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Abstract

Course timetabling is an important and recurring administrative activity in most
educational institutions. This article combines a general modeling methodol-
ogy with effective learning hyper-heuristics to solve this problem. The pro-
posed hyper-heuristics are based on an iterated local search procedure that
autonomously combines a set of move operators. Two types of learning for
operator selection are contrasted: a static (offline) approach, with a clear dis-
tinction between training and execution phases; and a dynamic approach that
learns on the fly. The resulting algorithms are tested over the set of real-world
instances collected by the first and second International Timetabling compe-
titions. The dynamic scheme statistically outperforms the static counterpart,
and produces competitive results when compared to the state-of-the-art, even
producing a new best-known solution. Importantly, our study illustrates that
algorithms with increased autonomy and generality can outperform human de-
signed problem-specific algorithms.

Keywords: Timetabling, Hyper-Heuristics, Heuristics, Metaheuristics,
Combinatorial optimization

1. Introduction

The design of timetables is a widespread human activity that can be for-
mulated as an optimization problem, and thus solved using modern search
methodologies. Educational timetabling is a widely studied class of timetabling
problems concerning the scheduling of meetings between students and lecturers.
Several variants of educational timetabling problems have been studied in the
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literature (Adriaen et al., 2006). The Course Timetabling Problem is one of
such variants, in which a number of events or lectures of university courses need
to be scheduled over a prefixed period of time (normally a week), satisfying
various constraints on rooms, time-slots and students. Many articles related
to educational timetabling have been published, and automated approaches to
timetabling are used in practice. A number of survey articles have appeared
over the years from the early (Carter, 1986; Schaerf, 1999) to more recent ar-
ticles (Burke and Petrovic, 2002; Lewis, 2008; Qu et al., 2009b). Two recent
approaches include an adaptive linear combination of heuristics (Rahman et al.,
2014) and a two-stages decomposition of an integer programming model applied
to a practical case (Sørensen and Dahms, 2014). The state-of-the-art approaches
for course timetabling are further discussed in Section 4.3.

Automating the design of timetables is a complex task. It requires a detailed
and difficult to elicit knowledge of the problem and the particular instance to
be solved. A recent trend in search and optimization, hyper-heuristics, aims
at reducing the role of the human expert in the process of designing compu-
tational search methodologies, and thus raise the level of generality in which
these methodologies operate (Burke et al., 2003, 2010). A survey of the state
of the art in hyper-heuristics has been recently published (Burke et al., 2013).
Hyper-heuristic approaches have been applied to educational timetabling with
encouraging results (Qu et al., 2009a; Burke et al., 2007; Soria-Alcaraz Jorge
et al., 2010). An automated approach to course timetabling also requires the
ability to model different classes of problems with a wide range of characteristics
and constraints. The modeling methodology proposed in (Soria-Alcaraz Jorge
et al., 2013b,a) (Methodology of Design) fills this requirement by providing a
generic representation applicable to real-world instances.

An important aspect of hyper-heuristics is generality and how to define it.
As discussed in (Misir et al., 2013), generality can be across various problem
domains (Ochoa et al., 2012a,b) or across various heuristic sets (Chakhlevitch
and Cowling, 2005; Misir et al., 2010). Generality has also been related to
the ability to solve several variants of the same problem, which is achieved by
designing problem models with increased generality. This is the case of the
excellent approaches dealing with vehicle routing (Pisinger and Ropke, 2007)
and nurse rostering (Burke and Curtois, 2014), respectively. This latter under-
standing of generality is the most relevant to our automated approach to course
timetabling. We consider a single problem and a single heuristic set. Indeed a
pre-processing stage is suggested to select the most adequate members of the
heuristic set. However, our approach is general in that different types of course
timetabling policies and constraints can be modeled. This is an important fea-
ture in real-world timetabling, as it is common that whenever a change emerges
in institutional policies (adding, removing or changing current timetabling con-
straints) it is necessary to change the previously used algorithm to handle these
new situation. The proposed general modeling methodology is then combined
with an adaptive search algorithm incorporating learning mechanisms and ef-
fective move operators to produce a state-of-the art approach.

This article implements an iterated local search hyper-heuristic framework
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that combines several move operators for the course timetabling problem. The
autonomous design of algorithms requires the incorporation of machine learning
mechanisms. The article contrasts two types of learning: static (offline) learning,
in which there is a clear distinction between a training phase and an execution
phase; and dynamic (online) learning, which takes place while the algorithm
is solving a given instance. The resulting algorithms are tested over the set
of publicly available real-world instances collected from the first and second
International Timetabling competitions (McCollum et al., 2010).

The next section formulates the course timetabling problem and describes
the modeling methodology used. Section 3 describes the proposed iterated lo-
cal search hyper-heuristic framework, including the learning mechanisms and
the move operators considered. The longest section in the article, Section 4,
describes the group of empirical studies conducted and analyzes the results. Fi-
nally, Section 5 summarizes the main findings and suggests directions for future
work.

2. The Course Timetabling Problem

The course timetabling problem can be formulated as a constraint satisfac-
tion problem in which the variables are events. The problem may be concisely
defined (Conant-Pablos et al., 2009), in terms of a set of events (courses or
subjects) E = {e1, e2, . . . , en}, a set of time-periods T = {t1, t2, . . . , ts}, a set
of places (classrooms) P = {p1, p2, . . . , pm}, and a set of agents (students reg-
istered in the courses) A = {a1, a2, . . . , ao}. An assignment is then given by
the quadruple (e ∈ E, t ∈ T, p ∈ P, S ⊆ A), and a solution to the problem is a
complete set of n assignments (one for each event) that satisfies the set of hard
constraints.

