105 research outputs found

    A Lightweight Deep Learning Model for The Early Detection of Epilepsy

    Get PDF
    Epilepsy is a neurological disorder and non communicable disease which affects patient's health, During this seizure occurrence normal brain function activity will be interrupted. It may happen anywhere and anytime so it leads to very dangerous problems like sudden unexpected death. Worldwide seizure affected people are around 65% million. So it must be considered as serious problem for the early prediction.  A number of different types of screening tests will be conducted to assess the severity of the symptoms such as EEG,MRI, ECG, and ECG. There are several reasons why EEG signals are used, including their affordability, portability, and ability to display. The proposed model used bench-marked CHB-MIT EEG datasets for the implementation of early prediction of epilepsy ensures its seriousness and leads to perfect diagnosis. Researchers proposed Various ML /DL methods to  try for the early prediction of epilepsy but still it has some challenges in terms of efficiency and precision Seizure detection techniques typically employ the use of convolutional neural networks (CNN) and a bidirectional short- and long-term memory (Bi-LSTM) model in the realm of deep learning. This method leverages the strengths of both models to effectively analyze electroencephalogram (EEG) data and detect seizure patterns. These light weight models have been found to be effective in automatically detecting seizures in deep learning techniques with an accuracy rate of up to 96.87%. Hence, this system has the potential to be utilized for categorizing other types of physiological signals too, but additional research is required to confirm this

    Multidimensional CNN and LSTM for Predicting Epilepsy Seizure Activities

    Get PDF
    Epilepsy is a chronic neurological disease caused by sudden abnormal brain discharges, leading to temporary brain dysfunction. It can manifest in various ways, including paroxysmal movement, sensory, autonomic nerve, awareness, and mental abnormalities. It is now the second largest neurological disorder worldwide, affecting around 70 million people and increasing by approximately 2 million new cases each year. While about 70% of epilepsy patients can control their seizures with regular antiepileptic drugs, surgery, or nerve stimulation treatments, the remaining 30% suffer from intractable epilepsy without effective treatment, causing significant burden and potential danger to their lives. Early prediction and treatment are crucial to prevent harm to patients. Electroencephalogram (EEG) is a valuable tool for diagnosing epilepsy as it records the brain's electrical activity. EEG can be divided into scalp and intracranial types, and doctors typically analyze EEG signals of epileptic patients into four periods

    DEVELOPMENT OF AN ACCURATE SEIZURE DETECTION SYSTEM USING RANDOM FOREST CLASSIFIER WITH ICA BASED ARTIFACT REMOVAL ON EEG DATA

    Get PDF
    Abstract The creation of a reliable artifact removal and precise epileptic seizure identification system using Seina Scalp EEG data and cutting-edge machine learning techniques is presented in this paper. Random Forest classifier used for seizure classification, and independent component analysis (ICA) is used for artifact removal. Various artifacts, such as eye blinks, muscular activity, and environmental noise, are successfully recognized and removed from the EEG signals using ICA-based artifact removal, increasing the accuracy of the analysis that comes after. A precise distinction between seizure and non-seizure segments is made possible by the Random Forest Classifier, which was created expressly to capture the spatial and temporal patterns associated with epileptic seizures. Experimental evaluation of the Seina Scalp EEG Data demonstrates the excellent accuracy of our approach, achieving a 96% seizure identification rate A potential strategy for improving the accuracy and clinical utility of EEG-based epilepsy diagnosis is the merging of modern signal processing methods and deep learning algorithms

    Performance Analysis of Deep-Learning and Explainable AI Techniques for Detecting and Predicting Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological diseases globally. Notably, people in low to middle-income nations could not get proper epilepsy treatment due to the cost and availability of medical infrastructure. The risk of sudden unpredicted death in Epilepsy is considerably high. Medical statistics reveal that people with Epilepsy die more prematurely than those without the disease. Early and accurately diagnosing diseases in the medical field is challenging due to the complex disease patterns and the need for time-sensitive medical responses to the patients. Even though numerous machine learning and advanced deep learning techniques have been employed for the seizure stages classification and prediction, understanding the causes behind the decision is difficult, termed a black box problem. Hence, doctors and patients are confronted with the black box decision-making to initiate the appropriate treatment and understand the disease patterns respectively. Owing to the scarcity of epileptic Electroencephalography (EEG) data, training the deep learning model with diversified epilepsy knowledge is still critical. Explainable Artificial intelligence has become a potential solution to provide the explanation and result interpretation of the learning models. By applying the explainable AI, there is a higher possibility of examining the features that influence the decision-making that either the patient recorded from epileptic or non-epileptic EEG signals. This paper reviews the various deep learning and Explainable AI techniques used for detecting and predicting epileptic seizures  using EEG data. It provides a comparative analysis of the different techniques based on their performance

