.80 2,085.60

1st Stage Staff Addition Cost 1,728.80

1st Stage Staff Reduction Savings -294.40

Understaffing Penalty (Expected) 334.91

Understaffing Penalty (Realized) 305.00 3,037.00 1,093.00 4,312.00 2,929.00

Objective Value (O.V.) 13,822.60 15,120.20 14,219.80 15,560.80 15,214.60

O.V. Comparison (%) 0.00% 9.39% 2.87% 12.58% 10.07%

Median Understaffing % 0.00% 6.80% 0.00% 14.56% 6.80%

Average Understaffing % 1.16% 10.08% 3.54% 14.49% 9.56%

Max Understaffing % 13.73% 35.14% 45.95% 40.54% 35.14%

Median Overstaffing % 0.00% 0.00% 2.36% 0.00% 0.00%

Average Overstaffing % 1.47% 4.58% 7.00% 2.88% 5.98%

Max Overstaffing % 18.52% 62.96% 64.62% 62.96% 77.78%

WARD B Stochastic Dynamic Optimal Fixed Staffing Fixed Staffing

UPC = 3.0 Adjustments Staffing Staffing 11 Nurses 12 Nurses

FTE Staffing Cost 10,200.00 10,200.00 12,072.00 9,480.00 10,200.00

PRN Staffing Cost 2,041.60 2,041.60 1,632.40 1,768.80 2,085.60

1st Stage Staff Addition Cost 1,776.80

1st Stage Staff Reduction Savings -322.00

Understaffing Penalty (Expected) 275.25

Understaffing Penalty (Realized) 258.00 4,270.50 954.00 6,468.00 4,393.50

Objective Value (O.V.) 13,954.40 16,512.10 14,658.40 17,716.80 16,679.10

O.V. Comparison (%) 0.00% 18.33% 5.05% 26.96% 19.53%

Median Understaffing % 0.00% 5.42% 0.00% 14.56% 6.80%

Average Understaffing % 0.66% 9.41% 2.00% 14.49% 9.56%

Max Understaffing % 13.73% 35.14% 40.50% 40.54% 35.14%

Median Overstaffing % 1.05% 0.00% 4.71% 0.00% 0.00%

Average Overstaffing % 2.11% 5.05% 10.65% 2.88% 5.98%

Max Overstaffing % 18.52% 62.96% 88.14% 62.96% 77.78%

Table 5.15: Comparison of Two-Stage Stochastic Short Term Schedule Adjustments Model w.r.t. Medium-
Term Schedules with No Adjustments - Ward B
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WARD C Stochastic Dynamic Optimal Fixed Staffing Fixed Staffing

UPC = 1.5 Adjustments Staffing Staffing 12 Nurses 13 Nurses

FTE Staffing Cost 10,200.00 10,200.00 9,456.00 10,368.00 11,232.00

PRN Staffing Cost 1,447.60 1,447.60 1,289.20 1,425.60 1,425.60

1st Stage Staff Addition Cost 996.40

1st Stage Staff Reduction Savings -676.40

Understaffing Penalty (Expected) 321.03

Understaffing Penalty (Realized) 334.50 1,455.75 1,684.50 1,304.25 831.00

Objective Value (O.V.) 12,302.10 13,103.35 12,429.70 13,097.85 13,488.60

O.V. Comparison (%) 0.00% 6.51% 1.04% 6.47% 9.64%

Median Understaffing % 0.86% 0.00% 3.61% 0.00% 0.00%

Average Understaffing % 1.83% 6.95% 8.40% 6.11% 3.76%

Max Understaffing % 18.11% 51.15% 69.47% 44.06% 32.87%

Median Overstaffing % 0.00% 0.00% 0.00% 1.05% 9.47%

Average Overstaffing % 1.29% 9.80% 2.60% 10.29% 15.59%

Max Overstaffing % 28.00% 76.00% 43.08% 74.55% 89.09%

WARD C Stochastic Dynamic Optimal Fixed Staffing Fixed Staffing

UPC = 2.0 Adjustments Staffing Staffing 12 Nurses 13 Nurses

FTE Staffing Cost 10,464.00 10,464.00 10,032.00 10,368.00 11,232.00

PRN Staffing Cost 1,438.80 1,438.80 1,214.40 1,425.60 1,425.60

1st Stage Staff Addition Cost 914.00

1st Stage Staff Reduction Savings -703.60

Understaffing Penalty (Expected) 252.22

Understaffing Penalty (Realized) 274.00 1,659.00 1,654.00 1,739.00 1,108.00

Objective Value (O.V.) 12,387.20 13,561.80 12,900.40 13,532.60 13,765.60

O.V. Comparison (%) 0.00% 9.48% 4.14% 9.25% 11.13%

Median Understaffing % 0.00% 0.00% 0.41% 0.00% 0.00%

Average Understaffing % 1.08% 5.88% 6.02% 6.11% 3.76%

Max Understaffing % 18.11% 45.04% 66.39% 44.06% 32.87%

Median Overstaffing % 1.05% 1.15% 2.11% 1.05% 9.47%

Average Overstaffing % 1.92% 10.85% 5.04% 10.29% 15.59%

Max Overstaffing % 28.00% 76.00% 80.00% 74.55% 89.09%

WARD C Stochastic Dynamic Optimal Fixed Staffing Fixed Staffing

UPC = 3.0 Adjustments Staffing Staffing 12 Nurses 13 Nurses

FTE Staffing Cost 11,112.00 11,112.00 10,896.00 10,368.00 11,232.00

PRN Staffing Cost 1,425.60 1,425.60 1,174.80 1,425.60 1,425.60

1st Stage Staff Addition Cost 725.60

1st Stage Staff Reduction Savings -944.00

Understaffing Penalty (Expected) 184.07

Understaffing Penalty (Realized) 225.00 1,782.00 1,473.00 2,608.50 1,662.00

Objective Value (O.V.) 12,544.20 14,319.60 13,543.80 14,402.10 14,319.60

O.V. Comparison (%) 0.00% 14.15% 7.97% 14.81% 14.15%

Median Understaffing % 0.00% 0.00% 0.00% 0.00% 0.00%

Average Understaffing % 0.57% 4.07% 3.36% 6.11% 3.76%

Max Understaffing % 18.11% 35.77% 63.36% 44.06% 32.87%

Median Overstaffing % 1.82% 5.76% 5.80% 1.05% 9.47%

Average Overstaffing % 3.01% 14.76% 10.00% 10.29% 15.59%

Max Overstaffing % 30.91% 89.09% 104.62% 74.55% 89.09%

Table 5.16: Comparison of Two-Stage Stochastic Short Term Schedule Adjustments Model w.r.t. Medium-
Term Schedules with No Adjustments - Ward C
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Patient Admission Type

Ward A Ward B Ward C

Scheduled Admissions 61.3% 32.6% 12.1%

Unscheduled Admissions 38.7% 67.4% 87.9%

PRN Nurse Ratio

Ward A Ward B Ward C

# PRN Nurses 16 10 6

Total Nurse Pool 103 71 76

PRN Ratio 15.53% 14.08% 7.89%

Nurse Pool Flexibility

Ward A Ward B Ward C

Avg. Staff Size 18.88 11.82 12.31

Staff Pool 103 71 76

Ratio 18.33% 16.65% 16.20%

Coefficient of Variation in Patient Data

Ward A Ward B Ward C

Full Dataset 11.26% 20.84% 20.88%

Sample 12.17% 18.02% 18.64%

Table 5.17: Significant Factors Impacting Short-Term Stochastic Adjustments Model Performance

Unsch. PRN Pool C.V. Optimal Dynamic Fixed Fixed Avg.

Unit UPC Adm. % Ratio Flex. Demand Staffing Staffing Lower Higher Savings

Ward A 1.5 38.7% 15.53% 18.33% 12.17% 0.90% 5.07% 5.86% 8.43% 5.07%

Ward B 1.5 67.4% 14.08% 16.65% 18.02% 0.83% 4.60% 5.47% 5.47% 4.09%

Ward C 1.5 87.9% 7.89% 16.20% 18.64% 1.04% 6.51% 6.47% 9.64% 5.92%

Ward A 2.0 38.7% 15.53% 18.33% 12.17% 1.61% 5.98% 6.75% 8.42% 5.69%

Ward B 2.0 67.4% 14.08% 16.65% 18.02% 2.87% 9.39% 12.58% 10.07% 8.73%

Ward C 2.0 87.9% 7.89% 16.20% 18.64% 4.14% 9.48% 9.25% 11.13% 8.50%

Ward A 3.0 38.7% 15.53% 18.33% 12.17% 2.09% 7.72% 8.81% 8.69% 6.83%

Ward B 3.0 67.4% 14.08% 16.65% 18.02% 5.05% 18.33% 26.96% 19.53% 17.47%

Ward C 3.0 87.9% 7.89% 16.20% 18.64% 7.97% 14.15% 14.81% 14.15% 12.77%

Table 5.18: Significant Factors Impacting Short-Term Stochastic Adjustments
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Ward A Ward B Ward C

UPC Levels UPC Levels UPC Levels

Performance Measures 1.5 2.0 3.0 1.5 2.0 3.0 1.5 2.0 3.0

Avg. Medium-Term No Adjustment Staff Size 18.78 18.88 19.21 11.69 11.82 11.96 11.42 11.68 12.31

Avg. Float Pool Request per Shift 0.460 0.532 0.468 1.194 1.206 1.242 0.690 0.643 0.532

Avg. Float Pool Request per Shift per Nurse 0.025 0.028 0.024 0.103 0.103 0.104 0.064 0.058 0.045

Ratio of Shifts with Float Pool Request 31.35% 31.35% 30.56% 52.38% 51.98% 55.56% 37.70% 32.94% 28.57%

Avg. FTE-On-Call Request per Shift 0.000 0.000 0.000 0.202 0.214 0.218 0.103 0.091 0.060

Avg. FTE-On-Call Request per Shift per Nurse 0.000 0.000 0.000 0.018 0.018 0.018 0.010 0.009 0.005

Ratio of Shifts with FTE-On-Call Request 0.00% 0.00% 0.00% 15.48% 16.67% 17.86% 6.35% 5.95% 4.76%

Avg. PRN-On-Call Request per Shift 0.000 0.000 0.000 0.004 0.008 0.008 0.028 0.020 0.008

Avg. PRN-On-Call Request per Shift per Nurse 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.002 0.001

