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Abstract— Epilepsy is one of the most common neurological diseases globally. Notably, people in low to middle-income nations could 

not get proper epilepsy treatment due to the cost and availability of medical infrastructure. The risk of sudden unpredicted death in Epilepsy is 

considerably high. Medical statistics reveal that people with Epilepsy die more prematurely than those without the disease. Early and accurately 

diagnosing diseases in the medical field is challenging due to the complex disease patterns and the need for time-sensitive medical responses 

to the patients. Even though numerous machine learning and advanced deep learning techniques have been employed for the seizure stages 

classification and prediction, understanding the causes behind the decision is difficult, termed a black box problem. Hence, doctors and patients 

are confronted with the black box decision-making to initiate the appropriate treatment and understand the disease patterns respectively. Owing 

to the scarcity of epileptic Electroencephalography (EEG) data, training the deep learning model with diversified epilepsy knowledge is still 

critical. Explainable Artificial intelligence has become a potential solution to provide the explanation and result interpretation of the learning 

models. By applying the explainable AI, there is a higher possibility of examining the features that influence the decision-making that either 

the patient recorded from epileptic or non-epileptic EEG signals. This paper reviews the various deep learning and Explainable AI techniques 

used for detecting and predicting epileptic seizures  using EEG data. It provides a comparative analysis of the different techniques based on 

their performance. 
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I.  INTRODUCTION 

Epilepsy, a persistent neurological condition marked by 

recurring and unforeseeable seizures, affects millions of people 

worldwide, imposing substantial physical, emotional, and 

economic burdens on individuals and society [1]. These seizures 

arise from atypical electrical activity within the brain and can 

manifest in a range of forms, from subtle sensory alterations to 

convulsive episodes. In the medical field, epilepsy disease 

diagnosis heavily relies on examining Electroencephalography 

(EEG) signals, which are critical for understanding the dynamic, 

pathological complex patterns occurring in the brain during 

seizures [2]. Many risks associated with epileptic seizures 

related to sudden unexpected death are a major concern [3]. 

Manually determining the location of seizures from the EEG 

signals with the aid of the users’ experience is difficult and time-

consuming. The automated detection system has become the 

potential solution for assisting doctors and patients in the 

perspective of early diagnosis [4] [5]. Epileptic seizure detection 

and prediction significantly impact timely and provide accurate 

insights regarding the epileptic behaviors on the patients’ EEG 

samples for the epilepsy diagnosis. To overcome the limitations 

in the existing EEG signal processing methods in Epilepsy, 

recent epilepsy diagnostic approaches have focused on 

employing Machine Learning (ML) and Deep Learning (DL) 

models. Deep learning-assisted EEG signal analysis plays a 

substantial role in various research application directions, 

including Epilepsy, depression, schizophrenia, movement 

disorder, memory, and sleep [6][7]. Due to the large-scale data 

and deep learning, black-box models have successfully tackled 

the constraints in real-world and mission-critical applications 

[8].  

In recent years, interpretable and explainable decision-

making mechanisms in AI-based systems have steadily gained 

prominence as they foster transparency and instill confidence 

among diverse end-users and medical experts. The embrace of 

deep models largely hinges on the comprehensibility of 
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underlying processes, intensified with an escalating 

sophistication of machine learning approaches and models [9]. 

The relentless advancement of machine learning models has led 

to heightened complexity, rendering it increasingly challenging 

to comprehend their decision-making processes. The opacity of 

"black box" models poses significant obstacles when applied in 

the critical domain of medical practice, where sensitivity is 

paramount, especially in epilepsy detection [10]. To overcome 

this constraint, the burgeoning field of Explainable Artificial 

Intelligence (XAI) has emerged, which is one of the pioneering 

methodologies to elucidate and interpret deep learning 

algorithms. Integrating XAI-based epileptic seizure detection 

enforces reduced medical risks and reliable and scalable 

healthcare solutions [11]. Embracing the power of XAI methods 

empowers the creation of interpretable ML models for disease 

comorbidity prediction, bestowing heightened transparency 

upon machine learning practices. By employing these 

interpretable ML models, healthcare professionals forecast 

disease patterns and gain insights into the underlying reasons 

driving increased risk predictions. 

In consequence, such emerging transparency is pivotal for 

fostering the seamless adoption of ML in the medical field. By 

applying machine learning along with explainable AI techniques 

to analyze the cognitive aspects of patients' health behaviors, 

there emerges a transformative opportunity to provide tailored 

and exceptionally efficient healthcare to individuals managing 

multiple health conditions. This approach augments treatment 

precision and ultimately amplifies health outcomes, achieving a 

higher level of personalized care [12]. Although the black-box 

nature of DL remains a lingering conundrum in epilepsy 

detection and prediction research, the currently available 

automated decision-making models are inadequate for an 

accurate and early diagnosis of Epilepsy due to the lack of 

comprehension in medical reporting. 

II.  RELATED WORK 

This section reviews several epilepsy detection and 

prediction research with the predominant focus on the hybrid 

EEG feature extraction, Deep Learning, and explainable AI 

model. 

A. Spatial and Temporal Features based Epileptic 

Seizure Detection and Prediction  

The robust deep Convolutional Neural Network (CNN) 

model [13] detects epileptic seizures using an open-access EEG 

epilepsy dataset. A comprehensive evaluation encompasses 

cross-patient and within-patient EEG recordings, showcasing 

the system's exceptional performance compared to machine 

learning and deep learning techniques regarding accuracy and 

sensitivity. To overcome the limitations of small public EEG 

seizure datasets, implement a cropped training strategy that 

optimizes training efficiency on limited data. Furthermore, novel 

visualization techniques facilitate the creation of accurate brain 

maps, allowing in-depth study and localization of EEG seizures. 