    Deep learning approach for epileptic seizure detection

    Get PDF
    Abstract. Epilepsy is the most common brain disorder that affects approximately fifty million people worldwide, according to the World Health Organization. The diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone and time-consuming. Automated epileptic seizure detection of EEG signal can reduce the diagnosis time and facilitate targeting of treatment for patients. Current detection approaches mainly rely on the features that are designed manually by domain experts. The features are inflexible for the detection of a variety of complex patterns in a large amount of EEG data. Moreover, the EEG is non-stationary signal and seizure patterns vary across patients and recording sessions. EEG data always contain numerous noise types that negatively affect the detection accuracy of epileptic seizures. To address these challenges deep learning approaches are examined in this paper. Deep learning methods were applied to a large publicly available dataset, the Children’s Hospital of Boston-Massachusetts Institute of Technology dataset (CHB-MIT). The present study includes three experimental groups that are grouped based on the pre-processing steps. The experimental groups contain 3–4 experiments that differ between their objectives. The time-series EEG data is first pre-processed by certain filters and normalization techniques, and then the pre-processed signal was segmented into a sequence of non-overlapping epochs. Second, time series data were transformed into different representations of input signals. In this study time-series EEG signal, magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum were investigated and compared with each other. Third, time-domain or frequency-domain signals were used separately as a representation of input data of VGG or DenseNet 1D. The best result was achieved with magnitude spectrograms used as representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 and specificity of 0.998 with subject dependent data. VGG along with magnitude spectrograms produced promising results for building personalized epileptic seizure detector. There was not enough data for VGG and DenseNet 1D to build subject-dependent classifier.Epileptisten kohtausten havaitseminen syväoppimisella lähestymistavalla. Tiivistelmä. Epilepsia on yleisin aivosairaus, joka Maailman terveysjärjestön mukaan vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikä on virhealtista ja aikaa vievää. Automaattinen epileptisten kohtausten havaitseminen EEG-signaalista voi potentiaalisesti vähentää diagnoosiaikaa ja helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmät tukeutuvat pääasiassa piirteisiin, jotka asiantuntijat ovat määritelleet manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden havaitsemiseksi suuresta määrästä EEG-dataa. Lisäksi, EEG on epästationäärinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja tallennusten välillä ja EEG-data sisältää aina useita kohinatyyppejä, jotka huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. Näihin haasteisiin vastaamiseksi tässä diplomityössä tarkastellaan soveltuvatko syväoppivat menetelmät epilepsian havaitsemiseen EEG-tallenteista. Aineistona käytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). Tämän työn tutkimus sisältää kolme koeryhmää, jotka eroavat toisistaan esikäsittelyvaiheiden osalta: aikasarja-EEG-data esikäsiteltiin perinteisten suodattimien ja normalisointitekniikoiden avulla, ja näin esikäsitelty signaali segmentoitiin epookkeihin. Kukin koeryhmä sisältää 3–4 koetta, jotka eroavat menetelmiltään ja tavoitteiltaan. Kussakin niistä epookkeihin jaettu aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. Tässä tutkimuksessa tutkittiin ja verrattiin keskenään EEG-signaalia sellaisenaan, EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-amplitudi- ja 2D-FFT -vaihespektriä. Näin saatuja aika- ja taajuusalueen signaaleja käytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi ja tällöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstä riippuvaisella EEG-datalla. VGG yhdessä amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstä riippumattoman luokittelijan opettamiseksi

    Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks

    Get PDF
    Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance
    corecore