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ABSTRACT
ANALYSIS OF BJT COLPITTS OSCILLATORS –

EMPIRICAL AND MATHEMATICAL
METHODS FOR PREDICTING

BEHAVIOR

Nicholas J. Stave, B.Sc.

Marquette University, 2019

Oscillator circuits perform two fundamental roles in wireless communication –
the local oscillator for frequency shifting and the voltage-controlled oscillator for
modulation and detection. The Colpitts oscillator is a common topology used for these
applications. Because the oscillator must function as a component of a larger system, the
ability to predict and control its output characteristics is necessary. Textbooks treating the
circuit often omit analysis of output voltage amplitude and output resistance and the
literature on the topic often focuses on gigahertz-frequency chip-based applications.
Without extensive component and parasitics information, it is often difficult to make
simulation software predictions agree with experimental oscillator results.

The oscillator studied in this thesis is the bipolar junction Colpitts oscillator in the
common-base configuration and the analysis is primarily experimental. The
characteristics considered are output voltage amplitude, output resistance, and
sinusoidal purity of the waveform. The contributions of each of the components of the
oscillator to the output voltage waveform are investigated and methods to predict and
control amplitude are discussed. The relationships of the output resistance and waveform
shape to the inductor are also studied. Two example Colpitts oscillators with different
design criteria are constructed for the benefit of the reader and to test the methods
identified in the work.
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1

CHAPTER 1

INTRODUCTION

Oscillators are ubiquitous in electronics. While exotic components are necessary

for very high frequency oscillation, discrete transistor oscillators can produce signals over

a significant portion of the RF spectrum. Many oscillators output a sinusoidal, or

harmonic, signal which finds several applications in wireless communication. Harmonic

oscillators may be used in conjunction with a mixer to shift the frequency of a signal in a

wireless receiver or transmitter. With a slight alteration to the circuit described in this

work, the voltage-controlled oscillator may be used as a component of a phase-locked

loop for detection and modulation. Other electronic oscillator circuits provide periodic

signals of different waveforms, such as a sawtooth or square wave.

1.1 Electronic Oscillators

“An electronic oscillator is a circuit with a periodic output signal but with no

periodic input signal [18, p. 241].” Because the primary function of the oscillator is to

output a signal with a predictable rate of repetition, oscillators require a frequency

selection mechanism. Frequency selection is provided by an LC-tank circuit in all the

oscillators in this thesis, but electronic oscillators can use a variety of methods such as

phase shifting or a resonant cavity to perform this function.

All frequency selectors or resonators suffer loss due to resistance and must be

resupplied with energy to maintain oscillation. This is accomplished through a

positive-feedback amplifier for the oscillators investigated in the following chapters.

Oscillation could also be maintained directly using negative resistance, for example, with

a Gunn diode [10].

1.1.1 Colpitts Oscillator Family

The Colpitts oscillator consists of an amplifier and a feedback network. The

feedback network consists of an inductor and two capacitors with a portion of the output
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signal being directed back to the input through one of the reactive elements. This network

provides the two functions of frequency selection and signal reinforcement (positive

feedback). As will be seen in the following chapter, there must be no net phase shift (or an

integer multiple of 2π radians of phase shift) for a signal going around the feedback loop

to achieve oscillation. Figure 1.1 is a simplified diagram of the Colpitts oscillator.

Figure 1.1: Simplified BJT Colpitts Oscillator

The satisfaction of the requirements for oscillation are demonstrated in the

following chapter for the bipolar junction transistor Colpitts oscillator in the

common-base configuration. They can similarly be met by a number of oscillators which

have slight modifications from the circuit under investigation. The active component

could be a field-effect transistor or an op-amp. For a BJT oscillator, the base need not be

the common node. If the amplifier inverts its output signal relative to its input signal as in

the case of the common-emitter or common-source amplifiers, the feedback network must

also be inverting to provide no net phase shift around the loop. This can be accomplished

with a rearrangement of the elements of the LC feedback network as shown in figure 1.2.
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Figure 1.2: Feedback Gains in LC Oscillators

A Colpitts-type oscillator with an inverted feedback signal is often called a Pierce

oscillator. An oscillator using a resonator with two inductors and one capacitor is termed

a Hartley oscillator, and a Colpitts oscillator with an extra capacitor in series with the

inductor is called a Clapp oscillator. Finally, a crystal component can be used in place of

the inductor in a Colpitts oscillator to improve frequency stability [14]. Simplified

diagrams of some of the oscillators in the Colpitts family are displayed in figure 1.3.
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Figure 1.3: BJT Oscillators in the Colpitts Family

1.1.2 Colpitts Oscillator

The circuit treated in this thesis is the BJT Colpitts oscillator. Because most of the

investigation was experimental and not simulated, practicality took priority in

component selection and circuit design. The Colpitts oscillator, unlike the Hartley,

requires more capacitors than inductors and the former are generally much more

abundant. Because the focus of this thesis is on the relationships of the components of the

circuit to the output characteristics, the BJT was chosen as the active component instead

of a field-effect transistor. Virtually any desired oscillator that can be built with one

component can also be built with the other, but calculating biasing and gains for large

numbers of oscillators is simpler when dealing with linear and not quadratic

relationships. Various test oscillators were constructed using op-amps as well, but their

slew rates confine them to the hundreds of kilohertz – below the general range of interest

of this thesis.

The frequencies for most of the oscillators investigated are in the low megahertz

range, and this was again selected for practicality. At lower frequencies, coupling and

bypass capacitors become large and tuning becomes cumbersome. Above approximately

10 megahertz, junction capacitances and parasitics become very relevant and disruptive

to resonant frequency prediction.
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The AC ground point for all circuits in this work is the base but as seen in the

previous section, common-emitter or common-collector configurations are also possible.

In the textbooks referenced, the term “Colpitts oscillator” often implies the common-base

configuration and the analysis focuses on it. Further, the analysis for the common-base

configuration is often simpler than for other configurations as evidenced by the feedback

gain calculations displayed in figure 1.2.

1.2 Previous Work

A search of the term “Colpitts” on the IEEE digital library returns hundreds of

articles on the subject. Many of the articles discuss novel application methods for Colpitts

oscillators in the gigahertz frequency range and many others investigate chaotic

oscillators whose output voltage amplitudes never repeat. Some of the articles do discuss

fundamental Colpitts oscillator construction – specifically biasing and component

selection (see [12] and [15]). Three articles were found that relate specifically to this work.

Their results as they pertain to this thesis are summarized here.

1.2.1 Exact Calculation of Oscillation Amplitude and Predicting Power Consumption
for CMOS Colpitts Oscillators [7]

The circuit considered by the author Qiuting Huang was the common-drain

CMOS Colpitts oscillator. This oscillator differs from the one in this thesis by a

substitution of the active device and by a rearrangement of the feedback network. The

small-signal equivalent circuit is virtually the same. Huang begins the analysis by

introducing negative resistance – a concept that was mentioned above for the Gunn diode

oscillator. While covered only briefly in appendix B, the Colpitts oscillator is in fact a

negative-resistance oscillator. Oscillation is only possible if the resistance in the circuit is

overcome by the negative resistance of the combination of the active device and the

reactive components.

From this expression for negative resistance, Huang terms “critical

transconductance” the minimum transconductance gm required to balance the resistance
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of the circuit with negative resistance and achieve oscillation. He then derives an

expression for the current through the transistor at the resonant frequency and solves the

output voltage amplitude as a function of the same. Through more manipulation, Huang

finally arrives at an expression for the output voltage amplitude as a function of the

component and bias values of the circuit:

Vm ≈
Io(5 + x)

12Rs

L
C

, C =
C1

2
=

C2

2
, x =

VT −VB

Vm
(1.1)

where Io is the average current through the transistor, RS is the combination of all of the

resistance causing loss in the resonator, Vm is the output voltage amplitude, VT is the

thermal voltage, and VB is the gate-source bias voltage.

While this analysis pertains to the CMOS transistor, the relationships of the

quiescent current, inductance and capacitance to the output voltage of equation 1.1 will

all be shown to be consistent with the experiments conducted in chapter 3.

1.2.2 Frequency and Power Scaling in mm-Wave Colpitts Oscillators [8]

The circuit discussed in this article is very extreme compared to those covered in

the following chapters. The active device used by the author Alireza Imani is the 130-nm

silicon-germanium heterojunction bipolar transistor in a CMOS environment. This

transistor is intended for millimeter and sub-millimeter signals and the frequencies cited

for analysis in this article are 106 and 148 GHz. Finally, the circuit diagram includes only

L and C2 as the other capacitance is provided by the Cπ and Cµ effective capacitances

seen in the complete hybrid-π small-signal equivalent circuit model. 1

While the circuit and its applications are beyond the scope of this thesis, Imani

does provide a derivation and expression for the amplitude of oscillation:

app,S ≈
4IBIASLS

KS(RB,S + RL,S)C2,S(1 + βS)
(1.2)

where app is the amplitude of oscillation; Ibias is the average emitter current; L is the

inductance; C2 is the discrete capacitor; K is a function of intrinsic and external

1The simplified hybrid-π model is discussed in section 2.1.1.
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capacitances; RB and RL are the base and inductance resistances; and β is a ratio of

capacitances. The subscript S indicates that all values are scaled by a set of constants. The

current, inductance and capacitance are in the same positions as those in equation 1.1

from the Huang article [7]. While the derivation and many of the other variables of

equation 1.2 are not directly applicable to work at much lower frequencies, at least two

sources agree on some of the factors contributing to the output voltage amplitude.

1.2.3 Everything You Always Wanted to Know About Colpitts Oscillators [17]

Many of the mathematical methods investigated in this thesis are seen in this

comprehensive article by Ulrich L. Rohde and Anisha M. Apte. The concept of negative

resistance is explained using the common-collector oscillator variant. Large-signal

current and voltage analysis similar to the Clarke-Hess [3] method seen in section 2.2.1 is

elucidated. The article does not provide an equation for output voltage amplitude as a

function of circuit parameters but instead provides the value as a function of power and

load resistance.

Output voltage amplitude is a byproduct of power for the authors of this article.

A desired resonant frequency and output power are first selected and the component

values are determined one at a time to arrive at an oscillator that meets the specifications

with the lowest possible phase noise. The example circuit that they developed features a

resonant frequency of 350 MHz. The capacitors required to achieve this frequency were in

the single-digit picofarads and the inductor value was 21 nanohenries - all well below the

component values available in the laboratory while working on this thesis. While the

specific oscillator tested was not directly applicable to this work, their methods are the

same as those of the textbook authors.

1.3 Thesis Objective

The purpose of this thesis is to develop a method to control the output voltage

amplitude, output resistance, and waveform purity of the Colpitts oscillator in its discrete

form. Given enough resistors, inductors, and capacitors, it does not take long to produce
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an oscillating signal. Given more time, one can achieve oscillation at the desired

frequency. From the perspective of an oscillator as a single stage or component in a

complicated system, producing a signal at the required frequency is not sufficient.

Depending on the components used, the output impedance of the oscillation

could be on the order of megohms. Again, circuit dependent, the output voltage

amplitude could be twice or more the supply voltage – a problem for the follow-on buffer

that will certainly be required if the output impedance is very high. A further issue is the

distortion of the waveform and its accompanying increase in the power of frequency

harmonics, depending on the selection of the reactive components.

There are an infinite number of combinations that will produce a specified

resonant frequency using two capacitors and one inductor. Many of those combinations

will not produce a functional Colpitts oscillator. Using the methods in this thesis, suitable

components can be determined.

A search of the literature provides indications of the solution to this problem

though applied to circuits with very different components and operating conditions.

While a comprehensive equation predicting each of the output characteristics is beyond

the scope of this work, methods to correct undesirable attributes or to achieve oscillation

in a nonfunctioning circuit are developed. These methods are tested in the example

circuits of Chapter 4.

1.4 Thesis Outline

The purpose of chapter 2 (Theory) is to develop the analysis methods and

establish the terminology for the common-base Colpitts oscillator. In the first part of the

chapter, the common-base amplifier is introduced and analyzed. The concept of positive

feedback is discussed and finally the oscillator is examined. The second part of the

chapter investigates the methods used by difference sources to determine the output

characteristics of voltage amplitude, impedance, and phase noise.

In chapter 3 (Experimental Data and Results), experiments are conducted to

ascertain the relationships of the components of the Colpitts oscillator to its output
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characteristics. Chapter 4 (Discussion) summarizes the observations and emphasizes

remarkable discoveries. Chapter 5 (Conclusions) discusses the comprehensive experience

of this work and ideas for future work.
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CHAPTER 2

THEORY

The first purpose of this chapter is to introduce the concept of the oscillator – its

basis as an amplifier and the requirements to achieve oscillation. The second purpose is

to investigate the current methods available for oscillator analysis and behavior

prediction. Finally, this chapter seeks to demonstrate that more analysis is required to

account for the output characteristics of physically-constructed oscillators.

2.1 BJT Colpitts Oscillator

There are many methods for constructing an oscillator and not all oscillators

produce sinusoidal, or harmonic, output signals. Those that do find very important

applications as carrier frequency producers in every radio transmitter and receiver. The

harmonic oscillator circuit presented in this thesis is the BJT common-base Colpitts

oscillator.

The Colpitts oscillator requires an amplifier. The amplifier in this circuit is

provided by a bipolar junction transistor. BJTs are easily obtained and their characteristics

are well known. Counterpart oscillators can certainly be constructed using field-effect

transistors but their variety makes the BJT a simpler choice to form a basis for analysis.

The selected active component could also be an operational amplifier, but common

op-amps cannot produce harmonic output into the megahertz frequency range.

Colpitts oscillators can be grounded at any node, but the relatively simple gain

calculations and the preponderance of literature favor the common-base version.

Selecting the Colpitts over the Hartley oscillator is a matter of practicality – the Colpitts

uses two capacitors and one inductor versus only one capacitor and two inductors for the

Hartley, and capacitors are more readily available than inductors. Finally,

higher-frequency harmonic oscillators can be constructed using special diodes and

resonator cavities, but their construction and analysis are more complicated. All of these

factors contribute to the selection of the oscillator circuit design used in this study.
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2.1.1 Common-Base Amplifier

The common-base amplifier is one of three basic configurations for a

single-transistor amplifier. It is a voltage amplifier and current buffer. From the

perspective of passing along a voltage signal from one stage to the next, it is not the

obvious choice. Compared to the common-collector and common-emitter amplifiers, the

input impedance of the common-base amplifier is low but its output impedance is high.

A follow-on voltage buffer will generally be necessary to provide enough current to drive

a low-impedance load.

This little-used amplifier is the opposite of the common-collector amplifier in

many of its impedance and gain characteristics but it has important applications. While

its input impedance, on the order of tens of ohms in many cases, is too low to pass along

a voltage signal, it can easily be transformed a bit higher to match an impedance for

maximum power transfer (e.g. a 50 Ω antenna [6, p. 73]). This amplifier configuration

also exhibits the capacity for tremendous voltage gain (easily 22 dB), with the added

benefit that the amplified output signal is in phase with the input signal.

Common-Base Amplifier Circuit

The common-emitter amplifier is perhaps the most readily useable configuration

because of its single-stage power gain. The common-base amplifier, because of its niche

uses and because it is the basis for the common-base oscillator, bears some investigation.

Figure 2.1 is a common-base amplifier using voltage-divider biasing, coupled to

an AC source and a resistive load. A more complete diagram would include the source

impedance, but this complicates the analysis and is not a factor in the oscillator circuit

modification. Compared to the common-emitter amplifier, this configuration takes input

at the emitter and outputs through the collector. The base is grounded in the AC circuit

with the bypass capacitor but uses R1, R2, and RE to maintain the base at a higher DC

voltage than the emitter.
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Figure 2.1: Common-Base Amplifier with Voltage-Divider Biasing

Figure 2.2 is the same amplifier but uses two DC supplies to bias the transistor.