The spatial distribution of CNN in different frequency bands is 

effectively revealed through visualization, offering valuable 

insights for enhanced understanding and diagnosis. According to 

[14], the research proposes a novel intelligent EEG identification 

system for automated seizure detection using a channel-

embedding spectral-temporal squeeze-and-excitation network 

(CEstSENet). The group convolution squeezes and excitation 

(gcSE) unit, a version of the SE block, is presented to investigate 

spectral-temporal embedding unified. To avoid overfitting 

concerns caused by the inadequacy of seizure events, a hybrid 

training goal containing a maximum mean discrepancy-based 

information maximizing loss is adopted. In [15], an intelligent 

detection approach for epileptic EEGs unified a multi-level 

spectral-temporal feature learning framework proposed to detect 

seizure onsets automatically. In the temporal domain, 

discriminative features are recovered using a combination of 

Principal Component Analysis, Common Spatial Pattern (PCA-

CSP), and Multivariate Multiscale Sample Entropy (MMSE). 

Finally, for epileptic EEG identification, a set of Support Vector 

Machine (SVM) Classifiers are employed in conjunction with a 

decision fusion module for the intelligent recognition of 

epileptic EEGs. In [16], an innovative spatio-temporal-spectral 

hierarchical graph convolutional network with an active preictal 

interval learning scheme (STS-HGCN-AL) framework was 

introduced to revolutionize seizure prediction. Two novel graph 

convolutions were proposed to enhance the prediction of preictal 

EEG transitions: the residual graph convolution (resGCN) and 

rhythm attention (rhythmAtt) units.  

Furthermore, a semi-supervised active learning strategy was 

studied to deduce the ideal pre-ictal state specific to each patient 

interval that significantly bolsters the robustness of the seizure 

predictor furthering its potential for clinical applicability and 

real-world impact. By skilfully combining inputs from different 

domains and employing channel attention mechanisms, the 

framework adaptively learns representations of EEG signals to 

substantially improve the utilization of temporal, spectral, and 

spatial information for superior predictive capabilities. 

According to [17], a Spatio-Temporal Channel Attention 

Residual Network (STCARN) was proposed and enhanced with 

the extended series Mean Amplitude Spectrum (MAS) of EEG 

signals. The extended series MAS feature representation 

smartly integrates temporal significance from multiple MAS 

sources and spatial significance from EEG channels, 

proficiently capturing brain activities. The STCARN 

incorporates a powerful fusion of residual convolutional 

structure, channel attention mechanism, and recurrent network 

structure, enabling robust spatiotemporal information 

extraction from extended series MASs. In [18], employed the 
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Multivariate Variational Mode Decomposition (MVMD) 

approach and developed the dispersion index (DI) as a novel 

brain network weight calculation method to extract features 

from single-channel temporal brain networks and multi-channel 

spatial brain networks for seizure detection. Identifying 

temporal and spatial networks is promising, and DI may be used 

to determine correlation. The research work [19] proposes an 

end-to-end epilepsy seizure prediction method based on Multi-

Layer Perceptron (MLPs). The method comprises two crucial 

blocks such as denoising-weighted and MLPs blocks. A 

learnable denoising matrix effectively mitigates undesired 

artifacts. A redundancy reduction is achieved through a 

dedicated reduction layer. An average pooling layer and a Fully 

Connected (FC) layer distinguish between pre-ictal and inter-

ictal brain states for prediction. The method exhibits promising 

results in EEG-based epilepsy seizure prediction, validated 

through experiments on the CHB-MIT and Kaggle databases. 

B. Detecting and predicting Epileptic Seizures using 

deep-leaning  

The various deep-learning algorithms are used to classify the 

seizure states in the literature.   

1) Artificial Neural Network (ANN) 

The research work [20] introduced an automated technique 

for detecting epileptic seizures in which they employed an 

Artificial Neural Network (ANN) in conjunction with the 

Wavelet Transform (WT) for signal decomposition. [21] 

introduced an innovative approach for distinguishing between 

epileptic patients and individuals without the condition, 

employing a combination of Discrete Wavelet Transform 

(DWT) and Artificial Neural Network (ANN). Initially, noisy 

data were filtered out, followed by subjecting the data to DWT 

for feature extraction. The utilization of DWT was employed to 

capture crucial attributes from the EEG data. The data enriched 

with features was then directed through a Feed-forward 

Artificial Neural Network (FFANN) for subsequent analysis and 

classification. 

2) Convolutional Neural Network (CNN) 

A 13-layer Deep Convolutional Neural Network (DCNN) 

was introduced [22] with the primary objective of efficient 

seizure detection. Notably, this method does not necessitate 

feature selection and extraction steps. However, a noteworthy 

limitation of this approach is its demand for substantial datasets 

due to its reliance on deep learning techniques. One of the 

researchers [23] introduced a method for detecting epileptic 

seizures using a Convolutional Neural Network (CNN), wherein 

manual feature extraction was circumvented. In the study 

outlined by [24], a novel method was introduced for seizure 

detection using an attention-based CNN-BiRNN architecture. 

The construction of this model follows a 3-step procedure: the 

first step involves a multi-scale convolutional model, succeeded 

by an attention-based model in the second step, and the third step 

is implemented through a multi-stream recurrent bidirectional 

algorithm. Notably, this model demonstrates the ability to handle 

EEG signals with missing or varying channels.  The researchers 

[25] introduced a combined approach for seizure detection, 

utilizing a fusion of spectrogram and 1D CNN techniques to 

achieve enhanced and efficient outcomes. However, it's 

important to note that this model's accuracy is compromised. In 

the realm of ES onset and offset detection, the research work 

[26] presented a Convolutional Neural Network-based model 

that takes EEG signals as input. This approach employs a 

factorized filter to capture distinct Spatio-temporal patterns. 

