1,379 research outputs found

    Construction of classes of circuit-independent chaotic oscillatorsusing passive-only nonlinear devices

    Get PDF
    Two generic classes of chaotic oscillators comprising four different configurations are constructed. The proposed structures are based on the simplest possible abstract models of generic second-order RC sinusoidal oscillators that satisfy the basic condition for oscillation and the frequency of oscillation formulas. By linking these sinusoidal oscillator engines to simple passive first-order or second-order nonlinear composites, chaos is generated and the evolution of the two-dimensional sinusoidal oscillator dynamics into a higher dimensional state space is clearly recognized. We further discuss three architectures into which autonomous chaotic oscillators can be decomposed. Based on one of these architectures we classify a large number of the available chaotic oscillators and propose a novel reconstruction of the classical Chua’s circuit. The well-known Lorenz system of equations is also studied and a simplified model with equivalent dynamics, but containing no multipliers, is introduced

    Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices

    Get PDF
    Two generic classes of chaotic oscillators comprising four different configurations are constructed. The proposed structures are based on the simplest possible abstract models of generic second-order RC sinusoidal oscillators that satisfy the basic condition for oscillation and the frequency of oscillation formulas. By linking these sinusoidal oscillator engines to simple passive first-order or second-order nonlinear composites, chaos is generated and the evolution of the two-dimensional sinusoidal oscillator dynamics into a higher dimensional state space is clearly recognized. We further discuss three architectures into which autonomous chaotic oscillators can be decomposed. Based on one of these architectures we classify a large number of the available chaotic oscillators and propose a novel reconstruction of the classical Chua's circuit. The well-known Lorenz system of equations is also studied and a simplified model with equivalent dynamics, but containing no multipliers, is introduce

    Log-domain All-pass Filter-based Multiphase Sinusoidal Oscillators

    Get PDF
    Log-domain current-mode multiphase sinusoidal oscillators based on all-pass filters are presented in this paper. The first-order differential equation is used for obtaining inverting and non-inverting all-pass filters. The proposed oscillators are realized by all-pass filters which can be electronically tuned their natural frequency and stage gain by adjusting the bias currents. Each all pass filter contains 10 NPN transistors and a grounded capacitor. The validated BJT model which used in SPICE simulation operated by a single power supply as low as 2.5 V. The frequency of oscillation can be controlled over four decades. The total harmonic distortions of these MSO at frequency 56.67 MHz and 54.44 MHz, obtained around 0.52% and 0.75%, respectively. The proposed circuits enable fully integrated in telecommunication systems and also suit to high-frequency applications. Nonideality studies and PSpice simulation results are included to confirm the theory

    Analysis and design of wideband voltage controlled oscillators using self-oscillating active inductors.

    Get PDF
    Voltage controlled oscillators (VCOs) are essential components of RF circuits used in transmitters and receivers as sources of carrier waves with variable frequencies. This, together with a rapid development of microelectronic circuits, led to an extensive research on integrated implementations of the oscillator circuits. One of the known approaches to oscillator design employs resonators with active inductors electronic circuits simulating the behavior of passive inductors using only transistors and capacitors. Such resonators occupy only a fraction of the silicon area necessary for a passive inductor, and thus allow to use chip area more eectively. The downsides of the active inductor approach include: power consumption and noise introduced by transistors. This thesis presents a new approach to active inductor oscillator design using selfoscillating active inductor circuits. The instability necessary to start oscillations is provided by the use of a passive RC network rather than a power consuming external circuit employed in the standard oscillator approach. As a result, total power consumption of the oscillator is improved. Although, some of the active inductors with RC circuits has been reported in the literature, there has been no attempt to utilise this technique in wideband voltage controlled oscillator design. For this reason, the dissertation presents a thorough investigation of self-oscillating active inductor circuits, providing a new set of design rules and related trade-os. This includes: a complete small signal model of the oscillator, sensitivity analysis, large signal behavior of the circuit and phase noise model. The presented theory is conrmed by extensive simulations of wideband CMOS VCO circuit for various temperatures and process variations. The obtained results prove that active inductor oscillator performance is obtained without the use of standard active compensation circuits. Finally, the concept of self-oscillating active inductor has been employed to simple and fast OOK (On-Off Keying) transmitter showing energy eciency comparable to the state of the art implementations reported in the literature

    Oversampled analog-to-digital converter architectures based on pulse frequency modulation