Ratio of Shifts with PRN-On-Call Request 0.00% 0.00% 0.00% 0.40% 0.40% 0.40% 1.98% 1.59% 0.79%

Avg. FTE Shift Cancel per Shift 0.877 0.861 0.933 0.282 0.258 0.270 0.718 0.734 1.063

Avg. FTE Shift Cancel per Shift per Nurse 0.046 0.045 0.049 0.024 0.022 0.022 0.061 0.062 0.083

Ratio of Shifts with FTE Shift Cancel 32.14% 31.35% 33.33% 17.46% 16.67% 16.67% 35.71% 38.89% 46.03%

Avg. PRN Shift Cancel per Shift 0.238 0.238 0.298 0.091 0.095 0.115 0.107 0.123 0.095

Avg. PRN Shift Cancel per Shift per Nurse 0.013 0.013 0.015 0.008 0.008 0.010 0.009 0.011 0.008

Ratio of Shifts with PRN Shift Cancel 17.86% 18.25% 21.83% 9.13% 9.52% 10.71% 10.71% 12.30% 9.52%

Ratio of Shifts with First-Stage Adjustments 76.98% 76.59% 80.95% 74.21% 73.81% 78.97% 78.57% 77.38% 77.78%

Avg. Mandatory Overtime in 2nd Stage (hrs.) 2.484 0.442 0.276 1.052 0.605 0.341 0.885 0.544 0.298

Avg. Mandatory Overtime Nurse Request 0.621 0.111 0.069 0.263 0.151 0.085 0.221 0.136 0.074

Ratio of Shifts with Mandatory Overtime 42.46% 36.11% 25.00% 57.94% 41.67% 27.38% 50.79% 35.32% 20.24%

Avg. Mandatory Overtime Cost Per Shift 3.726 0.885 0.827 1.577 1.210 1.024 1.327 1.087 0.893

Table 5.19: Evaluation of Performance Measures for the Two-Stage Stochastic Short-Term Schedule Adjustments Model
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Second adjustment mechanism, available to the nursing administration, is the FTE-On-Call requests. Our

results indicate that, Ward A didn’t require additional nurses from FTE-On-Call for any of the shifts. Ward

B used the FTE-On-Call requests between 15.48% to 17.86% of the shifts, with an average request of 0.2

nurses in a shift. Ward C FTE-On-Call requests are below 0.1 nurses per shift on average for the three UPC

levels, and the unit used the available option in 4.76% to 6.35% of the shifts throughout the staffing horizon.

Cost of additional FTE nurses requested from available on-call list for one shift is 20% more costly than the

regular FTE rate, and limited with two requests in one shift. The third adjustment mechanism available to

the unit nursing administration is the PRN-On-Call requests. Additional PRN nurses requested from avail-

able on-call list for one shift is 30% more costly than the regular FTE rate, and limited with two requests in

one shift. Being the most costly staff addition option in the first stage adjustments, PRN-On-Call requests

are the last option the optimization model uses. Similar to FTE-On-Call observation, Ward A didn’t require

any additional nurses from the PRN-On-Call list for any shift. For Ward B, the adjustment option is used

for 0.4% of all shifts. Ward C used the PRN-On-Call requests in 0.79% to 1.98% of the shifts.

There are two additional adjustment mechanism, available to the nursing administration, that are used to

reduce the staff size in the unit. These mechanisms are used to reduce observed overstaffing levels in the

medical unit in order to better matching the patient demand via FTE and PRN shift cancellations. Savings

incurred by floating, reassigning or cancelling one nurse for the upcoming shift is assumed to be 80% for the

FTE nurses and and 82% for the PRN nurses. We do not introduce any upper limit on shift cancellations

in our model. Average number of cancelled FTE shifts for Ward A is realized in the range of 0.86 to 0.93

for various UPC levels. Ward B average FTE shift cancellations occurred in smaller amounts, compared to

Ward A, in the range of 0.25 to 0.28 cancellations per shift. Ward B observed larger staff additions and

fewer shift cancellations, which can be attributed to the higher than usual sample patient demand level that

is reflected within the summary statistics in Table 4.5 (i.e. mean patient demand for Ward B for the full

dataset 45.55 hrs., sample data used in the optimization experiments 51.54 hrs.). Ward C FTE shift cancel-

lations occurred in the range of 0.7 to 1.0. When we analyze the ratio of shifts with FTE shift cancellations,

Ward A observed ratios in the range of 31% to 33%, Ward B in the range of 16% to 17% and Ward C in

the range of 35% to 46%. The larger ratio of shift cancellations for Ward C can be attributed to the smaller

PRN nurse pool for the unit (i.e. see Table 5.17, Ward C has a PRN Nurse ratio of 7.89%, much lower

than the 15.53% of Ward A and 14.08% of Ward B), which limited the scheduling flexibility of the unit at

the medium-term scheduling phase. The less a medical unit has scheduling flexibility in the medium-term,

the more frequent short-term adjustments will be needed as demonstrated for the Ward C example. Ratio
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of shifts with PRN cancellations occurred at the highest rate for Ward A, 17.8% to 21.8%. Ward B and

Ward C followed Ward A with similar ratios between 9.13% to 12.30%. FTE shift cancellations occurred

more frequently compared to PRN nurses due to the larger nurse body in this profile and higher savings ratio.

Combining all types of first-stage schedule adjustments, Table 5.19 suggests a ratio of 75% to 80% for the

shifts with any sort of short-term modifications for all PICU wards under all UPC levels. Our results indicate

the nurse schedules developed in the medium-term will need some sort of adjustment in the short-term for

more than 75% of the shifts throughout the staffing horizon. This observation demonstrates the crucial need

for short-term schedule adjustment models in order to satisfy the most needed scheduling flexibility in the

medical units. Our results also indicate, the models that use historical patient data to estimate stochastic

patient demand can bring cost savings of 5% to 20% for the medical units. Table 5.19 also present the usage

of mandatory nurse overtime in the second-stage as recourse decisions for the developed two-stage Stochastic

Adjustments model. Our results indicate significantly lower levels of mandatory nurse overtime usage in the

second-stage, less than 0.3 nurses per shift for most of the experiments. Ratio of shifts with some amount

of mandatory overtime realized within the 20% to 58% range. Lower levels of second-stage mandatory

overtime usage reflects the successful implementation of first-stage adjustments within the developed two-

stage Stochastic Adjustments model. The developed probability matrices for the medical units reflected

an accurate representation of the stochastic nature in the patient demand data, which bring the presented

cost savings and lower understaffing levels. We conclude that, our experimental results demonstrate the

potential benefits of using short-term Stochastic Adjustment model for the medical units reflected in the

presented performance measures including lower objective values and understaffing levels. We also identified

significant factors that impact the scheduling flexibility needs of the medical units, such as the ratio of

unscheduled patient admissions to the unit, PRN nurse ratio in the general nurse pool of the unit, nurse

pool size compared to the average staff size used in a shift and coefficient of variation in the patient demand

data. These factors also relate to the frequency of short-term adjustments as presented in our experimental

results.
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5.7 Conclusions

In Chapter 5 we used nursing schedules from the medium-term planning phase to determine two-stage short-

term staffing adjustments in the medical units for the upcoming nursing shift. Our proposed adjustments

are first determined fort the beginning of each nursing shift for the upcoming 4-hour shift. After observing

actual patient demand for nursing at the start of the next shift, we make our final staffing adjustments to

meet the patient demand for nursing. We model six different adjustment options for the two-stage stochastic

programming model: five available as first-stage decisions and one available as the second-stage recourse

decision. In intensive care environments 30 to 70% of patient admissions are unscheduled (unknown 12

hours ahead of the actual admission time) and have diverse patient acuities. Because of the fluctuating

patient demand, nursing administrations constantly face the challenge of adjusting previously-created nurse

schedules. In Chapter 4 we developed alternative medium-term integrated staffing and scheduling policies.

As our results suggest, matching perfectly the patient demand with medium-term planning in a dynamic

intensive care environment is not an easy task. We develop a two-stage stochastic integer programming

model which minimizes total nurse staffing costs and the cost of adjustments to the original medium-term

schedules, while ensuring coverage of nursing demand.

A stochastic integer programming model is attractive because the number of unscheduled patient admis-

sions, as well as acuity assignments, in the upcoming shift is unknown at the time of adjustments. Historical

unscheduled patient admissions and acuity distributions are used to calculate an expected nursing require-

ment. The calculated nursing requirement is compared to the provided nursing hours after the short-term

schedule adjustments. We model the current 4-hour nursing shift as the first stage of adjustments, when

the actual patient demand is not revealed. The upcoming nursing shift is the second stage of adjustments,

when the actual patient demand has been fully revealed. In the second stage we make corrections (i.e., re-

questing mandatory nurse overtime) to cover patient demand. Using two-stage stochastic short-term staffing

adjustment model, we study this esearch question: “Can short-term schedule modifications that are based on

decisions obtained from the two-stage stochastic integer programming model bring cost savings and reduction

in understaffing levels, compared to existing medium-term staffing plans, during the nursing shifts?”

We also evaluate the scheduling-flexibility needs of the medical unit using the developed two-stage stochastic

adjustments model. The number of first-stage adjustments, the ratio of shifts with any adjustments, provides

insight regarding the flexibility needed when building and adjusting nurse schedules. We run the developed
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two-stage Stochastic Adjustments model for each nursing shift throughout the staffing horizon. Each exper-

imental run consists of multiple optimality cuts, and for each cut the second-stage subproblem is solved for

each scenario given the Case ID information. Our results indicate that the Stochastic Adjustments model pro-

vides the least costly solution under all UPC options when compared to medium-term no-adjustment models.

Even when compared to the Optimal Staffing model, which assumes patient demand data is perfectly known

to the administration, the Stochastic Adjustments model reduces costs. Cost savings are in the range of 1%

to 8% for various UPC levels when compared with the hypothetical Optimal Staffing option. Our results also

indicate that the models that use historical patient data to estimate stochastic patient demand can reduce

costs 5% to 20%. Considering the significant portion of hospital operation budgets represented by staffing

costs, the 5% to 20% savings obtained using the short-term Stochastic Adjustments model appear promising.