This method is less practical from a device standpoint but makes biasing much simpler in

the lab. Whichever biasing method is used, the AC-equivalent circuit is the same.
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Figure 2.2: Common-Base Amplifier with Dual-Supply Biasing

To determine the parameters of input and output impedance and current and

voltage gain, the transistor symbol in a circuit diagram must be replaced by an equivalent

circuit model before analyzing. There are three linear circuit models commonly taught in

transistor textbooks [2, ch. 7], [13, ch. 6]: the hybrid model, the hybrid-π model, and the

re model. The hybrid model, with its ubiquitous h f e factor, appears on most transistor

datasheets. The re model is very simple, which is an advantage and a disadvantage. The

hybrid-π model in its fullness is very robust but can be simplified to two components if

rigor is not necessary. Because of this versatility, the same model can be used to describe

the simple mid-frequency amplifier and the more parasitic-susceptible microwave

amplifier. The hybrid-π model will be used throughout this thesis. Figure 2.3 is the

simplified hybrid-π circuit with the base, emitter and collector terminals labeled.
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Figure 2.3: Simplified Hybrid-π Model in Common-Base Configuration

The reciprocal of the resistor rπ = VT/IBQ is the slope of the ib vs vbe curve at the

quiescent point. Similarly, the small-signal transconductance gm is the slope of the ic vs

vbe curve at the quiescent point, or gm = ICQ/VT [13, p. 379]. The common-emitter

current gain is β = ic/ib = gmrπ.

Common-Base Amplifier Analysis

To analyze the AC-equivalent circuit, the DC voltage sources, bypass capacitors,

and coupling capacitors are shorted and the transistor is replaced by its equivalent

small-signal model. The components are then rearranged for simplification. Figure 2.4 is

the small-signal equivalent circuit for the common-base amplifier of figure 2.2.

Figure 2.4: Simplified Common-Base Amplifier Small-Signal Equivalent Circuit



15

To calculate voltage and current gain, the input and output voltages and currents

are first determined:

• The input voltage is the source voltage, VS, which is also the base-emitter voltage

Vπ.

• The output current is the portion of the dependent source current through the load

resistance: Io = gmVπ
RC

RC+RL

• The output voltage is the dependent source current multiplied by the output

resistance: Vo = gmVπRo, where Ro = RC||RL.

• The input current is the dependent source current plus the current through the

input-side resistors: Iin = gmVπ + Vπ
Rin

, where Rin = RE||rπ.

The voltage and current gains are calculated as follows:

AV =
Vo

Vin
= gmRo (2.1)

AI =
Io

Iin
= gm

( RC

RC + RL

)( rπ

β + 1
||RE

)
(2.2)

The input impedance is calculated as follows:

Zin =
Vin

Iin
=

1
1

rπ
+ gm

=
rπ

β + 1
(2.3)

The intrinsic output resistance ro of the npn transistor in the common-base

configuration could be on the order of megohms. Connected in parallel with the effective

input resistance rπ/(β + 1), its effect is negligible. This resistance dominates the output

resistance of the amplifier however and is included in its calculation. The circuit with the

resistance ro included is shown in figure 2.5.
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Figure 2.5: More Robust Representation of the Common-Base Amplifier

For the algebraic procedure, see appendix A. The result is as follows:

Zo =
VX

IX
= ro(1 + gmReq) + Req, Req = RS||RE||rπ. (2.4)

2.1.2 Criteria for Oscillation

The fundamental concept of operation for the Colpitts oscillator is positive

feedback. While positive feedback in amplifiers is usually an undesireable side effect of

frequency response, it is required in this type of oscillator. Because there is no input

signal, the oscillator must be self-starting and self-sustaining. This is possible only by

achieving a zero in the denominator of the oscillator’s transfer function to offset the factor

of 0 contributed by the input voltage.

Feedback

Figure 2.6 is a simple block diagram of a generic feedback amplifier.
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Figure 2.6: Generic Feedback Amplifier Block Diagram

Conceptually, feedback provides the system information about the output and

allows the system to correct to the desired output. In the ubiquitous case of negative

feedback, the output signal is sent through a feedback network and then subtracted from

(added out of phase to) the input signal.

Negative feedback provides several advantages: increased bandwidth; increased

signal-to-noise ratio; higher input impedance; and lower output impedance, etc [2, p.

751]. The primary cost is a decrease in gain. Referring to figure 2.6 and assuming that the

error signal e = Vin −Vf where Vf is the feedback signal,

Vout = G× e Vf = HVout,

so
Vout

Vin
=

G
1 + HG

(2.5)

where Vout/Vin is the closed-loop gain, G is the gain of the amplifier, H is the gain of the

feedback network, and HG is termed the loop gain. The gain of the system including

negative feedback is reduced by the factor 1 + HG.

Nyquist and Barkhausen Criteria

If the amplifier and feedback gains are functions of frequency, the loop gain could

conceivably exhibit a phase shift such that the feedback signal adds to the input signal

constructively. This resulting positive feedback causes instability and oscillation. The
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Nyquist criterion for stability instructs that a negative-feedback amplifier is stable at all

frequencies provided that at no frequency is the loop gain less than or equal to –1 [2, p.

766].

If instead the feedback signal is intentionally added in phase to the input signal,

the system becomes a positive-feedback amplifier and its gain, or transfer function, is

Vout

Vin
=

G
1− HG

. (2.6)

Equation 2.6 exhibits a simple pole at HG = 1. The Barkhausen criteria for oscillation

states that oscillation is possible provided that the loop gain attains a value of unity with

no net phase shift around the closed loop. Equation 2.6 rearranged yields

Vout =
GVin

1− HG
(2.7)

and with equation 2.7, the oscillator form becomes clear. As the oscillator generates its

own signal, Vin equals zero. Because thermal noise exists in any electrical system, a

properly-designed high-Q reactive feedback circuit selects the resonant frequency signal

from this thermal noise and amplifies it repeatedly until it self-limits (as in the case of the

Colpitts oscillator).

2.1.3 Common-Base Oscillator

Figure 2.7 is an example of a complete dual-supply common-base Colpitts

oscillator.
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Figure 2.7: Dual-Supply Common-Base Colpitts Oscillator

This circuit resembles the amplifier from figure 2.2 with only a few important

differences. First, in place of the collector resistor there is an inductor. In series with the

inductor is its equivalent series resistance r which can have a large effect on oscillator

performance. Second, there is no source, as the tank circuit formed from the components

C1, C2, and L effectively acts as the source. Finally, there is a feedback path from collector

to emitter through C1.

The ideal LC tank circuit with its perpetual sinusoidal current does not appear

distinctly in figure 2.7 or in its small-signal equivalent in figure 2.8. Note that the reactive

components remain in the small-signal circuit while the coupling capacitor is replaced

with a short circuit because its impedance at the resonant frequency is insignificant.
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Figure 2.8: Small-Signal Equivalent Common-Base Colpitts Oscillator

Rearranging the terminals of figure 2.8 vertically results in the circuit of figure 2.9

in which the tank circuit appears, albeit with the small equivalent series resistance r.

Figure 2.9: Rearranged Small-Signal Equivalent Common-Base Colpitts Oscillator

The appearance of the LC resonator indicates that oscillation may be possible, but

several requirements must first be met.
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Satisfaction of Oscillation Criteria

As shown in section 2.1.2, the oscillator’s transfer function must have a zero in the

denominator. The magnitude of the loop gain must be at least unity and there must be no

phase shift at the resonant frequency. The phase shift of the transfer function is readily

calculated using either figure 2.7 or 2.9.

The common-base amplifier takes input at the emitter, outputs to the collector,

and the signal is not inverted. This means that the feedback network must output a

non-inverted signal. The capacitor C1 is the feedback path. Its input voltage is Vo and its

output voltage is Vπ. C1 and C2 form a voltage divider between the collector and emitter

such that

AVf =
Vπ

Vo
=

XC2

XC1 + XC2

=
C1

C1 + C2
= n, (2.8)

where n is termed the capacitive ratio. Neither the feedback network nor the amplifier

gain exhibit a shift in phase, so the first criterion is met.

Equation 2.8 also provides a piece of the second requirement for oscillation – that

the loop gain have a magnitude of one. As in section 2.1.2, the loop gain is the product of

the amplifier and feedback network gains. Equation 2.8 is the feedback network gain.

From equation 2.1, the amplifier gain is gmRo, where Ro is the combined resistance

between the collector and the base. Often, loop gain is initially greater than one but

settles to unity as oscillation builds.

Figure 2.9 does not present an immediately clear output impedance, so

rearrangement and combination is necessary. The obstacle to a clear output impedance is

the feedback path through C1. An equivalent output signal could be generated by

breaking the feedback path and applying a sinusoidal signal at that point [18, p. 245],

given that the applied signal encounters the same impedance as the original circuit [19, p.

460]. The applied signal is Vπ and the impedance it must see is the input impedance of

the common-base amplifier. From equation 2.3, the input resistance is rπ
β+1 , relabeled as ri.

With the feedback loop broken, the resulting circuit is shown in figure 2.10.
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Figure 2.10: Small-Signal Equivalent Oscillator with Feedback Loop Opened

Figure 2.10 could be analyzed in terms of an output current and a load but a

simplification can make the messy analysis clearer. A parallel LC circuit has infinite

impedance at the resonant frequency but the two resistors shunting C2 in figure 2.10 must

first be repositioned. By solving for the combined admittance of C1, C2, ri, and RE in

terms of a conductance and a susceptance, the two resistors are moved to the output and

the capacitors are, within an approximation, left alone [18, p. 127].

Figure 2.11: Admittance to be Transformed
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Figure 2.11 is the admittance to be transformed. The resistor R is the parallel

combination of ri and RE. The impedance of the combination is

Z =
1

jωC1
+

R
1 + jRωC2

and the admittance is

Y =
Rω2C2

1
1 + R2ω2(C1 + C2)2 +

jωC1(1 + R2ω2C2(C1 + C2))

1 + R2ω2(C1 + C2)2 .

The admittance leads to a parallel resistance

Req =
1 + R2ω2(C1 + C2)2

ω2RC2
1

(2.9)

which can be approximated as

Req ≈ R
(

C1 + C2

C1

)2

=
R
n2

if the second term in the numerator of equation 2.9 is much larger than one. The

admittance also contains a parallel capacitance

Ceq =
C1 + R2ω2C1C2(C1 + C2)

1 + R2ω2(C1 + C2)2 (2.10)

which can be approximated as

Ceq ≈
R2ω2C1C2(C1 + C2)

R2ω2(C1 + C2)2 =
C1C2

C1 + C2
= C1||C2

using the same criterion as for the equivalent resistance. The final approximate

transformation is shown in figure 2.12.

Figure 2.12: Approximate Transformed Admittance, Valid if R2ω2(C1 + C2)2 � 1
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The resulting oscillator is shown in figure 2.13.

Figure 2.13: Oscillator with Transformed Admittance

The same admittance transformation should be performed for the small resistance

r in the inductor when calculating the output impedance for follow-on stages. Ignoring r

until section 2.2.2 and appendix C, figure 2.13 exhibits a tank circuit of infinite impedance

at resonance and a combined resistance of Req||RL. As in equation 2.1, the voltage gain of

the amplifier at resonance is simply:

AVamp = gm(Req||RL) = gmRo (2.11)

where Ro is the combined output impedance of the oscillator and the load. The oscillation

requirement that the loop gain must have unity magnitude requires that the oscillator

satisfy:

AVloop = gm(Req||RL)
C1

C1 + C2
= ngmRo = 1. (2.12)

Other Results

Methods for predicting the frequency of oscillation and the maximum allowable

equivalent series resistance in the inductor can be found in appendix B. The results are:

ω2 =
1
L

( 1
C1

+
1

C2
+

r
rπC2

)
(2.13)
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and

rrπ =
β + 1

ω2C1C2
− L

C2
⇒ rmax =

β + 1
ω2C1C2rπ

− L
C2rπ

. (2.14)

All inductors contain equivalent series resistance. Equation 2.14 quantifies the

maximum equivalent series resistance allowable such that oscillation can still occur. The

equation predicts the possibility of adding resistance to the inductor which would have

the effect of lowering the output resistance. An experiment testing this phenomenon is

conducted in section 3.2.4.

2.2 Output Characteristics

Because the oscillator must function as a component of a system, its output

characteristics must be known. Of course the most important characteristic for an

oscillator is the resonant frequency. Absent any resistance, the resonant frequency of a

tank circuit is f0 = 1
2π
√

LC
. This is generally a close approximation for Colpitts oscillators

with resonant frequencies in the single-digit megahertz, and it is improved by the

inclusion of resistance as in equation 2.13 and equation B.6.

Transistors under operation develop small capacitances at their junctions. This

effect is significant when these capacitances are of the same order of magnitude as the

reactive components used for oscillation. With a small C1, it is even possible to produce a

clean sinusoidal output waveform with no C2 capacitor. Predicting resonant frequency

accurately and precisely is a matter of including all circuit factors and characterizing the

active component to account for parasitics.

The other output characteristics are also important. While the only input to the

oscillator is the DC supply voltage, the output voltage amplitude can range from a

fraction of a volt to more than twice the value of the positive supply. For a multi-stage

device with a single DC supply, a very high oscillator output voltage may not work well

with a follow-on amplifier stage. While automatic gain control circuits can resize the

oscillator output voltage amplitude, they cannot correct saturated waveforms. The extra
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active devices also add unnecessary noise to the system, especially if the oscillator’s

output voltage can be controlled.

The output impedance has been shown to be resistive in the previous section.

While that simplifies the problem, the magnitude of the output resistance is still an

important factor. Most of the oscillators in the Results chapter have output resistances in

the range of hundreds of ohms to tens of kilohms. These values can be more easily

matched to a system with an emitter follower circuit than can a large-inductor oscillator

whose output resistance is on the order of megohms.

Finally, improperly designed oscillators yield distorted waveforms. From clipping

and sawtooth waveforms to near-sinusoids with abrupt linear segments, these distortions

increase the power of harmonics visible in the frequency-domain representation of the

output voltage signal.

The references treat these characteristics to varying extents. The following

sections are an investigation of some of the reference analysis methods along with

investigations of their example circuits.

2.2.1 Output Voltage Amplitude

Only two of the textbook references (Hagen [5] and Clarke-Hess [3]) make a

prediction of the output voltage amplitude for the BJT Colpitts oscillator.1 In the first

case, Hagen provides a circuit and states that its peak output amplitude will equal the

supply voltage. While the experimental circuit required alteration to achieve oscillation,

the predicted waveform could be obtained through simulation given certain conditions.

The coincidence of the equality of the two voltages is shown through simulation to be

specific to the values of the components of the circuit and not generally true.

The method of Clarke and Hess is much more complicated. The premise of these

authors is that small-signal analysis is not appropriate for oscillators or indeed most

transistor amplifiers. Through analysis of the Shockley diode equation, they develop a

1The Huang [7] and Imani [8] articles make predictions for the output voltage amplitude but for signifi-
cantly different circuits.
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characteristic curve of the emitter current given a sinusoidal input signal. From this

solution for the emitter current, they develop an expression for the large-signal

transconductance.

Set equal to this expression is the analysis of the specific oscillator configuration,

reconfigured in terms of transconductance. The method consists of determining the value

of transconductance that places the poles of the oscillator exactly on the imaginary axis,

yielding unity loop gain and steady oscillation. The example circuit is constructed as

specified but requires alteration to achieve experimentally measurable oscillation.

Hagen Output Voltage Method

Analysis The Hagen example [5, p. 130] is a common-base Colpitts oscillator using

voltage-divider biasing with a single DC source. The inductor is assumed to have no

equivalent series resistance. The load is coupled with a capacitor and both the base and

the supply are tied to AC ground with bypass capacitors. Figure 2.14 is the circuit

diagram including component values. The transistor specified is the 2N3904.

Figure 2.14: Hagen Colpitts Oscillator Example

Assuming a standard base-emitter voltage drop of 0.7 V, the biasing scheme

provides an emitter current of 0.33 mA. Treating the coupling and bypass capacitors as



28

AC short circuits, the frequency of oscillation from equation B.5 with r = 0 is

approximately 5 MHz. The textbook predicts a peak output voltage amplitude of 6 V –

the value of the DC supply.

