
HAL Id: hal-01356104
https://hal.archives-ouvertes.fr/hal-01356104

Submitted on 24 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generative Middleware for Heterogeneous and
Distributed Services

Brice Morin, Franck Fleurey, Knut Eilif Husa, Olivier Barais

To cite this version:
Brice Morin, Franck Fleurey, Knut Eilif Husa, Olivier Barais. A Generative Middleware for Hetero-
geneous and Distributed Services. 19th International ACM Sigsoft Symposium on Component-Based
Software Engineering (CBSE 2016), Apr 2016, Venise, Italy. �10.1109/CBSE.2016.12�. �hal-01356104�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49348515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01356104
https://hal.archives-ouvertes.fr

A Generative Middleware for
Heterogeneous and Distributed Services

Brice Morin and Franck Fleurey
Sintef ICT

Oslo, Norway
firstname.name@sintef.no

Knut Eilif Husa
TellU

Oslo, Norway
knut.eilif.husa@tellu.no

Olivier Barais
INRIA, IRISA, Université de Rennes 1

Rennes, France
barais@irisa.fr

Abstract—Modern software-based services increasingly rely on
a highly heterogeneous and dynamic interconnection of platforms
and devices offering a wide diversity of capabilities ranging from
cloud server with virtually unlimited resources down to micro-
controllers with only a few KB of RAM. This paper motivates the
fact that no single software framework or software engineering
approach is suited to span across this range, and proposes an
approach which leverages the latest advances in model-driven
engineering, generative techniques and models@runtime in order
to tame this tremendous heterogeneity. This paper presents
a set of languages dedicated to the integration, deployment
and continuous operation of existing libraries and components
already available and implemented in various languages. The
proposed approach is validated on an industrial case study in
the eHealth domain, implemented by an industrial partner that
provide an qualitative evaluation of the approach. This case study
involves a large number of sensors, devices and gateways based
on Rasperry Pi, Intel Edison and Arduino.
Keywords. Heterogeneity, Distribution, Model-Driven Engi-
neering, Dynamic Component Model.

I. INTRODUCTION

Modern software-based services increasingly rely on a
highly heterogeneous and dynamic interconnection of plat-
forms and devices offering a wide diversity of capabilities.
On the one end of the continuum, cloud platforms provide
virtually unlimited and on-demand resources in terms of com-
putation power, storage and bandwidth. On the other end, the
already vast and rapidly increasing number of smart objects,
sensors, embedded systems and mobile devices connected to
the Internet offers the connection to the users and to the
physical world. While offering great potential for innovative
services, for example in the eHealth domain, the heterogeneity,
diversity and vast distribution represent daunting challenges.

To implement such distributed services, which will be de-
ployed on an heterogeneous infrastructure, software developers
have access to a plethora of components and libraries (both
open and closed source) that they can use to rapidly build
up applications and services. Even though programming lan-
guages tend to become more and more versatile (for example
JavaScript evolving from a client-side scripting language to a
server-side programming language with Node.JS), a study of
a large number of open-source projects [1] indicates that no
programming language is able to stretch so that they can fully
cover the whole range of platforms. C/C++ remains the de-
facto language for embedded systems as it gives programmers

control on every bits and bytes, while Java (Android) and
JavaScript/HTML5 is the winning duo for mobile applications.
For developing large-scale, distributed algorithms and systems,
the abstraction providing by Java seems to prevail over the
performances provided by lower-level languages like C/C++.
Beside the very popular languages (Java, JavaScript, C/C++),
many languages are being used in specific niches e.g. Lua
is used as a scripting language in several home automation
gateways or game engines.

In any large-scale distributed system, it should be expected
that several programming languages will be used to implement
or reuse different components. On the one hand, the number
of languages should be kept as low and as coherent as possible
to keep the development team coherent and enable experts in
one language to still understand expert in another language
and the code they wrote, contributing to reducing the overall
complexity of the system. On the other hand, the ”cost” of
sticking with a language that is ”not right for the job” should
be carefully balanced. While Java Servlets and JSP allowed
Java developers to get started with Web development, the
decadent popularity of those technologies (while Java itself
still remains popular) indicates they were ”not right for the
job” e.g. all banks in Norway have moved away from those
technologies and migrated their system, at a high cost.

This paper presents a set of languages based on well-
established formalisms (components with port and messages
for the interfaces and state machines for the implementation)
dedicated to the integration, deployment and continuous oper-
ation of existing libraries and components already available
and implemented in various languages. This approach is
validated on an industrial case study in the eHealth domain
and implemented by TellU. This case study involves a large
number of sensors, devices and gateways based on Rasperry
Pi, Intel Edison and Arduino.

The remainder of this paper is organized as follows. Section
II motivates our work, both the particular case of an eHealth
application and the associated general software engineering
challenges. Section III presents our approach to tackle those
challenges. In Section IV, we apply our approach on an
eHealth service developed by TellU. Section V presents related
work while Section VI concludes this paper.