The modelling methodology proposed in (Soria-Alcaraz Jorge et al., 2013a,b)
(methodology of design) is used here to represent the course timetabling in-
stances and their constraints. This methodology allows different types of course
timetabling policies and constraints to be modelled by converting all time and
space constraints into a single constraint type: student conflicts.

The ability to model across different institutions and formulations is achieved
by translating the original timetable instance data into a set of generic data
structures which are later used by the hyper-heuristic. Specifically, the infor-
mation is integrated into three data structures: i) subject-subject matrix (MMA)
, ii) list of possible timeslots (LPH) and iii) list of possible classrooms (LPA).
As described in (Soria-Alcaraz Jorge et al., 2013a,b), an important advantage
of this methodology is that the generic structures facilitate the construction of
feasible solutions. The subject-subject matrix contains the number of students
in conflict for a given pair of subjects, i.e. the number of students who are en-
rolled in a given pair of subjects. The LPH list contains the allowed timeslots
for the corresponding subject. The LPA list contains the classrooms available
to be assigned to each subject without conflict.

These structures are then used to construct timetables. An important advan-
tage of this methodology is that the generic structures facilitate the construction
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Figure 1: Representation or encoding of candidate timetable solutions

of feasible solutions. Specifically, the Cartesian product of lists LPH (times-
lots) and LPA (classrooms) is constructed as shown in Figure 1. A timetable
is encoded as a vector of length equal to the number of subjects, in which posi-
tions indicate subjects. The integer values in the vector are indices representing
a pair (LPHi, LPAi), where LPHi is a valid timeslot for the subject i and
LPAi is a valid classroom for the subject i. This vector represents a complete
timetable assignment. In this formulation, the search space is then given by the
Cartesian product LPHi×LPAi, and the objective is to reduce the total num-
ber of student conflicts. Table 1 gives information about the problem instances
considered.

Table 1: Course timetabling instances.

Family Source Number

ITC-2007 http://www.cs.qub.ac.uk/itc2007/ 24
ITC-2002 http://www.idsia.ch/Files/ttcomp2002/ 20

3. The Iterated Local Search Hyper-Heuristic

Hyper-heuristics search the space of heuristics rather than that of solutions,
and use limited problem specific information to control the search process. The
problem specific information is encapsulated into the problem model and a pool
of low-level heuristics or search operators.

The proposed hyper-heuristic strategy can be seen as an adaptive version of
the iterated local search strategy combining several move operators. Iterated
local search is a relatively simple yet powerful strategy. It operates by itera-
tively alternating between applying a move operator to the incumbent solution
(perturbation stage) and restarting local search from the perturbed solution (im-
provement stage). This search principle has been rediscovered multiple times,
within different research communities and with different names (Battiti et al.,
2007). The term iterated local search (ILS) was proposed in (Lourenço et al.,
2003).
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A number of adaptive variants of multi-neighborhood iterated local search
have been recently proposed (Ochoa et al., 2012b; Walker et al., 2012) with
encouraging results in other problem domains. If several options are available for
conducting perturbation and improvement, a mechanism needs to be provided
to choose between them. The idea is to use online learning to adaptively select
the operators either at the perturbation stage or the improvement stage; or both.
These approaches inspired the algorithm implemented in this article, which can
be seen in Algorithm 1 and 2. In this implementation, the perturbation stage
(step 4 in Algorithm 1) applies a single fixed move operator to the incumbent
solution. This move operator (Simple Random Perturbation - SRP) simply
selects uniformly at random a single variable and substitutes it for another
variable in the range selected uniformly at random.

Online learning is then applied to the improvement stage (Algorithm 2), in
which a low-level heuristic from the pool is selected and applied to the incumbent
solution (steps 3 and 4). This operator selection step uses learned probabilities
to conduct the selection. The process of learning the operator probabilities is
conducted using online (dynamic) and offline (static) schemes as detailed below.
Throughout this article we use the terms ‘operator’, ‘heuristic’ and ‘low-level
heuristic’ interchangeably.

The next subsection describes the mechanisms for adaptively operator se-
lection. Section 3.2, describes how to statically tune operator selection proba-
bilities. Finally, section 3.3 lists and describes the set of heuristics (operators)
considered in our implementation.

Algorithm 1 High Level Iterated Local Search (ILS)

1: s0 = GenerateInitialSolution
2: s∗ = ImprovementStage(s0)
3: while !StopCriteria() do
4: s′ = SimpleRandomPerturbation(s∗)
5: s∗

′
= ImprovementStage(s′)

6: if f(s∗
′
) < f(s∗) then

7: s∗ = s∗
′

8: end if
9: end while

10: return s∗
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Algorithm 2 Improvement Stage

1: ls← IncumbentSolution
2: while !LocalStopCriteria() do
3: hi = SelectHeuristic()
4: ls∗ = apply(hi, ls)
5: if f(ls∗) < f(ls) then
6: ls = ls∗

′

7: end if
8: end while
9: return ls

3.1. Adaptive operator selection

An adaptive operator selection scheme consists of two components: (i) a
credit assignment mechanism, which associates a reward with each operator,
modeling its predicted utility; and (ii) a selection rule, which determines the
operator to be used at each time step, as a function of reward. We detail these
below.