Simulation The circuit from figure 2.14 was simulated in LTspice [4].The schematic is

shown in figure 2.15. With no startup conditions specified, the simulated output

waveform from t = 0 to t = 5 µs is shown in figure 2.16.

Figure 2.15: Hagen Oscillator Circuit in LTSpice



29

Figure 2.16: Hagen Simulation: No Initial Conditions, 0 < t < 5 µs

The simulated waveform of figure 2.16 shows some oscillatory behavior at the

end of the time sample. Allowing approximately 2,500 cycles, figure 2.17 displays a 5 µs

sample of the output voltage waveform after a warmup period of 495 µs.

Figure 2.17: Hagen Simulation: No Initial Conditions, 495 µs < t < 500 µs
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Figure 2.17 displays oscillation at the correct frequency but of amplitude on the

order of microvolts. Increasing the warmup time still further results in no discernable

oscillation, as seen in figure 2.18.

Figure 2.18: Hagen Simulation: No Initial Conditions, 1495 µs < t < 1500 µs

LTspice includes the initial condition modifiers uic and startup. The former stands

for use initial conditions and it involves skipping the DC operating point analysis and

applying nonphysical conditions to the circuit. The latter modifier ramps the

independent sources during the first 20 µs of the simulation [4]. Because real transistor

oscillators rely on noise present in the circuit to begin oscillation and this noise is not

present in simulation, these modifiers assist with oscillation stimulation.

Applying the startup modifier results in the waveform of figure 2.19.
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Figure 2.19: Hagen Simulation: startup Applied, 432 µs < t < 480 µs

The simulated waveform of figure 2.19 alternates every 35 µs between periods of

generally stable 12-Vpp oscillation and 30-V saturated output voltage. The frequency is

4.8 MHz.

If the modifier uic is applied, the waveform in figure 2.20 is generated.

Figure 2.20: Hagen Simulation: uic Applied, 322 µs < t < 392 µs
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The waveform of figure 2.20 is very similar to that of figure 2.19 – alternating

between 12-V sinusoidal behavior and almost 30-V saturated output voltage.

The supply voltage and the peak output voltage (when not saturated) are both 6

V. To show that the coincidence of these values is not true generally, the supply is

increased to 7 V with all other components kept constant. Figure 2.21 is the output

voltage waveform under these conditions.

Figure 2.21: Hagen Simulation: VCC = 7 V, uic Applied, 1.400 ms < t < 1.404 ms

While the waveform in figure 2.21 does not drop precisely to ground, the

maximum output is significantly higher than twice VCC. The waveform is very distorted

and the frequency is less than half the desired value.

Protoboard Hagen Circuit Figure 2.22 is the circuit diagram of the Hagen oscillator

using the closest practically-achievable component values and figure 2.23 is the oscillator

constructed on protoboard. All component values are measured.
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Figure 2.22: Protoboard Hagen Colpitts Oscillator Circuit Diagram

Figure 2.23: Protoboard Hagen Colpitts Oscillator

The simulated output waveform using the compoenent values of figure 2.22 and

applying the startup modifier is displayed in figure 2.24. The waveform is very similar to

the previous simulated waveforms. Figure 2.25 is the output waveform for the

constructed circuit.
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Figure 2.24: Protoboard Hagen Oscillator Simulation: startup Applied, 428 µs < t < 472 µs

Figure 2.25: Protoboard Hagen Oscillator Output Voltage Waveform

Simulations predict very similar behavior to the specified circuit but in practice, no

oscillation was achieved.
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Modified Protoboard Hagen Circuit To enable the circuit to function in practice, it is

modified in two ways. The capacitor shunting the input voltage in figures 2.14 and 2.22

removes AC components from the power supply but has the effect of decreasing the

output voltage amplitude. It is removed. Next, the C2 capacitor is approximately 200

times the C1 capacitor. Because these two capacitors act as a voltage divider of ratio n,

this very small ratio results in very little feedback voltage returning to the input. The C2

capacitor is replaced with a smaller value. The circuit diagram for the modified Hagen

oscillator with measured component values identified is displayed in figure 2.26 and the

protoboard circuit is shown in figure 2.27.

Figure 2.26: Modified Protoboard Hagen Colpitts Oscillator Circuit Diagram



36

Figure 2.27: Modified Protoboard Hagen Colpitts Oscillator

The simulated output waveform using the component values of the circuit in

figure 2.26 and applying the startup modifier is displayed in figure 2.28. The waveform

does not exhibit the intermittent periods of saturation as did the previous simulations for

the Hagen circuit. Instead the waveform is constantly saturated and the maximum

voltage fluctuates between 15 V and 16 V. The frequency of this circuit is 3.4 MHz. This is

lower than the specified 5-MHz frequency but is explained by the larger inductor. Figure

2.29 is the output waveform for the constructed circuit.
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Figure 2.28: Modified Protoboard Hagen Oscillator Simulation: startup Applied, 452 µs <
t < 476 µs

Figure 2.29: Modified Protoboard Hagen Oscillator Output Voltage Waveform

The protoboard circuit produces oscillation in practice but with an output voltage

amplitude much smaller than the simulated value and at a significantly higher resonant
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frequency.

Breadboard Hagen Circuit Soldering circuits onto protoboard is time consuming. To

accelerate the process of testing oscillators, the modified Hagen oscillator is constructed

on a breadboard. While breadboards contain parasitics due to the large amount of

interconnection material, the detrimental effects can be mitigated by maintaining a low

resonant frequency. The leads of the components are also kept short to prevent adding

their parasitic effects.

Figure 2.30 is the circuit diagram for the breadboard Hagen oscillator with

measured component values identified and figure 2.31 is the circuit as constucted. When

constructed with a 10-nF C2 capacitor as in the modified protoboard circuit, the circuit

did not produce oscillation. The C2 capacitor was replaced by a smaller value and

oscillation was achieved.

Figure 2.30: Breadboard Hagen Colpitts Oscillator Circuit Diagram
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Figure 2.31: Breadboard Hagen Colpitts Oscillator

The simulated output waveform for this circuit using the startup modifier is

displayed in figure 2.32. The change in the C2 capacitor did not alter the waveform

significantly from figure 2.28 – the waveform is still saturated and the maximum value is

approximately 16 V, though there is less fluctuation in the circuit with the smaller C2

capacitor.

Figure 2.33 is the output voltage for the breadboard-constructed circuit. The

output voltage amplitude is much larger than that of figure 2.29, though the C2 capacitor

is significantly smaller.
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Figure 2.32: Breadboard Hagen Oscillator Simulation: startup Applied, 380 µs < t < 390 µs

Figure 2.33: Breadboard Hagen Oscillator Output Voltage Waveform

Hagen Circuit Conclusion Experiment and simulation agree that the Hagen circuit

topology produces oscillation. Simulation indicates that the output voltage should
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usually oscillate between ground and 12 V, though there are regular periods of saturation

as well. The coincidence of the supply and output voltages is specific to the circuit

components and is not a general trend. The modified circuits exhibited larger inductors

and their simulated output voltage amplitudes were also larger than that of the

Hagen-specified circuit. This agrees with the equations of Imani [8] and Huang [7].

The data seem to show that experimental circuits require more feedback voltage

(i.e. larger capacitive ratio n) to oscillate and that the output voltage for the experimental

circuit will be smaller than that of the simulated circuit. The breadboard circuit required a

larger n than the protoboard circuit. Whether breadboard parasitics are the cause or

differences in transistor characteristics is undetermined.

Clarke-Hess Output Voltage Method

Analysis The Clarke-Hess [3] method of oscillator analysis makes use of three concepts

unique among the oscillator references: large-signal vs. small-signal analysis; capacitive

transformers; and the expression of oscillator currents and voltages as expansions of

Bessel functions. Small-signal analysis assumes small perturbation around a DC

operating point, but oscillators can output a voltage more than twice the value of the DC

supply.

While approximated in small-signal analysis, the Shockley diode equation (D.1)

indicates that the current through a diode is a function of the voltage across it. If that

voltage is sinusoidal and sufficiently large, the current is proportional to ex cos(ωt), which

can be expanded using Bessel functions. The introduction of the transformer to the

analysis is an extension of the admittance transformation from section 2.1.3, though the

ideal transformer circuit component was not used explicitly there.

The circuit used for demonstration by Clarke-Hess is that of figure 2.7, though

that specific topology is not required for this analysis. The circuit may be redrawn as in

figure 2.34.
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Figure 2.34: Clarke-Hess Common-Base Oscillator, Alternate Topology

Figure 2.34 makes use of the capacitive transformer, where the two oscillator

capacitors form a voltage divider n = C1
C1+C2

as in equation 2.8. The capacitor C from

figure 2.34 is the series-combined capacitor C = C1C2
C1+C2

. As the input is at the emitter, the

input conductance gin is simply the Shockley diode equation applied to the emitter, so

that gin = gmQ/α. The output voltage to be determined is vo(t).

To satisfy the Barkhausen criterion for amplitude, the loop gain must be unity at

the resonant frequency. From the circuit of figure 2.34, the following relationships are

known:

vin = nvo i = ni′

GL = 1/RL GE = 1/RE.

With these, the total output conductance can be calculated:

i′ = vin(gin + GE) =
i
n

i = nvin(gin + GE) = n2vo(gin + GE)

i
vo

= G = n2(gin + GE), (2.15)

where G is the conductance from the input-side resistors taking into account the

transformer. The circuit can now be redrawn as in figure 2.35.
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Figure 2.35: Clarke-Hess Oscillator with Incorporated Input Resistors

Finally, the two conductors can be combined to form a total conductance, GT:

GT = GL + G, (2.16)

and the circuit redrawn one final time, as in figure 2.36.

Figure 2.36: Final Clarke-Hess Oscillator

The loop gain, AL(s), of this simple RLC circuit is calculated using the following

relationships:

|ALmin(s)| = 1
vo

gmvin
=

1
Y

Y = GT +
1
sL

+ sC vin = nvo.
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Rewriting the current source as a function of the output voltage,

vo

gmvin
=

vo

gmnvo
= Z =

1
Y

=
(

GT +
1
sL

+ sC
)−1

,

then

ALmin(s) =
vo

vo
= 1 =

ngm

Y
=

ngm

GT + 1
sL + sC

.

Rewriting the quotient with a single zero in the numerator and two simple poles in the

denominator yields

ALmin(s) = 1 =
ngm

( 1
C

)
s

s2 + s GT
C + 1

LC

.

Solving for the poles yields

s = −GT

2C
±
√(GT

2C

)2
− 1

LC
. (2.17)

Using the substitution γ = GT
2C and ω2

0 = 1
LC ,

ALmin(s) = 1 =
(2γs)ngm/GT

s2 + 2γs + ω2
0

. (2.18)

From equation 2.18, the minimum transconductance that will provide a unity loop gain at

resonance and place the poles directly on the imaginary axis is

gmQmin =
GT

n
. (2.19)

Combining both the transconductance terms on the left-hand side of the equation results

in

gmQmin =
GL + n2GE

n(1− n/α)
. (2.20)

Converting equation 2.20 to its large-signal equivalent involves simply relabeling the

transconductance as Gm(x) [3, p. 225].

Gm(x) =
GL + n2GE

n(1− n/α)
. (2.21)

Dividing equation 2.21 by gmQ and setting it equal to equation D.152 results in the

method for determining the voltage at which the oscillator stabilizes:

Gm(x)
gmQ

=
GL + n2GE

gmQn(1− n/α)
=

2I1(x)
xI0(x)

(
1 +

ln(I0(x))
Vλ/VT

)
. (2.22)

2See appendix D for the derivation of equation D.15.
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The right-hand side of equation 2.22 is a function of x and Vλ, where x = V1/VT

and Vλ is the voltage drop across the emitter resistor. The left-hand side is a function of

the readily-determined variables from the oscillator circuit. The right-hand side is plotted

and the ordinate is identified whose value is that of the left-hand side. The corresponding

abscissa is extracted as x, and V1 = xVT, where V1 is the amplitude of the input voltage.

Finally, V1 is related to the output voltage by the equation Vo = V1/n.

Example The Clarke-Hess example oscillator is exhibited in figure 2.37. The authors

predict an output voltage of 7.9 V peak and a frequency of 1.6 MHz [3, p. 227]. The

simulated output voltage waveform is exhibited in figure 2.38. The authors did not

specify a transistor so the 2N2222 was used for simulation.

Figure 2.37: Clarke-Hess Colpitts Oscillator Example
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Figure 2.38: Clarke-Hess Simulation: startup Applied, 900 µs < t < 905 µs

The simulated values are very close to the theoretical. When constructed on a

breadboard however, the circuit yields no oscillation. As seen in the Hagen circuit,

increasing the capacitance ratio can stimulate oscillation, so the C2 capacitor is replaced

with a 22.4 nF capacitor. The experimental circuit is shown in figure 2.39, noting that the

resistor in series with the inductor is the resistance of the inductor. Figure 2.40 is the

simulated output waveform for the modified circuit of figure 2.39 and figure 2.41 its

experimental output voltage.
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Figure 2.39: Constructed Clarke-Hess Oscillator

Figure 2.40: Modified Clarke-Hess Oscillator Simulation: startup Applied, 270 µs < t <
275 µs



48

Figure 2.41: Breadboard Modified Clarke-Hess Oscillator Output Voltage Waveform

After averaging to account for phase and amplitude jitter, the experimental peak

amplitude is 1.085 V, much smaller than the simulated peak amplitude of 4.86 V. A

smaller experimental output voltage compared to its simulated counterpart was also seen

in the Hagen circuit.

The theoretical expected output voltage amplitude is calculated as follows. The

capacitor transformer ratio is n = C1
C1+C2

= 0.043. With the reactive components removed

to prevent oscillation, VBEQ = 0.71 V and α = 0.998. Vλ = VEE −VBEQ = 8.98 V and the

quiescent emitter current is IEQ = Vλ/RE = 445.9 µA. The quiescent collector current is

ICQ = αIEQ = 445.0 µA and the transconductance is gmQ = ICQ/VT = 17.11 mS. The

input conductance is gin =
gmQ

α = 17.15 mS. The left-hand side of equation 2.22 is

completed by applying equation 2.21 and dividing by the quiescent transconductance.

Gm(x)
gmQ

=
GL + n2GE

gmQn(1− n/α)
= 0.143. (2.23)

This value is equated to the right-hand side of equation 2.22,

Gm(x)
gmQ

=
2I1(x)
xI0(x)

(
1 +

ln I0(x)
8.98V/.026V

)
which is a plot of the variable x as seen in figure 2.42.
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Figure 2.42: Gm(x)/gmQ with x Extracted

As indicated by the plot in figure 2.42, the x value corresponding to the

Gm(x)/gmQ value from equation 2.23 is 14.0. As x = V1/VT, V1 = 0.364 V. The output

voltage is related to the input voltage by the equation V1 = nVo, so Vo = 8.44 V is the

calculated amplitude of the output voltage vo(t) = Vo cos(2π(1.72× 106)t). Without

taking into account the inductor’s equivalent series resistance or the emitter resistor in

the calculation of the predicted frequency (see equation B.6), the frequency is close to the

experimental value. The calculated amplitude however is much larger than both the

experimental and simulated values of 1.1 V and 4.9 V respectively.

2.2.2 Output Impedance

The two output impedance methods discussed in this section are the methods of

Smith [18] and Clarke-Hess [3]. The methods differ, but the results are identical. As seen

in section 2.1.3, the common-base oscillator sees an output impedance even when it is

unloaded. The feedback signal sees a combination of the input and emitter resistances.

When this resistance is transformed across the load, it becomes a frequency-dependent

function of the two oscillator capacitors.
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The analysis of section 2.1.3 is the Smith method [18]. It is a brute-force method of

transforming an impedance into an equivalent conductance and susceptance. By using an

approximation (equation 2.9), the result is reasonably concise.

The Clarke-Hess method makes the same approximation to calculate Ro and notes

that the result resembles a similar circuit using a transformer with a turns ratio equal to n,

the capacitive ratio. Because the Clarke-Hess method produces the conductance GT and

not Ro directly, the final equation is clearer because it is not obfuscated by parallel

resistors. The example circuits from both methods are presented, as well as the results

using the alternate method to show equivalency.