II. MOTIVATIONS

A. Challenges engineering a modern eHealth service

eHealth is a growing market in Europe and world-wide,
in particular due to the ageing of our societies. 15 millions
elderly in Europe are already equipped with a tele-care alarm,
typically in the form of a simple necklace button that the
elderly can press in case she needs help. This will in turn
put the elderly in contact with medical services. While tele-
care alarm services are of course very useful services, more
and more promoted by public authorities, operating those
services is however not an easy task due to the numerous
false positive (elderly pushing the button while everything is
fine) and false negative alarms (elderly not able to push the
button e.g. after a fall). This drastically hinders the safety
and cost-efficiency of tele-care services. To improve tele-care
services and help elderly to stay home as long as possible,
TellU is currently developing a smart-home system to control
equipment that are normally present in smart homes to make
life more comfortable (automatic light control, door locks,
and heater control, etc.) and safer for elderly people. One
of the main fears for elderly people is the fear for falling
and not being helped. This fear causes elderly to isolate and
become less active, which in turn make them more exposed to
illness. In addition to integrating home-automation equipment,
TellU is developing a fall detection system (patent pending)
based on a distributed sensor network for measurements of
air pressure from both stationary and wearable sensors. This
distributed sensor network in addition provides a way locate
elderly within their homes. Physicians, care-givers, family etc.
can use this information to monitor if the elderly residents
have an adequate activity level during the day. Furthermore,
several services can be automated based on measured indoor
locations and controllable equipment, e.g. light control, turn
of stove when leaving house, etc. TellU also plan to include
sensors for measuring physiological parameters like heart-rate
and skin temperature. In this way care-givers can monitor if
the elderly resident is not feeling well. Fall detection and heart-
rate monitoring should also be applicable outdoors to give the
elderly the needed confidence that they will get assistance if
they need help outside of the home.

eHealth and many other types are services are no longer
one-device services but need to leverage a large number
of heterogeneous software and hardware platforms to fully
complete their goals. Developers are thus facing new Software
Engineering challenges as detailed in the next sub-section.

B. Software Engineering Challenges

The infrastructure supporting Heterogeneous and Dis-
tributed services (HD services) typically spans across a contin-
uum of devices and platforms ranging from microcontroller-
based devices up to Clouds. Software for the different classes
of devices are typically built using different approaches and
languages. In order to understand the skills and capabilities
required to develop services on top of such an infrastructure,
we queried a popular open-source repository (GitHub) to

evaluate the heterogeneity of programming languages across
the continuum [1]. The following sets of keywords were
used: 1) Cloud: server with virtually unlimited resources, 2)
Microcontroller: resource constrained node (few KB RAM,
few MHz), 3) Mobile: an intermediate node, typically a
smartphone, 4) Internet of Things: Internet-enabled devices,
5) Distributed systems, as services exploiting Cyber Physical
Systems (CPS) have to be distributed across the continuum,
and 6) Embedded systems, as a large and important part of
the service implementations will run as close as possible to
physical world, embedded into sensors, devices and gateways.

This study indicates that no programming language is
popular across the whole continuum: Java and JavaScript (and
to some extent, Python and Ruby) are popular in the higher-
end of the continuum (cloud and mobile) but not popular for
the lower end, whereas C (and to some extent, C++) is a clear
choice for developers targeting embedded and microcontroller-
based systems.

While it might appear that a combination of C/C++,
JavaScript and Java should be able to cover the whole con-
tinuum of CPS, in practice it does not exclude the need
for other programming languages. For example, the Fibaro
Home Center 2 (a gateway for home automation based on
the Z-Wave protocol) uses Lua as scripting language to define
automation rules. Another example is the BlueGiga BlueTooth
Smart Module, which can be scripted using BGScript, a
proprietary scripting language. This shows that each part of
an infrastructure might require the use of a niche language,
middleware or library to be exploited to its full potential.

To tackle this heterogeneity, developers typically need to
determine a trade-off between alternative solutions (described
in details in [1]). A typical solution consists in using Internet-
connected devices that simply push all the data to bigger
nodes (e.g. in the Cloud). This way, the service can be
implemented homogeneously in a high-level language like
Java on the larger nodes. However, this requires the devices
to have a permanent Internet connection, which rapidly drains
the batteries of mobile and wearable devices. Also, the whole
service is likely to fail if the Internet connection is lost as
the devices do not run any logic, which is not acceptable
for a large set of safety-critical services. For this type of
services, it is important that the logic can still run even after the
failure of multiple nodes or communication channels. Some
logic has to be implemented directly in micro-controllers,
some logic in intermediate gateways and some logic can
possibly be implemented in some backend or cloud servers.
This requires a large team of developers with different skills
(from a C/assembly coder optimizing bits and bytes to a Java
developers implementing large-scale consensus algorithms to
extract a coherent overview of the system). This implies
high development and integration costs, which is acceptable
compared to the price and safety requirements of a plane or
a car, but which can significantly hinder the large adoption of
e.g. eHealth services.

III. HEADS: A GENERATIVE MIDDLEWARE APPROACH
FOR THE DEVELOPMENT OF HD SERVICES

Rather than providing yet another programming language
supposedly able to address all the concerns needed for HD
services, the HEADS approach proposes to rely on abstractions
on top of existing programming languages to:

• enable the integration of existing C/C++, Java, JavaScript
libraries (and potentially libraries in other languages). In
other words, promoting an existing library as a HEADS
component, which can then be manipulated by the dif-
ferent tools provided by HEADS, should only require a
minimal effort.

• provide expressive constructs to implement the necessary
”glue code” to ensure that different libraries (potentially
in different languages) can communicate locally or asyn-
chronously over a network

• ease the reuse of fragments of logic across different
platforms and languages

• ease the deployment, operation and maintenance of large-
scale and distributed assemblies of heterogeneous com-
ponent.

HEADS also intensively rely on generative techniques to
produce C/C++, Java, JavaScript code, which:

• aims at being as efficient and as readable as code written
by experienced programmers. In particular, the generated
code is idiomatic e.g. proper Object-Oriented Java code
for the JVM versus optimized C code with no dynamic
allocation for small micro-controllers.

• provides clear public APIs to enable any programmer to
interact with it with no need for her to use any HEADS-
specific tool, just her favorite C/C++, Java, JavaScript
editor or IDE.

• has few (ideally none) dependencies to any HEADS
runtime libraries

The HEADS Design Language and Transformation Frame-
work are available as an open-source projects on GitHub1.