Notably, this model effectively identifies both the onset and 

offset phases of seizures. According to [27], an innovative deep 

learning framework, channel attention dual-input convolutional 

neural network (CADCNN), was introduced, tailored for EEG-

based seizure prediction tasks. CADCNN elegantly leverages 

prior knowledge to enhance the model's capability to capture 

spectral information, a unique feature rarely explored in previous 

works. In the study referenced as [28], training of the model was 

orchestrated by uniting multi-scale convolution with a spatial-

temporal feature extraction module. The model showcased its 

capacity for generalization by assimilating features across 

various convolutional scales. In a bid to enhance its applicability 

to un-encountered patient data, a leave-one-out cross-validation 

(LOOCV) approach was employed as outlined in [28, 29]. 

3) Recurrent Neural Network (RNN) 

The researchers [30] introduced a method for epilepsy 

detection utilizing a deep Recurrent Neural Network (DRNN). 

The authors also introduced a mapping technique to enhance 

signal processing efficiency. This mapping technique facilitates 

the acquisition of Spatio-temporal features from raw EEG 

signals. In [31] a combined model for seizure prediction 

involving Bidirectional Long Short-Term Memory (Bi-LSTM) 

and Deep Convolutional Auto encoder (DCAE) was introduced. 

The authors conducted a comparison of Bi-LSTM and DCAE 

against four other approaches, with the conclusion that Bi-

LSTM and DCAE demonstrated superior performance. The Bi-

LSTM component focuses on extracting temporal information 

from raw EEG data, while the DCAE component learns spatial 

data. By leveraging transfer learning, the study explored semi-

supervised learning strategies based on DCAE, leading to 

reduced training times. The authors affirmed the model's 

suitability for real-time applications. However, a significant 

concern arises due to the necessity of accumulating the entire 

data sequence before initiating predictions, posing challenges for 

real-time implementation. 
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C. Explainable AI-based Epileptic Seizure Detection and 

Prediction 

In research work [32], a sequential segment of EEG data was 

used and comprised information on ten successive EEG sub-

windows. By utilizing the data as a series of 10 sub-windows, an 

ideal deep sequence learning architecture generates the label 

with the aid of attention on the CNN, BiLSTM, and fully 

connected neural networks. The relevance is calculated by 

applying the model weights in an activation value of the 

receptive fields at a certain layer. The learned weight models 

aided in understanding the significance of selected attributes and 

demonstrated that they represent cross-patient data and open the 

way to future studies for seizure analysis. In [33], inpatient and 

outpatient administrative health claims data were used for 

epilepsy patients. To predict the time-dependent risk of prevalent 

comorbidities in epilepsy patients, the work in [33] presented a 

specialized multimodal neural network architecture (Deep 

personalized LOngitudinal convolutional RIsk model—

DeepLORI). DeepLORI-based forecasts can be interpreted on an 

individual patient basis. A game theoretic method is proposed to 

uncover key characteristics in DeepLORI models, showing that 

model predictions are explainable considering current illness 

information. DeepLORI discovered the homogeneous disease 

progression based on the comorbidity risk profile, thereby 

providing options for designing more personalized therapeutics 

in the future.  

The focus of [34] is to propose a digitalized epileptic seizure 

detection method that will be more accurate, efficient, and time-

consuming. It primarily examines and analyses the Decision 

Tree Algorithm, Random Forest Algorithm, K-Nearest 

Neighbour Classifier, Gradient Boosting Classifier, Gaussian 

Nave Bayes, and other methods. The clinical procedure of 

deciphering EEG data and identifying electrical activity for the 

expert is neither straightforward nor efficient. Furthermore, it 

will also focus on the future development of minimizing difficult 

situations, with the outcomes interpreted using XAI. Many 

viable strategies for epilepsy diagnosis using EEG data and 

machine learning have been suggested in this research [35], and 

it provided an explainable AI technique for epilepsy diagnosis 

that uses Shapley Explanations (SHAP) - a unified framework 

built from game theory to explain the output aspects of the 

model. In epilepsy diagnosis, the explanations provided by 

Shapley values are effective for feature explanation for a model's 

output. The feature explanation technique demystifies black-box 

algorithms that may be used to comprehend model predictions 

even when incorrect. In [36], a model for categorizing epilepsy 

subgroups in magnetic resonance imaging (MRI) is suggested 

and employs a Quantum Machine Learning (QML) approach to 

assess classification performance, which is more efficient than 

typical deep learning classification. To predict the epilepsy class, 

a Quantum Convolutional Neural Network (QCCN) was used. 

QML can handle big, biased datasets while taking up less time 

and space. A Layer-wise Relevance Propagation (LRP) was 

utilized to describe the prediction process to make the suggested 

model more trustworthy and dependable. In addition, it also 

demonstrates how LRP can refute the quantum machine learning 

model for feature assessment in MRI data.  

The groundbreaking study [37] presents stereo 

electroencephalography (SEEG-Net), a highly sensitive and 

practical model for detecting SEEG pathological activity in real-

world clinical DRE scenarios. SEEG-Net incorporates an 

innovative Multiscale CNN (MSCNN) that significantly 

expands the model's receptive field in local and global 

characteristics. To further enhance performance, a novel Focal 

Domain Generalization loss (FDG-loss) function was 

introduced, which effectively prioritizes target samples and 

promotes learning of domain consistency features. Additionally, 

it outlines a comprehensive SEEG processing and database 

construction flow, meticulously designed to align seamlessly 

with real-world clinical scenarios. The research work [38] 

introduces XAI4EEG, an innovative application-aware 

approach that combines deep learning with explainability for 

detecting seizures in EEG time series. The proposed method 

utilizes SHAP values from two SHAP explainers in the EEG 

data spectral, spatial, and temporal dimensions. It incorporates a 

hybrid seizure detection system comprising EEG data 

preparation and two DL models (1D-CNN and 3D-CNN). 

Furthermore, the evaluation scenario is designed to replicate 

clinical diagnosis conditions, considering time pressure, and 

adopting a human-grounded evaluation principle for rigorous 

assessment. 