Smith Output Impedance Method

Smith Circuit Figure 2.43 is the example 20 MHz common-base Colpitts oscillator from

the Smith textbook [18, p. 246]. Smith makes no prediction for the output voltage

amplitude.

Figure 2.43: Smith Colpitts Oscillator Example

To determine the expected output voltage amplitude, the ciruit is simulated with

no load. The 2N2222 is selected in the absence of a specified transistor and because the
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experimental S9018 transistor was not available. Applying the same startup modifier to

the simulation software and letting the circuit run for 1 ms produces the waveform of

figure 2.44.

Figure 2.44: Smith Simulation: startup Applied, 0 < t < 1 ms

Applying the modifier uic resulted in a virtually identical output waveform to

figure 2.44. Increasing the warmup time did not yield oscillation. Removing all modifiers

resulted in the waveform of figure 2.45.
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Figure 2.45: Smith Simulation: 0 < t < 1 ms

The simulation produces oscillation but with decreasing amplitude. Increasing

the time did not result in a stabilized waveform and setting the final time to 2 ms resulted

in no oscillation whatsoever. The best available simulation is that of figure 2.45. Figure

2.46 is a closer inspection of the oscillating waveform near t = 1 ms where the simulation

appears to be stabilizing.

Figure 2.46: Smith Simulation: 0 < t < 1 ms
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While the simulation predicts an oscillating (albeit distorted) output of 2.2 volts

peak-to-peak, the circuit did not yield an oscillating signal experimentally when

constructed on a breadboard. Oscillation was achieved by boosting the DC supply

voltage. The modified circuit with measured component values identified is exhibited in

figure 2.47. The simulated waveform for the modified circuit with no special initial

conditions applied and using the 2N2222 transistor is shown in figure 2.48 and the

unloaded experimental output waveform is seen in figure 2.49.

Figure 2.47: Constructed Smith Oscillator
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Figure 2.48: Smith Simulation: 0 < t < 1 ms

Figure 2.49: Breadboard Modified Smith Oscillator Output Voltage Waveform

To the extent that the simulation is predictive in this instance, the breadboard

circuit’s output voltage amplitude is significantly smaller than the simulated value. The

two frequencies match much more closely.
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Output Resistance To calculate the theoretical output resistance, the circuit is presented

as its small-signal equivalent as seen in figure 2.50.

Figure 2.50: Smith Oscillator Small-Signal Equivalent

As in section 2.1.3, the first step in determining output impedance is to break the

feedback loop and apply the same signal to the input that would be provided by the

feedback signal. To do so requires that the input signal sees the same resistance from the

unbroken loop. The base-emitter resistor is therefore replaced by the input resistor

ri = rπ/(β + 1). This resistance, in parallel with the emitter resistor is termed R, and it

must be transformed across the output. The required values are calculated.

IEQ =
VEQ

RE
= 1.72 mA ri =

VT

IEQ
= 15.1 Ω

R = ri||RE = 15.0 Ω r ≈ 100 mΩ

n =
C1

C1 + C2
= 0.31 ω0 = 122.6 Mrad/s

There are four possible options for settling on a final unloaded output resistance

value depending on whether to include the effects of frequency and the resistance of the

inductor. To clarify, these output resistances will be termed Ro,approx for the R/n2

approximation value; Ro,ω for the value taking into account only the frequency effect of

the admittance transformation; Ro,r for the value taking into account only the resistance

of the inductor; and Ro,ω,r for the value taking into account both effects. While the base
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resistor in this circuit acts as a load, its value is so large that it is virtually an open circuit

from the standpoint of output resistance. It will be ignored in the subsequent calculations.

The first output resistance value, from the approximation of equation 2.9, assumes

that Rω2(C1 + C2)2 � 1. That value in this case is 0.51, so the assumption does not hold.

Going ahead with the approximation anyway yields an equivalent resistance of

Ro,approx = 152.5 Ω.

Using the full expression of equation 2.9 to account for the frequency effect of the

admittance transformation results in Ro,ω = 172.5 Ω

Including only the equivalent series resistance of the inductor (see equation C.1)

yields an output resistance of Ro,r = 148.4 Ω.

Finally, taking into account both the frequency effect of the transformation and the

resistance of the inductor provides an output resistance of Ro,ω,r = 167.3 Ω.

As will be discussed in the following section, the Clarke-Hess method calculates

GT = GL + n2(GE + gin), where GT = 1/Ro. Using this method without a load

conductance, the necessary additional variables are calculated.

GE =
1

RE
= 330 µS gin =

IEQ

VT
= 66.3 mS

The unloaded output conductance is then 6.6 mS and the output resistance is

Ro = 152.5 Ω, identical to the value using the Smith method without the two extra

considerations.

The textbook’s original load of 1.5 kΩ is approximately ten times larger than any

of the calculated output resistances and should not load the circuit much. To determine

the experimental output resistance, a capacitively-coupled potentiometer is applied

across the output and varied until the output voltage amplitude is half of its unloaded

value, at which point the output impedance of the oscillator equals the resistance of the

potentiometer. The value of the capacitor was 25 µF – large enough to provide a

negligible impedance to the circuit at the resonant frequency. In fact, the potentiometer

read 609 Ω as the output resistance. A second potentiometer showed 587 Ω, which is

within the expected measurement variance. The specified load resistor is only 2.5 times
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the experimental output resistance and will certainly cause a significant drop in the

output voltage amplitude.

In the case of this oscillator, the effects of frequency and inductor resistance did

not much alter the calculated value of the output resistance. There was a substantial

percentage difference with the experimental value, however. Using the Clarke-Hess

expression because it is the most concise, the only value in that expression that could

account for the discrepancy is the transconductance. Perhaps if the actual average emitter

current is larger than the measured quiescent emitter current, this method could be

reconciled with experiment.

Clarke-Hess Output Impedance Method

As described in section 2.2.1 and equation 2.16, the output conductance using the

Clarke-Hess [3] method is

GT = GL + n2(gin + GE),

or for the unloaded oscillator,

Gunloaded = n2(gin + GE).

The output resistance is then Ro,unloaded = 1/Gunloaded. Using a circuit similar to the one

shown in figure 2.39 using the S9018 transistor and with the load removed, the variables

are calculated.

RE = 20.12 kΩ GE =
1

RE
= 49.7 µS

VEE = 9.68 V VEQ = −0.71 V

IEQ =
VEQ + VEE

RE
= 445.8 µA gin =

IEQ

VT
= 17.15 mS

C1 = 1043 pF C2 = 23.1 nF

n =
C1

C1 + C2
= 0.043 L = 8.94 µH

r ≈ 600 mΩ ω0 = 10.47 Mrad/s
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Using these values, the theoretical total unloaded conductance and unloaded output

resistance are calculated as Go = 32.1 µS and Ro = 31.16 kΩ.

Using a potentiometer to vary the amplitude until it reaches Vo,unloaded/2 yields an

experimental output resistance of 10.79 kΩ. The Clarke-Hess output resistance prediction

varies from experimental by almost 200%.

Turning to the Smith [18] method, the additional required values are calculated.

ri =
VT

IEQ
= 58.3 Ω R = ri||RE = 58.2 Ω

Table 2.1 records the possible output resistances in the style of section 2.2.2.

Resistance Type Value (kΩ)
Ro,approx 31.16

Ro,ω 31.30
Ro,r 9.95

Ro,ω,r 9.96

Table 2.1: Output Resistance - Clarke-Hess Circuit, Smith Method

Again, the Clarke-Hess and Smith results are identical for the simplest case. The

approximation requiring that Rω2(C1 + C2)2 � 1 is somewhat more valid for this

oscillator as that value is 3.7. As seen in table 2.1, factoring in the frequency effect does

not result in a value much different from the approximate value, but including the

resistance of the inductor places the theoretical value quite close to its experimental value.

As a final point on this circuit, the load resistor is specified to be directly coupled –

that is, there is no capacitor between the oscillator and the load. For the preceding

experiment, this load was removed and the output resistance was measured by coupling

a potentiometer with a large capacitor. Because the inductor is effectively a short circuit

for the purpose of biasing, the load resistor shunting it should have little loading effect.

Figure 2.51 is a superposition of the waveforms from the unloaded circuit, the circuit

constructed as specified, and the circuit with the same load resistor coupled with a large

capacitor (10µF).
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Figure 2.51: Loaded and Unloaded Output Voltages

The output voltage amplitude with this resistor in the specified position is larger

than when capacitively coupled, though when simulated the two configurations provide

an identical output waveform. All waveform graphs in this thesis are AC voltages as the

DC offset is the value of VCC, or very close to it considering the voltage drop across the

resistance r. It is interesting that a larger voltage is retained by omitting the capacitive

coupling, though the applications of it may be few considering the biasing requirements

of follow-on subcircuits. Load placement throughout this work corresponds to the typical

load placement for the common-base amplifier. According to Underhill [20] however,

phase noise can be improved by placing the load in different positions.

2.2.3 Phase Noise and Distortion

Oscillators are often used in conjunction with mixers. Mixers convert RF signals

to a lower frequency for easier amplification and up-convert signals to a higher frequency

for transmission. An ideal oscillator output waveform appears on the spectrum analyzer

screen as a spike, or delta function. All real oscillators however have a power distribution
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centered at the resonant frequency, not to mention at harmonic frequencies (integer

multiples of the resonant frequency). Figure 2.52 is the spectrum analyzer image of a 163

kHz oscillator. In addition to the large peak at the center frequency are several harmonics

in decreasing amplitude until they eventually reach the noise floor.

Figure 2.52: 163 kHz Oscillator on Spectrum Analyzer

This power spread around the resonant frequency is termed phase noise. Besides

degrading the signal-to-noise ratio of the data to be sent or received, greater phase noise

requires a larger bandwidth and decreases the number of communication channels

available in a given frequency space.

As described in the Pozar [16] textbook, a simple model consisting of a carrier and

modulating signal leads easily to a mathematical representation of phase noise. If the

combined signal is represented by vo(t) = V cos(ω0t + θ(t)) where V is the voltage

amplitude neglecting amplitude noise, then θ(t) is the phase variation as a function of

time. In this model, let θ(t) = Θ sin(ωmt), where Θ is the amplitude of the modulating

wave and ωm is its frequency. Substituting this function into the modulated carrier wave

yields

vo(t) = V cos(ω0t + Θ sin(ωmt)).

Carrying through the trigonometry yields

vo(t) = V cos ω0t cos(Θ sin ωmt)−V sin ω0t sin(Θ sin ωmt). (2.24)
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Trigonometric functions whose arguments are also trigonometric functions have

expansions as Bessel functions, seen in equations 2.25 and 2.26.

cos(z sin θ) = J0(z) + 2
∞

∑
k=1

J2k(z) cos(2kθ) [1, 9.1.42] (2.25)

sin(z sin θ) = 2
∞

∑
k=0

J2k+1(z) sin[(2k + 1)θ] [1, 9.1.43]. (2.26)

Substituting equations 2.25 and 2.26 into equation 2.24 yields equation 2.27.

vo(t) = V
{

cos ω0t
[

Jo(Θ) + 2
∞

∑
k=1

J2k(Θ) cos(2kωmt)
]

− sin ω0t
[
2

∞

∑
k=0

J2k+1(Θ) sin[(2k + 1)ωmt]
]} (2.27)

Applying the small-angle approximations of Appendix E results in equation 2.28.

vo(t) = V[cos ω0t−Θ sin ω0t sin ωmt] (2.28)

Applying a trigonometric identity to the second term of equation 2.28 results in equation

2.29.

vo(t) = V
(

cos ω0t− Θ
2
[cos(ω0 −ωm)t− cos(ω0 + ωm)t]

)
(2.29)

Equation 2.29 indicates that for a given modulating frequency, the resulting

output voltage will have components at the carrier frequency as well as at the sum and

difference of the carrier and modulating frequencies. For a spectrum of modulating

frequencies, the output waveform will have the appearance of the first peak of figure 2.52

– a central peak with a distribution decreasing to the noise floor.

A phase noise model encompassing the various sources of noise does exist

(Leeson’s model). The model however is more instructive than predictive [11, p. 576] and

the experiments in the following chapter will investigate phase noise and harmonics

comparatively and not mathematically.
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CHAPTER 3

EXPERIMENTAL DATA AND RESULTS

The previous chapter provided the concepts and terminology of the Colpitts

oscillator but did not provide analysis methods whose predictions corresponded to

experimental results – at least given the experimental conditions. This chapter

investigates many aspects of the oscillator and provides some basis for controlling the

output characteristics of voltage amplitude, resistance and waveform distortion given a

set of components.

The oscillators in the following experiments were all constructed on breadboards

and measurements were conducted with an oscilloscope (x10 probe), multimeter, and

spectrum analyzer. The experimental resonant frequency range was maintained below 10

MHz to minimize the effect of parasitic reactance.

Throughout the course of this work, at least 1,000 oscillators were constructed and

measured though not all measurements were included in the data. The transistors used

were the S9018, selected for its high transition frequency. All resistors and capacitors

were measured with a digital multimeter. The same meter was not able to measure

inductances smaller than approximately 4 µH, so instead an RL circuit was constructed

and driven with a sine wave. The input and output voltages were compared and the

inductance was measured. The method is displayed in figure 3.1.

Figure 3.1: Small Inductance Measurement Method
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3.1 Output Voltage Amplitude Experiments

The predictions of section 2.2.1 did not accurately correspond to the experimental

results obtained from the authors’ example circuits. The simulations of their circuits often

required modifying initial conditions to attain oscillation, though the correct setting

varied depending on the circuit. The simulated voltage amplitudes were consistently

much larger than their experiemental counterparts.

This section investigates each component of the common-base Colpitts oscillator

and its effect on the output voltage. The goal is to develop a method or set of guidelines

for component selection such that an oscillating, unsaturated output voltage is reliably

attained. Figure 3.2 is the topology for the experiments in this section unless otherwise

specified.

Figure 3.2: Colpitts Oscillator for Extracting Output Voltage Data
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The oscillator in figure 3.2 is the simplest possible circuit for studying Vo. The

circuit is unloaded except for the oscilloscope probe and free from the complication of

extra voltage-divider biasing resistors. Quiescent currents are easily changed with a

variable VEE.

3.1.1 Vo Experiment 1: Dependence on Inductance (Constant C1)

This experiment is intended to demonstrate the effect of inductance on the output

voltage. In this experiment, several sets of data were obtained. Throughout the

experiment, the C1 capacitor was kept constant (428 pF) and for each data set, the C2

capacitor was varied to yield a different capacitance ratio n. For each data set, eleven

inductors with values ranging from 100 nH to 15 µH were cycled through and the output

voltage obtained. The value of the emitter resistor was 10.3 kΩ and the DC voltage

supplies were set to 10 V.

Figure 3.3 is a plot of the constant C1 data as well as a weighted linear regression

of the data set for n = 0.31. That ratio was selected because each inductor in the set

produced a non-zero and non-saturated output voltage.
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Figure 3.3: First Data Set - Vo vs L, Constant C1, Slope (n = 0.31): 0.68 V/µH

Because only one component changed with each point, the data lines are quite

regular. Figure 3.3 indicates that, at least with these combinations of reactive element

values, the output voltage amplitude has a proportional relationship with inductance

value. It also shows that a very small capacitance ratio combined with a very small

inductor fails to produce oscillation, while that same inductor with a larger capacitance

ratio will. Finally, the graph depicts that the output voltage is not strongly correlated with

the capacitance ratio, assuming that oscillation is produced. The plots for n = 0.5 and

n = 0.04 differ in most cases inside the extremes of inductance values by less than 2 V,

and often are much nearer.

3.1.2 Vo Experiment 2: Dependence on Inductance (Constant f0)

Each oscillator tested in the previous experiment produced a different resonant

frequency. It is possible that the frequency response of the transistor could affect the

output voltage amplitude. To remove that possibility, this experiment maintains f0
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instead of C1. Virtually the same n-ratio data sets are obtained and the same eleven

inductors are used. For each oscillator constructed, both capacitors are replaced in order

to obtain both the correct capacitive ratio and a tolerably similar resonant frequency.