    Get PDF
    Mención Internacional en el título de doctorThe purpose of this research work is providing new insights in the development of voltage-controlled oscillator based analog-to-digital converters (VCO-based ADCs). Time-encoding based ADCs have become of great interest to the designer community due to the possibility of implementing mostly digital circuits, which are well suited for current deep-submicron CMOS processes. Within this topic, VCO-based ADCs are one of the most promising candidates. VCO-based ADCs have typically been analyzed considering the output phase of the oscillator as a state variable, similar to the state variables considered in __ modulation loops. Although this assumption might take us to functional designs (as verified by literature), it does not take into account neither the oscillation parameters of the VCO nor the deterministic nature of quantization noise. To overcome this issue, we propose an interpretation of these type of systems based on the pulse frequency modulation (PFM) theory. This permits us to analytically calculate the quantization noise, in terms of the working parameters of the system. We also propose a linear model that applies to VCO-based systems. Thanks to it, we can determine the different error processes involved in the digitization of the input data, and the performance limitations which these processes direct to. A generic model for any order open-loop VCO-based ADCs is made based on the PFM theory. However, we will see that only the first-order case and a second order approximation can be implemented in practice. The PFM theory also allows us to propose novel approaches to both single-stage and multistage VCObased architectures. We describe open-loop architectures such as VCO-based architectures with digital precoding, PFM-based architectures that can be used as efficient ADCs or MASH architectures with optimal noise-transfer-function (NTF) zeros. We also make a first approach to the proposal and analysis of closed loop architectures. At the same time, we deal with one of the main limitations of VCOs (especially those built with ring oscillators), which is the non-linear voltage to- frequency relation. In this document, we describe two techniques mitigate this phenomenon. Firstly, we propose to use a pulse width modulator in front of the VCO. This way, there are only two possible oscillation states. Consequently, the oscillator works linearly. To validate the proposed technique, an experimental prototype was implemented in a 40-nm CMOS process. The chip showed noise problems that degraded the expected resolution, but allowed us to verify that the potential performance was close to the expected one. A potential signal-to-noise-distortion ratio (SNDR) equal to 56 dB was achieved in 20 MHz bandwidth, consuming 2.15 mW with an occupied area equal to 0.03 mm2. In comparison to other equivalent systems, the proposed architecture is simpler, while keeping similar power consumption and linearity properties. Secondly, we used a pulse frequency modulator to implement a second ADC. The proposed architecture is intrinsically linear and uses a digital delay line to increase the resolution of the converter. One experimental prototype was implemented in a 40-nm CMOS process using one of these architectures. Proper results were measured from this prototype. These results allowed us to verify that the PFM-based architecture could be used as an efficient ADC. The measured peak SNDR was equal to 53 dB in 20 MHz bandwidth, consuming 3.5 mW with an occupied area equal to 0.08 mm2. The architecture shows a great linearity, and in comparison to related work, it consumes less power and occupies similar area. In general, the theoretical analyses and the architectures proposed in the document are not restricted to any application. Nevertheless, in the case of the experimental chips, the specifications required for these converters were linked to communication applications (e.g. VDSL, VDSL2, or even G.fast), which means medium resolution (9-10 bits), high bandwidth (20 MHz), low power and low area.El propósito del trabajo presentado en este documento es aportar una nueva perspectiva para el diseño de convertidores analógico-digitales basados en osciladores controlados por tensión. Los convertidores analógico-digitales con codificación temporal han llamado la atención durante los últimos años de la comunidad de diseñadores debido a la posibilidad de implementarlos en su gran mayoría con circuitos digitales, los cuales son muy apropiados para los procesos de diseño manométricos. En este ámbito, los convertidores analógico-digitales basados en osciladores controlados por tensión son uno de los candidatos más prometedores. Los convertidores analógico-digitales basados en osciladores controlados por tensión han