III. METHODOLOGY 

 The generalized process for interpretable epileptic seizure 

detection and prediction is described as follows: 

Step 1: Data Pre-processing and Feature Extraction 

Input: Raw EEG data recorded during epileptic events and non-

seizure periods. 

1. Apply noise reduction and data cleaning to remove 

artifacts and noise from the EEG signals. 

2. Perform spectral analysis on EEG data to extract 

spectral features using methods like Fast Fourier 

Transform (FFT) or Wavelet Transform. 

3. Apply the Discrete Wavelet Transform (DWT) to 

capture spatiotemporal features by decomposing EEG 

signals into different scales and sub-bands. 

Step 2: Temporal Feature Learning 

1. Construct temporal sequences from the EEG data by 

creating time windows or segments. 

2. Feed the temporal sequences into a recurrent neural 

network (RNN) architecture.  
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3. Train the RNN to capture temporal dependencies and 

patterns in the EEG data, learning the temporal features 

associated with epileptic behaviors. 

Step 3: Spatial Relationship Learning 

1. Utilize the spatial layout of EEG channels to capture 

the relationships between different brain regions. 

2. Employ techniques like Convolutional Neural 

Networks (CNNs) to analyze the spatial relationships 

among EEG channels, thereby extracting spatial 

features. 

Step 4: Multi-Level Spectral Analysis 

1. Combine the spatiotemporal features learned from the 

temporal and spatial models. 

2. Apply multi-level spectral analysis to the combined 

features, dissecting them into different sub-bands 

representing different frequencies. 

Step 5: Transfer Learning for Diversified Patterns 

1. Use transfer learning techniques to Utilize pre-trained 

knowledge from related tasks or datasets. 

2. Fine-tune the model using the combined features to 

adapt to diversified epileptic EEG patterns. 

Step 6: Epilepsy Detection and Prediction 

1. Train the model on the combined spatiotemporal and 

spectral features to perform epilepsy detection and 

prediction. 

2. Utilize binary classification for seizure detection, and 

temporal modeling for predicting the timing of 

seizures. 

Step 7: Explainability Mechanisms 

1. Generate visualizations or explanations that showcase 

the spatiotemporal and spectral characteristics the 

model relies on for its predictions. 

Step 8: Model Evaluation and Validation 

1. Evaluate the model's performance using metrics like 

accuracy, precision, recall or sensitivity and specificity,  

2. Validate the model's predictions and explanations with 

real-world clinical data and insights from medical 

experts. 

The process of interpretable epileptic seizure detection and 

prediction is described in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Process Outline for Epileptic Seizure Detection and Prediction 

Using Explainable AI 

The process of detecting and predicting epileptic seizures is 

divided into six phases and described in detail as follows. 

A. Data Collection 

    The commonly used datasets for the research on detection 

and prediction of epileptic seizures are as follows: 

1) CHB-MIT Scalp EEG Database: The CHB-MIT 

dataset, accessible via PhysioNet, is a multichannel scalp EEG 

(sEEG) collection obtained from the collaboration between 

Children’s Hospital Boston and the Massachusetts Institute of 

Technology (CHB-MIT) [39]. The dataset encompasses 977 

hours of sEEG recordings utilizing 23 bipolar channels, though 

certain recordings include 24 or 26 channels. These channels 

adhere to the International 10–20 electrode positioning system 

and possess a sampling frequency of 256 Hz. The dataset was 

gathered from 23 pediatric patients, encompassing 5 males aged 

between 3 and 22 years, 17 females aged between 1.5 and 19 

years, and one anonymous patient. Each patient's data 

comprises between 9 and 42 EEG recordings, stored in EDF file 

format, with a duration of 1 hour per recording. However, 

certain recordings extend up to 4 hours. 

2) Bonn EEG Seizure Dataset: The Bonn dataset, curated 

by the University of Bonn [40], comprises five distinct sets of 

EEG recordings. The first two sets (A and B) originate from 

individuals without medical conditions, while the remaining 

three sets (C, D, and E) are derived from patients preparing for 

brain surgery. Sets A and B capture EEG data from healthy 

subjects with their eyes open (set A) and closed (set B), each 

showcasing different states. Sets C and D, on the other hand, 

encompass EEG recordings during the interictal state from 

distinct brain regions: the hippocampal region (set C) and an 

epileptogenic zone (set D). Meanwhile, set E solely contains 

EEG recordings from the ictal state. 

Each set is composed of 100 single-channel EEG recordings, 

each lasting 23.6 seconds. These recordings are stored in a 
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textual file format. Prior to analysis, all segments undergo 

preprocessing via a band-pass filter featuring a frequency range 

of 0.53 Hz to 40 Hz. As mentioned in [40], the initial recording 

setup utilized 128 channels; however, comprehensive 

information regarding patients and channels is notably absent 

from the dataset. 

B. Data Pre-processing  

Preprocessing is a crucial step in data analysis including the 

analysis of EEG data for tasks like epilepsy detection and 

prediction. The goal of preprocessing is to prepare the raw EEG 

data for further analysis by cleaning, enhancing, and 

transforming it. Following are the general methods used for Data 

Pre-processing. 

• Noise Removal: Apply filters to remove noise and 

artifacts from the EEG signal. A common filter is the 

notch filter to eliminate power line interference. 

• Baseline Correction: Adjust the EEG data to have a 

consistent baseline, often by subtracting the mean of 

the signal. 

• Segmentation: Divide the continuous EEG signal into 

shorter segments (epochs) for analysis. This helps to 

focus on specific time periods. 

• Artifact Rejection: Detect and remove segments with 

excessive artifacts, such as muscle activity or electrode 

artifacts, using techniques like thresholding or 

independent component analysis (ICA). 

• Resampling: If needed, resample the data to a 

consistent frequency to ensure uniformity in analysis. 

In the creation of automated systems using Deep Learning 

models and EEG signals, the preprocessing consists of a three-

step process: eliminating noise, normalizing the data, and 

preparing the signal for utilization in Deep Learning network 

applications, as described in [41],[42]. 