A. HEADS Design Language

The ambition of the HEADS design language is to support
the implementation and integration of the different parts of
HD-services, including the integration of legacy and of-the-
shelf components and libraries. The HEADS approach has
a cost that comes as a consequence of this flexibility. At a
certain abstraction level, all components interfaces need to
be described in terms of the HEADS modeling language in
order to allow for their integration in the system. However, it
is important for any existing platform, library, framework or
middleware to be usable without re-inventing, re-modeling or
re-implementing it. In the design of the HEADS approach and
code generation framework, a special attention is put to avoid
introducing any accidental overhead beyond what is strictly
necessary for the integration of the implementation artifacts.

For the components developed from scratch or for which the
target runtime environment might change, the HEADS design

1https://github.com/SINTEF-9012/ThingML

language provides with all the required expressiveness to fully
specify the behavior of a component in a platform independent
way. Different code generators can then be used to produce
code for different platforms (currently Java, JavaScript and
C/C++). This is similar to typical Model-Driven Engineering
platform-independent models with a set of code generators
(or compilers) for different platforms. At the other end of the
spectrum, for the integration of an existing component, the
HEADS approach allow modeling only the required part of
interface of the component and mapping to its public platform
specific API.

This is similar to typical wrapping of external components
and libraries such as for example Java Native Interface for
Java to interact with a native library. The contribution of
the HEADS approach is to give the flexibility to develop
components which are neither fully platform independent nor
direct wrapping around existing components but rather an
arbitrary combination of existing libraries, platform features
and application logic. In practice most of the components of a
HD-service fall under this category and efficiently being able
to integrate these different elements a key goal. The way the
HEADS approach implements such capabilities is two-fold.
First, a set of special constructs and actions are included in
the HEADS action languages in order to seamlessly interleave
platforms specific code and platform independent code. Sec-
ond, the HEADS approach relies on a highly customizable
code generation framework which can be tailored to specific
target languages, middleware, operating systems, libraries and
even build systems, as described in the next sub-section.

1) Defining the interfaces of components: The HEADS De-
sign Language provides constructs to implement lightweight
components which communicate asynchronously with other
components. In the case of a distributed system running on
top of a heterogeneous infrastructure, stronger assumptions
regarding communication are simply not realistic. The API
of a component basically follows a format well-established in
the CBSE community: a set or ports specifying which message
can be sent and received by the component.

For example, a timer component would describe the follow-
ing API:

1 t h i n g f r a g m e n t TimerMsgs {
message s t a r t (d e l a y : I n t e g e r) ; / / S t a r t t h e Timer

3 message c a n c e l () ; / / Cance l t h e Timer
message t i m e o u t () ; / / N o t i f i c a t i o n

5 }
t h i n g f r a g m e n t Timer i n c l u d e s TimerMsgs {

7 p r o v i d e d p o r t t i m e r {
s e n d s t i m e o u t

9 r e c e i v e s s t a r t , c a n c e l
}

11 }

Note that ports are bi-directional as they can both send and
receive message. Our notion of port should be understood
as an atomic service, which is either provided or required.
The service itself typically requires exchanging a set of

message, typically a request (like start) and a response (like
timeout).

2) Wrapping existing libraries: A timer component is typi-
cally useful in any language. The API we have just defined in
fully platform-independent, as it contains no Java, JavaScript
or C/C++. As all those languages already providing native
timing facilities, we simply need to wrap those facilities into
platform-specific components.

The script below shows how the timer is implemented in
JavaScript, simply by relying on JavaScript timers:

1 t h i n g TimerJS i n c l u d e s Timer {
f u n c t i o n c a n c e l () do ’ c l e a r T i m e o u t (t h i s . t i m e r) ; ’

end
3 f u n c t i o n s t a r t (d e l a y : I n t e g e r) do

’ t h i s . t i m e r = s e t T i m e o u t (f u n c t i o n () { ’
5 t i m e r ! t i m e o u t ()

’ } , ’ & d e l a y & ’) ; ’
7 end

s t a t e c h a r t S o f t T i m e r i n i t d e f a u l t {
9 s t a t e d e f a u l t {

i n t e r n a l s t a r t e v e n t m : t i m e r ? s t a r t
11 gua rd m. d e l a y > 0

a c t i o n s t a r t (m. d e l a y)
13 i n t e r n a l c a n c e l e v e n t m : t i m e r ? c a n c e l

a c t i o n c a n c e l ()
15 }

}
17 }

Basically, anytime a start message is received on the timer
port, we first check that the delay is positive. If so, we call
the start function, which is a simple wrapper around the native
setTimeout function provided in JavaScript. Native code
i.e. code that is directly expressed in the target language (here
JavaScript) should be written between simple quotes. Native
code can be interleaved with actions and expression of the
HEADS Modeling Language. This way, the developer does
not need to know how the generated code will look like to
be able to wrap her library. No matter if the delay variable
is renamed in the generated e.g. to avoid name conflict or if
the action of sending the timeout actually implemented in a
generated function called sendtimeoutOnTimer. She just
can simply refer to the delay variable and send a message
with no knowledge of the underlying implementation of those
mechanisms.

In the same way, the timer can be mapped to Java:

1 o b j e c t JThread @java type ” Thread ”
p r o p e r t y t i m e r : JThread

3

f u n c t i o n s t a r t (d e l a y : I n t e g e r) do
5 t i m e r = ’new Thread () {

p u b l i c vo id run () {
7 s l e e p (’ & d e l a y & ’) ; ’

t i m e r ! t i m e r t i m e o u t ()
9 ’ } ; ’

’ ’ & t i m e r & ’ . s t a r t () ; ’
11 end

3) Implementing components: To orchestrate messages and
define the behavior of components, beyond the wrapping of ex-

isting libraries of components, the HEADS Design Language
provides a set of facilities:

• Imperative programming to implement simple proce-
dures, either directly using the actions and expression
languages provided by the HEADS Modeling Language
or by using the features of the target languages (or a mix
of both)

• Event-Condition-Action (ECA) rules, which basically al-
lows reacting to incoming events, independently from
any state e.g. unconditionally shut down the system if
emergency button has been pressed.