Figure 3.4 is a plot of the resonant frequencies produced for each oscillator in each

data set and it demonstrates that the resonant frequencies were maintained to a range of

3.3 to 3.4 MHz in almost all cases. The sharp drops in the figure indicate that no useable

output voltage was obtained for that combination of components. Having removed the

frequency variable from the experiment, figure 3.5 is a plot of Vo versus L for the constant

resonant frequency data.

Figure 3.4: Second Data Set - f0 vs L, Constant f0
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Figure 3.5: Second Data Set - Vo vs L, Constant f0, Slope (n = 0.3): 1.64 V/µH

There is a range of resonant frequencies for the oscillators constructed in this

experiment despite the attempt to maintain resonant frequency constant. Because of this

variation, the output voltage plot reflects not only the change in inductance but also an

irregular relative change in capacitance. Correspondingly, the data lines in figure 3.5 are

less regular than those of figure 3.3.

For this range of inductors at least, whether the C2 capacitor is kept constant or

the resonant frequency is, there is a proportional relationship between the inductor and

the output voltage amplitude and it is plausible that this relationship is linear. This

relationship accords with the predictive equations from Imani [8] and Huang [7]. A

best-fit line for the n = 0.3 data set is included in figure 3.5 and its slope is stated in the

caption.
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3.1.3 Vo Experiment 3: Saturation Dependence on Inductance (Constant C)

The first two experiments sought to demonstrate the dependence of Vo on the

inductance, but the range of inductors was limited. A linear relationship was implied but

for a given bias scheme, the trend cannot extend indefinitely. The intention of the third

experiment is to determine the saturation voltage for an oscillator as a function of

inductance. Having demonstrated in the previous experiments that the relationship

between output voltage and inductance is proportional whether or not the resonant

frequency is maintained, this experiment opts for the simpler method.

For each of the four data sets in this experiment the two capacitors C1 and C2 are

kept constant and only the inductors vary. The number and range of inductors is much

greater in this experiment, from hundreds of nanohenries to nearly one millihenry. The

oscillator in this experiment uses voltage-divider biasing, though all quiescent values are

kept constant throughout the experiment. The positive DC supply voltage was set to 13.9

V. The resistors used were R1 = 359.6 kΩ, R2 = 54.9 kΩ, and RE = 3.2 kΩ. The coupling

and bypass capacitors are each 25 µF. Figure 3.6 is the experimental circuit diagram and

3.7 is a plot of the first data set.

Figure 3.6: Experiment 3 Circuit
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Figure 3.7: Experiment 3, Data Set 1

Figure 3.7 shows a period of output voltage rising with increasing inductance

followed by voltage values that cease to rise. Well outside the scope of figure 3.7 is a

datapoint at 9.7 mH. The voltage corresponding to that inductance is 31 V - very close to

the general saturation values at the upper end of figure 3.7, though this larger inductor

has a slightly larger equivalent series resistance.

To better view the rising portion of the data, figure 3.8 is a plot of the unsaturated

region of the same data set along with the slope of a linear regression of the data in this

region. The significance of the slope is unknown but is included for reference and

comparison.
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Figure 3.8: Unsaturated Region of Experiment 3, Data Set 1

Without more data points to fill in the plot, a linear relationship between Vo and

inductance within a limited range is not certain but is plausible and agrees with the

results of the first two experiments.

To be certain that this data is not anomalous, the experiment was conducted three

additional times with different capacitor values. Figures 3.9, 3.10, and 3.11 are the Vo

versus inductance. The capacitor values are identified in each figure along with best-fit

lines for the unsaturated regions.
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Figure 3.9: Experiment 3, Data Set 2

Figure 3.10: Experiment 3, Data Set 3
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Figure 3.11: Experiment 3, Data Set 4

In each of the four data sets of experiment 3 the voltage is near-linear with

inductance and then saturates. As will be shown in section 3.3, saturated oscillators

contain powerful harmonics and are undesireable for use as carriers. Automatic gain

control circuits can amplify voltages to a desired level but they cannot correct a saturated

waveform.

A valuable prediction method would provide a maximum inductance value for a

given oscillator such that the output voltage remains unsaturated. The prediction method

should involve only component values and theoretical computations to be of ready use

and the method must include the inductance. As an attempt to correlate output voltage to

a theoretical characteristic involving inductance, the following method offers some

insight.

Figures 3.14, 3.12, 3.15, and 3.13 are the same four plots of output voltage versus

inductance for different capacitance values as figures 3.7, 3.9, 3.10, and 3.11, with the

addition of the plots of theoretical and experimental resonant frequency superposed and
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on a different scale.

Figure 3.12: Experiment 3, Data Set 1

Figure 3.13: Experiment 3, Data Set 2
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Figure 3.14: Experiment 3, Data Set 3

Figure 3.15: Experiment 3, Data Set 4
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While equations 2.13 and B.6 provide more sophisticated methods for computing

the resonant frequency, the experimental frequencies in figures 3.12, 3.13, 3.14, and 3.15

are of the simplest kind, whereby f0 = 1
2π
√

LC
and C is the series combination of the

oscillator capacitors. Only in the case of figure 3.13 is there a large discrepancy between

the magnitudes of the theoretical and experimental frequencies. Despite the difference in

the values of the frequency plots, their behavior is similar.

In all four cases, there is a relationship between the linear (or at least rising)

portion of the voltage data and the rapidly falling portion of the frequency. Because the

real phenomenon predicting saturation is the derivative of the frequency with respect to

inductance, this function could be plotted instead. That curve however is less instructive

than the graphics already presented. Figure 3.16 is the same data as figure 3.12 but with

the derivative of frequency with respect to inductance plotted alongside output voltage.

Figure 3.16: Experiment 3, Data Set 1

In the portion of figure 3.16 where the voltage is still rising with inductance, the

derivative of the frequency is very near to zero but is not yet asymptotically close. At a
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glance, this figure indicates that only a very narrow set of inductors will produce a

non-saturated output voltage, while experimentally, the largest tolerable inductance is

close to 100 µH. This range is better viewed in figure 3.12, where the graph depicts that a

non-saturated output voltage may be obtained while the frequency is not asymptotically

flat with increasing inductance.

Experiments 1, 2 and 3 imply a partial method for selecting components when

constructing an oscillator. While they do not predict the amplitude of the output voltage,

they do provide an indication of a maximum value for the inductor given a desired

resonant frequency, bias current, and series capacitance value.

3.1.4 Vo Experiment 4: Dependence on C

The voltage saturation method of the previous experiment is a plot of resonant

frequency versus inductance. Resonant frequency is a function of capacitance and

inductance. A plot of resonant frequency versus capacitance may then reasonably be

expected to be significant.

This experiment is similar to the last three except that in this case, all circuit

elements are maintained and only the capacitors are varied. As was seen in experiments 1

and 2, the output voltage is not strongly correlated to the capacitance ratio so any

sufficiently large n is acceptable. The simplest choice is n = 0.5 where C1 = C2.

The circuit used in this experiment is that of figure 3.2 with L = 4.75 µH and

VCC = VEE = 10 V. The capacitors were measured and selected to be very close to

identical, both in value and in type. Figure 3.17 is a plot of the output voltage amplitude

and theoretical resonant frequency against the series value of the capacitors.
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Figure 3.17: Experiment 4 - Vo vs C

Figure 3.17 shows a strong correlation between output voltage amplitude and

resonant frequency as functions of capacitance and the data are in agreement with the

Huang [7] and Imani [8] predictive equations. Using a plot of resonant frequency versus

capacitance, it looks possible to predict a capacitance value that will yield a large output

voltage or the point beyond which any increase in capacitance will yield an output

voltage amplitude tending very slowly to zero. The oscillation was not measurable past

C1 = C2 = 50 nF.

3.1.5 Vo Experiment 5: Dependence on n

The first two experiments demonstrated that in most cases the capacitive ratio n

did not affect the output voltage amplitude much for a given inductor. To investigate the

effect of n on the output voltage more comprehensively, only the C2 capacitor is varied in

this experiment. Figure 3.18 is a plot of the data for the C2 range of 0 (absent) to 700 nF.
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Figure 3.18: Experiment 5 - Vo vs n

Many of the data points appear erratic in figure 3.18. For extremely small n, no

oscillation was measurable. As n increased to approximately 0.02, the output voltage was

linear with n. Between n = 0.05 to n = 0.35, the output voltage generally remained

constant. When C1 ≈ C2, the plot is erratic but the average corresponds to the stable

region for lower n. Beyond n = 0.5, the output voltage drops linearly with increasing n.

In this experiment there is a measurable output voltage for C2 = 0. This result may be

due to the base-emitter junction having enough capacitance to allow for oscillation.

3.1.6 Vo Experiment 6: Dependence on Biasing

This experiment investigates the dependence of output voltage on VCC and VEE.

The oscillator used is the baseline oscillator of the first experiment in the frequency

domain section (section 3.3.1). The capacitive ratio is 0.46 and the inductor is 2.7 µH. In

this experiment, both DC supply voltages were varied at 500 mV increments and

peak-to-peak output voltage measurements were taken at each sample. Figure 3.19 is a
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plot of the data.

Figure 3.19: Vo Experiment 6 - Vo(pp) = f (VCC, VEE)

Figure 3.19 shows that in this experiment VCC has no effect on the output voltage

and the output voltage amplitude is linear with the emitter current. The relationship

between output voltage amplitude and circuit current agrees with the predictions of

Huang [7] and Imani [8]. The explanation for the lack of effect of the positive supply

voltage on the output voltage amplitude is that the output voltage is small throughout

the scope of this experiment.

Though most of the output voltage graphics in this thesis display only the AC

waveform, oscillation occurs on top of the positive DC supply, or VCC.1 For the

dual-supply biasing scheme used in this circuit, the emitter voltage is equal to the voltage

drop across the base-emitter junction, or –VBEQ. The maximum peak output voltage

obtained in this experiment is 0.6 V – just smaller than VEQ. The positive voltage swing is

not limited in this type of oscillator, but the negative swing cannot drop below VE. VCC

1less the voltage drop across the inductor which is usually negligible.
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then is used to lift the offset of the oscillation so that the waveform does not saturate.

Thus all of the saturated output voltages obtained in experiment 3 could have been

corrected by increasing the positive DC voltage supply, though the voltage-divider

biasing would also have to be adjusted to maintain the same emitter current and

quiescent emitter voltage level.

To demonstrate that VCC is only necessary if the peak amplitude of oscillation is

greater than –VBEQ, the circuit of figure 3.20 was constructed.

Figure 3.20: Oscillator without Positive DC Voltage Supply

As constructed, the output voltage does not saturate. Increasing the negative DC

voltage supply to –5.2 V does cause saturation however. Both waveforms are displayed

superposed in figure 3.21.
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Figure 3.21: Single-Supply Oscillator: Saturated and Unsaturated Output Voltages

To correct the saturated output voltage without changing the emitter current, the

circuit is reconfigured to include VCC, which is set to 0.29 V. The corrected output

waveform (DC-coupled) is shown in figure 3.22.

Figure 3.22: Corrected Output Voltage
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3.1.7 Vo Experiment 7: Large Inductance Oscillator

To demonstrate that the saturation results of experiment 3 are unnecessary

through manipulation of VCC, this experiment investigates an oscillator with a very large

inductor and very small capacitors. In all data sets of experiment 3, an inductor greater

than 1 mH would have yielded a saturated output voltage. In this experiment, the

inductor is approximately 10 mH and saturation is avoided. Figure 3.23 is the circuit

schematic with values labeled.

Figure 3.23: Oscillator with Large Inductor, Small Capacitors

The emitter current in this circuit (controlled by the negative DC supply voltage

VEE) is very low. It need not be, but accommodating a larger output voltage would have

required a large positive DC supply than was available (32 V).

As demonstrated in the first three experiments, the output voltage amplitude is

proportional to the inductance and the relationship at least appeared linear. A very large

inductor should then cause a very large voltage relative to that of a much smaller

inductor. Figure 3.24 is the superposition of the waveform of the circuit as specified in
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figure 3.23 and the waveform of the same circuit but with the inductor replaced by one of

value L = 13.9 µH.

Figure 3.24: Output Waveform for Large Inductance Oscillator

By setting VCC to lift the DC offset voltage and allow for the full swing of the

output voltage, saturation is avoided.

3.1.8 Vo Experiment 8: Added Resistance in Series with Inductor

According to equations 2.14 and B.10, there exists a maximum possible equivalent

series resistance in an inductor that will still allow oscillation. To test this, the circuit of

figure 3.25 was constructed.
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Figure 3.25: Oscillator with Added Resistance r′

Without added resistance, the circuit oscillated at 609.8 kHz with an amplitude of

11.0 V. With a measured current ratio of β = 197.3, the maximum allowable resistance is

r = 731.9 Ω. As the measured resistance of the inductor is 200 mΩ, this circuit can

theoretically support much more resistance. Pushing the maximum value resulted in a

very unstable waveform, but adding a discrete resistor r′ = 100.3 Ω yielded a usable

signal. The superposition of the original and augmented output voltages are shown in

figure 3.26.
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Figure 3.26: Output Voltages of Original and Augmented Circuits

The original signal is nearly sinusoidal except for a small bend in the descending

portion. The augmented signal is more distorted. Additionally, the amplitude decreased

by 76%. The frequency increased with the additional resistance, though this is predicted

by equation B.6. Detectable oscillation was achieved for resistances up to r′ = 552 Ω

though the signal quality was degraded and attenuated to approximately 600 mV with

significant amplitude jitter. The analysis of appendix B is confirmed – this circuit was able

to support a considerable amount of added resistance though at the cost of distorting the

output signal. The effects on output resistance and frequency-domain representation are

investigated in sections 3.2 and 3.3.

3.2 Output Resistance Experiments

The first two output resistance experiments were conducted concurrently with the

first two output voltage experiments. After each voltage measurement, a potentiometer

was coupled through a capacitor to the oscillator and varied until the loaded output

voltage dropped to half the unloaded amplitude. The potentiometer was then

disconnected and its measured value was taken as the output resistance of the oscillator.
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While only the relationship between inductance and output resistance was

investigated, the output voltage experiments indicate that all components of the oscillator

have an effect on Ro. For the purpose of connecting the oscillator circuit with a follow-on

stage, only the order and not the exact value of the output resistance is usually necessary.

Measuring resistance through the use of potentiometers is not the ideal method as

potentiometers are imprecise and contain parasitics, but the method is sufficient to

demonstrate trends.

3.2.1 Ro Experiment 1: Constant C1

This experiment was conducted concurrently with the first output voltage

experiment. The C1 capacitor was kept constant and the C2 capacitor varied for each of

eleven inductors. Figure 3.27 is a plot of the output resistance versus inductance for each

constant-n data set.

Figure 3.27: Ro vs L, Constant C1, Slope (n = 0.31): 0.25 kΩ/µH
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With the exception of the portion of the data line corresponding to n = 0.04 for

very small inductance, the output resistance is nearly linear with inductance. Some of the

component combinations did not yield measurable oscillation and they are represented

as Ro = 0 in figure 3.27. For capacitance ratios smaller than n = 0.4, the data became too

eratic to include. In addition to the correlation between output resistance and inductance,

the data shows that the capacitance ratio has some effect on the output resistance as

evidenced by the consistency of the constant-n lines relative to one another. The

experiment did not show that this relationship is proportional or linear however.

3.2.2 Ro Experiment 2: Constant f0

This experiment was conducted concurrently with the second output voltage

experiment. In this experiment the resonant frequency is kept constant to determine the

validity of the proposed linear relationship between output resistance and inductance.

Figure 3.28 is a plot of Ro for constant f0.

Figure 3.28: Ro vs L, Constant f0, Slope (n = 0.3): 0.43 kΩ/µH
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Because all three reactive components are replaced for each data point, figure 3.28

is less smooth than figure 3.27. Just as with the output voltage, the data shows a

proportional relationship between inductance and output resistance and this experiment

further shows that the relationship is a function only of inductance and not resonant

frequency.