C. Feature Extraction 

Feature extraction is the major process. The following are the 

different commonly used methods for EEG characterization. It 

includes the time domain, frequency domain, and time-

frequency domain. The time-domain features describe various 

statistical and mathematical characteristics of the EEG signal 

within a specific time interval. The frequency-domain features 

are extracted from the transformed representation of EEG 

signals in the frequency domain. These features provide insights 

into the frequency content and distribution of energy within 

different frequency bands. In the context of epilepsy detection 

and prediction using EEG data, frequency domain features are 

crucial for capturing specific frequency patterns associated with 

seizures and other brain activities. Time-frequency domain 

features capture the dynamic changes in EEG signals by 

examining their characteristics simultaneously in both the time 

and frequency domains. These features are crucial for capturing 

transient events and frequency patterns that can be indicative of 

seizures or other brain activities. The relevant features of the 

time domain, frequency domain, and time-frequency domain are 

described in TABL I.    

TABLE I.  FEATURE EXTRACTION METHODS 

Type Feature Extraction Methods 
Relevant 

features 
Description 

Time-

Domain  
Mean 

The average value of EEG amplitudes 

within a given time window.  

Variance  
A measure of the dispersion or spread of 

EEG values around the mean.  

Skewness  
Measures the asymmetry of the EEG 

distribution around the mean  

Kurtosis  
Measures the "tailedness" or “peakedness” 

of the EEG distribution.  

Zero Crossing 

Rate 

Counts the number of times the EEG signal 

crosses the zero-amplitude line within the 

time window.  
Hjorth 

Parameters  
• Activity: A measure of signal 

magnitude variability within the time 

interval. 

• Mobility: Quantifies how quickly the 

signal changes in amplitude. 

• Complexity: Reflects the waveform 

complexity, involving both the rate of 

change and the number of zero 

crossings 

 

Mean 

Absolute 

Value (MAV) 

Calculates the average absolute value of 

EEG amplitudes within the time window. It's 

a measure of signal intensity. 

Line Length Measure of signal complexity within a given 

time interval. It quantifies the cumulative 

length of the waveform's path 

Energy Represents the magnitude of signal activity 

within a time window 

Power Represents the average energy per unit of 

time 

Shannon 

Entropy 

Quantifies the uncertainty or disorder in the 

signal distribution. It measures the average 

amount of information needed to describe 

the signal's amplitude distribution. 

Sample 

Entropy 

Measure of signal complexity and 

irregularity. It calculates the likelihood of 

similar patterns occurring within a signal, 

considering different pattern lengths. 

Frequency-

Domain 

Power 

Spectral 

Density 

(PSD) 

Quantifies the distribution of signal power 

across different frequency components. 

Relative 

Power in 

Frequency 

Bands 

Calculate the ratio of power within specific 

frequency bands to the total power. 

Spectral 

Entropy 

Measures the complexity of the distribution 

of power in different frequency bands. 
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Peak 

Frequency 

and Power 

Identify the frequency at which the highest 

power occurs (peak frequency) and the 

corresponding power value. 

Mean 

Frequency 

The weighted average frequency of the 

power spectrum 

Time-

Frequency 

Domain 

Power 

Spectral 

Density 

(PSD) 

Quantifies the distribution of signal power 

across different frequency components 

Relative 

Power in 

Frequency 

Bands 

Calculate the ratio of power within specific 

frequency bands to the total power 

Spectral 

Entropy 

Measures the complexity of the distribution 

of power in different frequency bands. 

Peak 

Frequency 

and Power 

Identify the frequency at which the highest 

power occurs (peak frequency) and the 

corresponding power value 

Mean 

Frequency 

The weighted average frequency of the 

power spectrum. 

 

D. Feature Selection 

     After the feature extraction, selecting the key features is 

crucial for distinguishing EEG signals into epileptic or non-

epileptic seizure states. The feature selection methods for 

epilepsy detection and prediction can be categorized into three 

main categories based on their approach and underlying 

principles. 

1) Filter Methods: Filter methods assess the importance 

of features without any reliance on a specific machine learning 

model. They rely on statistical measures to rank and select 

features based on their characteristics and their relationship 

with the target variable. Some of the methods that fall under this 

category include: 

a) Mutual Information-Based Feature Selection: Mutual 

information measures the amount of information 

shared between a feature and the target variable. 

Features with higher mutual information are likely to 

be more relevant. This approach can be used to rank 

and select the top-k features [43]. 

b) Correlation-Based Feature Selection (CFS): CFS 

assesses the correlation between features and the target 

variable while considering the correlation between 

features themselves [44]. It helps identify features that 

are most predictive of epileptic activity. 

 

2) Wrapper Methods: Wrapper methods select features 

by employing a specific machine learning model as part of the 

evaluation process. They rely on the model's performance (e.g., 

accuracy) as a criterion for feature selection. These methods are 

computationally more intensive as they involve repeatedly 

training and evaluating models with different feature subsets 

[45]. Some of the methods that fall under this category include: 

a) Recursive Feature Elimination (RFE) with Cross-

Validation: RFE is a wrapper method that iteratively 

removes the least important features from the dataset 

while training and evaluating the model's performance 

using cross-validation. This method is suitable for 

selecting features that contribute the most to the 

model's performance [46]. 

b) Genetic Algorithm-Based Feature Selection: Genetic 

algorithms optimize feature subsets by mimicking the 

process of natural selection. This approach can help 

find an optimal combination of features that leads to 

improved model performance [47]. 

c) Sequential Feature Selection (SFS) with Machine 

Learning Models: SFS involves building models 

iteratively by adding one feature at a time based on 

their contribution to the model's performance. 

Machine learning algorithms like Support Vector 

Machines or Random Forests can be used to evaluate 

feature subsets. 