We present some underlying factors that make short-term Stochastic Adjustments models more attractive

to the general nursing administration community. According to our results, the more unscheduled patients

admissions there are, the greater the need is for scheduling flexibility for the medium-term scheduling models,

and the more often short-term schedule adjustments are needed to better mimic patient demand. Higher

levels of scheduled admissions create smoother patient demand data associated with lower levels of coeffi-

cient of variation, making it easier to match patient demand for nursing. PRN nurses are critical for cost

savings due to the flexibility they provide for the minimization of under- and over-staffing in the nursing

shifts. Having a sizable PRN nurse body will alleviate nursing shortages and provide the required flexibility

for the nursing administration in the scheduling process. Because of the limited medium-term scheduling

flexibility of the unit, more room is left for efficiency gains for short-term adjustments. We conclude that

the smaller the PRN nurse ratio is, the greater the cost savings will be using the short-term Stochastic

Adjustments model. The size of the available nurse pool is also an important factor, providing a capacity

cushion for the desired nurse-staffing levels. To determine a non-unit-specific measure, we divide the nurse

pool size available for scheduling to the unit by the average staff size used in a shift throughout the staffing

horizon. The smaller the ratio of used nurses to available nurses, the more scheduling flexibility will be

observed because of the extra nurse availability for scheduling. The coefficient of variation in patient data

also affects the required level of scheduling flexibility for the medical unit. Units observing higher levels

of variation in patient demand will benefit the most in the medium term using the Dynamic Staffing ap-

proach and in the short term using the Stochastic Adjustments model. The smoother the patient data for a

medical unit, the lower cost savings that will be observed using the two-stage Stochastic Adjustments model.
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To understand better the scheduling flexibility needs of the medical units, we evaluate some performance

measures related to the frequency and size of the first- and second-stage adjustment decisions and their

associated costs. Combining all types of first-stage schedule adjustments, our results indicate the nurse

schedules developed in the medium term will need some sort of adjustment in the short term in more

than 75% of the shifts for the staffing horizon. This observation demonstrates the crucial need for short-

term schedule adjustment models in order to satisfy the most-needed scheduling flexibility. The probability

matrices we developed reflect an accurate representation of the stochastic nature in the patient demand

data, bringing the cost savings and lower understaffing levels we present here. Our results also indicate that

the models using historical patient data to estimate stochastic patient demand can bring cost savings of 5%

to 20% for the medical units. Our results indicate significantly lower levels of mandatory nurse overtime

to be needed in the second stage using the Stochastic Adjustments model: fewer than 0.3 nurses per shift

in most of the experiments. Lower levels of second-stage mandatory overtime usage reflects the successful

implementation of first-stage adjustments within the two-stage Stochastic Adjustments model.
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Chapter 6

Conclusions & Future Work

Recent estimates suggest that national health care expenditures increased between 5% and 6% in 2014 and

2015, and are estimated at $3.2 trillion. These increases are substantially higher than inflation, and some

estimates suggest that similar increases will continue through 2024 (Bauchner and Fontanarosa, 2016). Nurs-

ing care is identified as the single biggest factor in both the cost of hospital care and patient satisfaction

(Yankovic and Green, 2011). Several studies have shown that there exists a strong association between nurse

staffing levels and patient outcomes. When a nursing unit is chronically short-staffed, nurses are forced to

keep up an intense pace in order to ensure that patients receive timely care. Over time this can result not

only in nurse burnout, patient dissatisfaction, and even medical errors. Improved accuracy in the allocation

of nursing staff can mitigate these operational risks and improve patient outcomes. Because registered nurse

wages and benefits constitute approximately 25% of all hospital costs (Maenhout and Vanhoucke, 2013b),

hospitals have tried to reduce nurse staffing in order to reduce costs and increase profitability (Rivers et

al., 2005). However, projections suggest that by 2020 approximately 36% of nursing positions in the United

States will remain unfilled (Wright and Bretthauer, 2010). Buerhaus et al. (2009) suggests that the U.S.

nursing shortage could reach one-half million by 2025. Rising healthcare costs and increasing nurse short-

ages make cost-effective nurse staffing vital (Kortbeek et al. 2015). This shortage of nurses has attracted

considerable attention due to its direct impact on the quality of patient care (Punnakitikashem et al. 2013).

Although nursing care is identified as the single biggest factor in both the cost of hospital care and in patient

satisfaction, there is still widespread dissatisfaction with the current methods of determining nurse staffing

levels, including the most common one of using minimum nurse-to-patient ratios (Yankovic and Green, 2011).
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In many hospitals, staffing levels are a result of historical development, given that hospital managers lack the

tools to base current staffing decisions on information about future patient demand (Kortbeek et al. 2015).

According to Paul and MacDonald (2013), nurse shortage implications extend beyond healthcare quality to

health economicsl. Inaccurate estimates of the nursing resources required to satisfy patient demand in a

hospital environment can make this already-challenging problem worse. Mandatory nurse-to-patient ratios

implemented in some states, while simplifying the estimation of demand, also create a risk of under- or

over-estimating nurse resource requirements. For management, better and more flexible scheduling can help

retain nurses and aid in their recruitment, reduce tardiness and absenteeism, increase morale and productiv-

ity, and provide better patient service and safety. For all these reasons, the development of methodologies

and decision support tools to improve nurse scheduling is still a strategic problem for hospital administrations.

Staffing requirements are the result of a complex interaction between care unit size, nurse-to-patient ratios,

bed census distributions, and quality-of-care requirements. An optimal configuration depends strongly on

the characteristics of a specific case study (Kortbeek et al., 2015a). Green et al. (2013) indicates that

establishing the appropriate nursing level for a specific hospital unit during a specific shift is complicated

by the need to make staffing decisions well in advance (e.g., six to eight weeks) of that shift. Also, labor

constraints concerning the number of consecutive and weekend shifts worked per nurse, vacation schedules,

personal days, and preferences further complicate matters (Miller et al. 1976, Wright et al. 2006). Man-

agement of the nursing workforce is typically seen as a multi-phase sequential planning and control process

that basically consists of staffing, shift scheduling, and allocation phases (Maenhout and Vanhoucke, 2013).

The decisions made in each phase of this hierarchical process constrain subsequent phases. Burke et al.

(2013) also indicates that creating rosters is a challenging search problem which requires the satisfaction of

many constraints and the balancing of a variety of requirements. This time-consuming and frustrating duty

often falls to a head nurse who would rather be concentrating on his or her primary duty of caring for patients.

Enactment of the Affordable Care Act (ACA) resulted in more and sicker patients entering the healthcare

system. The subsequent increases in nursing workload has led to a higher risk of nurse burnout in already

short-staffed environments. These developments force hospital administrations to gain better control of un-

derstaffing levels in medical units while balancing staffing costs. In this dissertation we study strategic nurse

allocation policies under dynamic patient demand. In Chapter 1, we present our problem and provide our

research questions. In Chapter 2 we review literature on the research topics of this dissertation. In the

first section of this chapter we review literature on nursing workload measurement approaches. The staffing
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and scheduling of healthcare personnel involves determining the number of nurses with the required skills

and assigning them to the predetermined shifts to meet predicted patient demand. This process is also

called workforce planning and scheduling in other personnel planning environments. In the second section

we discusses related literature. In the third section we provide a comprehensive review of the nurse staffing

and scheduling literature in journals that focus on Operations Management and Operations Research. This

review covers research areas related to stages of nurse planning, nurse staffing policy options, cyclic and non-

cyclic scheduling of nurses, algorithmic solution approaches to the nurse staffing and scheduling problems,

cross-utilization of nurses in medical units, nurse absenteeism, scheduling under uncertain demand using

stochastic solution approaches, short-term nurse staffing, and nurse-to-patient assignment.

Many patient care units face challenges in trying to accurately estimating the number of nurses needed on a

daily basis. Analytical predictive methods, which complement intuition and experience-based decisions on

nurse staffing and workload, would help decrease unplanned last-minute scheduling for nurses, and would

improve healthcare delivery by providing more efficient nurse allocation. One factor making such estimates

difficult is the lack of a decision support tool for understanding the distribution of admissions to healthcare

facilities. We aim to statistically evaluate the existing staff allocation system of a Pediatric Intensive Care

Unit (PICU) using clinical operational data, and then to develop a predictive model for estimating the num-

ber of admissions. We analyzed clinical operational data of three PICU wards for a period of 44 months.

The existing staff allocation models for these three units do not accurately estimate the required number of

nurses. It is difficult to understand the pattern and frequency of admissions, particularly those admissions

that are not known 12 hours in advance. It is also difficult to understand the pattern and frequency of

admissions, expecially those admissions that are not known twelve hours in advance. In Chapter 3 we first

show that these “unknown” admissions can actually be predicted fairly accurately by fitting the pattern of

admissions to a Poisson distribution. The purpose of Chapter 3 is to provide a framework for accurately

estimating the number of nurses required in Intensive Care Units (ICUs) on a given day.

Determining accurate nurse staffing levels has been a topic of great interest because of healthcare quality

requirements, financial constraints, limited resources, patient safety requirements, and nurse shortages. In

Chapter 3 we confirm the influence of unscheduled admissions on the accuracy of predicting PICU admissions.

We show that estimating the number of unscheduled admissions by obtaining the probability distribution

of historical unscheduled admissions will provide higher precision than using only experience and intuition.

We propose a convenient, objective, simulation-based statistical methodology to assist healthcare providers
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in estimating the number of admissions and required number of nurses. Additional research should be con-

ducted to understand the nature of scheduled admissions before StaffAssist can be refined. Investigators

identified gaps between the expected admission and discharge numbers, and additional research will focus

on understanding discharge patterns to resolve this discrepancy. This chapter aims to improve nurse staffing

models, which will enable nurses to deliver better quality care and to improve patient outcomes. In general,

we have not found literature, especially PICU literature, explaining how to predict unscheduled admissions.

The model we developed in this chapter is generalizable for implementation in other intensive care units.

Nurse rostering is an NP-hard combinatorial problem. This makes it extremely difficult to efficiently solve

real life problems because of their size and complexity. Usually real problem instances face complicated work

rules related to safety and quality of service issues, as well as rules about preferences of the personnel. In

order to avoid the size and complexity limitations, we use a two-phase solution procedure in Chapter 4. In

Phase 1 of the procedure we generate feasible FTE nurse schedules for a staffing horizon of six weeks while

satisfying constraints imposed by the nurse profile. Pre-generated schedules eliminate the increased number

of constraints and reduce the number of decision variables of the integrated nurse staffing and scheduling

model. In Phase 2 we assign FTE nurses to the pre-generated feasible nurse schedules and PRN nurses to

the nursing shifts using mixed-integer optimization models. When the nursing administration prepares the

medium-term nurse schedules for the next staffing cycle (six weeks in our case) one to two months before the

actual patient demand is realized, target staffing levels for the upcoming nursing shifts are typically deter-

mined by a general average staffing level for the nursing care needs in the medical units. The optimization

model in this chapter recommends initial staffing plans and schedules for a six-week staffing horizon, given

a variety of nurse groups and nursing shift assignment types, in the PICU medical units.