• Composite State Machine, also including parallel regions,
which allows reacting to a sequence of incoming events
e.g. to make sure all drivers are initialized in the proper
order before accepting any other command

• Complex Event Processing (CEP), which allows reacting
to patterns in large flows of events, without explicitly
defining all possible sequences of events.

The combination of those four paradigms enables service
developers to express advanced behavior, which can efficiently
tame large flows and data and process them to infer relevant
information, as illustrated in Figure 1. A typical use-case is
to use imperative programming to write drivers interacting
with the physical world (sensors, actuators) or 3rd party
software systems. As existing programmatic imperative APIs
already exist, they can easily be integrated with the imperative
approach.

Fig. 1. Event Processing

As sensors might generate a large amount of data, a CEP
layer close to the sensors enables service designers to express
rules able to handle those data and to extract some relevant
information (e.g. alert, status). The ECA paradigm is then
particularly suited to handle alerts as they enable to enact some
reflex-like actions (similarly to the way the spine ”shortcuts”
the brain to enact a fast movement e.g., when one burns his
finger). Finally, composite state machines enable to describe
advanced behavior, orchestrating and adapting to a set of
events coming from the CEP.

The HEADS Design Language is conceptually a usable
sub-set of the UML (Composite Statecharts and Component
Diagrams) with a syntactical notation rather than a graphical

notation, so that it remains closer what programmers already
know. In addition to the introduction of CEP in state machines,
a key difference with UML is that our language comes with
a first class action language so that models are not polluted
with so-called ”Opaque Behavior” (basically a String where
code from the target language is directly outputted). This
action language is basically the common subset of what is
found in most languages, including numerical and Boolean
algebra, control structures, functions, variable declaration and
assignments, etc. The only action that is not typically found in
programming language is the ability to asynchronously send
a message through a port (rather than a simple method call).

ECA rules are basically internal transitions, as in the
JavaScript timer. Those rules basically react on an event and
can be optionally guarded with any boolean expression, e.g.
involving properties of the component and/or parameters of
the message. Any action can then be triggered, either fully
expressed at a platform-independent level or mixed with the
target language (as in the JavaScript timer). As for the state
machine, we support all the concepts present in the UML,
including composite states and concurrent regions.

The CEP concepts currently included in the HEADS Mod-
eling Language is a sub-set of the concepts of ReactiveX
(or other CEP language such a EPL available in Esper). We
provide support for joining and merging flows of events, time
or length windows and arbitrary filters.

1 s t r e a m lengthW
from e : [w e a t h e r 1 ? temp | w e a t h e r 2 ? temp] : : keep i f

inRange (e) : : d u r i n g 1000∗60 by 1000∗60
3 s e l e c t avg : a v e r a g e (e . t []) ,

min : min (e . t []) ,
5 max : max (e . t [])

a c t i o n r e p o r t ! temp (avg , min , max)

This CEP stream illustrate most of the concepts currently
integrated. It performs a merge between two temperature sen-
sors (connected on ports weather1 and weather2). Basically,
all temperature measurements coming from both sensor will
be piped in a new stream. All these measurements are then
filtered using a custom inRange operator defined by the
developer, which will discard values that are outside a range
and which are most likely due to an erroneous measurement
rather than a correct measurement being too cold or too warn.
The merging and the filtering happens on a time window
during one minute which progress by slices of one minute.
While such kind of CEP query could be implemented directly
in Java, JavaScript or C, or at a more abstract level using the
HEADS Modeling Language (state machine), it alleviates in
any case the developer from writing a lot of ”plumbing code”
(timers, buffers, etc), which if not implemented correctly can
have dramatic impact on memory and performances.

B. HEADS Transformation Framework

The HEADS Transformation Framework is responsible for
“compiling” HEADS Design Models into source code for
a large variety of languages. Rather than implementing one

monolithic compiler for each language we target, the HEADS
Transformation Framework instead is architected as a modular
object-oriented framework. This framework promotes reuse of
code among different compilers. A total of 8 formal extension
points have been identified in the HEADS code generation
framework in order to allow the developer to easily and
efficiently customizing some parts of the code generation while
reusing the rest.

1) Role of the extension points:
a) Actions / Expressions / Functions : The implementa-

tion of this extension point consists of a visitor on the Actions
and Expressions part of the HEADS Design Language. New
code generators can be created by inheriting from that abstract
visitor and implementing all its methods. Alternatively, if only
a minor modification of an existing code generator is needed, it
is possible to inherit from the existing visitor and only override
a subset of its methods. Most of the actions and expressions
(26 out of 35 concepts) is actually defined in the framework, as
most of the programming languages have similar syntax for
numerical and Boolean algebra, control structures, etc. The
script below shows how a if condition with optional else is
compiled. The same code is reused in all Java, JavaScript and
C compilers.

