6,022 research outputs found

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Improvement of the branch and bound algorithm for solving the knapsack linear integer problem

    Get PDF
    The paper presents a new reformulation approach to reduce the complexity of a branch and bound algorithm for solving the knapsack linear integer problem. The branch and bound algorithm in general relies on the usual strategy of first relaxing the integer problem into a linear programing (LP) model. If the linear programming optimal solution is integer then, the optimal solution to the integer problem is available. If the linear programming optimal solution is not integer, then a variable with a fractional value is selected to create two sub-problems such that part of the feasible region is discarded without eliminating any of the feasible integer solutions. The process is repeated on all variables with fractional values until an integer solution is found. In this approach variable sum and additional constraints are generated and added to the original problem before solving. In order to do this the objective bound of knapsack problem is quickly determined. The bound is then used to generate a set of variable sum limits and four additional constraints. From the variable sum limits, initial sub-problems are constructed and solved. The optimal solution is then obtained as the best solution from all the sub-problems in terms of the objective value. The proposed procedure results in sub-problems that have reduced complexity and easier to solve than the original problem in terms of numbers of branch and bound iterations or sub-problems.The knapsack problem is a special form of the general linear integer problem. There are so many types of knapsack problems. These include the zero-one, multiple, multiple-choice, bounded, unbounded, quadratic, multi-objective, multi-dimensional, collapsing zero-one and set union knapsack problems. The zero-one knapsack problem is one in which the variables assume 0 s and 1 s only. The reason is that an item can be chosen or not chosen. In other words there is no way it is possible to have fractional amounts or items. This is the easiest class of the knapsack problems and is the only one that can be solved in polynomial by interior point algorithms and in pseudo-polynomial time by dynamic programming approaches. The multiple-choice knapsack problem is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The zero-one choice of taking an item is replaced by the selection of exactly one item out of each class of item

    Recent Advances in Multi-dimensional Packing Problems

    Get PDF

    Vector Bin Packing with Multiple-Choice

    Full text link
    We consider a variant of bin packing called multiple-choice vector bin packing. In this problem we are given a set of items, where each item can be selected in one of several DD-dimensional incarnations. We are also given TT bin types, each with its own cost and DD-dimensional size. Our goal is to pack the items in a set of bins of minimum overall cost. The problem is motivated by scheduling in networks with guaranteed quality of service (QoS), but due to its general formulation it has many other applications as well. We present an approximation algorithm that is guaranteed to produce a solution whose cost is about lnD\ln D times the optimum. For the running time to be polynomial we require D=O(1)D=O(1) and T=O(logn)T=O(\log n). This extends previous results for vector bin packing, in which each item has a single incarnation and there is only one bin type. To obtain our result we also present a PTAS for the multiple-choice version of multidimensional knapsack, where we are given only one bin and the goal is to pack a maximum weight set of (incarnations of) items in that bin

    Automating the packing heuristic design process with genetic programming

    Get PDF
    The literature shows that one-, two-, and three-dimensional bin packing and knapsack packing are difficult problems in operational research. Many techniques, including exact, heuristic, and metaheuristic approaches, have been investigated to solve these problems and it is often not clear which method to use when presented with a new instance. This paper presents an approach which is motivated by the goal of building computer systems which can design heuristic methods. The overall aim is to explore the possibilities for automating the heuristic design process. We present a genetic programming system to automatically generate a good quality heuristic for each instance. It is not necessary to change the methodology depending on the problem type (one-, two-, or three-dimensional knapsack and bin packing problems), and it therefore has a level of generality unmatched by other systems in the literature. We carry out an extensive suite of experiments and compare with the best human designed heuristics in the literature. Note that our heuristic design methodology uses the same parameters for all the experiments. The contribution of this paper is to present a more general packing methodology than those currently available, and to show that, by using this methodology, it is possible for a computer system to design heuristics which are competitive with the human designed heuristics from the literature. This represents the first packing algorithm in the literature able to claim human competitive results in such a wide variety of packing domains
    corecore