We first prepare a “heat map” of patient census and ADT activity in the medical units for the dynamic

staffing policy option. To do so we estimate a monthly seasonality index for Patient Census, Acuity, and

ADT Activity. Then, we estimate Patient Census, Acuity and ADT Activity averages for all “Day of Week”

and “Shift of the Day” combinations. This heat map of patient demand is generated by multiplying the

monthly seasonality factors with the historical “Day-Shift” averages for the medical units. We used the heat

map and the mixed-integer optimization models to analyze whether dynamic staffing policies outperform

the currently-used fixed staffing policy. We also compare the performance of both options with the optimal

staffing scheme reached by the actual patient data. We also include a novel methodology for estimating nurse

workloads by considering patient census, acuity and activity in the unit. The dynamic staffing policy we

180



propose uses historical patient demand data to suggest a non-stationary staffing scheme during the staffing

horizon. We test the fixed staffing policy alternative with various staffing level options (i.e, the staffing of

11, 13 or 15 nurses). For the dynamic staffing alternative we prepare a heat map of patient census and

acuity, as well as admission/discharge/ (ADT) activity in the PICUs (as an example) and compare the per-

formance of the dynamic heat map based policy against the alternative fixed staffing policies. We compare

the performance of both nurse allocation policy options (in terms of cost savings and understaffing ratios)

to the optimal staffing scheme reached by the actual patient data . This allows us to study our first research

question in Chapter 4: “Do dynamic medium-term nurse staffing policies that use patient demand forecasts

outperform the historically-used fixed staffing policy for the intensive care medical units?”

Our results suggest that the total objective function cost for the optimization experiments is either slightly

reduced or kept stable as we increase the number of available schedules for each nurse profile from 4 to 256.

We conclude that feeding the alternative staffing models with 256 schedules per FTE profile (i.e. 7,680 total

different schedules for the optimization model) is sufficiently large for providing schedule diversity. Even

four maximally different schedules per nurse profile approach seems to provide efficient solutions. Further

increases in the NAS, above 256 schedules per nurse profile, will not bring any cost savings but will increase

the problem complexity, hurting the performance of the developed models. With regard to the staffing policy

evaluation, our results for the experiments we conducted with the three PICU wards suggest that the per-

formance of Dynamic Staffing policy is mostly superior to the Fixed Staffing alternatives. The performances

are similar fpr a few problem instances in terms of understaffing percentages and total costs. The power of

the Dynamic Staffing policy lies in the accuracy of the forecasted heat map. As the forecasting performance

in preparing the unit-specific heat map is improved, more cost savings and reduced understaffing percent-

ages will be observed. For the Fixed Staffing policy we must note that a perfectly stable staff size may not

be feasible in many cases, especially thos with a limited number of PRN nurses. Also, our Fixed Staffing

modeling approach provides a reliable and efficient way of scheduling the nursing workforce. Medical units

with higher variation in patient demand levels would benefit the most by using the Dynamic Staffing policy

proposed in this study.

As nurse workload increases because of the nursing shortage issues, overtime is becoming more of a burden

on nursing staff. Nurses cite undesirable schedules and overtime as primary reasons for burnout (Aiken et

al., 2002). Unsatisfactory working conditions and policies also contribute to higher turnover rates (Aiken et

al., 2002; Cline, Reilly & Moore, 2003). Jones (2007) suggest that the cost of turnover in the United States is

181



approximately 1.2-1.3 times the average annual salary for each vacancy. U.S. hospitals spend approximately

$300,000 annually for each 1% increase in the turnover rate (Price Waterhouse Coopers, 2007). Some U.S.

lawmakers proposed legislation that limits the use of overtime and the number of patients that each nurse

is assigned to. There are 21 states with restrictions on the use of overtime (American Nurses Association,

2011). In Chapter 4 we introduce the concept of an “understaffing penalty” as a mechanism to control

the understaffing in the medical units, avoid nurse burnout, and make the job more appealing to new RN

candidates. We analyze how various levels of understaffing penalty (i.e., the cost of understaffed hours given

as a ratio to the cost to the FTE nurse staffing) affect outcomes (i.e., costs and understaffing percentages)

. We also evaluate the impact of the number of available schedules (NAS) per FTE nurse profile on the

objective function costs and understaffing ratios in the medical units. We explore whether there exists a

saturation level for the NAS, at which increases in the NAS do not bring any additional cost savings. To

study these aspects of the medium-term nurse staffing and scheduling problem, we ask our second research

question: “How do we control the understaffing levels in the medical units which often trigger nurse burnout

and medical errors?”

The results of experiments using the Dynamic Staffing policy suggest using understaffing penalty cost (UPC)

as a reliable mechanism for controlling understaffing ratios. Depending on the tolerance levels of understaffing

for the medical unit, the nursing administration can determine the UPC level to use. For unexpectedly-high

patient demand periods, higher understaffing levels may be observed, as the Dynamic Staffing policy is based

on historical patient -demand-based heat maps. Heat maps can be adjusted as new demand patterns are

observed for new staffing horizons. As the accuracy of patient demand forecasts is enhanced, better per-

formance outcomes will be achieved using Dynamic Staffing. Historically-employed Fixed Staffing policies

do not provide the required staff size flexibility to alleviate understaffing, triggering nurse burnout. Fixed

Staffing policies will increase the need for short-term schedule adjustment costs in order to better match the

patient demand due to the static nature of staff size. All PRN nurses were assigned to work in all experi-

ments, demonstrating that PRN nurses are critical for cost savings because of the flexibility they provide for

the minimization of under- and over-staffing in the nursing shifts. We conclude that having a sizable PRN

nurse body will alleviate the nursing shortages and provide the required flexibility for the nursing admin-

istrations in their scheduling process. Nursing administration can use the results of medium-term staffing

experiments for long-term planning to determine whether the current nurse pool is large enough to satisfy

patient demand. Our analysis regarding objective function cost elements also suggests that Dynamic Staffing

provides the required staff-size flexibility that reduces staffing costs while balancing understaffing risks.
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Nurse schedules are constructed well before actual patient demand for nursing is observed. In an environment

where 30 to 70% of patient admissions are unscheduled, are unknown 12 hours before the actual admission

time, and feature diverse patient acuities, the nursing administration constantly faced the challenge of ad-

justing the pre-developed nurse schedules in the short term. When a medical unit is understaffed, staffing

alternatives available to the administration include: (1) requesting nurses from the general float pool of the

hospital; (2) using on-call nurses (i.e., FTE overtime and additional PRN hours); and (3) asking nurses on

the current shift to stay for the next shift (requiring that overtime be paid. When the scheduled nursing

hours are greater than the hours demanded by the existing patients, the nurse manager (or the charge nurse)

can: (1) float the nurse to another unit; (2) reassign her to a later day in the same staffing horizon or (3)

cancel the shift for a nurse who is not willing float or be reassigned and use vacation, personal day, holiday,

or unpaid leavefor the time off: (Bard and Purnomo, 2005a). Each option listed above has its own unique

cost implications. One important aspect of the short-term nurse schedule modification problem is the exis-

tence of a very efficient solution algorithm. The charge nurse will usually run the algorithm at the beginning

of each 4 to 8-hour shift and expect to have a solution in less than an hour, preferably in less than 10 minutes.

As an alternative approach to the problem we study the medium-term integrated nurse scheduling and

staffing as a separate problem as presented in Chapter 4. Then we make short-term adjustments for the up-

coming 4-hour nursing shift 4-8 hours before the actual patient demand is realized. As described in Chapters

3 and 4, the PICU we study uses a fixed staffing level for the medium-term staffing and scheduling of the

upcoming shift, followed by adjustments every four hours. The short-term schedule adjustment tool usually

used at the PICU considers only the scheduled patient admissions, which do not exploit the forecasts of

historical unscheduled patient admissions. We belive this is the first study to apply the two-stage stochastic

programming approach to make short-term schedule adjustments for the upcoming 4-hour nursing shift. This

chapter extends the work on medium-term nurse staffing and scheduling to address short-term adjustments.

For nurse schedules developed at the medium-term planning phase, we conduct two-stage short-term staffing

adjustments for the upcoming nursing shift. Our proposed adjustments are made at the beginning of each

nursing shift for the upcoming 4-hour period. Then, after the actual patient demand for the start of the next

shift is realixed, we make our final staffing adjustments. We model six different adjustment options for the

two- stage stochastic programming model, five of them available as first-stage decisions and one option as

the second-stage decision. Because the adjustment horizon is less than 12 hours, unit nurse manager knows

the current patient census, acuity levels of the patients, and the number of scheduled admissions and dis-
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charges in the current and upcoming shifts. We develop a two-stage stochastic integer programming model

which will minimize the total nurse staffing costs and cost of adjustments to the original schedules developed

in the medium-term planning phase, and which ensures coverage of the nursing demand in the unit. We

also investigate the scheduling flexibility needs of the medical units. Thus we formulate our third research

question: “Can short-term schedule modifications based upon decisions attained from two-stage stochastic

integer programming model bring cost savings and reduction in understaffing levels, compared to keeping the

original medium-term staffing plans?”

The solution algorithm for the two-stage stochastic linear programs with fixed recourse incorporates some

initial decisions that minimize current costs, plus the expected value of future recourse actions. One can al-

ways form a full deterministic equivalent linear program, called the extensive form, of the original stochastic

model under a finite number of second-stage realizations. Higher numbers of these second stage realizations

make the extent of the problem greater, making it harder to achieve an efficient solution. The frequently-used

solution technique, the “L-shaped Method,” is a family of algorithms that are based on developing an outer

linearization of the recourse function. This is a cutting plane method in that linear cuts, supporting hyper-

planes, are generated to create the linearization of the recourse function. The algorithm is primarily based on

generating an outer linearization of the recourse cost function and finding a solution of the first-stage prob-

lem plus this linearization. This method is a direct application of Bender’s Decomposition of the stochastic

program primal, or, equivalently, a Dantzig-Wolfe decomposition of the dual. The block structure of the

extensive form has given rise to the name “L-Shaped” for the algorithm. The method has been developed by

Van Slyke & Wets (1969) in stochastic programming to take care of the feasibility questions. The main princi-

ple in the L-shaped method is to approximate the nonlinear term in the objective of the stochastic programs.