@Override
2 p u b l i c vo id g e n e r a t e (C o n d i t i o n a l A c t i o n a c t i o n ,

S t r i n g B u i l d e r b u i l d e r , C o n t e x t c t x) {
b u i l d e r . append (” i f (”) ;

4 g e n e r a t e (a c t i o n . g e t C o n d i t i o n () , b u i l d e r , c t x) ;
b u i l d e r . append (”) {\n ”) ;

6 g e n e r a t e (a c t i o n . g e t A c t i o n () , b u i l d e r , c t x) ;
b u i l d e r . append (”\n}”) ;

8 i f (a c t i o n . g e t E l s e A c t i o n () != n u l l) {
b u i l d e r . append (” e l s e {\n ”) ;

10 g e n e r a t e (a c t i o n . g e t E l s e A c t i o n () , b u i l d e r , c t x) ;
b u i l d e r . append (”\n}”) ;

12 }
b u i l d e r . append (”\n ”) ;

14 }

b) Behavior implementation: This part of the code gener-
ator corresponds to the code generated from the state machine
structures, ECA and CEP rules contained in Things. There is
basically two main strategies to compile the behavior: target
frameworks that are able to execute state machines and CEP or
generate the whole logic to keep full control of what is execut-
ing at runtime. The first option is typically chosen for high-
level languages not intended to run on resource-constrained
devices, as it simplifies the code generation process (less
code to generate) and generally improve the readability and
maintainability of the generated code (less code to read and
maintain). On resource-constrained devices however (down to
2 KB RAM) it is of primary importance to have control of ev-
ery byte allocated and the overhead of embedding a framework
is usually to heavy. The HEADS Transformation Framework
does not impose nor favors any of those approaches and both
can be implemented. The Java and JavaScript compilers use
a framework approach whereas the family of C compilers
use a full generative approach. In both cases, the framework

provides support in the form of a set of helpers which pre-
process the state machine e.g. to provide the list of all outgoing
transitions for a given state, or the list of all messages being
actually used by a component.

c) Ports / Messages /APIs: This part of the code gener-
ator corresponds to the wrapping of the generated code into
reusable components on the target platform. Depending on
the target platform, the language and the context in which the
application is deployed, the code generated can be tailored
to generate either custom modules or to fit particular coding
constraints or middleware to be used on the target platform.
As a best practice, the generated modules and APIs for things
should be manually usable in case the rest of the system
(or part of it) is written directly in the target language.
For example, in object oriented languages, a facade and the
observer pattern can be used to provide an easy to use API
for the generated code. In C, a module with the proper header
with structures and call-backs should be generated.

The following code for example generates a Java interfaces
that any Java programmer can use to send messages to a
generated component.

f o r (P o r t p : t h i n g . a l l P o r t s ()) {
2 S t r i n g B u i l d e r b u i l d e r = c t x . ge tNewBui lde r (t h i n g .

getName () + ” ” + p . getName () + ” . j a v a ”) ;
b u i l d e r . append (” p u b l i c i n t e r f a c e ” + ” I ” +

4 t h i n g . getName () + ” ” + p . getName () + ”{\n ”) ;
f o r (Message m : p . g e t R e c e i v e s ()) {

6 b u i l d e r . append (” vo id ” + m. getName () + ” v i a ” +
p . getName () + ” (”) ;

g e n e r a t e P a r a m e t e r (m, b u i l d e r , c t x) ;
8 b u i l d e r . append (”) ;\ n ”) ;

}
10 b u i l d e r . append (”}”) ;
}

For example, for the Java timer component, this would
generate this simple API:

1 p u b l i c i n t e r f a c e I T i m e r J a v a t i m e r {
vo id s t a r t v i a t i m e r (s h o r t d e l a y) ;

3 vo id c a n c e l v i a t i m e r () ;
}

d) Main and Build: These two extension points are
responsible for providing users with a turn-key solution to
compile and run the generated code. In the main file, all
components and instantiated and connected. The build files
automate all tasks needed to properly compile e.g. fetching
dependency. For the users, compiling and running the code is
as simple as:

mvn i n s t a l l exec : j a v a # f o r Java
2 npm i n s t a l l && node main . j s # f o r J a v a S c r i p t

make && . / myProgram # f o r C

This extension point makes it easy to for example switch
from Maven to Gradle for the build of Java project.

e) Message Queing, Scheduling and Dispatching: Those
extension points are related to the internal management of
messages within a node. By default, messages are queued in
a FIFO, typically reusing already structures. On some very
constrained platforms (microcontrollers) the code for the FIFO
also needs to be generated as the standard library is typically
more limited.For the scheduling and dispatching of messages
we typically rely on facilities available on the OS (threads)
to ensure a fair distribution of messages among components
and avoid starvation and race conditions. Again, on very
constrained platforms that are too limited to run an OS, custom
schedulers should be generated.

f) Connectors: This extension point is concerned with
the serialization and transport of messages among components
distributed over the network. For the serialization a default
serialization of messages into arrays of bytes is provided [2],
but developers can implement their own serialization. For ex-
ample, we are currently implementing a generator to integrate
with MessagePack [3]. For the transport itself, we usually rely
on the large collections of communication channels already
available in the HEADS Runtime platform (see next section):
MQTT, WebSocket, Serial, etc.

2) Benefits of the HEADS Transformation Framework:
While the HEADS Transformation Framework can be seen
as a family of compilers (producing code in Java, JavaScript
and C/C++), those compilers have a different nature than
a compiler like GCC, producing machine code out of C
source code. Working at a higher level of abstraction, by
transforming a model into source code rather than source code
into machine code, drastically reduced the cost of writing a
HEADS compiler. While GCC alone is about 14 millions LoC,
the whole HEADS Transformation Framework, also including
the compilers targeting Java, JavaScript and C/C++ is less
than 25,000 LoC (560 times less). Those LoC are distributed
(approx.) as follows:

• 6000 LoC in the framework itself, that all compilers
reuse. This includes facilities to manage files, generate
consistent variable names, etc. It also includes the code
for compiling most of the actions and expressions (26 out
of 35) of the HEADS Design Language. New compiler
(e.g. targeting Go, Lua, PHP) will benefit from those 6000
LoC, unless the targeted language is radically different,
for example if it uses a Polish notation like Lisp where
”a + b” is expressed as ”+ a b”.