3.2.3 Ro Experiment 3: Large L, Small C

The first two output resistance experiments indicate that Ro increases with

inductance. This experiment tests the output resistance of the circuit of figure 3.23 - an

oscillator with a very large inductor and small capacitors.2 For the Ro vs L trend to be

validated, the output resistance measured in this experiment should be extremely large.

While that conclusion is indicated by the result of the experiment, no definitive value

could be obtained for the output resistance.

The unloaded output voltage for this experiment was 2.4 V peak-to-peak. At

RL = Ro, the output voltage should be half its unloaded value, or 1.2 V. Table 3.1 lists the

resulting output voltage amplitude for a selection of discrete load resistors.

Vo(PP), mV RL, MΩ
0 0.161

60 0.990
265 5.640

700 (avg) 10.200

Table 3.1: RL and Vo for Large L Oscillator

At RL = 10 MΩ, the output voltage amplitude varied quickly between

approximately 500 mV and 2 V. Adding additional 10 MΩ resistors did not improve the

result. The 5 MΩ load resistor provided a reasonably stable waveform but its magnitude

is much lower than Vo,unloaded/2. It is likely that the very high resistance above 5 MΩ is

2The DC biases for this experiment were very slightly different from those of the Vo discussion in section
3.1.7.
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affecting the probe. The results indicate that the output impedance of this circuit is

greater than 5 MΩ but additional methods, possibly a transformer or an emitter-follower,

are required to determine its value.

3.2.4 Ro Experiment 4: Added Resistance in Series with Inductor

According to equation B.10, there is a maximum allowable resistance in series

with the inductor such that oscillation is still possible. According to the analysis of

appendix C, the output resistance of a Colpitts oscillator is a function of the equivalent

series resistance, such that r reduces Ro. In theory, it is possible to reduce the output

resistance of an oscillator by introducing extra resistance r′ in series with the inductor.

This experiment tests that theory.

The circuit of figure 3.29 was constructed and output resistances were measured

for r′ = 0 and r′ = 100.3 Ω. The resonant frequency of the original circuit is 609.1 kHz.

Figure 3.29: Oscillator with Added Resistance r′
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The experimental output resistance of the original circuit is 4.79 kΩ and for the

augmented circuit, Ro = 1.15 kΩ. These values are compared with their theoretical

counterparts using the Smith [18] method of section 2.2.2. This method identifies

different output resistance values depending on the inclusion of the effects of frequency

on the admittance transformation (section 2.1.3) and the effect of the inductor’s resistance

r. These values are listed in table 3.2.

Resistance Type Value (Ω)
Ro 235.1

Ro,ω 1,619
Ro,r 235.0

Ro,ω,r 1,615
Ro,r′ 203.5

Ro,ω,r′ 782.8

Table 3.2: Theoretical Output Resistances of Oscillator with Added Resistance r

In table 3.2, Ro is the output resistance assuming no frequency effects and no

resistance r. Ro,ω includes the frequency effects of transforming the input resistance

across the output. Ro,r includes the effect of the inductor’s resistance but ignores the

transformation effects, and Ro,ω,r includes both effects. The label r′ indicates the inclusion

of the extra resistance in series with the inductor.

While the predicted and measured values are very different, adding the extra

resistance resulted in a drastic drop in both theoretical and experimental output

resistances.

3.3 Frequency Domain Experiments

The experiments in this section exhibit the frequency-domain representations of

oscillators of various characteristics. The first experiment is an exhibition of a

well-behaved oscillator with nearly sinusoidal output voltage and balanced dual-supply

biasing. The second experiment compares the frequency plots of a saturated and
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unsaturated oscillator. The third compares the frequency plots of an oscillator with and

without extra resistance in series with the inductor.

In the case of the oscillator with the large inductor, the output resistance was too

large to couple the circuit physically with the spectrum analyzer without resort to extra

components or transistor stages. By fashioning a sort of antenna to the spectrum analyzer

probe, the data was obtained and values are relative. However, the difference between

the fundamental level and the harmonic levels are accurate.

In the other two cases, a large and small load resistor were capacitively coupled to

the oscillator. The probe was then connected in parallel with the small resistor in order to

keep prevent the spectrum analyzer from loading the circuit and completely killing the

oscillation.

3.3.1 Frequency Domain Experiment 1: Baseline Oscillator

This experiment was designed to provide baseline results to compare the data

from the remainder of the oscillators in this section. Table 3.3 identifies the component

values for the dual-source biasing oscillator of the type in figure 3.2 and throughout this

thesis. The transistor used was the S9018. Figure 3.30 is the output voltage waveform.

VCC 10 V
VEE 10 V

L 2.67 µH
r 200 mΩ

C1 9.57 nF
C2 11.3 nF
RE 9.92 kΩ
n 0.46

Table 3.3: Baseline Oscillator Component and Bias Values
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Figure 3.30: Baseline Oscillator Waveform

The component values comply with the frequency-vs-inductance method

introduced in section 3.1 and the waveform is generally free from distortion, though there

is some jitter present not visible in the plot. The voltage amplitude is much smaller than

either of the DC voltage sources and should not be a problem for a follow-on stage using

the same DC sources.

The resolution bandwidth was set to 1 kHz for measuring harmonics. Figure 3.31

is a plot of the output voltage in the frequency spectrum and table 3.4 lists the relative

power at each harmonic of significant power. The noise below the fundamental

frequency in figure 3.31 was present before turning on the oscillator, as was the small

peak between the third and fourth harmonics.
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Figure 3.31: Baseline Oscillator Harmonics

f0 = 1.1175 MHz
Harmonic Frequency (MHz) ∆P (dB)

2 f0 2.246 -29.83
3 f0 3.362 -40.23
4 f0 4.490 -49.42
5 f0 5.594 -59.04

Table 3.4: Baseline Oscillator - Relative Power at Harmonics

While harmonics are present, their power contribution is quite small compared to

the carrier. This oscillator does not have perfect characteristics but it also has no large

defects. All remaining experiments exhibit deviations from this example.

3.3.2 Frequency Domain Experiment 2: Large L, Small C

In this experiment, the circuit of figure 3.23 is supplied by two sets of DC voltages.

Because the oscillator features a very large inductor and two very small capacitors, the

emitter current must be very small to avoid saturation. In the first scenario, with

VCC = 1.20 V and VEE = −2.51 V, the waveform is nearly sinusoidal. In the second,

VCC = 21.0 V and VEE = −4.01 V and the oscillator is driven into saturation. Because of

the extremely high output resistance of this circuit, the frequency spectrum data was
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obtained via radiation to the spectrum analyzer and not directly through physical

connection with the probe.

Unsaturated Large-Inductor Oscillator Figure 3.32 is the waveform in the unsaturated

case and figure 3.33 is its frequency-domain representation out to 5 MHz.

Figure 3.32: Large-Inductor Oscillator - Unsaturated Waveform

Figure 3.33: Large-Inductor Oscillator Harmonics - Unsaturated
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The waveform in figure 3.32 is very sinusoidal and only the fundamental

frequency appears on the spectrum analyzer as seen in figure 3.33. However, the

oscillator’s DC supply voltages are very low. The resonant frequency is only 8.3 dBm

above the noise floor and presumably harmonics would appear with higher radiated

power. In the case of the baseline oscillator, the first harmonic was almost 30 dB lower

than the fundamental frequency.

Saturated Large-Inductor Oscillator Figure 3.34 is the output voltage for the oscillator

supplied by larger DC voltages. The waveform is distorted both by clipping at the

bottom portion and also by the linear descending leg of the waveform.

Figure 3.34: Large-Inductor Oscillator - Saturated Waveform

Figure 3.35 is its frequency-domain representation again out to 5 MHz. There are

significant components at the first five harmonics and non-negligible components

through the span of the measurement. Table 3.5 lists the differences in power from the

fundamental frequency at each harmonic.
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Figure 3.35: Large-Inductor Oscillator Harmonics - Saturated

f0 = 247 kHz
Harmonic Frequency (kHz) ∆P (dB)

2 f0 498.1 -12.59
3 f0 749.2 -14.69
4 f0 994.2 -20.81
5 f0 1,245 -23.67
6 f0 1,496 -20.91
7 f0 1,742 -25.77

Table 3.5: Large-Inductor Oscillator (Saturated) - Relative Power at Harmonics

The power at each harmonic for this oscillator is much larger than those of the

baseline oscillator, although the relative waveforms’ appearances predict this. The same

result should be obtained from a comparison with the unsaturated large-inductor

oscillator, although the impedance limitation makes this measurement impractical.

The harmonics of the saturated oscillator are formidable. If a carrier is desired at

the frequency achieved by this oscillator, a different set of reactive components should be

selected - specifically, a smaller inductor and larger capacitors.
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3.3.3 Frequency Domain Experiment 3: Added Resistance in Series with Inductor

It is possible to add resistance in series with the inductor and still achieve

oscillation. The primary benefit is a decrease in output resistance but at the cost of output

voltage amplitude. This experiment compares the original oscillator with its

added-resistance counterpart in the frequency domain to determine the effects of added

resistance on the relative size of harmonics.

Oscillator with No Added Resistance Figure 3.36 is the output waveform of the circuit

in figure 3.25 with no additional resistor r′ added.

Figure 3.36: Oscillator with No Added Resistance - Waveform

The waveform exhibits some small distortion because of its large inductor relative

to the small capacitors, however it is this combination that allows for so much added

resistance.

Figure 3.37 is a plot of the harmonics and table 3.6 lists the relative power at those

harmonics.
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Figure 3.37: Oscillator with No Added Resistance - Harmonics

f0 = 621 kHz
Harmonic Frequency (MHz) ∆P (dB)

2 f0 1.229 -24.05
3 f0 1.848 -29.34
4 f0 2.466 -32.55
5 f0 3.084 -35.56
6 f0 3.702 -37.83
7 f0 4.310 -39.82

Table 3.6: Oscillator with No Added Resistance - Relative Power at Harmonics

This oscillator compares poorly with the baseline oscillator and favorably with the

saturated large-inductor oscillator in terms of harmonics though the distortion in the

output voltage waveform in the time domain predicts this.

Oscillator with Added Resistance Figure 3.38 is the output waveform of circuit 3.25

with an additional resistance r′ = 98.2 Ω.



99

Figure 3.38: Oscillator with Added Resistance - Waveform

The waveform of figure 3.38 is periodic and to some extent sinusoidal but also highly

distorted.

Figure 3.39 is the frequency plot of this oscillator and table 3.7 lists the relative

power values at the significant peaks, though clearly there are more frequencies present

than solely integer-multiples of the fundamental frequency.

Figure 3.39: Oscillator with Added Resistance - Harmonics
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f0 = 640.9 kHz
Harmonic Frequency (MHz) ∆P (dB)
1.25× f0 0.801 -20.14
1.5× f0 0.961 -10.64
1.75× f0 1.121 -32.52

2 f0 1.271 -14.24
3 f0 1.911 -20.84
4 f0 2.551 -26.18
5 f0 3.191 -30.79

Table 3.7: Oscillator with Added Resistance - Relative Power at Harmonics

Figure 3.39 shows significant power components at all quarter-integer multiples

of the fundamental frequency as well as nearly identical power values reflected on the

opposite side of the fundamental frequency at the same relative distances. The drop in

power from the fundamental frequency to the first harmonic is poor with respect to that

of the baseline oscillator (-14 dB vs -30 dB). This oscillator would need a high-Q bandpass

filter to be of any use. It appears that adding resistance to the inductor is not worth the

distortion to the oscillating signal, whatever the benefit to the decreased output

resistance.
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CHAPTER 4

DISCUSSION

The previous chapter investigated many facets of the common-base Colpitts

oscillator and identified several trends. This chapter seeks to combine those trends into a

set of guidelines for selecting components for the purpose of constructing an oscillator

and especially for controlling the characterists of output voltage amplitude, output

resistance, and waveform purity. Areas where further analysis is required will also be

discussed as well as other interesting points.

4.1 Output Voltage Amplitude

The primary trends observed in section 3.1 are that output voltage is linear with

(or at least proportional to) emitter current and inductance, and inversely proportional to

the series-combined capacitance. These relationships were all predicted by Huang [7] and

Imani [8] for their circuits. Additionally, as long as C2 is at least as large but not

exceedingly larger than C1, the output voltage amplitude is generally unaffected by the

capacitance ratio. The simplest ratio is 1:1. These observations can be exploited to the

extreme to configure an oscillator with a very large output voltage swing or balanced

through controlled trial and error to provide an output voltage of any desired amplitude.

The next significant trend seen in the previous chapter is that the positive supply

voltage only shifts the DC offset but does not contribute to the output voltage amplitude.

This is because the positive supply does not contribute to the emitter or collector currents.

If the output voltage amplitude is very large, correctly setting VCC will enable the full

swing by keeping the waveform above ground. If a very small output voltage amplitude

is desired (peak amplitude less than the size of the voltage drop across the base-emitter

junction), then only a single voltage supply acting as a current source may be used.

The final significant trend seen is the frequency-vs-inductance method which

helps to identify appropriate inductance values. In the previous chapter, this method was

used to predict the maximum inductance value that would not cause saturation of the
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output voltage. With the subsequent analysis of the purpose of VCC, voltage saturation

need never occur. The frequency rule remains a useful predictor of large output voltage

amplitude for a given combined capacitance.

4.1.1 Feedback Gain vs Output Voltage Amplitude

The capacitive ratio n appears throughout the analysis of the Colpitts oscillator. It

contributes one third of the expression of the loop gain satisfying Barkhausen’s criteria:

ngmRo ≥ 1. At first glance, the larger the feedback gain n, the larger the loop gain. The

third factor in the loop gain expression is Ro and it is inversely proportional to n2.1 Thus

the loop gain is reduced to an inverse relationship with n, and a smaller capacitive ratio

should result in a larger output voltage.

The analysis of the previous chapter showed a more complicated relationship

between the capacitive ratio and the output voltage. As n increases from infinitessimally

small to 0.04, the output voltage rises linearly with n. Between n = 0.04 and n = 0.50, the

output voltage remains fairly constant. For n greater than 0.5, the output voltage drops

linearly with increasing n. These relationships correspond with the data from experiment

5 of the output voltage amplitude section. According to Smith [18, p. 247], a large loop

gain enables the oscillator to self-start and no claim is made about a relationship between

loop gain and output voltage amplitude.

4.1.2 Output Voltage as a Function of Inductance

The data from the first three experiments confirm that output voltage is a function

of inductance. This is indicated in the Huang [7] and Imani [8] articles. Inductance and

emitter current have similar effects on the output voltage so it is possible to compensate

for one with the other.

1If the approximation for Ro is not applied, output resistance is roughly inversely proportional to n2.
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4.1.3 Vo-Inductance Slope

Confirming the analysis of Huang [7] and Imani [8], the experimental data

confirm that the inductance and emitter current have at least an approximately linear

relationship to output voltage amplitude and the combined capacitance has an

approximately inverse relationship to it. The data in Vo experiments 1-3 identify a slope

corresponding to increasing inductance for a set C and IE. This slope is unique to the

components and biasing of each oscillator, but deriving a general formula for

Vo = f (L, IE, C) through experimentation may be possible for this type of circuit.

4.2 Output Impedance

The experiments of section 3.2 sought to discover the relationship of output

resistance to inductance and the only attempt to reconcile the theoretical values with

experimental occurred in section 2.2.2. Even with the limited scope, the experiments

demonstrated the general trend that output resistance is proportional to inductance, a

concept absent from the analysis methods of section 2.2.2. The relationship was

confirmed with the large-inductance oscillator whose output resistance was too large to

make an accurate measurement through use of a laboratory oscilloscope probe as well as

the unsuccessful attempt to couple the circuit physically to the spectrum analyzer. The

other components of the oscillator certainly affect output resistance and their

relationships are likely to mirror those identified for output voltage amplitude.