3.1.1. Credit assignment

We implemented the extreme value credit assignment, which is based on
the principle that large (but possibly infrequent) improvements in the objective
score are likely to be more effective than small frequent improvements (Fialho
et al., 2008). It rewards operators which have had a recent large positive impact
on the objective score, while consistent operators yielding only small improve-
ments receive less reward. Rewards are updated as follows, when a heuristic h
is selected, it is applied to the current solution. The fitness of this new solution
is computed and the change in fitness is added to a FIFO list of size W. This
list is unique and common for all operators. Thereafter, the operator reward is
updated to the maximal fitness improvement in the list. More formally, if t be
the current step and δ(t) the fitness improvement observed at time t, then the
expected reward for heuristic h is computed as follows (Equation 1):

r̂t = argmax{δ(ti), i = 1 . . .W} (1)

As seen in equation 1), the extreme value mechanism requires a regulatory inte-
ger parameter W , the window size. If W is too small, the range of information
on offer is narrowed, meaning that useful operators are missed. If it is too large,
information considered may be from many iterations ago and hence no longer
be relevant.

3.1.2. Selection rule

Operator selection rules typically associate probabilities with operators via
proportional selection. Let K denote the number of operators (low-level heuris-
tics). The selection mechanisms maintain a probability vector (pi, t)i=1,...,K ,
and an estimate of the current operator credit denoted as q̂i,t. At each iteration
time t:
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• Operator i is selected with probability pi,t, according to a roulette-wheel
selection scheme.

• The selected operator is applied, and a credit rt is computed using the
credit assignment mechanism (extreme-value in our implementation).

• The quality estimate q̂i,t of the selected operator is updated according
to the reward rt, using an additive relaxation mechanism with learning
rate α(0 < α ≤ 1). The learning rate controls the memory of the quality
estimate. Specifically, the memory span decreases with increasing α, as
indicated by Equation 2.

q̂i,t+1 = (1− α)× q̂i,t + α× rt (2)

Operator selection probabilities are calculated from the operator quality es-
timates following a selection rule. Two commonly rules, namely Probability
Matching (PM) (Goldberg, 1990) and Adaptive Pursuit (AP) (Thierens, 2005),
were implemented and tested in this article.

Probability Matching corresponds to the standard roulette wheel selection.
The goal is to make pi,t proportional to q̂i,t. An operator that performs very
badly during a long period of the search will have its quality estimate decreased
to a very low value, or even zero. To avoid such operators being completely
ignored, the selection rules normally assign a minimal selection probability
pmin > 0. Equation 3 describes the PM rule:

pi,t+1 = pmin + (1−K ∗ pmin)
q̂i,t+1∑K
j=1 q̂j,t+1

(3)

In contrast, Adaptive Pursuit follows a winner-take-all strategy, selecting
at each step the operator i∗t with maximal reward, and increasing its selection
probability accordingly. Equations 4, 5 and 6 describes this mechanism:

i∗ = argmax{q̂i,t, i = 1 . . .K} (4)

pi∗,t+1 = pi∗,t + β(1− (K − 1)pmin − pi∗,t), (β > 0) (5)

pi,t+1 = pi,t + β(pmin − pi,t), for i 6= i∗ (6)

As discussed above, adaptive operator selection mechanisms introduce new
parameter values. The values used in our hyper-heuristic implementation are
reported in Section 4.2, specifically, in Table 4. They were selected after some
preliminary experiments.

3.2. Automated algorithm configuration (offline tuning)

The previous section discussed mechanisms for dynamically adapting the
operators selection probabilities. These probabilities can alternatively be con-
sidered as fixed (static) parameters of the ILS hyper-heuristic algorithm that can
then be automatically tuned. Operators are then selected by a roulette-wheel
mechanism based on these statically-tuned probabilities. Several frameworks
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have been proposed in the literature for automated parameter tuning and al-
gorithm configuration (Nannen and Eiben, 2006; Birattari, 2009; Hutter et al.,
2009). We use here ParamILS, a framework for automated algorithm config-
uration achieved via a local search in the configuration space. The key idea
behind ParamILS is to combine a stochastic local search algorithm (iterated
local search) with mechanisms for exploiting specific properties of algorithm
configuration. The search process starts from a given configuration (which is
generally the target algorithm’s default configuration) as well as r additional
configurations chosen uniformly at random from the given discrete ranges of
the configuration parameters. These r + 1 initial configurations are evaluated,
and the best performing is selected as the starting point of the ILS. To evaluate
a configuration, the idea is to perform a fixed number of runs of the target
algorithm with the given configuration on the set of training instances. The
process proceeds with the iterated local search strategy, using the one-exchange
neighborhood (i.e. inducing an arbitrary change in a single target algorithm
parameter) in the improvement stage, and a number of steps s of the same
neighborhood as the perturbation stage. Small values of s (i.e. s = 2) have
been found to be sufficient for obtaining good performance of the overall config-
uration procedure (Hoos, 2012). In Hutter et al. (Hutter et al., 2009), extensive
evidence is presented that ParamILS can find substantially improved parameter
configurations of complex and highly optimized algorithms.

Section 4.2 (specifically, Table 5) reports the values obtained after tuning
operator selection probabilities, using ParamILS, in our hyper-heuristic imple-
mentation.