• 3000 LoC for the Java compiler that is able to generate
fully working Java code. The generated code targets a
framework for the execution of the state machines and
another for the execution of CEP streams, hence most
of the ”tricky” code does not need to be generated as
it is handled directly in those frameworks. In addition,
400 lines of code are needed to generate wrappers able
to ”merge” fine-grained implementation components into
coarser-grained deployment components (as explained in
the next sub-section)

• 3000 LoC for the JavaScript, which strictly follow the
same approach as for the Java compiler. About 400 LoC

are also needed to perform the wrapping.
• 11000 LoC for the family of C compilers, distributed

(approx.) as follows:
– 5000 for a generic C transformation framework

shared by all C compilers
– 6000 LoC shared among a POSIX compiler for

Linux, an AVR 8-bit compiler (e.g. for Arduino) and
an ARM 32-bit compiler (e.g. for Cypress PSoC5).

Basically, supporting a new high-level language (like Java)
with available libraries for state machines and CEP and having
an infix (standard) notation should in most cases be limited to
writing about 3000 LoC. Redifining the compilation of actions
and expressions to support Polish (prefix) or postfix notation
should be about 500 additional LoC. Supporting a lower-level
language (like C) where libraries are not available (or do not
provide enough control on the memory to be allocated, etc)
is a slightly more complex endeavor, but still accessible to
most programmers. Writing the POSIX C compiler for Linux
was about 7000 LoC (as the code for execution of the state
machine needs to be generated, etc), including the generic
C transformation framework. However, supporting different
“dialects” of C required about 2000 LoC for AVR 8-bit and
2000 LoC for ARM 32-bit, which is a limited effort.

C. HEADS Deployment Language and Runtime platform

By default, the HEADS transformation framework generates
standalone code that can be executed without any dependen-
cies to HEADS tools and platforms. However, this code cannot
easily be updated at runtime e.g. to substitute one component
by another, though it is programmatically feasible to instantiate
new components and connectors. In the HEADS Design
language, components are indeed implementation units, in
a way similar to Java classes. Wrapping each individual
implementation unit in a deployable component having its
own lifecycle at runtime would result in a large number of
components that needs to be deployed and administrated at
runtime. For example, in an implementation unit dealing with
serial communication would typically be packed together with
implementation units dealing with serialization/deserialization
of messages in the same deploy unit. This way at runtime, the
service operator would only need to deploy a single component
responsible for serial communication, the (de)serialization
aspect being hidden as an implementation detail. Figure 2
shows how HEADS implementation units can be wrapped into
Heads deploy units.

Once wrapped into deploy units, components can be ma-
nipulated by the HEADS Deployment Language and actually
deployed on the HEADS runtime platform, which evolves
the Kevoree platform [4] initially developed for Java in
order to also support JavaScript and more recently, .NET.
The HEADS Deployment Language provide a way to write
scripts describing which components to instantiate, how to
configure them (set values of parameters), and how to connect
components through communication channels. A large set of
components and channels is already available off the shelf. At
deployment time, the script, describing the components and

Fig. 2. Heads implementation and deploy units integration

channels deployed on the different nodes of the system, will
be sent to the different nodes, which will interpret this script
and actually deploy the necessary components, etc.

The HEADS Deployment Language and Runtime platforms
are available as a set of open-source projects on GitHub2.

IV. ENGINEERING A REAL-LIFE EHEALTH SERVICE WITH
HEADS

This section describes how the HEADS approach has been
applied to the TellU’s eHealth system.

A. Overall Architecture

The overall architecture of the eHealth system is depicted in
Figure 3. The system is composed of a home gateway which
runs on a Raspberry Pi 2 (1 GHz ARMv7, 1GB RAM, Linux).
This gateway is connected to a number of field nodes (typically
one per main room in the house) via WiFi. Field nodes run
on an Intel Edison (400 MHz x86, 1GB RAM, WiFi and
Bluetooth Low Energy (BLE)). Each field node has a pressure
cell integrated in order to provide an accurate measurement of
the pressure in each room. A wearable sensor node running
on a low power resource-constrained ARM Cortex M3 (80
MHz, 256 KB RAM) also integrates a pressure cell and
regularly broadcasts air pressure measurement to all field node
that are in the BLE range (typically 10m indoor). Based on
these pressure measurements and the intensity of the BLE
signal, field node can determine the position of the person
in the house and if the person has feel (by computing an
air pressure differential between the person’s sensor and the
fixed pressure in the field node). In addition, a set of sensor
nodes are deployed in different rooms to measure temperature
and light. Those nodes run on an Arduino Yn, which is
composed of a resource-constrained microcontroller (16 MHz
AVR-8bit, 2.5 KB RAM, no OS) and an embedded Linux
processor (400 MHz MIPS, 64 MB RAM, WiFi, OpenWRT).
The microcontroller part of the Yn is used to interact with
the physical temperature and light sensors while the MIPS
CPU and its embedded WiFi is used to communicate with
the Gateway. Finally, the gateway also integrates a Z-Wave
radio chip that can control and interact with a set of devices
(switches, etc).

This particular HD-Service thus relies on an heterogeneous
infrastructure composed from rather powerful 32-bit X86

2https://github.com/dukeboard/kevoree
https://github.com/kevoree/kevoree-js

Fig. 3. Safe@Home system architecture

and ARM processors with 1 GB RAM down to 8-bit AVR
microcontroller running at 16 MHz (about 60 times slower)
and embedding only 2.5 KB RAM (about 400 000 times less).
It also integrates a variety of radio protocols such as WiFi,
BlueTooth or Z-Wave.