Our research shows that the Stochastic Adjustments model provides the least expensive solution, under all

UPC options, when compared to medium-term no-adjustment models. Even when compared to the Optimal

Staffing model, which assumes patient demand data is perfectly known to the administration, the Stochastic

Adjustments model delivers cost savings. These savings are in the range of 1% to 8% for various UPC levels

when compared to the hypothetical Optimal Staffing option. Our research also indicates that the models

using historical patient data to estimate stochastic patient demand can deliver cost savings of 5% to 20% for

the medical units. Because nurse staffing costs account for a significant portion of hospital operating bud-

gets, savings in the range of 5% to 20% seem possible using the short-term Stochastic Adjustments model.

We present underlying factors that make short-term Stochastic Adjustment models more attractive to the
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general nursing administration community. As the number of unscheduled patient admissions rises there is

a greater need for scheduling flexibility for the medium-term scheduling models. More short-term schedule

adjustments are required in order to better mimic patient demand for nursing. Higher levels of scheduled

admissions create smoother patient demand data associated with lower levels of coefficient of variation, mak-

ing it easier to satisfy patient demand. PRN nurses are critical for cost savings because their flexibility helps

minimize under- and over-staffing in the nursing shifts.

A sizable PRN body will alleviate nursing shortages and provide flexibility for the nursing administration in

the scheduling process. There is more room for efficiency gains in short-term adjustments because of the lim-

ited medium-term flexibility of the unit. We conclude that, by using the short-term Stochastic Adjustment

model, the smaller the PRN nurse ratio is, the greater that cost savings will be. The size of the available

nurse pool is also an important factor, as it provides a capacity cushion for the desired nurse staffing levels.

To obtain a non-unit specific measure, we divide the available nurse pool size for scheduling to the unit by

the average staff size used in a shift throughout the staffing horizon. Lower ratios will allow more scheduling

flexibility in the unit because more nurses are available to be scheduled. The coefficient of variation in patient

data also affecs the level of scheduling flexibility required for the medical unit. Units with higher levels of

variation in patient demand will benefit the most from the Dynamic Staffing approach in the medium term

and the Stochastic Adjustments model in the short-term. The smoother the patient data is, the lower the

cost savings that will be observed using the two-stage Stochastic Adjustments model.

When we combine all types of first-stage schedule adjustments, we show that nurse schedules developed

in the medium term will need some sort of adjustment in the short term in more than 75% of all shifts.

This observation demonstrates the crucial need for short-term schedule adjustment models to satisfy the

most-needed scheduling flexibility. The probability matrices we developed accurately reflect the stochastic

nature of the patient demand data and provide costs savings as well as lower levels of understaffing. We also

demonstrate that models which use historical patient data to estimate stochastic patient demand can reduce

costs of 5% to 20%. We show significantly lower levels of mandatory nurse overtime usage in the second

stage under the Stochastic Adjustments model, less than 0.3 nurses per shift for most of the experiments.

Lower levels of second-stage mandatory overtime usage reflect the successful implementation of first-stage

adjustments within the developed two-stage Stochastic Adjustments model.

In future research, the multi-stage version of the two-stage Stochastic Adjustment model would allow the
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nursing administration to evaluate alternative adjustment models by constructing a specific scenario tree

defining the time evolution of the adjustment process. Development of a Nurse Burnout Index (NBI) based

on scheduling requirements, preferences, and adjustments frequency is also of interest. Obtaining access to

patient demand and nurse data from various types of hospitals would enable us to compare various forms of

the integrated nurse staffing and scheduling problem. Shift-based nurse adjustments data would also enable

us to compare the performance of the our short-term adjustments model to what what presently exists. All

of these aspects of the nurse allocation problem can be studied in future research..
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Fit Poisson distribution to the subset 
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Appendix B

A Tour Assignment Model of

Integrated Nurse Staffing &

Scheduling

Model Description

Our decision variables in the model define when a nurse from a specific job class is assigned for a shift,

and when that shift starts and ends. The objective function for the model will minimize the costs from

main scheduling phase. The cost components associated with the model include: (1) Staffing cost from FTE

nurses, (2) Staffing cost from PRN nurses, (3) Understaffing costs ( i.e. percentage understaffing multiplied

by a unit cost) and (4) Overstaffing costs.

Constraints will ensure satisfying requirements like: (1) 12-hour break between two successive shift assign-

ments for each nurse, (2) No nurse can work more than 3 consecutive 4-hour shifts at a time, (3) No nurse

can work more than 40 hours/week, (4) All FTE nurses will be scheduled at least for two consecutive shifts

(i.e. they cannot be scheduled only for a single 4-hour shift), (5) No FTE nurse can be scheduled more than

4 work days per week, (6) Minimum and maximum work hours allowances per week and per staffing horizon

for different classes of PRN and FTE nurses, (7) Day shift nurse, Night shift nurse limitations, (8) Holiday

and/or weekend shifts assignment constraints.

Sets
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I : Set of all nurses working for the medical ward / unit

Define j, w and s as follows:

j : index for alternative nurse job profiles for the medical unit; (i.e. J = {1, 2, 3, ... , 9} )

w : index for weekend assignment group for nurses in the medical unit; (i.e. W = {A, B, C} )

s: index for day or night shift assignment classification for nurses in the medical unit; (i.e. S = {D, N}

)

Then, define Iw,sj : Set of all nurses with job class j, weekend assignment group w and assigned to shift type

s for the medical unit.

i.e. IA,D2 will be the set of nurses from job class 2, FTE - 0.9 nurse, assigned to weekend assignment group

A and will work in day shifts.

Let Γ = {1, 2, ... , 24} be the set of non-weekend shifts.

k : Shift assignment types for the nurses k P K, K = {1, 2, 3}

i.e. Assignment type 1, k=1, assigned nurse will be assigned to work for a single four-hr shift Assignment

type 2, k=2, assigned nurse will be assigned to work for two consecutive four-hr shifts Assignment type 3,

k=3, assigned nurse will be assigned to work for three consecutive four-hr shifts

L : Set of four-hr nursing shifts within a week L = {1, 2, 3, ... ,42}

i.e. A typical week starts with the nursing shift l = 1, which is a Monday D1 shift and ends with shift l =

42, which is a Monday N2 shift.

M : Set of weeks within the staffing horizon M = {1, 2, 3, 4, 5, 6}

Θ : Set of patient acuity categories Θ = {1, 2, 3, 4, 5, 6}

i.e. For θ P Θ acuity category θ =1 indicates that patient belongs to the acuity designation A in hospital

terminology, similarly θ=2 indicates acuity group B, θ=3 indicates acuity group C, θ=4 indicates acuity

group D, θ=5 indicates acuity group E, θ=6 indicates acuity group F.

Model Parameters

ϑl,m : the vector keeping the number of patients in each acuity group at the unit for shift l of week m.

i.e. ϑ21,3 = [0, 2, 5, 8, 4, 1] will indicate that, in shift 21 of week 3, there are 0 patients with acuity A, 2

patients with acuity B, 5 patients with acuity C, 8 patients with acuity D, 4 patients with acuity E and 1
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patients with acuity F are staying in the unit.

Define }ϑl,m} :=
řn
i“1 |ϑl,mpiq|, where ϑl,mpiq represent the ith column of the vector ϑl,m (i.e. distance norm

of the vector).

Note that }ϑl,m} provides the patient census in the unit. (i.e. For shift 21 of week 3 patient census is }ϑ21,3}

:=
ř6
i“1 |ϑ21,3piq| = 0+2+5+8+4+1 = 20

h : the vector storing nursing hours required for patient care for acuity groups in a four-hour nursing shift

(i.e. h = [0.5, 1, 1.5, 2.5, 4, 8] ; a patient with acuity F, θ=6, will require eight hours of nursing care in a

four-hour shift).

αl,m: number of admission and transfer-in activities to a unit for shift l of week m

βl,m: number of discharge and transfer-out activities to a unit for shift l of week m

cj : stafing cost per four-hour shift for the nurse from job profile j

γ : nursing hours required for one patient admission / transfer-in activity

δ : nursing hours required for one patient discharge / transfer-out activity

q´ : Penalty cost of percentage understaffing per four-hour shift

q` : Penalty cost of percentage overstaffing per four-hour shift

Decision Variables

x l,m
i,k = 1 if nurse i for an assignment type k in shift l of week m is assigned to work; 0 otherwise.

y l,m
i,k = 1 if nurse i for an assignment type k starts working for a new assignment in shift l of week m ; 0

otherwise.

Objective Function Cost Components

Staffing Costs:

For all nurses in a specific job class j P J the staffing costs will be:

ÿ

i

ÿ

k

ÿ

l

ÿ

m

cj .x
l,m
i,k @ i P Ij

We can then compute the total staffing costs by adding up these costs for all values of j P J :
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ÿ

j

cj

«

ÿ

i

ÿ

k

ÿ

l

ÿ

m

x l,m
i,k @ i P Ij

ff

Understaffing / Overstaffing Costs:

Total nurse hours provided for shift l in week m:

ÿ

i

ÿ

k

4.x l,m
i,k

Total nursing hours required for shift l in week m:

ϑl,m.h
T ` γ.αl,m ` δ.βl,m

Understaffing Penalty Cost for shift l in week m:

q´.

„

ř

i

ř

k

4 .x l,m
i,k ´ ϑl,m.h

T
´ γ.αl,m ´ δ.βl,m

´

ϑl,m.h
T
` γ.αl,m ` δ.βl,m

Overstaffing Penalty Cost for shift l in week m:

q`.

„

ř

i

ř

k

4 .x l,m
i,k ´ ϑl,m.h

T
´ γ.αl,m ´ δ.βl,m

`

ϑl,m.h
T
` γ.αl,m ` δ.βl,m

Objective Function: Staffing Costs + Under/Over Staffing Penalty Costs for the Entire Staffing Hori-

zon

ÿ

j

cj

«

ÿ

i

ÿ

k

ÿ

l

ÿ

m

x l,m
i,k @ i P Ij

ff

`
ÿ

m

ÿ

l

q´.