sido típicamente analizados considerando que la fase del oscilador es una variable de estado similar a las que se observan en los moduladores __. Aunque esta consideración puede llevarnos a diseños funcionales (como se puede apreciar en muchos artículos de la literatura), en ella no se tiene en cuenta ni los parámetros de oscilación ni la naturaleza determinística del ruido de cuantificación. Para solventar esta cuestión, en este documento se propone una interpretación alternativa de este tipo de sistemas haciendo uso de la teoría de la modulación por frecuencia de pulsos. Esto nos permite calcular de forma analítica las ecuaciones que modelan el ruido de cuantificación en función de los parámetros de oscilación. Se propone también un modelo lineal para el análisis de convertidores analógico-digitales basados en osciladores controlados por tensión. Este modelo permite determinar las diferentes fuentes de error que se producen durante el proceso de digitalización de los datos de entrada y las limitaciones que suponen. Un modelo genérico de convertidor de cualquier orden se propone con la ayuda de este modelo. Sin embargo, solo los casos de primer orden y una aproximación al caso de segundo orden se pueden implementar en la práctica. La teoría de la modulación por frecuencia de pulsos también permite nuevas perspectivas para la propuesta y el análisis tanto de arquitecturas de una sola etapa como de arquitecturas de varias etapas construidas con osciladores controlados por tensión. Se proponen y se describen arquitecturas en lazo abierto como son las basadas en osciladores controlador por tensión con moduladores digitales en la etapa de entrada, moduladores por frecuencia de pulsos que se utilizan como convertidores analógico-digitales eficientes o arquitecturas en cascada en las que se optimizan la distribución de los ceros en la función de transferencia del ruido. También se realiza una aproximación a la propuesta y el análisis de arquitecturas en lazo cerrado. Al mismo tiempo, se aborda una de las problemáticas más importantes de los osciladores controlados por tensión (especialmente en aquellos implementados mediante osciladores en anillo): la relación tensión-freculineal que presentan este tipo de circuitos. En el documento, se describen dos técnicas cuyo objetivo es mitigar esta limitación. La primera técnica de corrección se basa en el uso de un modulador por ancho de pulsos antes del oscilador controlado por tensión. De esta forma, solo existen dos estados de oscilación en el oscilador, se trabaja de forma lineal y no se genera distorsión en los datos de salida. La técnica se propone de forma teórica haciendo uso de la teoría desarrollada previamente. Para llevar a cabo la validación de la propuesta teórica se fabricó un prototipo experimental en un proceso CMOS de 40-nm. El chip mostró problemas de ruido que limitaban la resolución, sin embargo, nos permitió velicar que la resolución ideal que se podrá haber obtenido estaba muy cercana a la resolución esperada. Se obtuvo una potencial relación señal-(ruido-distorsión) igual a 56 dB en 20 MHz de ancho de banda, un consumo de 2.15 mW y un área igual a 0.03 mm2. En comparación con sistemas equivalentes, la arquitectura propuesta es más simple al mismo tiempo que se mantiene el consumo así como la linealidad. A continuación, se propone la implementación de un convertidor analógico digital mediante un modulador por frecuencia de pulsos. La arquitectura propuesta es intrínsecamente lineal y hace uso de una línea de retraso digital con el fin de mejorar la resolución del convertidor. Como parte del trabajo experimental, se fabricó otro chip en tecnología CMOS de 40 nm con dicha arquitectura, de la que se obtuvieron resultados notables. Estos resultados permitieron verificar que la arquitectura propuesta, en efecto, podrá emplearse como convertidor analógico-digital eficiente. La arquitectura consigue una relación real señal-(ruido-distorsión) igual a 53 dB en 20 MHz de ancho de banda, un consumo de 3.5 mW y un área igual a 0.08 mm2. Se obtiene una gran linealidad y, en comparación con arquitecturas equivalentes, el consumo es menor mientras que el área ocupada se mantiene similar. En general, las aportaciones propuestas en este documento se pueden aplicar a cualquier tipo de aplicación, independientemente de los requisitos de resolución, ancho de banda, consumo u área. Sin embargo, en el caso de los prototipos fabricados, las especificaciones se relacionan con el ámbito de las comunicaciones (VDSL, VDSL2, o incluso G.fast), en donde se requiere una resolución media (9-10 bits), alto ancho de banda (20 MHz), manteniendo bajo consumo y baja área ocupada.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Michael Peter Kennedy.- Secretario: Antonio Jesús López Martín.- Vocal: Jörg Hauptman