3.3. The Operator Pool

A pool of 9 low-level heuristics were implemented. These range from sim-
ple randomized exchange or swap neighborhoods to greedy and more informed
procedures. We proposed two novel operators, Statistical Dynamic and Double
Dynamic perturbations, which consider a probability distribution based on the
frequency of variables selection.

1. Simple Random Perturbation (SRP): uniformly at random chooses
a variable i and changes its value for another one inside its feasible domain
LPHi × LPAi (selected uniformly at random).

2. Best Single Perturbation (BSP): chooses a variable following a se-
quential order (according to the Cartesian product LPH × LPA) and
changes its value to that producing the minimum conflict. A record is kept
of the last selected variable, so the order is continued when the heuristic
is called again.

3. Statistical Dynamic Perturbation (SDP): chooses a variable follow-
ing a probability distribution based on the frequency of variable selec-
tion in the last k iterations. Variables with lower frequency will have a
higher probability of being selected. Once selected, the value is randomly
changed. This heuristic is an original contribution of this article. Algo-
rithm 3 describes the pseudo-code.
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4. Double Dynamic Perturbation (DDP): similar to heuristic SDP, in
that it receives an input solution and selects a new variable with a prob-
ability inversely proportional to its frequency of selection in the last k
iterations. It differs from SDP in that it internally maintains an addi-
tional solution (which is copy of the first initialized solution) and makes
random changes to it following the same distribution. The best of the two
modified solutions is returned. This heuristic is an original contribution
of this article. Algorithm 4 describes the pseudo-code.

5. Swap (SWP): selects two variables uniformly at random and inter-
changes their values if possible. Otherwise leaves the solution unchanged.

6. Two Points Perturbation (2PP): selects uniformly at random two in-
dices in the integer string representation and modifies all variables between
the indices with randomly selected feasible values. This yields a strong
perturbation.

7. Move to Less Conflict (MLC): locates the variable producing the most
conflicts and changes its value to the that causing the minimum possible
conflict. In other words, it applies the Best Fit principle.

8. Burke-Abdullah (BA): hybrid heuristic that chooses a variable by
means of either Fail-First (FF) or Brelaz Heuristic (BZ)(Gent et al., 1996)
and then changes its value according the best possible solution obtained by
the following 4 algorithms: Sequential selection, Least Constrained Value,
Randomly or Minimum Conflict. (Abdullah et al., 2007)

9. Conant-Pablos (LSA): hybrid heuristic that randomly selects a variable
with hard constraint conflicts and changes it by a feasible value selected
using either the Minimum Constraint or Least Constrained Value (Gent
et al., 1996) heuristics (Conant-Pablos et al., 2009).

Algorithm 3 Statistical Dynamic Perturbation (SDP)

Require: Solution,K,HistoryList(K), F requency[Solution.NumOfV ars]
1: Solutionnew = Copy(Solution)
2: UpdateFrequency(HistoryList, Frequency)
3: Selectiont = SelectV ariableWithDistribution(Frequency)
4: if HistoryList.getRecorderSteps() >= K then
5: HistoryList.remove(Step0)
6: end if
7: HistoryList.add(Selectiont)
8: AssignRandomlyV alue(Selectiont, Solutionnew)
9: t = t + 1

10: Return(Solutionnew)
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Algorithm 4 Double Dynamic Perturbation (DDP)

Require: InnerSolution, Solution,K,HistoryList(K), F requency[Solution.NumOfV ars]
1: if t == 0 then
2: InnerSolution = Copy(Solution)
3: end if
4: Solutionnew = Copy(Solution)
5: UpdateFrequency(HistoryList, Frequency)
6: Selectiont = SelectV ariableWithDistribution(Frequency)
7: if HistoryList.getRecorderSteps() >= K then
8: HistoryList.remove(Step0)
9: end if

10: HistoryList.add(Selectiont)
11: AssignRandomlyV alue(Selectiont, Solutionnew)
12: AssignRandomlyV alue(Selectiont, InnerSolution)
13: t = t + 1
14: if Evaluation(InnerSolution) <= Evaluation(Solutionnew) then
15: Solutionnew = Copy(InnerSolution)
16: end if
17: Return(Solutionnew)

The choice of heuristics for the pool is somewhat arbitrary and reflects our
knowledge of the representation and the problem. Since there is no fixed pro-
cedure in the literature for guiding the selection of the best set of heuristics for
a given representation and problem, choices are generally based on empirical
evidence. In order to refine our initial choice of operators, we propose a single
test procedure described in detail in Section 4.1.

4. Experiments and Results

Two sets of well-known real-world instances are considered for our experi-
ments, namely, those of the first and second International Timetabling compe-
titions: ITC-2002 and ITC-2007 (see Table 1). With the objective to measure
how good our approach performs with different problem domains in a similar
way a described in Misir et al. (2013).

This section gives an overview of the empirical studies conducted. It is
structured in four subsections as follows. Section 4.1 describes a methodology
for selecting an effective subset of low-level heuristics from the set described in
Section 3.3. Section 4.2 compares the alternative hyper-heuristic learning mech-
anisms discussed in Sections 3.1 and 3.2. Section 4.3 compares the best per-
forming learning hyper-heuristic with state-of-the-art approaches on the ITC-
2007 benchmark instances. Finally, Section 4.4, presents a study of the learned
probabilities and frequency of operator selection of the best-performing learning
hyper-heuristic.