„

ř

i

ř

k

4 .x l,m
i,k ´ ϑl,m.h

T
´ γ.αl,m ´ δ.βl,m

´

ϑl,m.h
T
` γ.αl,m ` δ.βl,m
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`
ÿ

m

ÿ

l

q`.

„

ř

i

ř

k

4 .x l,m
i,k ´ ϑl,m.h

T
´ γ.αl,m ´ δ.βl,m

`

ϑl,m.h
T
` γ.αl,m ` δ.βl,m

Model Constraints

• Constraints related to the consistency of shift assignment types with their original definitions

If a nurse started working on a single four-hour shift assignment then:

y l,m
i,1 = x l,m

i,1 @ i , l , m

(1 - y l,m
i,1 ) . κ ě x

pl´1q,m
i,1 + x

pl`1q,m
i,1 @ i , l , m

If a nurse started working on a two consecutive four-hour shift assignment then:

y l,m
i,2 = x l,m

i,2 @ i , l , m

y l,m
i,2 ď x

pl`1q,m
i,2 @ i , l , m

If a nurse started working on a three consecutive four-hour shift assignment then:

y l,m
i,3 = x l,m

i,3 @ i , l , m

y l,m
i,3 ď x

pl`1q,m
i,3 @ i , l , m

y l,m
i,3 ď x

pl`2q,m
i,3 @ i , l , m

• Constraints related to the consistency of total weekly work hours with the job class definitions for FTE

nurses

(FTE - 1.0 nurses): For j =1 and @ i P Ij and m :
ř

l

ř

k

x l,m
i,k = 10

(FTE - 0.9 nurses): For j =2 and @ i P Ij and m :
ř

l

ř

k

x l,m
i,k = 9

(FTE - 0.8 nurses): For j =3 and @ i P Ij and m :
ř

l

ř

k

x l,m
i,k = 8

(FTE - 0.6 nurses): For j =4 and @ i P Ij and m :
ř

l

ř

k

x l,m
i,k = 6

(FTE - 0.5 nurses): For j =5 and @ i P Ij and m :
ř

l

ř

k

x l,m
i,k = 5

(FTE - 0.3 nurses): For j =6 and @ i P Ij and m :
ř

l

ř

k

x l,m
i,k = 3

• Constraints related to the consistency of total available assignment types with the job profile definitions

for FTE nurses
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(FTE - 1.0 nurses):
ř

l

y l,m
i,1 = 0 For j =1 and @ i , m

ř

l

y l,m
i,2 = 2 For j =1 and @ i , m

ř

l

y l,m
i,3 = 2 For j =1 and @ i , m

(FTE - 0.9 nurses):
ř

l

y l,m
i,1 = 0 For j =2 and @ i , m

ř

l

y l,m
i,2 = 0 For j =2 and @ i , m

ř

l

y l,m
i,3 = 3 For j =2 and @ i , m

(FTE - 0.8 nurses):
ř

l

y l,m
i,1 = 0 For j =3 and @ i , m

ř

l

y l,m
i,2 = 1 For j =3 and @ i , m

ř

l

y l,m
i,3 = 2 For j =3 and @ i , m

(FTE - 0.6 nurses):
ř

l

y l,m
i,1 = 0 For j =4 and @ i , m

ř

l

y l,m
i,2 = 0 For j =4 and @ i , m

ř

l

y l,m
i,3 = 2 For j =4 and @ i , m

(FTE - 0.5 nurses):
ř

l

y l,m
i,1 = 0 For j =5 and @ i , m

ř

l

y l,m
i,2 = 1 For j =5 and @ i , m

ř

l

y l,m
i,3 = 1 For j =5 and @ i , m

(FTE - 0.3 nurses):
ř

l

y l,m
i,1 = 0 For j =6 and @ i , m

ř

l

y l,m
i,2 = 0 For j =6 and @ i , m

ř

l

y l,m
i,3 = 1 For j =6 and @ i , m

• Constraints related to the consistency of minimum work hours per schedule with the job class definitions

for PRN nurses

(PRN - Tier 1 nurses):
ř

m

ř

l

ř

k

x l,m
i,k ě 8 For j =7 and @ i , m

(PRN - Tier 2 nurses):
ř

m

ř

l

ř

k

x l,m
i,k ě 17 For j =8 and @ i , m

(PRN - Tier 3 nurses):
ř

m

ř

l

ř

k

x l,m
i,k ě 29 For j =9 and @ i , m

• Constraint limiting the total weekly work shifts for all nurses to ten four-hour shifts per week
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ř

l

ř

k

x l,m
i,k ď 10 @ i , m

• Day shift and Night shift nurses (i.e. specific nurses will be assigned only to daytime shifts or nightime

shifts.)

ř

m

ř

lPN

ř

k

x l,m
i,k ď 0 @ i P I w ,D

j (i.e. s = D)

,where N Ă L represent nighttime shifts (i.e. N = t4, 5, 6, 10, 11, 12, 16, 17, 18, 22, 23, 24, 28, 29, 30, 34, 35, 36, 40, 41, 42u)

and I w ,D
j represent daytime nurses (i.e. the nurses that only get assignments in D1, D2 and E1 shifts).

ř

m

ř

lPD

ř

k

x l,m
i,k ď 0 @ i P I w ,N

j (i.e. s = N )

,where D Ă L represent daytime shifts (i.e. D = t1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21, 25, 26, 27, 31, 32, 33, 37, 38, 39u)

and I w ,N
j represent nighttime nurses (i.e. the nurses that only get assignments in E2, N1 and N2 shifts).

• Constraints related to weekend assignments for nurses from various types (i.e. nurse groups A, B and

C)

Let Γ = {1, 2, ... , 24} be the set of non-weekend shifts and let Γ̄ = {25, 26, ... , 42} be the set of

weekend shifts:

For weekend assignment group A nurses (i.e. w = A):

For i P I A,s
j , j R t1u , l P Γ and m P MA={1, 4} :

ř

i

ř

m

ř

l

ř

k

x l,m
i,k ď 0

For i P I A,s
j , l P Γ̄ and m P MĀ={2, 3, 5, 6} :

ř

i

ř

m

ř

l

ř

k

x l,m
i,k ď 0

For weekend assignment group B nurses (i.e. w = B):

For i P I B,s
j , j R t1u , l P Γ and m P MB={2, 5} :

ř

i

ř

m

ř

l

ř

k

x l,m
i,k ď 0

For i P I B,s
j , l P Γ̄ and m P MB̄={1, 3, 4, 6} :

ř

i

ř

m

ř

l

ř

k

x l,m
i,k ď 0

For weekend assignment group C nurses (i.e. w = C ):

For i P I C ,s
j , j R t1u , l P Γ and m P MC ={3, 6} :

ř

i

ř

m

ř

l

ř

k

x l,m
i,k ď 0
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For i P I C ,s
j , l P Γ̄ and m P MC̄ ={1, 2, 4, 5} :

ř

i

ř

m

ř

l

ř

k

x l,m
i,k ď 0

Note: For nurses from job class j = 1 (i.e. FTE - 1.0 nurses that work 40 hours/week), we need a

relaxation for some of these constraints, because the weeks they will be assigned to work during the

weekend shifts, available number of hours to work add up to 36 hr maximum, which is less than their

40 hr/week work requirement and will cause an infeasibility problem. We will let nurses from job class

j = 1 to be assigned to one weekday Type-2 assignment during their weekend assignment weeks. Math

formulation is as follows:

For weekend assignment group A nurses (i.e. w = A):

For i P I A,s
j , j P t1u , l P Γ and m P MA={1, 4} :

ř

i

ř

m

ř

l

ř

k

x l,m
i,k ď 2

For weekend assignment group B nurses (i.e. w = B):

For i P I B,s
j , j P t1u , l P Γ and m P MB={2, 5} :

ř

i

ř

m

ř

l

ř

k

x l,m
i,k ď 2

For weekend assignment group C nurses (i.e. w = C ):

For i P I C ,s
j , j P t1u , l P Γ and m P MC ={3, 6} :

ř

i

ř

m

ř

l

ř

k

x l,m
i,k ď 2

• Twelve-hour break requirement between two successive assignments, between the current and upcoming

shifts, for nurse assignment type 1 (i.e. Single four-hour shift assignment):

For l P {1,2, ..., 39}, @ i , k , m :

p1´ y l,m
i,1 q.κ ě

”

y
pl`1q,m
i,k ` y

pl`2q,m
i,k ` y

pl`3q,m
i,k

ı

For l=40, @ i , k , m P {1, 2, 3, 4, 5} :

p1´ y l,m
i,1 q.κ ě

”

y
pl`1q,m
i,k ` y

pl`2q,m
i,k ` y

1 ,pm`1q
i,k

ı
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For l=41, @ i , k , m P {1, 2, 3, 4, 5} :

p1´ y l,m
i,1 q.κ ě

”

y
pl`1q,m
i,k ` y

1 ,pm`1q
i,k ` y

2 ,pm`1q
i,k

ı

For l=42, @ i , k , m P {1, 2, 3, 4, 5} :

p1´ y l,m
i,1 q.κ ě

”

y
1 ,pm`1q
i,k ` y

2 ,pm`1q
i,k ` y

3 ,pm`1q
i,k

ı

• Twelve-hour break requirement between two successive assignments, between the current and upcoming

shifts, for nurse assignment type 2 (i.e. Two consecutive four-hour shift assignment):

For l P {1,2, ..., 38}, @ i , k , m :

p1´ y l,m
i,2 q.κ ě

”

y
pl`1q,m
i,k ` y

pl`2q,m
i,k ` y

pl`3q,m
i,k ` y

pl`4q,m
i,k

ı

For l=39, @ i , k , m P {1, 2, 3, 4, 5} :

p1´ y l,m
i,2 q.κ ě

”

y
pl`1q,m
i,k ` y

pl`2q,m
i,k ` y

pl`3q,m
i,k ` y

1 ,pm`1q
i,k

ı

For l=40, @ i , k , m P {1, 2, 3, 4, 5} :

p1´ y l,m
i,2 q.κ ě

”

y
pl`1q,m
i,k ` y

pl`2q,m
i,k ` y

1 ,pm`1q
i,k ` y

2 ,pm`1q
i,k

ı

For l=41, @ i , k , m P {1, 2, 3, 4, 5} :

p1´ y l,m
i,2 q.κ ě

”

y
pl`1q,m
i,k ` y

1 ,pm`1q
i,k ` y

2 ,pm`1q
i,k ` y

3 ,pm`1q
i,k

ı

• Twelve-hour break requirement between two successive assignments, between the current and upcoming

shifts, for nurse assignment type 3 (i.e. Three consecutive four-hour shift assignment):