    Data acquisition techniques based on frequency-encoding applied to capacitive MEMS microphones

    Get PDF
    Mención Internacional en el título de doctorThis thesis focuses on the development of capacitive sensor readout circuits and data converters based on frequency-encoding. This research has been motivated by the needs of consumer electronics industry, which constantly demands more compact readout circuit for MEMS microphones and other sensors. Nowadays, data acquisition is mainly based on encoding signals in voltage or current domains, which is becoming more challenging in modern deep submicron CMOS technologies. Frequency-encoding is an emerging signal processing technique based on encoding signals in the frequency domain. The key advantage of this approach is that systems can be implemented using mostly-digital circuitry, which benefits from CMOS technology scaling. Frequencyencoding can be used to build phase referenced integrators, which can replace classical integrators (such as switched-capacitor based integrators) in the implementation of efficient analog-to-digital converters and sensor interfaces. The core of the phase referenced integrators studied in this thesis consists of the combination of different oscillator topologies with counters and highly-digital circuitry. This work addresses two related problems: the development of capacitive MEMS sensor readout circuits based on frequency-encoding, and the design and implementation of compact oscillator-based data converters for audio applications. In the first problem, the target is the integration of the MEMS sensor into an oscillator circuit, making the oscillation frequency dependent on the sensor capacitance. This way, the sound can be digitized by measuring the oscillation frequency, using digital circuitry. However, a MEMS microphone is a complex structure on which several parasitic effects can influence the operation of the oscillator. This work presents a feasibility analysis of the integration of a MEMS microphone into different oscillator topologies. The conclusion of this study is that the parasitics of the MEMS limit the performance of the microphone, making it inefficient. In contrast, replacing conventional ADCs with frequency-encoding based ADCs has proven a very efficient solution, which motivates the next problem. In the second problem, the focus is on the development of high-order oscillator-based Sigma-Delta modulators. Firstly, the equivalence between classical integrators and phase referenced integrators has been studied, followed by an overview of state-of-art oscillator-based converters. Then, a procedure to replace classical integrators by phase referenced integrators is presented, including a design example of a second-order oscillator based Sigma-Delta modulator. Subsequently, the main circuit impairments that limit the performance of this kind of implementations, such as phase noise, jitter or metastability, are described. This thesis also presents a methodology to evaluate the impact of phase noise and distortion in oscillator-based systems. The proposed method is based on periodic steady-state analysis, which allows the rapid estimation of the system dynamic range without resorting to transient simulations. In addition, a novel technique to analyze the impact of clock jitter in Sigma-Delta modulators is described. Two integrated circuits have been implemented in 0.13 μm CMOS technology to demonstrate the feasibility of high-order oscillator-based Sigma-Delta modulators. Both chips have been designed to feature secondorder noise shaping using only oscillators and digital circuitry. The first testchip shows a malfunction in the digital circuitry due to the complexity of the multi-bit counters. The second chip, implemented using single-bit counters for simplicity, shows second-order noise shaping and reaches 103 dB-A of dynamic range in the audio bandwidth, occupying only 0.04 mm2.Esta tesis se centra en el desarrollo de conversores de datos e interfaces para sensores capacitivos basados en codificación en frecuencia. Esta investigación está motivada por las necesidades de la industria, que constantemente demanda reducir el tamaño de este tipo de circuitos. Hoy en día, la adquisición de datos está basada principalmente en la codificación de señales en tensión o en corriente. Sin embargo, la implementación de este tipo de soluciones en tecnologías CMOS nanométricas presenta varias dificultades. La codificación de frecuencia es una técnica emergente en el procesado de señales basada en codificar señales en el dominio de la frecuencia. La principal ventaja de esta alternativa es que los sistemas pueden implementarse usando circuitos mayoritariamente digitales, los cuales se benefician de los avances de la tecnología CMOS. La codificación en frecuencia puede emplearse para construir integradores referidos a la fase, que pueden reemplazar a los integradores clásicos (como los basados en capacidades conmutadas) en la implementación de conversores analógico-digital e interfaces de sensores. Los integradores referidos a la fase estudiados en esta tesis consisten en la combinación de diferentes topologías de osciladores con contadores y circuitos principalmente digitales. Este trabajo aborda dos cuestiones relacionadas: el desarrollo de circuitos de lectura para sensores MEMS capacitivos basados en codificación temporal, y el diseño e implementación de conversores de datos compactos para aplicaciones de audio basados en osciladores. En el primer caso, el objetivo es la integración de un sensor MEMS en un oscilador, haciendo que la frecuencia de oscilación depe capacidad del sensor. De esta forma, el sonido puede ser digitalizado midiendo la frecuencia de oscilación, lo cual puede realizarse usando circuitos en su mayor parte digitales. Sin embargo, un micrófono MEMS es una estructura compleja en la que múltiples efectos parasíticos pueden alterar el correcto funcionamiento del oscilador. Este trabajo presenta un análisis de la viabilidad de integrar un micrófono MEMS en diferentes topologías de oscilador. La conclusión de este estudio es que los parasíticos del MEMS limitan el rendimiento del micrófono, causando que esta solución no sea eficiente. En cambio, la implementación de conversores analógico-digitales basados en codificación en frecuencia ha demostrado ser una alternativa muy eficiente, lo cual motiva el estudio del siguiente problema. La segunda cuestión está centrada en el desarrollo de moduladores Sigma-Delta de alto orden basados en osciladores. En primer lugar se ha estudiado la equivalencia entre los integradores clásicos y los integradores referidos a la fase, seguido de una descripción de los conversores basados en osciladores publicados en los últimos años. A continuación se presenta un procedimiento para reemplazar integradores clásicos por integradores referidos a la fase, incluyendo un ejemplo de diseño de un modulador Sigma-Delta de segundo orden basado en osciladores. Posteriormente se describen los principales problemas que limitan el rendimiento de este tipo de sistemas, como el ruido de fase, el jitter o la metaestabilidad. Esta tesis también presenta un nuevo método para evaluar el impacto del ruido de fase y de la distorsión en sistemas basados en osciladores. El método propuesto está basado en simulaciones PSS, las cuales permiten la rápida estimación del rango dinámico del sistema sin necesidad de recurrir a simulaciones temporales. Además, este trabajo describe una nueva técnica para analizar el impacto del jitter de reloj en moduladores Sigma-Delta. En esta tesis se han implementado dos circuitos integrados en tecnología CMOS de 0.13 μm, con el fin de demostrar la viabilidad de los moduladores Sigma-Delta de alto orden basados en osciladores. Ambos chips han sido diseñados para producir conformación espectral de ruido de segundo orden, usando únicamente osciladores y circuitos mayoritariamente digitales. El primer chip ha mostrado un error en el funcionamiento de los circuitos digitales debido a la complejidad de las estructuras multi-bit utilizadas. El segundo chip, implementado usando contadores de un solo bit con el fin de simplificar el sistema, consigue conformación espectral de ruido de segundo orden y alcanza 103 dB-A de rango dinámico en el ancho de banda del audio, ocupando solo 0.04 mm2.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Georges G.E. Gielen.- Secretario: José Manuel de la Rosa.- Vocal: Ana Rus