 

3) Embedded Methods: Embedded methods incorporate 

feature selection within the process of training a machine 

learning model. They often utilize regularization techniques to 

penalize less important features and automatically select 

relevant ones [45]. Some of the methods mentioned earlier that 

fall under this category include: 

a) L1 Regularization (Lasso): L1 regularization can be 

applied to linear models for epilepsy detection and 

prediction. It shrinks some coefficients to zero, 

effectively performing feature selection and retaining 

only the most relevant features. 

b) Random Forest Feature Importance: Random Forests 

are well-suited for feature selection due to their ability 

to assess the significance of each feature in the model. 

The feature importance scores provided by the 

Random Forest algorithm can guide in selecting the 

most relevant features [48]. 

E. Classification  

Deep learning methods have displayed encouraging outcomes 

in the identification and forecasting of seizures using EEG data, 

owing to their capacity to autonomously acquire intricate 

patterns and representations from unprocessed data. Following 

are some popular deep-learning classification techniques used 

for these tasks: 

1) Convolutional Neural Networks (CNNs): 

Convolutional Neural Networks (CNNs) are widely embraced 

as a prominent deep learning classifier for the prediction and 

diagnosis of medical conditions [49]. Both 1D-CNN and 2D-

CNN demonstrate the ability to diagnose epileptic seizures. 
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a) 2D CNNs: EEG data can be treated as 2D images, with 

time as one dimension and EEG channels as the other. 2D CNNs 

can learn spatial patterns and relationships between channels. 

The research studies [50], and [51] used 2D CNN for epileptic 

seizure diagnosis. 

b) 1D CNNs: These networks are designed specifically for 

sequential data like EEG signals. They can capture local 

patterns and are computationally efficient. The researchers [52], 

and [53] used 1D CNN for epileptic seizure diagnosis. 

2) Recurrent Neural Networks (RNNs): 

Recurrent Neural Networks (RNNs) are a neural network 

category specifically crafted for handling sequential data. They 

incorporate loops within the network architecture to enable 

information persistence over time, making them suitable for 

tasks such as natural language processing, speech recognition, 

and time series analysis. RNNs have internal memory states that 

allow them to capture dependencies in sequential data, making 

them valuable for modeling temporal relationships. Within 

learning techniques based on Recurrent Neural Networks 

(RNNs), both the Long Short-Term Memory (LSTM) model 

and the Gated Recurrent Unit (GRU) are frequently used 

components. 

a) Long Short-Term Memory (LSTM) Networks: LSTMs 

are well-suited for modeling sequential data with long-range 

dependencies. They can capture temporal patterns in EEG 

signals. 

b) Gated Recurrent Unit (GRU) Networks: Like LSTMs, 

GRUs are used for sequence modeling and can be more 

computationally efficient. 

Numerous literature sources employ RNN and LSTM networks 

for the purpose of seizure detection [54],[55]. 

3) Hybrid Models: 

Combining CNNs and RNNs in a hybrid architecture allows the 

model to capture both spatial and temporal patterns in EEG 

data. For example, a CNN can be used for feature extraction, 

followed by an LSTM for sequence modeling. Some studies 

available in the literature based on hybrid models are [56], and 

[57]. 

4) Transformer-Based Models: 

Transformer models, originally designed for natural language 

processing, have shown promise in handling sequential data. 

EEG data can be treated as a time series, and transformer 

models can capture temporal dependencies and long-range 

interactions. A recent research study using a Transformer-

Based model is [58]. 

5) Attention Mechanisms: 

Incorporating attention mechanisms, such as self-attention, into 

neural networks can allow the model to focus on specific 

segments of the EEG data that are most relevant for seizure 

detection or prediction [59]. 

6) Deep Learning Autoencoders: 

Autoencoders can be used for unsupervised feature learning and 

dimensionality reduction [60]. Variational Autoencoders 

(VAEs) and Denoising Auto encoders (DAEs) have been 

applied to EEG data for feature extraction. 

7) Transfer Learning: 

Pre-trained deep learning models, especially those trained on 

large datasets, can be fine-tuned for seizure detection or 

prediction tasks using transfer learning techniques [61]. 

F. Explainability Mechanism 

Traditional ML and DL models exhibit a higher classification 

accuracy when implemented for disease detection tasks. 

However, these techniques lack explainability. Implementing 

Explainable AI can address this problem and provide better 

performance in terms of accuracy, transparency, explainability, 

and interpretability. Hence, Explainable AI is widely used in 

various medical applications. Explaining the decisions made by 

machine learning models for the detection and prediction of 

epileptic seizures is essential for gaining trust in these systems 

and for facilitating their clinical adoption. Explainability 

methods aim to provide insights into why a model made a 

particular prediction or decision. The following are some 

common explainability methods that can be used for seizure 

detection and prediction. 

1) Feature Importance Analysis: 

For traditional machine learning models, feature importance 

scores can be analyzed to understand which EEG signal features 

contributed the most to the model's decision. Techniques like 

Permutation Feature Importance or Gini Importance can be 

used. 

2) LIME (Local Interpretable Model-Agnostic 

Explanations): 

LIME is a model-agnostic method that creates locally faithful 

explanations by perturbing the input data and observing how the 

model's prediction changes. It fits a simple interpretable model 

(e.g., linear regression) to the perturbed data to explain the 

model's behavior for a specific instance. 

3) SHAP (SHapley Additive exPlanations): 

SHAP values provide a unified measure of feature importance 

by considering the contributions of each feature to every 

possible prediction. They can be used to explain predictions at 

both the global and local levels. Research studies available in 

the literature for epileptic seizure diagnosis are [35][37] 

4) Grad-CAM (Gradient-weighted Class Activation 

Mapping): 

Grad-CAM is commonly used for image-based models but can 

be adapted to CNN-based EEG models. It highlights regions of 

the input (EEG signals) that are most relevant to the model's 

decision, providing a visual explanation [37]. 

5) Attention Mechanisms: 
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If the model uses attention mechanisms, the attention weights 

can be visualized to understand which parts of the EEG signals 

the model focuses on when making a prediction. 