Parametric statistical tests are used in the literature to contrast the perfor-
mance of competing algorithms. However, they are based on assumptions (i.e.
independence, normality, and homoscedasticity) that are likely violated when
considering stochastic search algorithms (Derrac et al., 2011). Nonparametric
statistical procedures overcome this limitation and can be used for comparing
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this type of algorithm. In this article we used CONTROLTEST, a tool for
nonparametric comparison between algorithms (Derrac et al., 2011)1. Specifi-
cally, three non-parametric tests were conducted: Friedman, Aligned Friedman,
and Quade. These tests report the average rank achieved by each algorithm
across a set of independent experiments. The Friedman test uses the arithmetic
mean. The Alignment Friedman uses a value of location computed as the av-
erage performance achieved by all algorithms in each problem. The Quade test
considers that some problems might be more difficult than others. Therefore,
the average rankings computed on each problem could be scaled depending on
the differences observed in the algorithms performances, obtaining, as a result,
a weighted ranking analysis of the results. Since all these tests consider ranks,
the lower the reported average values the better the performance. In order to
assess the statistical significance of the results, the p-value for each test is com-
puted, which provides information about whether a statistical hypothesis test is
significant or not. In our study the null hypothesis H0 represents no significant
differences between algorithms. The p-values also indicate how significant the
results are: the smaller the p-value the stronger the evidence against H0.

Figure 2: Average best-so-far objective value over number of evaluations for single heuristic
hill-climber on a selected instance (ITC-2007-16). The horizontal axis measures function
evaluations, while the vertical axis measures the objective function value

4.1. Choosing the heuristic pool

This section proposes an empirical methodology to select the most effective
operators from the set of available heuristics described in Section 3.3. The

1The ControlTest package is available at http://sci2s.ugr.es/sicidm/
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idea is to implement a simple iterative improvement procedure (hill-climbing)
based on each single heuristic. Specifically, Algorithm 2 is run using each of
the 9 heuristics described in section 3.3, separately. For each operator, 50
independent experiments were executed with 50,000 function evaluations on all
the test instances (see Section 4).

In order to assess the statistical significance of the results, Table 2 reports the
average ranks computed through the Friedman, Aligned Friedman and Quade
tests on the ITC-2007 instances (similar results were found for the ITC-2002
family). For the three tests, the smaller the average rank the better the hill-
climber and by assumption, the better the move operator. As can be seen
in Table 2, the order between the heuristics is the same for the three tests.
For Friedman and Quade tests the average ranks go from 1 (best case) to k
(where k represents the number of heuristics to compare). For Aligned Friedman
the reported average ranks go from 1 (best case) to k × n ,where k is the
number of heuristics and n the number of test instances. For the experiments
reported in Table 2, the values are k = 9 (the number of heuristics) and n = 24
(the number of instances from ITC-2007 track2). The evidence supports that
there are performance differences among the heuristics. We decided to select
the top 5 out of the 9 heuristics according to these statistical ranks. Namely,
(i) Double Dynamic Perturbation (DDP), (ii) Statistical Dynamic Perturbation
(SDP), (iii) Best Simple Perturbation (BSP), (iv) Simple Random Perturbation
(SRP), and (v) Swap (SWP). These are the heuristics that produced a similar
or improved performance than the simplest Simple Random Perturbation (SRP)
heuristic, that we have adopted as our decision point.

The p-values (3.85E-11, 5.32281E-4, and 1.24E-14, respectively) computed
using SRP as control method and through the statistics of the three tests
strongly suggest the existence of significant differences among the algorithms
considered, i.e. the null hypothesis, H0 suggesting no difference between algo-
rithms is strongly rejected.

Table 2: Average statistical rankings of the single heuristic hill-climbers on the ITC-2007
benchmark instances.

Heuristic Friedman A. Friedman Quade
DDP 3.41 74.10 2.74
SDP 3.70 78.33 3.67
BSP 4.08 83.45 3.51
SRP 4.12 85.85 4.14
SWP 4.33 92.87 4.41
2PP 5.54 124.5 4.94
MLC 6.21 151.39 5.64
LSA 7.48 197.83 7.12
BA 8.87 202.47 8.79

Figure 2 illustrates the convergence behavior of the hill-climbers using the
9 single heuristics on the ITC-2007 benchmark. Convergence behaviors were
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similar on all instances, and suggest that the bottom heuristics (specially the
bottom 3) are not specially suited for the studied problem.

We conducted a set of experiments in order to statistically support the ad-
vantage of using the reduced set of 5 heuristics against considering the whole
pool of 9 heuristics. The experiments compare the hyper-heuristic variants dis-
cussed below (ie AdapExAP, AdapExPM, and StaticTuned in Table 3), using
the whole set of nine heuristics against using the top ranking five. Each hyper-
heuristic variant was executed over 50,000 fitness functions on the ITC-2002 and
ITC-2007 instances. The results convincingly show that hyper-heuristics with
the reduced heuristic pool outperformed those using the whole heuristic set.
Statistical significance was assessed by means of the Wilcoxon signed-rank test
for pair-wise comparisons (5 heuristics vs. 9 heuristics). The p-values obtained
between DDP and BA were: 3.95E-3 for AdapExAP, 3.45E-3 for AdapExPM,
and 0.0277 for StaticTuned.

Table 3: Name and the description of the hyper-heuristic variants implemented.

Name Description

AdapExAP Adaptive probabilities, extreme credit + adaptive pursuit

AdapExPM Adaptive probabilities, extreme credit + probability matching

StaticTuned Static probabilities, tuned using ParamILS

StaticUnif Static probabilities, uniform (equal) for all operators

Table 4: Parameters used by the adaptive operator selection mechanisms.