4.3 Waveform Distortion

The experiments of section 3.3 were selected to demonstrate the differences

between the frequency representation of a well-behaved oscillator and those of

undesirable oscillators. While experiment 7 of the output voltage amplitude section

showed that virtually any inductor can be paired with any capacitor pair 2, larger

inductors cause slight distortions in the form of straight, non-sinusoidal, descending legs

2assuming a reasonable capacitance ratio.
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of the output waveform. These may be due to nonlinear inductor effects. These and other

distortions appear as strong harmonics which must be filtered if the oscillator is to be

used as a carrier. The analysis did not show a degradation in the peak of the fundamental

frequency (i.e. phase noise) regardless of the distortion of the waveform and in fact the

baseline oscillator displayed only average performance in that respect compared to the

other oscillators investigated. The technique of adding resistance, or by implication using

an inductor with very high resistance, was shown to distort the waveform and add strong

harmonics and subharmonics to the frequency representation.

4.4 Guidelines for Oscillator Construction

Regrettably, no formula predicting output voltage and output resistance for a

given set of components was produced in this work. In place of a definitive prediction

method is an informed process of trial and error. To demonstrate the reliability of the

relationships between output voltage and L, C, and IE, two example oscillators will be

constructed for two arbitrary sets of design requirements. Some intermediate incorrect

choices will be omitted but the process for component selection will remain.

Guidelines for Oscillator Construction The general guidelines in no particular order

are presented here. In the absence of specific requirements, setting the emitter current to 1

mA and the capacitive ratio to 0.5 are reasonable starting points. While the choice of

transistor will affect the output characteristics, the relationships described below are

independent of any specific NPN BJT transistor model.

(a) Increase inductance to increase output voltage amplitude.

(b) Increase emitter current to increase output voltage amplitude.

(c) Decrease capacitance to increase output voltage amplitude.

(d) Decrease inductance to decrease output resistance.

(e) Apply the resonant frequency-vs-inductance curve to determine suitability of

inductor.

(f) Vary C1 and C2 to tune frequency and output voltage amplitude.
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(g) Construct oscillator with separate positive and negative DC voltage supplies and

then convert to single-supply circuit for difficult design requirements.

(h) Use single negative supply if desired peak output voltage amplitude is smaller than

VBEQ.

(i) Vary IE with a potentiometer as the emitter resistor to tune the output voltage

amplitude.

4.4.1 Oscillator 1

Requirements

1. f0 = 2 MHz

2. Vo = 2 V peak to peak

3. Single DC Supply: 9 V

4. Maximum Output Resistance - 4 kΩ

Process The amplitude of the desired output voltage is larger than a typical VBEQ, so a

single negative DC supply voltage will not suffice and guideline (h) is not applicable. The

desired output voltage amplitude is small compared to the positive supply, so guideline

(g) is not required and the circuit may be easily designed with only one positive DC

supply. The biasing may be set first and the output voltage amplitude managed by the

selection of the components of tank circuit.

The choice of reactive elements will place the initial output voltage near the

desired value but Vo will likely require tuning. The output voltage is easily changed by

varying IE through a potentiometer as the emitter resistor so single base resistor with the

emitter potentiometer was chosen as the biasing scheme. Selecting IE = 1 mA for fast

calculation and using a 5 kΩ potentiometer as RE (guideline (i)), the base resistor is

calculated to be 415.8 kΩ and selected as RB = 448 kΩ. The calculated quiescent emitter

voltage with these biasing components is 4.9 V, low enough to pass the full 1-V-peak

waveform. Because this circuit is a common-base oscillator, a 1 µF bypass capacitor is

added to the base to tie it to AC-ground.
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In an effort to keep the output resistance low, a small inductor is desirable

(guideline (d)). Selecting a value L = 1.35 µH, the corresponding combined capacitance

for the specified resonant frequency is 4.7 nF. Using this combined capacitance, the f0 vs L

curve is plotted in figure 4.1.

Figure 4.1: Resonant Frequency vs Inductance Curve, C = 4.7 nF

In chapter 3, the output voltage amplitude was shown to be small when the

resonant frequency-vs-inductance curve had a steep slope and large when the resonant

frequency had a shallow slope. In this case, the point of intersection in figure 4.1 is

between the extremes. The output voltage amplitude should correspondingly be

moderate and susceptable to tuning. Roughly matching the capacitors to achieve the

desired combined value of 4.7 nF, the values C1 = 9.1 nF and C2 = 9.5 nF are selected.

Turning on the power supply and varying the potentiometer until a maximum

output voltage was reached yielded a peak-to-peak voltage amplitude of 747 mV and a

frequency of 1.4 MHz. Because both the frequency and amplitude were too low, guideline

(c) suggests that a possible solution for both problems is to decrease capacitance. After
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tuning the capacitors to achieve the correct frequency, the amplitude was still too low.

The potentiometer was varied in accordance with guideline (i) and a satisfactory output

voltage was reached. The potentiometer was replaced by a discrete resistor and the

output voltage amplitude and resonant frequency were verified not to have changed.

To test the output resistance, a 3.9 kΩ resistor was capacitively coupled to verify

that the output voltage amplitude did not drop by more than half. Figure 4.2 is the final

circuit with component values listed, and figure 4.3 is the superposed loaded and

unloaded output voltage waveforms.

Figure 4.2: First Example Oscillator Circuit



108

Figure 4.3: First Example Oscillator Waveforms

The circuit of figure 4.2 was simulated for comparison using the PN2222

transistor. Applying the startup modifier resulted in no oscillation. Applying uic resulted

in oscillation for less than 1 ms followed by DC voltage at the level of the supply. With no

modifiers applied, the simulated output waveform of figure 4.4 was generated.

Figure 4.4: First Example Oscillator Simulation: No Initial Conditions
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The simulation for this circuit predicts a saturated waveform of greater amplitude

and frequency than the experimental circuit generates. This does not prove that the

simulation is incorrect, but it does indicate that constructed circuits may be expected to

deviate from both theoretical and simulated values. Applying the guidelines of this

chapter allows the designer to control the output when this occurs.

4.4.2 Oscillator 2

Requirements

1. f0 = 8 MHz

2. Vo = 8 V peak to peak

3. Single DC Supply: 5 V

4. Maximum Inductance - 500 nH

Process The requirements of the first oscillator were not difficult to satisfy. The DC

voltage supply was large compared to the desired output amplitude so it was not

necessary to set the bias values very carefully. In this example, there is little additional

room between the bottom of the voltage swing and ground.

The process for the first oscillator was to set up reasonable bias conditions and

then tune the circuit with the potentiometer and the capacitance ratio. In this example, it

was necessary to build a dual-supply oscillator first in accordance with guideline (g) to

ensure that meeting the requirements was possible. Using two supplies replaces the

minimum voltage of VE with –VBE and allows a maximum possible sinusoidal

peak-to-peak output voltage amplitude of 2VCC + VBE. The DC waveform for the

dual-supply oscillator is shown in figure 4.5.
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Figure 4.5: Second Example Oscillator Waveform - Dual Supply

Both supplies were set to 5 V and a 1 kΩ potentiometer was used as the emitter

resistor. After finding the correct capacitors and achieving the correct output amplitude,

the potentiometer was measured and the oscillator’s single-supply fixed-bias counterpart

was configured. After converting the biasing scheme, the circuit required tuning and the

only available variable was the capacitance (guideline (f)). While both capacitors affect

both output characteristic, the C2 capacitor has more of an effect on output voltage

amplitude and the C1 capacitor has a larger effect on frequency. The final circuit is

displayed in figure 4.6 and its waveform is shown in figure 4.7.
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Figure 4.6: Second Example Oscillator Circuit

Figure 4.7: Second Example Oscillator Waveform - Single Supply

The circuit of figure 4.6 was simulted for comparison. Applying the startup

modifier resulted in a 20 µs ramp up of voltage followed by a stead DC voltage at the

level of the supply. Applying uic yielded the waveform of figure 4.8 and applying no

special conditions produced the waveform of figure 4.9.
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Figure 4.8: Second Example Oscillator Simulation: uic Applied

Figure 4.9: Second Example Oscillator Simulation: No Initial Conditions

The simulations both predict that this circuit will oscillate though at significantly

different amplitudes and frequencies. Neither simulation predicted results close to the

experimental values.
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Conclusion Neither oscillator in this example exactly met the specifications precisely

but they could have with more tuning. The purpose of this section was to show how the

circuit parameters of the Colpitts oscillator may be manipulated.
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The objective of this thesis was to determine a method to control the output

voltage amplitude, output resistance, and waveform purity of the Colpitts oscillator. To

accomplish this, theory, simulation, and experimentation were all used. In many cases,

the theoretical and simulated results were similar. In no case did the experimental results

accord with either theory or simulation. This is to be expected because of the parasitic

reactance and unaccounted-for resistance in actual circuits as well as the variance in β

and other parameters of the transistors.

5.1 Contributions

The relationships of current, inductance and capacitance to output voltage stated

in the articles by Huang [7] and Imani [8] were confirmed experimentally and became the

basis for the first three guidelines for experimental oscillator construction described in

chapter 4. Additional analysis of the Colpitts oscillator circuit demonstrated the effects of

VCC and the capacitive ratio n on the output voltage. By controlling these variables, the

amplitude of oscillation may be set to any desired level with no limit indicated

experimentally.

Component selection was also shown to affect the magnitude of output resistance

and the quality of the waveform. Because of the diversity of output voltage control

mechanisms, the circuit may be manipulated to balance these three requirements.

While the process is iterative, the guidelines identified in chapter 4 provide a

method for Colpitts oscillator construction to satisfy design criteria. The effects of the

guidelines were all demonstrated in the output voltage amplitude and output resistance

sections of chapter 3. The guidelines do not specify any particular NPN transistor model.

The effect of changing the transistor model had little effect on the simulated output

voltage and the guideline relationships are independent of the model selected.
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5.1.1 Output Voltage Amplitude Guidelines

The first guideline (increase inductance to increase output voltage amplitude) was

implied in the first three output voltage amplitude experiments (output voltage as a

function of increasing inductance) and tested in the seventh (Large Inductance Oscillator).

The second guideline (increase emitter current to increase output voltage amplitude) was

demonstrated in the sixth output voltage experiment. In this experiment the output

voltage was measured and only the positive and negative voltage supplies were varied.

The third guideline (decrease capacitance to increase output voltage amplitude)

was demonstrated in the fourth output voltage experiment by measuring the output

voltage amplitude and varying only the capacitance. The fifth guideline (apply the

resonant-frequency curve to select inductance) was presented in the third output voltage

experiment as a method to prevent saturation for a given biasing scheme. If biasing may

be varied, saturation need not occur. The frequency curve is still useful as an indicator of

relative output voltage amplitude.

The sixth guideline (vary C1 and C2 to tune resonant frequency and output

voltage amplitude) was demonstrated in output voltage experiment 5. In this experiment

the C1 capacitor was maintained constant and the C2 capacitor was varied to produce a

capacitive ratio n between values 0 and 1. Except at n values very close to the extremes, a

measurable output voltage was obtained. For n between approximately 0.04 and 0.50,

there was only minor change in the output voltage amplitude. Slight changes in n result

in slight changes in the resonant frequency and output voltage amplitude and thus these

parameters may be tuned.

Guidelines 7-9 (design with positive and negative DC supplies and then convert

to single supply; use only a negative supply if the desired output voltage is less than

VBEQ(peak); and determine appropriate IE through use of a potentiometer) and the

recommendations to begin with IE = 1 mA and n = 0.5 are practical considerations. An

oscillator designer may have only a specific resonant frequency in mind before

construction and must begin somewhere. These design considerations allow the designer
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to begin with a simple but flexible circuit that may be easily manipulated to meet

requirements before conversion to a single supply.

5.1.2 Output Resistance Guideline

While several experiments investigating output resistance were conducted, only

one guideline emerged (decrease inductance to decrease output resistance). The effect of

output resistance increasing with inductance was demonstrated in the first two output

resistance experiments and tested in the third.

5.2 Suggestions for Further Research

Through the discoveries of this thesis, a circuit with undesirable characteristics

may in some respects be corrected. This was displayed in experiments 6 and 7 in chapter

3 and the example circuits of chapter 4. With more data, an equation in the style of

equations 1.1 and 1.2 based on experimental results could be attempted.

While much of this thesis focused on the effect of circuit parameters on the output

voltage, the same process should be conducted for the output resistance. The output

resistance was shown to be proportional to the inductance but its dependence on the

other parameters is unknown.

The output voltage waveforms throughout this thesis exhibited varying levels of

distortion other than saturation. Possible reasons for the distortion were mentioned but a

comprehensive investigation could be completed in terms of qualitative appearance

(sawtooth, e.g.) and total harmonic distortion.

A final recommended future undertaking would be the reconciliation of

experimental results with the large-signal analysis methods used by Clark, Hess [3],

Rohde and Apte [17]. Their prediction methods largely corresponded to simulation but

further analysis is required to account for the discrepancy with experimental results. The

experimentation should be focused on a lower frequency range (hundreds of kilohertz) to

minimize the effect of parasitics.
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APPENDIX A

OUTPUT IMPEDANCE OF COMMON-BASE AMPLIFIER

To determine the output impedance of the common-base amplifier, a slightly

more robust model is required1.:

Figure A.1: Common-Base Amplifier Small-Signal Equivalent Circuit Including ro and RS

Figure A.1 is the same common-base amplifier small-signal equivalent circuit as

figure 2.4, with the addition of the intrinsic transistor output resistance ro and including

the signal source output resistance RS, which will be removed later. The collector and

load resistors are also removed, as they are both considered as the load.

To determine the output resistance, the DC source is treated as a short circuit and

a voltage VX is applied back into the circuit, resulting in a current IX. The ratio VX
IX

is the

output resistance, Zo.

To simplify figure A.1, the input-side resistors are combined in parallel to become

Req, so that Req = RS||RE||rπ, as seen in figure A.2:

1The concept and final results of this problem are stated in [13, p. 434].



120

Figure A.2: CB Amplifier Equivalent Circuit for Calculating Zo

Kirchhoff’s current law is applied at both the emitter and collector nodes. At the

collector:

IX + gmVπ −
VX −Vπ

ro
= 0.

Solving for Vπ
ro

yields:
Vπ

ro
=
(VX

ro
− IX

)
· 1
(gmro + 1)

. (A.1)

At the emitter:
VX −Vπ

ro
− gmVπ −

Vπ

Req
= 0.

Again solving for Vπ
ro

yields:

Vπ

ro
=

VX

ro
· 1(

1 + gmro +
ro

Req

) . (A.2)

Equating A.1 and A.2 and moving the multiterm factors in the denominators yields:

�������VX
ro
(1 + gmro) +

VX
Req
− IX

(
1 + gmro +

ro
Req

)
=

�������VX
ro
(1 + gmro) Finally, solving for VX

IX
yields:

Zo = ro(1 + gmReq) + Req (A.3)

If the source resistance RS is zero, then Req = 0 and:

Zo = ro (A.4)
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In this case the total output impedance of the common-base amplifier including the

collector and load resistors is the parallel combination:

Zo,loaded = ro||RC||RL.
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APPENDIX B

RESONANT FREQUENCY, MAXIMUM EQUIVALENT SERIES RESISTANCE, AND
NEGATIVE RESISTANCE

A method for determining the frequency of oscillation and the maximum value

for the equivalent series resistor in the inductor makes use of a generalized oscillator. The

oscillator, seen in figure B.1, consists of a small-signal transistor model (Gi, gm, Go), and a

feedback network (Y1, Y2, Y3).

Figure B.1: Generalized Positive Feedback Transistor Oscillator

Identification of a common node indicates the oscillator configuration. Selection

of component types for the feedback network indicates the type of oscillator (Hartley,

Colpitts) and the phase relationship (inverted, non-inverted). Finally, a feedback path

must be identified by connecting two voltage nodes. Not all combinations result in

functional oscillators, but all functional oscillators may be configured using this model.