6) Partial Dependence Plots (PDPs) and Individual 

Conditional Expectation (ICE) Plots: 

PDPs show how a feature's value affects the model's prediction 

while keeping other features constant. ICE plots provide similar 

insights but for individual instances. These plots are useful for 

understanding feature interactions. 

7) Rule-Based Explanations: 

Generate interpretable rules or decision trees that mimic the 

behavior of the complex model for specific instances. These 

rules can be easily understood by clinicians. 

IV. PERFORMANCE METRICS 

In the confusion matrix for the task of epilepsy detection and 

prediction, the True Positive (TP) denotes the number of 

correctly detected seizure samples as the positive samples, True 

Negative (TN) refers the number of correctly rejected samples 

in the seizure class, False Positive (FP) denotes the number of 

false alarms, and False Negative (FN) refers the number of 

missed samples in the seizure category. 

To evaluate the performance of epilepsy detection and 

prediction, the widely used popular metrics are discussed as 

follows.     

1) Accuracy: Accuracy is a straightforward metric that 

measures the proportion of correctly classified instances 

(seizures and non-seizures) out of the total number of instances 

in the dataset. 

It provides a general overview of the model's performance but 

can be misleading when the dataset is imbalanced. 

 

Accuracy =  
TP +  TN

TP + TN +  FP + FN
 

 

2) Precision: Precision measures the proportion of 

correctly predicted positives out of all instances predicted as 

positive by the model. It quantifies the model's ability to 

minimize false alarms or false positives, which is vital in 

scenarios where misclassifying non-seizure events such as 

seizures can lead to unnecessary interventions, anxiety for 

patients, or resource wastage.  

Precision =  
TP

TP + FP
 

 

3) Recall or Sensitivity: Sensitivity measures the ability 

of the model to correctly detect positive patterns when they 

occur. It indicates the proportion of true positives out of all 

actual seizures. 

 

Recall or Sensitivity =    
TP

TP + FN
 

 

4) Specificity: Specificity measures the ability of the 

model to correctly identify negative events. It indicates the 

proportion of true negatives out of all actual negative patterns 

from the dataset. 

 

Specificity =
TN

TN + FP
 

 

V. PERFORMANCE ANALYSIS 

This section presents the performance analysis of various 

deep-learning techniques and Explainable AI techniques used 

for Epileptic Seizure detection and prediction. TABLE II 

presents the performance analysis of deep-learning techniques 

for Epileptic Seizure detection and prediction.  

TABLE II.  PERFORMANCE ANALYSIS OF DEEP-LEARNING TECHNIQUES 

FOR DETECTION AND PREDICTION OF EPILEPTIC SEIZURES 

Publi

catio

n 

Research 

Problem 

and 

Applicatio

n 

Proposed 

Approach 

Dataset Performance 

Accura

cy % 

Sensitiv

ity % 

Specific

ity % 

2015

[21] 

Identifyin

g 

epileptic 

patient 

FFANN 

and DWT 

Bonn 

EEG 

Seizure 

Dataset 

93.23 

 

93.87 90.07 

2016

[30] 

Epileptic 

Seizure 

Detection 

Deep 

RNN 

CHB-

MIT 

Scalp 

EEG 

Databa

se 

Not 

Mentio

ned 

100 (False 

Detecti

on 

0.08) 

92 

2017

[22] 

Epileptic 

Seizure 

Detection 

Deep-

CNN 

Bonn 

EEG 

Seizure 

Dataset 

88.67 95 90 

2018

[23] 

Epileptic 

Seizure 

Detection 

Convolut

ional 

Neural 

Network 

(CNN) 

CHB-

MIT 

Scalp 

EEG 

Databa

se, 

Freibur

g 

95.6 94.2 96.9 

2019

[24] 

Epileptic 

Seizure 

Detection 

CNN-

BiRNN 

CHB-

MIT 

Scalp 

EEG 

Databa

se 

Not 

Mentio

ned 

93 94 

2019

[31] 

Early 

Predictio

n of 

Epileptic 

Seizure 

Bidirecti

onal 

Long 

Short-

Term 

Memory 

(Bi-

LSTM) 

and Deep 

CHB-

MIT 

Scalp 

EEG 

Databa

se 

99.6 99.72 99.60 
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Publi

catio

n 

Research 

Problem 

and 

Applicatio

n 

Proposed 

Approach 

Dataset Performance 

Accura

cy % 

Sensitiv

ity % 

Specific

ity % 

Convolut

ional 

Autoenco

der 

(DCAE) 

2020 

[25] 

A novel 

approach 

for 

Seizure 

detection 

1D CNN 

and 

Spectrogr

am 

CHB-

MIT 

Scalp 

EEG 

Databa

se 

77.57 79.54 75.59 

2020 

[26] 

Onset and 

offset 

detection 

of 

Epileptic 

Seizure 

CNN CHB-

MIT 

Scalp 

EEG 

Databa

se 

Over 

90% 

Not 

Mentio

ned 

Not 

Mentio

ned 

2021 

[27] 

Predictio

n of 

Epileptic 

Seizure 

Channel 

attention 

dual-

input 

convoluti

onal 

neural 

network 

(CADCN

N) 

CHB-

MIT 

Scalp 

EEG 

Databa

se 

Not 

Mentio

ned 

97.1 95.6 

2022

[28] 

EEG 

Seizure 

detection  

CNN CHB-

MIT 

Scalp 

EEG 

Databa

se, 

TUSZ, 

Bonn 

96.17 56.83 96.97 

2023 

[62] 

Predictio

n of 

Epileptic 

Seizure 

3D-2D 

Hybrid 

CNN 

CHB-

MIT 

Scalp 

EEG 

Databa

se 

98.43 98.58 98.86 

 

Figure 2,3 and 4 show the performance analysis of different 

Deep Learning techniques for epileptic seizure detection and 

prediction in terms of Accuracy, Sensitivity and Specificity 

respectively. 