Adaptive rule W α β pmin

AdapExAP 50 0.7 0.3 0.1
AdapExPM 40 0.75 0.4 0.1

4.2. Contrasting hyper-heuristic learning mechanisms

Four hyper-heuristic variants were implemented following the algorithmic
template described in Section 3 (ie. Algorithms 1 and 2). The four variants
differ in the mechanism for selecting an operator or low-level heuristic in the
improvement stage (Algorithm 2, line 3, SelectHeuristic()). Table 3 summarizes
these variants indicating the name given to them in the rest of the article.

The adaptive operator selection schemes are described in detail in Section
3.1. They combine a credit assignment mechanism with an operator selection
rule, both of which involve parameters that need to be set. A preliminary set
of experiments suggested the values shown in Table 4 for the combinations of
extreme value credit assignment (Ex) and adaptive pursuit (AP)/probability
matching (PM) rules, respectively. These values were selected from the range
[1,100] for W and (0,1) for α, β and pmin parameters.

ParamILS (see Section 3.2) was used to automatically tune the operator
probabilities (of the 5 selected top operators) as fixed parameters. This method-
ology requires selecting a set of training instances. We used the whole ITC-2007

13



family in the training phase and and the algorithm was run for 100,000 fit-
ness function evaluation per instance. The probability distribution found by
ParamILS can be seen on table 5, which gives the same probability to 3 of the
operators, a higher probability to SRP and a low probability to SWP.

Table 5: Probability distribution resulted from ParamILS training

Heuristic DDP SDP BSP SRP SWP
Probability 0.204 0.204 0.204 0.227 0.159

The simplest algorithm in this experiment StaticUnif, does not involve any
form of learning. Instead, it assigns fixed and equal probabilities to the 5 selected
operators (i.e. 0.2 each), which is equivalent to selecting operators uniformly at
random at each iteration. This algorithm is used as a control to contrast against
the learning mechanisms.

In order to compare the alternative hyper-heuristic variants, Table 6 re-
ports the average ranks computed through the Friedman, Aligned Friedman
and Quade tests on the whole set of instances. The ranks are ordered according
to the Quade values. In this case Friedman and Quade tests reports average
ranks from 1 (best case) to k = 4 algorithms, and Aligned Friedman average
ranks goes from 1 (best case) to k × n, where k = 4 algorithms and n = 24
instances. Notice that the best-performing variant is consistently AdapExAP,
the second and third performing variants are closer and their ranks swap with
the statistical test. The worst-performing approach is consistently StaticUnif.

Table 6: Average rankings of the algorithms

Algorithm Friedman Aligned Friedman QUADE
AdapExAP 1.270 20.708 1.351
StaticTuned 2.749 49.0 2.373
AdapExPM 2.354 52.6041 2.531
StaticUnif 3.6249 71.687 3.7433

Table 7: p-values (AdapExAP is the control method)

Algorithm Friedman Aligned Friedman QUADE
StaticTuned 0.0836 0.0785 0.0589
AdapExPM 0.002 1.3E-4 3.4E-6
StaticUnif 6.02E-9 2.48E-4 1.6E-13

The p-values on table 7 computed through the statistics of the three tests
strongly suggest the existence of significant differences among the algorithms
considered, i.e. the null hypothesis, H0 suggesting no difference between algo-
rithms is strongly rejected.

Table 8 reports the Contrast Estimation based on medians (Doksum, 1967;
Garćıa et al., 2010) for the comparative study. This statistical technique esti-
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mates the performance difference between all pairs of algorithms. It assumes
that the expected differences between algorithms are the same across problems.
The magnitudes in the table reflect the performance differences between the
pairs of competing algorithms (Derrac et al., 2011). As can be seen from Table
8, AdapExAP produced the largest and positive performance differences, con-
firming it as the best performing algorithm. The differences in performance
between the 2nd and 3rd performing algorithm (StaticTuned and AdapExPM)
are very small, suggesting that a dynamic approach for adapting the operator
probabilities needs to be adequate to be effective. Finally, the inferior per-
formance of StaticUnif, confirms that learning operator selection probabilities
makes the algorithm not only more robust, but also more effective.

Table 8: Contrast Estimation of the four hyper-heuristic variants.

AdapExAP StaticTuned AdapExPM StaticUnif
AdapExAP 0.00 28.75 30.63 51.63
StaticTuned -28.75 0.000 1.875 22.88
AdapExPM -30.63 -1.875 0.000 21.00
StaticUnif -51.63 -22.88 -21.00 0.0000

4.3. Comparison with state-of-the-art approaches

This section compares the performance of the most effective learning hyper-
heuristic found in the previous section (viz. AdapExAP) with state-of-the-art ap-
proaches for post-enrollment course timetabling. By ‘state-of-the-art’ we mean
not only the winners (specifically, the top 2 entries) of the most recent course
timetabling competition ITC-2007, track 2 (post-enrollment) but also the most
recent and effective published algorithms for solving these instances.

In order to perform a fair comparison, we followed the rules and instances of
the Second International Timetabling Competition ITC-2007 (McCollum et al.,
2010), Track 2 (see Table 1). Competitors were required to obtain valid solu-
tions (all hard constraints are satisfied) but there may be unplaced events (soft
constraints). For calculating the allotted running time, the benchmark program
supplied by ITC-2007 was used. The program provides a measure for how long
an algorithm can be run on a particular machine on the competition problem
instances. This running time is generally between 300 and 600 seconds (per run,
per instance) on a modern PC. The computer used in our experiments was an
Intel core 2 CPU 6700, 2.66GHz x 2 with 2Gb of Ram and Linux Ubuntu 12.04
32-bit with LXDE using OpenJDK7.