For l P {1,2, ..., 37} and @ i , k , m :

p1´ y l,m
i,3 q.κ ě

”

y
pl`1q,m
i,k ` y

pl`2q,m
i,k ` y

pl`3q,m
i,k ` y

pl`4q,m
i,k ` y

pl`5q,m
i,k

ı
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For l=38, @ i , k , m P {1, 2, 3, 4, 5} :

p1´ y l,m
i,3 q.κ ě

”

y
pl`1q,m
i,k ` y

pl`2q,m
i,k ` y

pl`3q,m
i,k ` y

pl`4q,m
i,k ` y

1 ,pm`1q
i,k

ı

For l=39, @ i , k , m P {1, 2, 3, 4, 5} :

p1´ y l,m
i,3 q.κ ě

”

y
pl`1q,m
i,k ` y

pl`2q,m
i,k ` y

pl`3q,m
i,k ` y

1 ,pm`1q
i,k ` y

2 ,pm`1q
i,k

ı

For l=40, @ i , k , m P {1, 2, 3, 4, 5} :

p1´ y l,m
i,3 q.κ ě

”

y
pl`1q,m
i,k ` y

pl`2q,m
i,k ` y

1 ,pm`1q
i,k ` y

2 ,pm`1q
i,k ` y

3 ,pm`1q
i,k

ı

• Twelve-hour break requirement between two successive assignments, between the current and previous

shifts, for each nurse:

For l P {6,7, ..., 42} and @ i , k , m:

p1´ y l,m
i,k q.κ ě

”

y
pl´1q,m
i,k ` y

pl´2q,m
i,k ` y

pl´3q,m
i,k ` y

pl´4q,m
i,2 ` y

pl´4q,m
i,3 ` y

pl´5q,m
i,3

ı

For l=5 and @ i , k , m:

p1´ y l,m
i,k q.κ ě

”

y
pl´1q,m
i,k ` y

pl´2q,m
i,k ` y

pl´3q,m
i,k ` y

pl´4q,m
i,2 ` y

pl´4q,m
i,3

ı

For l=4 and @ i , k , m:

p1´ y l,m
i,k q.κ ě

”

y
pl´1q,m
i,k ` y

pl´2q,m
i,k ` y

pl´3q,m
i,k

ı

For l=3 and @ i , k , m:

p1´ y l,m
i,k q.κ ě

”

y
pl´1q,m
i,k ` y

pl´2q,m
i,k

ı

For l=2 and @ i , k , m:

p1´ y l,m
i,k q.κ ě y

pl´1q,m
i,k

• Every nurse assignment has to start and finish within a specific week (i.e. no week overlapping assign-
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ments for nurses):

For l=42, @ i , k , m:

y l,m
i,2 ` y l,m

i,3 “ 0

For l=41, @ i , k , m:

y l,m
i,3 “ 0
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Appendix C

Nurse Staffing Model with PRN

Nurses Modeled in Tiers

Sets and Nurse Job Profiles

J : Set of alternative FTE nurse job profiles for the medical unit; (i.e. J = {1, 2, 3, ... , 30} )

Sj : Set of all available schedules for nurses from job profile j

P : Set of PRN Tiers; (i.e. P = {1, 2, 3} )

T : Set of four-hr nursing shifts during the scheduling period of six week T = {0, 1, 2, 3, ... ,251} (i.e. 42

shifts a week, six weeks in a schedule; 252 four-hour shifts in total).

i.e. A typical week starts with the nursing shift l = 1, which is a Monday D1 shift and ends with shift l =

42, which is a Monday N2 shift.

G : Set of patient acuity categories G = {1, 2, 3, 4, 5, 6}

i.e. For g P G acuity category g =1 indicates that patient belongs to the acuity designation A in hospital

terminology, similarly g =2 indicates acuity group B, g=3 indicates acuity group C, g=4 indicates acuity

group D, g=5 indicates acuity group E, g=6 indicates acuity group F.

Model Parameters

ast : 1 if for schedule s P Sj can be assigned to work at shift t ; 0 otherwise.

ϑgt : the vector keeping the number of patients in acuity group g P G at the unit for shift t P T.
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hg: nursing hours required for patient care for acuity group g in a four-hour nursing shift (i.e. h = [0.5, 1, 1.5,

2.5, 4, 8] ; a patient with acuity F, g=6, will require eight hours of nursing care in a four-hour shift).

αt: number of admission and transfer-in activities to a unit for shift t

βt: number of discharge and transfer-out activities to a unit for shift t

cj : staffing cost per four-hour shift for the FTE nurse from job profile j

bp : staffing cost per four-hour shift for the PRN nurse from tier p

γ : nursing hours required for one patient admission / transfer-in activity

δ : nursing hours required for one patient discharge / transfer-out activity

cu : Penalty cost of percentage understaffing per four-hour shift

co : Penalty cost of percentage overstaffing per four-hour shift

nj : Number of FTE nurses from job profile j P J

kp : Number of PRN nurses from tier p P {1, 2, 3}

Decision Variables

xs : number of FTE nurses from that are assigned to work for schedule s P Sj ; xs P Z.

yp,t : number of PRN nurses from tier p P P that are assigned to work for shift t P T; yp,t P Z.

Ut : Percentage understaffing for shift t P T; Ut P R.

(Ut= max
”

(Required Nursing hrs. in t - Provided Nursing hrs. in t)/(Required Nursing hrs. in t); 0
ı

)

Ot : Percentage overstaffing for shift t P T; Ot P R.

(Ot= max
”

(Provided Nursing hrs. in t - Required Nursing hrs. in t)/(Required Nursing hrs. in t); 0
ı

)

Objective Function Cost Components

Staffing Costs:

For FTE nurses the staffing costs will be computed as:

ÿ

jPJ

ÿ

sPSj

cj ¨ xs
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For PRN nurses the staffing costs will be computed as:

ÿ

pPP

ÿ

tPT

bp ¨ ypt

We can then compute the total staffing costs for the entire scheduling horizon by adding up these costs:

«

ÿ

jPJ

ÿ

sPSj

cj ¨ xs `
ÿ

pPP

ÿ

tPT

bp ¨ ypt

ff

Understaffing Costs:
ÿ

tPT

cu ¨Ut

Overstaffing Costs:
ÿ

tPT

co ¨Ot

Objective Function:

Minimize {Total Staffing Costs + Total Understaffing Penalty Costs + Total Overstaffing Penalty Costs}:

Min

«

ÿ

jPJ

ÿ

sPSj

cj ¨ xs `
ÿ

pPP

ÿ

tPT

bp ¨ ypt `
ÿ

tPT

cu ¨Ut `
ÿ

tPT

co ¨Ot

ff

Model Constraints

• Understaffing and Overstaffing Constraints:

Total nurse hours provided by the FTE nurses for the four-shift t is:

ÿ

jPJ

ÿ

sPSj

4 ¨ xs ¨ ast

Total nurse hours provided by the PRN nurses for the four-shift t is:

ÿ

pPP

4 ¨ ypt
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Then, total nurse hours provided by all the nurses in the medical unit for the four-shift t P T is:

ÿ

jPJ

ÿ

sPSj

4 ¨ xs ¨ ast `
ÿ

pPP

4 ¨ ypt

Total nursing hours required for the four-shift t P T is:

γ ¨ αt ` δ ¨ βt `
ÿ

gPG

ϑgt ¨ hg

Using the given provided and required nursing hours expressions, we can introduce the constraints,

which will set the lower bound for our percentage understaffing variable (Ut) as follows:

«γ ¨ αt ` δ ¨ βt `
ř

gPG

ϑgt ¨ hg ´
ř

jPJ

ř

sPSj

4 ¨ xs ¨ ast ´
ř

pPP

4 ¨ ypt

γ ¨ αt ` δ ¨ βt `
ř

gPG

ϑgt ¨ hg

ff

ď Ut @ t P T;

where Ut ě 0 @ t P T.

Similarly, using the given provided and required nursing hours expressions, we can introduce the

constraints, which will set the lower bound for our percentage overstaffing variable (Ot) as follows:

«

ř

jPJ

ř

sPSj

4 ¨ xs ¨ ast ´
ř

pPP

4 ¨ ypt ´ γ ¨ αt ` δ ¨ βt `
ř

gPG

ϑgt ¨ hg

γ ¨ αt ` δ ¨ βt `
ř

gPG

ϑgt ¨ hg

ff

ď Ot @ t P T;

where Ot ě 0 @ t P T.

• Constraints related to the number of available FTE nurses from each job profile j P J :

ÿ

sPSj

xs ď nj @ j P J;

We cannot assign more than available number of FTE nurses from each job profile j P J.

• Constraints related to the number of available PRN nurses:

ypt ď kp ; @ p P P, t P T

We cannot assign more than available number of PRN nurses from each tier p P P in any nursing shift
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t P T.

• Constraints related to available maximum total PRN hours for a schedule:

ÿ

tPT

ypt ď 60 ¨ kp @ p P P

Total PRN nurse assignments from any tier p P P for the whole staffing horizon should be smaller than

60 four-hour shifts per schedule, multiplied by the number of available PRN nurses from that tier.

• Constraints related to minimum break between two consecutive assignments rule:

yp,pt`2q ď kp ´ pkp ´ yp,t`1 q ´ pkp ´ yp,tq @ p P P, t P t1 ...pT ´ 2 qu

Here (kp - yp,t`1 ) is the number of PRNs from tier-p who were not assigned to work at shift (t+1).

Similarly, (kp - yp,t) is the number of PRNs from tier-p who were not assigned to work at shift t. The

difference between the two expressions give the number of PRNs from tier-p who give a break to their

assignments after shift t, starting from shift (t+1). Those who took a break starting from shift (t+1)

cannot get any assignment in shift (t+2). That is why the difference between kp and this expression

define an upper limit for the number of PRNs to get an assignment in shift (t+2). When (kp - yp,t`1 )

- (kp - yp,t) is negative, constraint becomes irrelevant. We also require:

yp,pt`3q ď pkp ´ yp,tq @ p P P, t P t1 ...pT ´ 3 qu;

where (kp - yp,t) is the number of PRNs from tier-p who were not assigned to work at shift t. PRN

nurses who will be assigned to work in shift (t+3) should be less than or equal to this number.

