1,720 research outputs found

    A Generative Middleware for Heterogeneous and Distributed Services

    Get PDF
    International audienceModern software-based services increasingly rely on a highly heterogeneous and dynamic interconnection of platforms and devices offering a wide diversity of capabilities ranging from cloud server with virtually unlimited resources down to micro-controllers with only a few KB of RAM. This paper motivates the fact that no single software framework or software engineering approach is suited to span across this range, and proposes an approach which leverages the latest advances in model-driven engineering, generative techniques and models@runtime in order to tame this tremendous heterogeneity. This paper presents a set of languages dedicated to the integration, deployment and continuous operation of existing libraries and components already available and implemented in various languages. The proposed approach is validated on an industrial case study in the eHealth domain, implemented by an industrial partner that provide an qualitative evaluation of the approach. This case study involves a large number of sensors, devices and gateways based on Rasperry Pi, Intel Edison and Arduino

    Enabling High-Level Application Development for the Internet of Things

    Get PDF
    Application development in the Internet of Things (IoT) is challenging because it involves dealing with a wide range of related issues such as lack of separation of concerns, and lack of high-level of abstractions to address both the large scale and heterogeneity. Moreover, stakeholders involved in the application development have to address issues that can be attributed to different life-cycles phases. when developing applications. First, the application logic has to be analyzed and then separated into a set of distributed tasks for an underlying network. Then, the tasks have to be implemented for the specific hardware. Apart from handling these issues, they have to deal with other aspects of life-cycle such as changes in application requirements and deployed devices. Several approaches have been proposed in the closely related fields of wireless sensor network, ubiquitous and pervasive computing, and software engineering in general to address the above challenges. However, existing approaches only cover limited subsets of the above mentioned challenges when applied to the IoT. This paper proposes an integrated approach for addressing the above mentioned challenges. The main contributions of this paper are: (1) a development methodology that separates IoT application development into different concerns and provides a conceptual framework to develop an application, (2) a development framework that implements the development methodology to support actions of stakeholders. The development framework provides a set of modeling languages to specify each development concern and abstracts the scale and heterogeneity related complexity. It integrates code generation, task-mapping, and linking techniques to provide automation. Code generation supports the application development phase by producing a programming framework that allows stakeholders to focus on the application logic, while our mapping and linking techniques together support the deployment phase by producing device-specific code to result in a distributed system collaboratively hosted by individual devices. Our evaluation based on two realistic scenarios shows that the use of our approach improves the productivity of stakeholders involved in the application development

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    The 3DMA Middleware for Mobile Applications

    Get PDF
    Mobile devices have received much research interest in re- cent years. Mobility raises new issues such as more dynamic context, limited computing resources, and frequent disconnections. To handle these issues, we propose a middleware, called 3DMA, which introduces three requirements, 1) distribution, 2) decoupling and 3) decomposition. 3DMA uses a space based middleware approach combined with a set of workers which are able to act on the users behalf either to reduce load on the mobile device, or to support disconnected behavior. In order to demonstrate aspects of the middleware architecture we consider the development of a commonly used mobile application

    A grid-based infrastructure for distributed retrieval

    Get PDF
    In large-scale distributed retrieval, challenges of latency, heterogeneity, and dynamicity emphasise the importance of infrastructural support in reducing the development costs of state-of-the-art solutions. We present a service-based infrastructure for distributed retrieval which blends middleware facilities and a design framework to ‘lift’ the resource sharing approach and the computational services of a European Grid platform into the domain of e-Science applications. In this paper, we give an overview of the DILIGENT Search Framework and illustrate its exploitation in the field of Earth Science

    Towards Knowledge in the Cloud

    Get PDF
    Knowledge in the form of semantic data is becoming more and more ubiquitous, and the need for scalable, dynamic systems to support collaborative work with such distributed, heterogeneous knowledge arises. We extend the “data in the cloud” approach that is emerging today to “knowledge in the cloud”, with support for handling semantic information, organizing and finding it efficiently and providing reasoning and quality support. Both the life sciences and emergency response fields are identified as strong potential beneficiaries of having ”knowledge in the cloud”

    Orchestrating Tuple-based Languages

    Get PDF
    The World Wide Web can be thought of as a global computing architecture supporting the deployment of distributed networked applications. Currently, such applications can be programmed by resorting mainly to two distinct paradigms: one devised for orchestrating distributed services, and the other designed for coordinating distributed (possibly mobile) agents. In this paper, the issue of designing a pro- gramming language aiming at reconciling orchestration and coordination is investigated. Taking as starting point the orchestration calculus Orc and the tuple-based coordination language Klaim, a new formalism is introduced combining concepts and primitives of the original calculi. To demonstrate feasibility and effectiveness of the proposed approach, a prototype implementation of the new formalism is described and it is then used to tackle a case study dealing with a simplified but realistic electronic marketplace, where a number of on-line stores allow client applications to access information about their goods and to place orders

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2
    corecore