The algorithms included in the comparison are described below:

Atsuna. The second place in the 2007 competition formulates the timetabling
instances as constraint satisfaction problems, and then uses a general purpose
constraint solver to find solutions. In particular, they used the solver proposed
in (Nonobe and Ibaraki, 2001), which adopts a hybrid meta-heuristic algorithm
combining tabu search and iterated local search, and handles weighted con-
straints.
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Cambazard. The winner of the 2007 competition is a multi-stage local search al-
gorithm considering several neighborhoods, and involving aspects of tabu search
and simulated annealing at different stages.

Ceschia et al. (2012). Propose a single-step metaheuristic approach based on
simulated annealing, working on a neighborhood composed of moves that resched-
ule one event or swap two events. The solver is able to deal with all the different
variants of the course timetabling problem proposed in the literature, and pro-
vides new best-know solutions in many instances.

Lewis (2012). Proposes a 3-stage local search algorithm, in which a constructive
phase is followed by two separate simulated annealing phases. The algorithm
behavior depends on the allotted running time, as several parameters control-
ling the intensity of search, are calculated according to the computation time
available. The algorithm obtains good results on the ITC-2007 instances, but it
is not superior to the top entries, and fails to produce new best-known solutions.

Jat and Yang (2011). Use a hybrid population-based algorithm of 2 phases. In
the first phase, a guided search genetic algorithm is used to globally find good,
which are then improved in a second phase using tabu search. At the time
of its publication, this approach obtained competitive results against the 2007
competition entries also providing several best-known solutions.

Table 9 shows the best results (out of 10 runs, as this was the experimental
setting used in the competition) of the algorithms described above when solv-
ing the 24 ITC-2007 instances. The comparison is conducted using the 2007
competition rules and corresponding running time. Since all solutions are fea-
sible, the values in the table correspond to the soft constraint violations, i.e.
have zero hard constraint violation (except those marked with an x in Table 9).
Values are taken from ITC-2007 website (see Table 1) for the competition en-
tries (Atsuna and Cambazard), and from the respective publications for recent
state-of-the-art approaches.

The best-performing learning hyper-heuristic, AdapExAP, produces compet-
itive results against the state-of-the-art, finding the best possible solution (0 soft
constraint violations) in 6 out of 24 instances, and producing a new best-known
solution (150) for instance ITC-2007-20. When compared with the 2007 com-
petition entries, AdapExAP improved the best solution on 3 of the instances,
namely,ITC-2007-16, ITC-2007-20 and ITC-2007-24.

4.4. Study of learned operator probabilities and frequency of use

This section explores both the values of the learned probabilities, and the fre-
quency of usage of the 5 operators (low-level heuristics) in the hyper-heuristic
pool. The goal is to gain a deeper understanding of the relative impact and
dynamic behavior of the different heuristics in the pool while solving different
course timetabling instances. In particular, we selected the best-performing
learning hyper-heuristic AdapExAP, and plotted the values of the learned prob-
abilities across the run. Similarly, we visualize the frequency of selection of
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Table 9: Comparison against state-of-the-art approaches on the 24 ITC-2007 instances. Values
indicate the best soft constraint (s) results (out of 10 runs), in all cases (except those marked
by an x), solutions are feasible, i.e. the hard constraints are 0. Average and Standard deviation
results are also reported in brackets for the approach proposed in this article AdapExAP in
the form of (s̄σ)

ITC-2007 Atsuna Cambazard Ceschia Lewis Jat & Yang AdapExAP
1 61 571 59 1166 501 650 (780.45148.5)
2 547 993 0 1665 342 470 (960.7270.4)
3 382 164 148 251 3770 290 (33788.7)
4 529 310 25 424 234 600 (81542.6)
5 5 5 0 47 0 35 (39.169.3)
6 0 0 0 412 0 20 (29.47.3)
7 0 6 0 6 0 30 (33.742.1)
8 0 0 0 65 0 0 (00)
9 0 1560 0 1819 989 630 (861.1127.4)
10 0 2163 3 2091 499 2349 (2458.2185.2)
11 548 178 142 288 246 350 (405.757.3)
12 869 146 267 474 172 480 (506.427.4)
13 0 0 1 298 0 46 (77.3749.2)
14 0 1 0 127 0 80 (108.333.5)
15 379 0 0 108 0 0 (5.759.4)
16 191 2 0 138 0 0 (2.224.1)
17 1 0 0 0 0 0 (00)
18 0 0 0 25 0 20 (25.166)
19 x 1824 0 2146 84 360 (404.5139.1)
20 1215 445 543 625 297 150(177.1237.1)
21 0 0 5 308 0 0 (3.785.7)
22 0 29 5 x 1142 33 (45.7112.7)
23 438 238 1292 3101 963 1007 (1378.45319.4)
24 720 21 0 841 274 0 (45.8860.0)

the heuristics, which is based on the learned probabilities, but induces some
randomness since it uses the adaptive pursuit rule.