B. Implementation of the Field Node

At design/implementation time, the Field Node is composed
of 8 core components implementing the logic of the node, and
2 other components that allows the field node to push infor-
mation to the gateway via MQTT. Each of the implementation
component is available as:

• A Platform-Independent Component (PIC), which de-
scribes the interfaces of the component i.e., the port and
messages it exposes. Some PICs can also provide a full
implementation of their behavior, if this behavior does
not imply using low-level libraries/drivers that directly
interfaces with the hardware or system APIs.

• A Platform-Specific Component (PSC), which describes
the full behavior of a component including the access to
hardware drivers and system APIs.

For example, the PIC associated to the BLE component
describes messages related to the status of the BLE connection,
such as stateChange (st : String); discover (peripheral : String);
scanStart (); scanStop (). Those messages are orchestrated in
the BLE PSC by a state machine (see Figure 4) interfacing
with the ”noble” JavaScript module to deal with low-level
details related to BlueTooth.

Overall, the Field Node is implemented with 300 LoC for
the PICs and 1100 LoC for the PSCs. It produces 2000 LoC
of JavaScript source code. This code can simply be run by
executing the main.js file with Node.JS. However, this default
implementation is rather monolithic at runtime and does not
provide any dynamic reconfiguration capabilities. In order to
provide such capabilities, this code is automatically wrapped
into a component that can be manipulated and adapted at

Fig. 4. Component diagram of BLE and Decoder

runtime. This additional component is fully generated and con-
tained within 170 LoC. The automated wrapping is illustrated
in Figure 5.

Fig. 5. Field-Node component structure and actual Deployment

C. Deployment and Operation of the Fall Detection service

All the field node are described by 3 scripts. The first one is
a root script basically describing the default configuration of

the node, containing information about the network and how
to connect to the rest of the system. It is shown in Figure 6

Fig. 6. Default configuration of Field-Node

The second one is a script that will be executed whenever
the field node connects to the network. This script adds a
few components and connectors so that the field node can
execute its logic and connect to the gateway via MQTT. This
script is shown in Figure 7. Finally, the third script simply
remove the whole FieldNode from the model when the field
node disappears from the network. Using those three scripts,
the model and the running system are always in sync. Only
field nodes that are actually connected to the network will
appear in the model.

Fig. 7. onConnect fragment of Home-GW inHEADS deployment model

D. Summary

The eHealth service implemented by the TellU company
involves are rather heterogeneous infrastructure composed of
X86, ARM, MIPS and AVR nodes, ranging from 1GHz CPU
with 1GB RAM down to 16MHz microcontroller with 2.5 KB
RAM. All the code generated for this service (in JavaScript
for the larger nodes and C for the smaller nodes) worked out
of the box, without any manual modifications. All the libraries
TellU needed to use (to interact with Z-Wave, BlueTooth,
GPIO on the Intel Edison, etc or to communicate over MQTT)
could be integrated with no major issues, either in the HEADS
Modelling Language, or directly in the target language as a
HEADS component.

A few limitations were noted by TellU. Deploying code on
resource-constrained devices can sometimes be cumbersome,
as the generated code first needs to be cross-compiled and
then uploaded to the device. This limitation could easily be
addressed by extending the extension point related to build
scripts so that it could also run the scripts using a command

line the user can override. By default the C compiler would just
run make. When compiling and uploading to Arduino it would
execute: avrdude -CD:avrdude.conf -v -v -v -v
-patmega328p -carduino -P.COM22 -b57600 -D
-Uflash:w:myProgram.cpp.hex:i.

Regarding the tooling, TellU was rather satisfied with the
integration of the different languages and tools within the
Eclipse IDE and simply noted some specific cases where
code completion does not yet work on par with e.g. Java
code completion. Other than that, the languages and tools are
usable.

E. Lessons learned

Several developers at TellU, well acquainted with Java, were
able to rapidly get started with the concepts and tools described
in this approach. A series of tutorials covering the different
concepts, and including exercises to be completed by the
participants, was completed within a couple of days 3. Before
implementing the eHealth service, TellU developers have
been working on the past few years on the backend service,
collecting data and performing analytics. Integrating directly
with sensors and gateways was thus a new activity. Most of the
learning curve was related to learning how to interact directly
with hardware. The HEADS approach actually speed up the
process by allowing integrating with C and JavaScript libraries
(not popular languages at TellU) without writing advanced C
and JavaScript, as most of the logic could be expressed in a
platform independent way. In particular, our generative and
modular component-based approach for heterogeneous and
distributed system allowed and efficient co-development and
continuous evolution of this eHealth service. Once interfaces
have been defined, it was easy for TellU to define mockups
for the components that were not yet implemented and still be
able to run the whole system. Mockups were replaced in an
iterative way.

Regarding the integration with new languages and plat-
forms, most of the compilers (POSIX C for Linux, Java and
JavaScript) have been developed by people heavily involved
in the definition of the HEADS Design Language and the
Transformation Framework. It is thus hard to conclude on
how difficult it is to implement a completely new compiler,
other than it took 3000 LoC for Java and JavaScript and
about 7000 LoC for POSIX C, which is far way less than
writing a “real” compiler (GCC being 14 millions LoC). An
experiment conducted with another department at SINTEF
with people not involved in the development of the language
and framework showed it is possible to extend the C compiler
to support another “dialect” for ARM microcontrollers. This
took about 2000 LoC and a couple of weeks for the embedded
C expert (with only basic Java knowledge) to get this compiler
fully functional. While the time to write this compiler could
have been reduced e.g. with better documentation, the two
weeks spend here were almost entirely saved by developers
at TellU who could just get started with this new platform

3https://github.com/HEADS-project/training

without building a detailed knowledge of C development on
this platform.