 
Figure 2.  Performance Analysis of Deep Learning Techniques for Epileptic 

Seizure Detection and Prediction in terms of Accuracy 

 

 
Figure 3.  Performance Analysis of Deep Learning Techniques for Epileptic 

Seizure Detection and Prediction in terms of Sensitivity 

 
Figure 4.  Performance Analysis of Deep Learning Techniques for Epileptic 

Seizure Detection and Prediction in terms of Specificity 
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From the analysis of different deep-learning techniques 

considered in the study, it was observed that H. Daoud et al. [31] 

used a Bi-LSTM approach and achieved an accuracy of 99.60%. 

The highest Sensitivity score of 100% is achieved by L. 

Vidyaratne et al. [30] using the Deep-RNN approach. The 

highest Specificity of 98.86% is achieved by Qi N. et al. [62] 

using 3D-2D Hybrid CNN. 

 

TABLE III presents the performance analysis of different deep-

learning approaches that incorporated Explainable AI techniques 

for Epileptic Seizure detection and prediction.  

TABLE III.   PERFORMANCEERFORMANCE ANALYSIS OF DEEP-LEARNING 

APPROACHES THAT INCORPORATED EXPLAINABLE AI TECHNIQUES FOR 

EPILEPTIC SEIZURE DETECTION AND PREDICTION 

Publica

tion 
Research 

Problem 

and 

Applicatio

n 

Proposed 

Approach 

Dataset Performa

nce 

Explainab

le AI 

Techniqu

e Used 

2019 

[13] 
Detection 

of 

Epileptic 

Seizure 

convoluti

onal 

neural 

networks 

(CNN) 

EEG 

epilepsy 

dataset 

collected at 

the Boston 

Children's 

Hospital. 

Overall 

Accuracy 

of 

99.65% 

Visualiza

tion 

Explaina

bility, 

feature 

relevance 

at 

different 

frequenc

y bands  

2020 

[32] 

Interpreta

ble EEG 

seizure 

detection 

convoluti

onal 

neural 

network 

(CNN), 

(BiLstm) 

MIT-BIH 

data subset 

Accuracy 

of 

97.03%, 

Sensitivit

y of 

97.65%, 

Specificit

y of 

96.58%, 

precision 

of 

95.40%

  

Posthoc, 

input-

based 

explainab

ility 

driver 

2021 

[33] 

Predictin

g 

Epilepsy 

Comorbi

dities  

 

Deep 

personali

zed 

LOngitud

inal 

convoluti

onal RIsk 

Model 

(DeepLO

RI) 

independen

t data from 

around 

97,000 

patients 

71% for 

overweig

ht, 

obesity to 

77% for 

stroke 

and 

ischemic 

attacks

  

SHAP 

and 

DeepLO

RI-based 

Explaina

ble 

model, 

reliable 

predictio

n  

 2022 

[35] 

Epileptic 

seizure 

detection 

Different 

ML 

algorithm

s 

Bonn EEG 

Seizure 

Dataset 

- SHAP 

2022 

[37] 

Detection 

of drug 

Convolut

ional 

neural 

public 

benchmark 

multicentre 

Accuracy 

of 

93.85%, 

Interpreta

tion of 

model 

resistance 

epilepsy 

networks 

(CNN) 

SEEG 

dataset and 

a private 

clinical 

SEEG 

dataset 

TPR of 

87.61%, 

FPR of 

6.24%, 

TNR of 

95.09%

  

learning 

process 

using 

Grad-

CAM++ 

2023 

[38] 

Detection 

of 

Epileptic 

Seizure 

Hybrid 

Deep 

Learning  

A total of 

79 neonates 

were 

admitted to 

the 

Neonatal 

Intensive 

Care Unit 

(NICU) at 

Helsinki 

University 

Hospital 

between 

2010 and 

2014  

Accuracy 

of 

98.89%

  

 

Two 

SHAP 

explainer

s 

VI. RESEARCH GAPS AND FINDINGS 

• The lack of investigation of the state transitions among 

various epileptic EEG states misleads the accurate 

diagnosis of the epileptic seizure due to the collaborative 

pattern changes. 

• Discriminating only binary epilepsy classes is inadequate 

among the variation of epilepsy behaviors in the multiple 

epilepsy states for the accurate localization of the epileptic 

seizure.  

• Early detection and prediction of epileptic seizures from the 

generalized time-series EEG signal analysis are 

challenging. 

• Automated epilepsy diagnosis model often encounters 

reliability constraints due to the lack of non-interactive 

human feedback during the model training.  

• The lack of explanation regarding the deep EEG patterns to 

patients and doctors enforces the delayed diagnosis and 

risk-level analysis. 

• Modeling the explanation using a single modality provides 

inadequate knowledge to understand epilepsy behaviors for 

an early and accurate diagnosis. 

VII. CONCLUSION 

This research paper explored into the comprehensive analysis of 

the performance of deep-learning and Explainable AI techniques 

in the acute domain of detecting and predicting epileptic 

seizures. The paper reviews the recent Deep-Learning and 

Explainable AI techniques and suggests that Deep Recurrent 

Neural Networks (Deep-RNN) and Hybrid models exhibit 

superior performance for epileptic seizure detection and 

prediction. Explainable AI techniques such as SHAP and Grad-

CAM are widely used and integrated with Deep-Learning 
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methods. Our findings underscore the immense potential of deep 

learning as a powerful tool for improving the accuracy of seizure 

detection and prediction systems. Furthermore, the integration of 

Explainable AI methodologies adds an extra layer of 

transparency, addressing the crucial need for clinical 

understanding and decision support. It is important to 

acknowledge that the field is continually evolving, and several 

research avenues remain unexplored. Further investigations are 

warranted to enhance model robustness, optimize real-time 

performance, and address ethical and privacy concerns.  
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