Figures 3 and 4 show the hyper-heuristic learned probabilities and frequency
of use of the 5 heuristics in the pool, on two selected instances, ITC2007-9 and
ITC2007-13, respectively. The curves show the values taken at intervals as indi-
cated in the horizontal axis, with a total running time following the 2007 com-
petition benchmark. It is interesting to note that each instance has a different
operator profile. There is no best operator for a given instance, instead opera-
tors cooperate and alternate during the solution process. The most randomized
operators, namely, SRP and SWP , tend to dominate at the initial stages of
the search, this can be seen especially for instance ITC2007-9 (Fig. 3). This is
consistent with the known fact that search should be initially more explorative,
when good solutions have not yet being located. The operators proposed in this
article, namely, DDP and SDP , proved very effective in the solving process.
On some instances such as ITC2007-9 (Fig. 3) operators alternate, but a single
operator dominates during a period of search process. Other instances such as
ITC2007-13 (Fig. 4), seem to require a different sequence, and a faster alterna-
tion of heuristics. Understanding these operator profiles and their correlation
with specific instance features, deserves further study.
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Probability

Frequency of use

Figure 3: Instance ITC-2007-9 operator’s learned probabilities (top plot) and frequency of
use (bottom plot) across a hyper-heuristic run.

5. Conclusions

The main contribution of this article is a highly-automated approach to
course timetabling, obtained by combining a generic modeling approach with
an adaptive search methodology incorporating learning mechanisms and effec-
tive move operators. The approach is simultaneously general and effective; gen-
eral, in that different types of course timetabling policies and constraints can
be modeled; effective, in that a number of move operators of different charac-
teristics and strengths are combined into an adaptive hyper-heuristic approach,
producing state-of-the art results.
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Figure 4: Instance ITC-2007-13 operator’s learned probabilities (top plot) and frequency of
use (bottom plot) across a hyper-heuristic run.

The proposed hyper-heuristic approach is is based on the simple yet powerful
iterated local search principle, which alternates between improving and pertur-
bation stages. Adaptability is achieved by incorporating learning mechanisms
(also called adaptive operator selection) to learn and apply alternative move
operators in the improvement stage, selected from the available pool according
to their past performance. The methodology also benefits from novel effective
move operators, and an empirical approach for selecting the best performing
operators from a larger available pool.

Several learning mechanisms, including online (dynamic) and offline (static)
approaches, were implemented and tested. The best performing mechanism
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resulted an online mechanism that combines extreme value credit assignment
with an adaptive pursuit selection rule. This best-performing hyper-heuristic
produced competitive results as compared to the the state-of-the-art on the
2007 International Timetabling Competition instances, even producing a new
best-known solution.

An analysis of the learned probabilities and selection frequency of the oper-
ators in the pool reveals that different instances have different operator profiles.
It is clearly demonstrated that operators cooperate and complement each other
in the process of effectively solving an instance. There is no single best opera-
tor across the search process: some operators dominate at certain stages while
others take over at different stages. This justifies and confirms the advantages
of using online adaptive mechanisms. While there is no clear pattern across
all instances, in general operators exhibiting higher degrees of randomness are
preferentially selected at the early stages of the search. This is consistent with
the expectation that at early stages, the search should be more explorative.

Future work will explore more sophisticated online learning mechanism,
and will implement additional move operators. Population-based adaptive ap-
proaches will also be implemented and tested. Understanding and matching
the effectiveness of particular move operators to particular instances and stages
of the search process is an open area that requires further investigation. Fi-
nally, since the proposed adaptive high-level strategy operates in a domain-
independent manner, it can be easily adapted to other timetabling, scheduling
and routing problems subject to available problem-specific models and opera-
tors.
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2014. Adaptive linear combination of heuristic orderings in constructing examination
timetables. European Journal of Operational Research 232 (2), 287 – 297.

Schaerf, A., Apr. 1999. A survey of automated timetabling. Artificial Intelligence.
Review. 13 (2), 87–127.

Sørensen, M., Dahms, F. H., 2014. A two-stage decomposition of high school
timetabling applied to cases in Denmark. Computers & Operations Research 43 (0),
36 – 49.

Soria-Alcaraz Jorge, A., Carpio, M., Puga, H., Sotelo-Figueroa, M., 2013a. Comparison
of Metaheuristic Algorithms with a Methodology of Design for the Evaluation of
Hard Constraints over the Course Timetabling Problem. Vol. 451 of Studies in
Computational Intelligence. Springer Berlin Heidelberg.

Soria-Alcaraz Jorge, A., Carpio, M., Puga, H., Terashima-Marin, H., Cruz Reyes, L.,
Melin-Olmeda, E., Sotelo-Figueroa, M. A., 2013b. Methodology of Design: A novel
generic approach applied to the Course Timetabling problem. Vol. 451 of Studies in
Computational Intelligence. Springer Berlin Heidelberg.

Soria-Alcaraz Jorge, A., Terashima-Marin, H., Carpio, M., 2010. Academic timetabling
design using hyper-heuristics. Advances in Soft Computing, ITT Springer-Verlag 1,
158–164.

Thierens, D., 2005. An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of the 2005 conference on Genetic and evolutionary computation.
GECCO ’05. ACM, New York, NY, USA, pp. 1539–1546.

Walker, J., Ochoa, G., Gendreau, M., Burke, E. K., 2012. Vehicle routing and adaptive
iterated local search within the hyflex hyper-heuristic framework. In: Hamadi, Y.,
Schoenauer, M. (Eds.), Learning and Intelligent Optimization. Vol. 7219 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 265–276.

23