• Constraint related to the minimum work hours requirement of PRN nurses:

As an additional option, we can impose minimum work hour requirements for each PRN tier: For

Tier-1:

8 ¨ k1 ď
ÿ

tPT

y1 ,t ;

For Tier-2:

17 ¨ k2 ď
ÿ

tPT

y2 ,t ;
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For Tier-3:

29 ¨ k3 ď
ÿ

tPT

y3 ,t ;

Total assignments for the PRN nurses in a tier shouldn’t be less than the cumulative minimum work

hour total for that PRN tier.

Notes:

1. PRN nurses can self-schedule using the output schedules generated by the optimization model, while

satisfying the rules of:

(a) Twelve-hour break requirement between two successive assignments for each nurse

(b) No more than twelve-hour (three four-hour shifts) consecutive assignments at a time

2. Pre-generated FTE nurse schedules already satisfy the requirements given in notes 1.(a) and 1.(b)
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We can present the whole model, which models PRN nurses in tiers as follows:

Min

«

ÿ

jPJ

ÿ

sPSj

cj ¨ xs `
ÿ

pPP

ÿ

tPT

bp ¨ ypt `
ÿ

tPT

cu ¨Ut `
ÿ

tPT

co ¨Ot

ff

subject to

«γ ¨ αt ` δ ¨ βt `
ř

gPG

ϑgt ¨ hg ´
ř

jPJ

ř

sPSj

4 ¨ xs ¨ ast ´
ř

pPP

4 ¨ ypt

γ ¨ αt ` δ ¨ βt `
ř

gPG

ϑgt ¨ hg

ff

ď Ut @ t P T;

«

ř

jPJ

ř

sPSj

4 ¨ xs ¨ ast ´
ř

pPP

4 ¨ ypt ´ γ ¨ αt ` δ ¨ βt `
ř

gPG

ϑgt ¨ hg

γ ¨ αt ` δ ¨ βt `
ř

gPG

ϑgt ¨ hg

ff

ď Ot @ t P T;

ÿ

sPSj

xs ď nj @ j P J;

ypt ď kp ; @ p P P, t P T

ÿ

tPT

ypt ď 60 ¨ kp @ p P P

yp,pt`2q ď kp ´ pkp ´ yp,t`1 q ´ pkp ´ yp,tq @ p P P, t P t1 ...pT ´ 2 qu

yp,pt`3q ď pkp ´ yp,tq @ p P P, t P t1 ...pT ´ 3 qu;

Ut P R and Ut ě 0 @ t P T ;

Ot P R and Ot ě 0 @ t P T ;

xs P Z and xs ě 0 @ s P Sj ;

yp,t P Z and yp,t ě 0 @ p P P, t P T
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AMPL code for the Nurse Staffing and Scheduling Model - PRN Nurses Modeled in Tiers We

coded the discussed models into the AMPL environment. Figures below present model parameters, decision

variables, objective function and model constraints for the model that uses PRN tiers in the AMPL code.

Figure C.1: AMPL Model Parameters, Decision Variables and Objective Function - PRN Tiers
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Figure C.2: AMPL Model Constraints - PRN Tiers
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Appendix D

A Sample Schedule Generation Code

in C++
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Defining functions to be used in the program

Figure D.1: Step 1 - Defining functions to be used in the program
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Defining variables and parameters; reading the shift data

Figure D.2: Step 2 - Defining variables and parameters; reading the shift data
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Reading the nurse job profiles from the data

Figure D.3: Step 3 - Reading the nurse job profiles from the data
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Identifying available work shifts for the given nurse profile

Figure D.4: Step 4 - Identifying available work shifts for the given nurse profile
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Identifying the shifts that are available for three consecutive shift assignments

Figure D.5: Step 5 - Identifying the shifts that are available for three consecutive shift assignments
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Build sets of available start times for the individual weeks

Figure D.6: Step 6(a) - Build sets of available start times for the individual weeks
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Figure D.7: Step 6(b) - Build sets of available start times for the individual weeks
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Generate potential start time combinations for each week

Figure D.8: Step 7 - Generate potential start time combinations for each week

225



Combining weekly start time combinations to a complete schedule

Figure D.9: Step 8 - Combining weekly start time combinations to a complete schedule
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Converting the potential start time combination arrays to the full set of schedules

Figure D.10: Step 9 - Converting the potential start time combination arrays to the full set of schedules
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Appendix E

Coding the Medium-Term Staffing

Optimization Model in AMPL

Environment

In this section, we present the AMPL modeling code to be used in our optimization experiments. Figure

E.1 present the model parameters, decision variables, objective function for the model that assigns FTE

nurses to pre-generated schedules and PRN nurses to nursing shifts individually in the AMPL code. We also

present comments for explaining the parameters, variables and constraints in the model.
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Figure E.1: AMPL Model Parameters, Decision Variables and Objective Function - Individual PRNs

Figures E.2, E.3 and E.4 present the model constraints for the developed optimization model in the AMPL

environment, as three separate sets.
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Figure E.2: AMPL Model Constraints - Individual PRNs (1)
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Figure E.3: AMPL Model Constraints - Individual PRNs (2)
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Figure E.4: AMPL Model Constraints - Individual PRNs (3)
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Appendix F

Solution of A Small Problem Instance

of the Medium-Term Staffing Model

in AMPL

To test the developed AMPL model, in this section we present a small problem instance which involves 120

alternative schedules for nurses from 30 different job profiles (i.e. four schedule alternatives for each FTE

nurse profile). Schedules are generated using the C++ codes developed and selected among 16 randomly

selected schedules for the given nurse job profiles using the presented AMPL maximally different schedule

selection model. Figures F.1 to F.6 below present the screenshots from the data file of the developed AMPL

model:

Description of the Problem Instance
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Figure F.1: Model Parameters - Data for PRN Tiers Model

Results from the Small Problem Instance

We use the “run file” code in Figure F.7 below to implement the optimization model in AMPL. As can be

observed from the code, we are using “CPLEX” as our solver choice. We also use several “Cplex Options” :

(1) We would like the time statistics for the optimization be reported,

(2) We would like to see mixed-integer programming steps to be displayed,

(3) We choose an optimality gap based stopping criteria of 0.1%,

(4) We set an upper time limit for the optimization experiment as 6 hours (i.e. 21,600 seconds),

(5) We also set a solution tree size limit of 100GBs,

(6) We save the compressed node file on disk.

The run file code requests AMPL to report some cost statistics including:

(1) Total Cost (i.e. Objective Value),
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Figure F.2: Set of All Schedules - Data for PRN Tiers Model

(2) Total FTE Staffing Cost,

(3) Total PRN Staffing Cost,

(4) Total Under Staffing Penalty Cost,

(5) Total Over Staffing Penalty Cost.

The run file code also requests AMPL to report the resulting decision variables matrices (i.e. X, Y, Z, U

and O).
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Figure F.3: Available Schedules for Nurse Job Profiles - Data for PRN Tiers Model

Below in Figures F.8 to F.11 we present the resulting optimal solution with the associated objective function

value, solution time and optimality gap:
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Figure F.4: Patient Mix and Acuity Distribution - Data for PRN Tiers Model

Below are the understaffing percentages associated with the near-optimal solution presented in Figure F.12.
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Figure F.5: Patient Admissions & Transfer-in Activities - Data for PRN Tiers Model

Below are the overstaffing percentages associated with the near-optimal solution in Figure F.13.

AMPL Model, using the IBM’s CPLEX v12.6.3 Solver was able to provide near-optimal solutions to the

problem in a reasonable time. Next, we develop an experimental design based on the described optimization

model and run some preliminary experiments.
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Figure F.6: Patient Discharges & Transfer-out Activities - Data for PRN Tiers Model

Figure F.7: AMPL Run Code

239



Figure F.8: AMPL Model Results - Objective Value, Solution Time & Optimality Gap
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Figure F.9: AMPL Model Results - Cost Distribution & FTE Schedule Assignments
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Figure F.10: AMPL Model Results - PRN Shift Assignments

242



Figure F.11: AMPL Model Results - PRN Nurse Assignments for Staffing Horizon
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Figure F.12: AMPL Model Results - Understaffing Percentages (%)
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Figure F.13: AMPL Model Results - Overstaffing Percentages (%)
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Appendix G

Probability Matrix and Scenario

Generating Code for the Two-Stage

Stochastic Programming Model

In this chapter of the Appendices, we present parts of a sample probability matrix and scenario generating

code, developed in Xcode interface using C++, for Ward A in the studied PICU for the developed two-stage

stochastic programming model presented in Chapter 5.

246



Step 1: Define the Cardinality of the Sets, Variables for Scheduled and Unscheduled Admissions and Asso-

ciated Probabilities

Figure G.1: Define the Cardinality of the Sets, Variables for Scheduled and Unscheduled Admissions and
Associated Probabilities
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Step 2: Provide the Probability Estimates of Each Scheduled and Unscheduled Admission Combination

Figure G.2: Provide the Probability Estimates of Each Scheduled and Unscheduled Admission Combination
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Step 3: Generate Case ID and Scenario ID for Each Scheduled and Unscheduled Admission Combination

and Acuity Assignment

Figure G.3: Generate Case ID and Scenario ID for Each Scheduled and Unscheduled Admission Combination
and Acuity Assignment
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Step 4: Print the Scheduled and Unscheduled Admission Numbers for Each Acuity Group, Under Each Sce-

nario, in the Current Shift

Figure G.4: Print the Scheduled and Unscheduled Admission Numbers for Each Acuity Group, Under Each
Scenario, in the Current Shift
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Step 5: Print the Number of Unscheduled Admissions, Under Each Scenario, for the Upcoming Shift

Figure G.5: Print the Number of Unscheduled Admissions, Under Each Scenario, for the Upcoming Shift
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Step 6: Compute the Probability of Each Scenario Given the Probability Estimates of Each Scheduled and

Unscheduled Admission Combination and Case ID

Figure G.6: Compute the Probability of Each Scenario Given the Probability Estimates of Each Scheduled
and Unscheduled Admission Combination and Case ID
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Step 7: Generate the Probability Matrix for Each Scenario Given the Case ID

Figure G.7: Generate the Probability Matrix for Each Scenario Given the Case ID
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