    Design of a Digital Temperature Sensor based on Thermal Diffusivity in a Nanoscale CMOS Technology

    Get PDF
    Temperature sensors are widely used in microprocessors to monitor on-chip temperature gradients and hot-spots, which are known to negatively impact reliability. Such sensors should be small to facilitate floor planning, fast to track millisecond thermal transients, and easy to trim to reduce the associated costs. Recently, it has been shown that thermal diffusivity (TD) sensors can meet these requirements. These sensors operate by digitalizing the temperature-dependent delay associated with the diffusion of heat pulses through an electro-thermal filter (ETF), which, in standard CMOS, can be readily implemented as a resistive heater surrounded by a thermopile. Unlike BJT-based temperature sensors, their accuracy actually improves with CMOS scaling, since it is mainly limited by the accuracy of the heather/thermopile spacing. In this work is presented the electrical design of an highly digital TD sensor in 0.13 µm CMOS with an accuracy better than 1 ºC resolution at with 1 kS/s sampling rate, and which compares favourably to state-of-the-art sensors with similar accuracy and sampling rates [1][2][3][4]. This advance is mainly enabled by the adoption of a highly digital CCO-based phasedomain ΔΣ ADC. The TD sensor presented consists of an ETF, a transconductance stage, a current-controlled oscillator (CCO) and a 6 bit digital counter. In order to be easily ported to nanoscale CMOS technologies, it is proposed to use a sigmadelta modulator based on a CCO as an alternative to traditional modulators. And since 70% of the sensor’s area is occupied by digital circuitry, porting the sensor to latest CMOS technologies process should reduce substantially the occupied die area, and thus reduce significantly the total sensor area

    Analysis of BJT Colpitts Oscillators - Empirical and Mathematical Methods for Predicting Behavior

    Get PDF
    Oscillator circuits perform two fundamental roles in wireless communication –the local oscillator for frequency shifting and the voltage-controlled oscillator formodulation and detection. The Colpitts oscillator is a common topology used for theseapplications. Because the oscillator must function as a component of a larger system, theability to predict and control its output characteristics is necessary. Textbooks treating thecircuit often omit analysis of output voltage amplitude and output resistance and theliterature on the topic often focuses on gigahertz-frequency chip-based applications.Without extensive component and parasitics information, it is often difficult to makesimulation software predictions agree with experimental oscillator results.The oscillator studied in this thesis is the bipolar junction Colpitts oscillator in thecommon-base configuration and the analysis is primarily experimental. Thecharacteristics considered are output voltage amplitude, output resistance, andsinusoidal purity of the waveform. The contributions of each of the components of theoscillator to the output voltage waveform are investigated and methods to predict andcontrol amplitude are discussed. The relationships of the output resistance and waveformshape to the inductor are also studied. Two example Colpitts oscillators with differentdesign criteria are constructed for the benefit of the reader and to test the methodsidentified in the work
    corecore