Figure B.1 may be converted to an admittance-voltage matrix that satisfies

Kirchhoff’s current law, [Y][V] = 0, as in figure B.2.
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Y2 + Y3 + Gi −(Y2 + Gi) −Y3 0
−(Y2 + gm + Gi) Y1 + Y2 + Gi + Go + gm −Y1 −Go

−Y3 −Y1 Y1 + Y3 0
gm −(Go + gm) 0 Go




V1
V2
V3
V4

 =


0
0
0
0


Figure B.2: Complete Generalized KCL Matrix

As can readily be determined from figure B.1, terminal V1 is the base. As the base

is grounded in a common-base amplifier or oscillator, the associated rows of the matrix

equation convert to 0. Further, as the feedback path in a common-base oscillator connects

the collector terminal (V4) to the first of two series-connected elements (Y1 ⇒ C1), V4 and

V3 must be connected and the corresponding rows (3 and 4) must be added in all three

terms. Finally, the intrinsic output admittance shunting the controlled current source in

the small-signal BJT model may be ignored for simplicity. All of these operations yield

the matrix in figure B.3.

[
Y1 + Y2 + Gi + gm −Y1
−(Y1 + gm) Y1 + Y3

] [
V2

V = V3 + V4

]
=

[
0
0

]

Figure B.3: Reduced KCL Matrix

If V2 and V are non-zero, the only possible solution to the system in figure B.3

requires that the determinant of the admittance matrix be zero. Figure B.3 could be made

to show that the Y1 and Y2 must have a different sign from Y3, but because the circuit has

already been established as a common-base Colpitts oscillator, the identities of the

admittances are already known. Of course Y1 = jωC1 and Y2 = jωC2. Y3, the inductor,

however, also includes the series resistance r, leading to an admittance Y3 = r−jωL
r2+ω2L2 . The

emitter-base conductance Gi =
1

rπ
= IB

VT
, and gm = IC

VT
. Setting the determinant of the

admittance matrix in figure B.3 to zero results in the equation:

0 = Y1Y3 + Y1Y2 + Y2Y3 + Y1Gi + Y3Gi + Y3gm
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which after substitution yields a real part:

0 =
ω2L(C1 + C2)

r2 + ω2L2 +
r(Gi + gm)

r2 + ω2L2 −ω2C1C2 (B.1)

and an imaginary part:

0 = j
(ωr(C1 + C2)

r2 + ω2L2 −
ωL(Gi + gm)

r2 + ω2L2 + ωC1Gi

)
(B.2)

B.1 Resonant Frequency

To determine the resonant frequency, equations B.1 and B.2 are solved in terms of

(Gi + gm):

real : Gi + gm = ω2C1C2r +
ω4C1C2L2

r
− ω2L(C1 + C2)

r
(B.3)

imag : Gi + gm =
r(C1 + C2)

L
+

C1Gir2

L
+ ω2C1GiL (B.4)

Setting equations B.3 and B.4 equal to each other and carrying through the algebra to

solve for ω2 yields:

ω2 =
1
L

( 1
C1

+
1

C2
+

Gir
C2

)
and to simplify by letting C′2 = C2

1+Gir
= C2

1+r/rπ
, the resonant frequency including the

equivalent series resistance r is:

f0 =
1

2π

√
1
L

( 1
C1

+
1

C′2

)
. (B.5)

Carrying through the same operations while including the emitter resistance RE yields

f0 =
1

2π

√
1
L

( 1
C1

+
1

C2
+
( 1

RE
+

1
rπ

) r
C2

)
. (B.6)
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B.2 Condition for Oscillation

To determine the maximum allowable value for the equivalent series resistance r

in the inductor, equations B.1 and B.2 are solved in terms of (C1 + C2):

real : C1 + C2 =
C1C2r2

L
− r(Gi + gm)

ω2L
+ ω2C1C2L (B.7)

imag : C1 + C2 =
L(Gi + gm)

r
− C1Giω

2L2

r
− C1Gir (B.8)

Setting equations B.7 and B.8 equal to each other and carrying through the algebra to

solve for r · rπ yields

rrπ =
β + 1

ω2C1C2
− L

C2
(B.9)

Including RE into the operation yields

rrπ =
β + 1

ω2C1C2
− L

C2
− rπ

RE

(ω2C1L− 1
ω2C1C2

)
Finally, dividing both sides by rπ results in the maximum possible equivalent series

resistance for the circuit, factoring in the emitter resistor, that will allow oscillation:

rmax =
β + 1

rπω2C1C2
− L

rπC2
−
(ω2C1L− 1

ω2REC1C2

)
. (B.10)

B.3 Negative Resistance

Ignoring the emitter resistor, equation B.9 could be solved for r alone by dividing

both sides by rπ. The first term on the right side of the equation is then:

(β + 1)/rπ

ω2C1C2
≈ β/rπ

ω2C1C2
=

gm

ω2C1C2
, (B.11)

the result of which is the input impedance of a negative-resistance oscillator such as the

common-base Colpitts.

Figure B.4 is the same as figure B.1, configured as a common-base Colpitts

oscillator, and including a load.
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Figure B.4: Common-Base Colpitts Oscillator - Alternative View

The input resistance is the ratio of Vin to Iin. Using Kirchhoff’s voltage law at Vπ

and Vin yields:

Vin = (Iin − Ib)XC1 + (Iin + βIb)XC2 ⇒ Ib =
Vin − Iin(XC1 + XC2)

βXC2 − XC1

(B.12)

and

(Iin − Ib)XC1 = Ibrπ ⇒ Ib =
IinXC1

rπ + XC1

(B.13)

Setting equations B.12 and B.13 equal to each other and solving for Vin/Iin yields:

Zin =
Vin

Iin
=

(β + 1)XC1 XC2

rπ + XC1

+
rπ(XC1 + XC2)

rπ + XC1

. (B.14)

Assuming that rπ is much larger than XC1 , equation B.14 simplifies to

Zin ≈
−(β + 1)/rπ

ω2C1C2
− j

ω

( 1
C1

+
1

C2

)
.

Simplifying again by ignoring the “+1” in the numerator of the real term, the input

resistance of the common-base Colpitts oscillator is approximately

rin ≈
−gm

ω2C1C2
. (B.15)

Dividing both sides of equation B.9 by rπ now yields a maximum allowable value for the

equivalent series resistance r, which is the input resistance of the oscillator less a factor

L/(rπC2).
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APPENDIX C

CONTRIBUTION OF EQUIVALENT SERIES RESISTANCE OF INDUCTOR TO
OUTPUT IMPEDANCE

Naturally the small resistance of the inductor has some effect on the value of the

inductance and the value of the output impedance of the Colpitts oscillator. Because the

Colpitts oscillator operates primarily at a single frequency, it is convenient to transform

the combined impedance of the inductor with its small resistance and the load resistance

to a pure equivalent inductance in parallel with a pure resistance as in figure C.1:

Figure C.1: Inductor Admittance Transformation

The process for the transformation is as follows:

Z =
R(r + jωL)

(R + r) + jωL

and

Y = G− jBL =
1
R

( rR + r2 + ω2L2

r2 + ω2L2

)
− j
( ωL

r2 + ω2L2

)
.

Then

Req =
1
G

=
R(r2 + ω2L2)

rR + (r2 + ω2L2)
(C.1)

and

−jBL = − j
ωLeq

= −j
( ωL

r2 + ω2L2

)
⇒ Leq =

ω2L2 + r2

ω2L
. (C.2)

The equivalent inductance does not depend on any parallel resistance and if r is very

small, the inductance is almost unaffected. A 100 mΩ resistance at 1 MHz transforms a 1
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µH inductor into a 1.0003 µH inductance. At 5 Ω, the inductor has a value of 1.63 µH,

though at 50 Ω, Leq = 64 µH, which is substantial. In practice, inductances in the nano-,

micro-, and even milli-Henry ranges have resistance of less than 10 Ω though this factor

should always be considered.

The load resistance, however, is very dependent on the inductor resistance. Using

the circuit from section 2.2.2, a load resistance of 5 kΩ becomes 2.6 kΩ with a very small r

of 100 mΩ. At r = 2Ω, Req becomes 266 Ω.
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APPENDIX D

DERIVATION OF LARGE-SIGNAL EMITTER CURRENT AND
TRANSCONDUCTANCE FOR SINUSOIDAL INPUT

According to Clarke and Hess [3, p. 4], the small-signal model for a standard

transistor amplifier, for example the circuit of figure 2.2, ceases to apply for an input

voltage exceeding approximately 260 mV. Beyond this threshold, the input signal causes

a significant shift to the bias values and the AC and DC circuits cannot be treated

separately. Because the terminal currents are related by the parameters IC = βIB = αIE, it

is sufficient to solve for one current. While this is applicable to all configurations, it is

easily displayed in the common-base amplifier of figure D.1. This figure could be

achieved with either the two sources displayed or with the base source and base resistor

as their Thévenin equivalents.

Figure D.1: Common-Base Amplifier with Simplified Biasing

In figure D.1, the voltage across the base-emitter junction is the sum of the DC

voltage (VdcQ) from VCC and the AC input voltage vi(t). Using the Shockley diode
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equation (slightly simplified) applied to the base-emitter junction:

iE = IESevBE/VT = IESeVdcQ/VT evi(t)/VT (D.1)

where IES is the reverse bias saturation current of the emitter and VT = kT/q is the

thermal voltage, the total emitter current is the product of a constant factor and a

time-varying factor f(vi(t)). With no applied voltage, equation D.1 reduces to

IEQ = IESeVdcQ/VT (D.2)

and the emitter current as a function of time is

iE(t) = IEQevi(t)/VT .

If the input voltage is sinusoidal (or cosinusoidal), the total emitter current is

iE(t) = IEQeV1 cos(ωt)/VT = IEQex cos(ωt) (D.3)

where the input voltage is vi(t) = V1 cos(ωt) and x = V1/VT for brevity. According to [1,

eq. 9.6.34, p. 376],

ex cos θ = I0(x) + 2
∞

∑
n=1

In(x) cos(nθ) (D.4)

where In(x) is the modified Bessel function of the first kind of order n. Substituting, the

emitter current becomes:

iE(t) = IEQ

[
I0(x) + 2

∞

∑
n=1

In(x) cos(nωt)

]
= IEQ I0(x)

[
1 + 2

∞

∑
n=1

In(x)
I0(x)

cos(nωt)

]
. (D.5)

Observing that the cosine factor averages to zero over any number of cycles, the DC

emitter current becomes:

Idc = IEQ I0(x).

Having demonstrated that the average, or DC, value of the emitter current in a

circuit with an applied signal is different from its quiescent emitter current, it is helpful to

define two new placeholder terms. These terms will simplify the derivation of the

average large-signal transconductance.
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First, as seen in equation D.2, the quiescent voltage drop across the base-emitter

junction is VdcQ. Let the average DC voltage drop with an applied signal be Vdc. Then the

difference between the two is

∆V = VdcQ −Vdc,

where ∆V is the base-emitter voltage bias suppression.

Second, as shown in equation D.3, the emitter current due to the input signal is

IESevi(t)/VT = IESex cos(ωt) for an input signal vi(t) = V1 cos(ωt) and x = V1/VT. Define W

as the ratio of the time-varying emitter current to its peak value:

W(t) =
iE(t)

IP
=

IESex cos(ωt)

IESex =
ex cos(ωt)

ex ; (D.6)

now let W be the average value of the emitter current due to the input signal:

W =
ie(t)

IP
=

IE0

IP
=

1
T

∫ T
0

(
I0(x) + 2 ∑∞

n=1 In(x) cos(nωt)
)

dt

ex =
I0(x)

ex . (D.7)

With the concept of a signal-induced shift in the DC bias voltage and the introduction of

the assistant functions ∆V, W, and W, the derivation of iE(t) can now be completed.

Substituting the waveform function W into the Shockley diode equation (equation

D.1) yields

iE(t) = IESeVdcQ/VT eV1/VT W(t)

and again substituting the quiescent emitter current equation yields:

iE(t) = IEQe−∆V/VT eV1/VT W(t).

The average, or DC, emitter current, including the contribution from the input signal is

then

IE0 = IEQe−∆V/VT eV1/VT W. (D.8)

From the perspective of the circuit of figure D.1, the average emitter current is also

IE0 =
VBB −Vdc

RE + RB/(β + 1)
= IEQ +

∆V
RE + RB/(β + 1)

= IEQ

(
1 +

∆V
Vλ

)
(D.9)
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where Vλ is the quiescent voltage at the base terminal. Equating D.8 and D.9 and

approximating ∆V/Vλ as negligible, ∆V can be solved as

∆V = V1 + VT ln W. (D.10)

Substituting the value of W from equation D.7 into equation D.10 yields:

∆V = V1 +VT

(
ln(I0(x))− ln

(
e

V1
VT

))
= V1 +VT ln(I0(x))−VT

V1

VT
= VT ln(I0(x)). (D.11)

Finally, using the relationship from equations D.6 and D.7 that W(t)/W = iE(t)/IE0, iE(t)

may be calculated as

iE(t) = IE0
W(t)

W
= IEQ

(
1 +

∆V
Vλ

) ex cos(ωt)

I0(x)
,

and expanded using the substitution from equation D.4:

iE(t) = IEQ

(
1 +

ln(I0(x))
Vλ/VT

)(
1 + 2

∞

∑
n=1

In(x)
I0(x)

cos(nωt)

)
. (D.12)

Now the large-signal average fundamental transconductance, defined in [3, 177] as

Gm(x) =
αIE1

V1
=

IC1

V1
(D.13)

may be found. The subscripts on the emitter and collector currents indicate that they are

the fundamental components. As in section 2.1.1, the small-signal quiescent

transconductance is gm = ICQ/VT, and again, x = V1/VT. Substituting these into

equation D.12 yields:

Gm(x) = gmQ

(
1 +

ln(I0(x))
Vλ/VT

)
2I1(x)
xI0(x)

(D.14)

and for the analysis of section 2.2.1,

Gm(x)
gmQ

=
2I1(x)
xI0(x)

(
1 +

ln(I0(x))
Vλ/VT

)
. (D.15)
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APPENDIX E

PLOTS OF RELEVANT BESSEL FUNCTIONS

Bessel functions are a family of solutions to certain forms of second order

differential equations [9, p. 98]. Two such functions are used in this thesis. They are the

Bessel function of the first kind of order n and argument x (Jn(x)) and the modified Bessel

function of the first kind of order n and argument x (In(x)). These functions arise as series

expansion factors for composite functions, e.g. cos(sin(x)) and ecos(x).

These functions are not commonly seen at the electrical engineering

undergraduate level. Their plots are presented here for familiarization and to confirm the

results of their use and approximations throughout the thesis.

E.1 Bessel Functions of the First Kind

Figure E.1 is a plot of the first four orders (n = 0:3) of the Bessel function of the

first kind in the variable x.

Figure E.1: Jn(x)
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The functions oscillate but are not periodic. The zeroth-order J function equals 1

at argument 0, whereas all subsequent orders originate at 0.

E.2 Modified Bessel Functions of the First Kind

Figure E.2 is a plot of the first four orders of the modified Bessel function of the

first kind.

Figure E.2: In(x)

Again, the 0 order originates at 1 and all subsequent orders originate at 0.

E.3 Small-Angle Approximations

Equation 2.27, the modulated carrier wave for determining phase noise, contains

the factors

J0(Θ) + 2
∞

∑
k=1

J2k(Θ) cos(2kωmt) (E.1)

and
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2
∞

∑
k=0

J2k+1(Θ) sin[(2k + 1)ωmt]. (E.2)

In an effort to approximate these cumbersome terms, a further inspection of Bessel

function plots is helpful. The first term of E.1 is J0(Θ). Figure E.3 is a plot of J0(x) near

x = 0.

Figure E.3: J0(x)

Near x = 0, J0(x) ≈ 1. The next term of E.1 is a summation of the even terms of

Jn(x) for n > 0. Figure E.4 is a plot of the first four such functions assuming the

maximum value of unity for the cosine factor.
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Figure E.4: Jn(x), n > 0, even

The second term of E.1 is thus approximately 0 and the entire expression equals

approximately 1.

In the case of E.2, the expression is a summation of the odd orders of Jn(x). Figure

E.5 is the plot of the first four such terms again assuming unity for the sine factor.

Figure E.5: Jn(x), n > 1, odd
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The plot contains some assisting constant lines to demonstrate the slope of J1(x),

which is 1
2 . All included subsequent orders are very close to 0, so the value of expression

E.2 is 2(Θ
2 sin ωmt + 0 + · · · ) = Θ sin ωmt.
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