V. RELATED WORK

Some attempts of creating an Esperanto of the programming
languages have emerged, aiming at replacing the need for
using multiple programming languages. For example, Haxe [5]
is a programming language that cross-compile to most of the
popular programming languages (Java, JavaScript, C++ and
others). A significant development effort in Haxe, beyond the
development of the language and compilers, is put in the de-
velopment of a standard library (mostly wrapping the standard
libraries of the targeted languages). This standard library needs
to be embedded at runtime with a too large overhead to run on
the most constrained platforms our approach is able to target.

In the CBSE domain, some component platforms are avail-
able for different languages. For example, Fractal [6] is
implemented in Java and C. However, no significant effort has
been put to make the different platforms to interoperate, those
different implementations being isolated rather than being a
versatile Fractal. The HEADS approach facilitates, both at
design-time and runtime the integration and interoperability
of components expressed in different languages.

In the modeling domain, using a multi-viewpoints ap-
proaches proved to be profitable. Schmidt et al [7] use a
modeling approach to generate Distributed Real-time and
Embedded Component Middleware and Applications. More
recently, in [8], Dabholkar et al highlights the benefits of
providing a Generative Middleware Specialization Process for
Distributed Real-Time and Embedded Systems. The HEADS
approach mainly focuses in enabling a simple integrating
of some viewpoints with existing programming language to
simplify the complex integration of modern systems.

In the system Engineering community, the Eclipse Polarsys
Capella project 4 propose a native support for viewpoint
extensions, allowing to extend and/or specialize the core
environment to address particular engineering concerns (per-
formance, operating safety, security, cost, weight, product
line, etc.), combined with the possibility to carry out multi-
criteria analysis of target architectures to help find the best
trade-offs [9]. In that direction, the HEADS approach can
be compared to the Polarsys project with a focus on the
integration with existing programming language.

In the Mobile domain, Cepa et al [10] present MobCon a
top-down generative approach to create Middleware for Java
Mobile Applications, which shows that generation techniques
can be effectively used to develop mobile application. In
the same direction, Cassou et al [11] presents a generative
approaches based on software architecture model, associated
with verification strategies, to create pervasive applications.
Contrary to this work, we do not provide a unique ab-
stract viewpoint to design the system. The HEADS approach
provides a specific viewpoint for each stakeholder or each
software building stage.

4https://www.polarsys.org/capella/

VI. CONCLUSION

This paper mainly relates an experiment in using a multi-
view point approach for designing complex eHealth system.
This approach proposes the use of several viewpoints and
several modeling languages based on well-established for-
malisms (a component and state machine-based language for
design and implementation, and a configuration language for
deployment) dedicated to the integration, deployment and
continuous operation of existing libraries and components
already available in various languages.

The experiment shows that this approach can be used in an
industrial context by a small team of engineering (TellU being
an SME with about 10 developers) to create a real eHealth
system. This experiment also shows that the use of these
modeling languages associated with an extensible generative
framework to support new platforms provide a solution to
create modular applications that can be developed iteratively
and easily reconfigured at runtime.

ACKNOWLEDGMENT

This work was funded by EU FP7/2007-2013 grant
n611337, HEADS project (www.heads-project.eu)

REFERENCES

[1] B. Morin, F. Fleurey, and O. Barais, “Taming heterogeneity and dis-
tribution in scps,” in 1st IEEE/ACM International ICSE Workshop on
Software Engineering for Smart Cyber-Physical Systems, Florence, Italy,
May 17, 2015, T. Bures, D. Weyns, M. Klein, and R. E. Haber, Eds.
IEEE, 2015, pp. 40–43.

[2] F. Fleurey, B. Morin, A. Solberg, and O. Barais, “MDE to manage
communications with and between resource-constrained systems,” in
ACT/IEEE Model Driven Engineering Languages and Systems, 14th
International Conference, MODELS 2011, Wellington, New Zealand,
October 16-21, 2011. Proceedings, 2011, pp. 349–363.

[3] S. Furuhashi, “Messagepack: Its like json. but fast and small, 2014,”
URL http://msgpack. org.

[4] F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau, and J. Jézéquel,
“A dynamic component model for cyber physical systems,” in 15th
ACM SIGSOFT Symposium on Component Based Software Engineering,
CBSE 2012, Bertinoro, Italy, June 25-28, 2012, V. Grassi, R. Mirandola,
N. Medvidovic, and M. Larsson, Eds. ACM, 2012, pp. 135–144.

[5] B. Dasnois, HaXe 2 Beginner’s Guide: Develop Exciting Applications
with this Multi-platform Programming Language. Packt Publishing Ltd,
2011.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
“The fractal component model and its support in java,” Software-Practice
and Experience, vol. 36, no. 11, pp. 1257–1284, 2006.

[7] A. S. Gokhale, D. C. Schmidt, T. Lu, B. Natarajan, and N. Wang,
“Cosmic: An MDA generative tool for distributed real-time and embed-
ded applications,” in International Middleware Conference, Workshop
Proceedings, June 16-20, 2003, Rio de Janeiro, Brazil, 2003, pp. 300–
306.

[8] A. Dabholkar and A. Gokhale, “A generative middleware special-
ization process for distributed real-time and embedded systems,” in
Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), 2011 14th IEEE International Symposium on, March 2011,
pp. 197–204.

[9] J.-L. Voirin and S. Bonnet, “Arcadia: model-based collaboration for
system, software and hardware engineering,” in Complex Systems Design
& Management, poster workshop (CSD&M 2013), 2013.

[10] V. Cepa and M. Mezini, “Mobcon: A generative middleware framework
for java mobile applications,” in HICSS: 38th Annual Hawaii Interna-
tional Conference on System Sciences, Jan 2005, pp. 283b–283b.

[11] D. Cassou, E. Balland, C. Consel, and J. Lawall, “Leveraging software
architectures to guide and verify the development of sense/compute/-
control applications,” in ICSE’11: 33rd International Conference on
Software Engineering. ACM, 2011, pp. 431–440.

