101 research outputs found

    A Galois Connection for Weighted (Relational) Clones of Infinite Size

    Full text link
    A Galois connection between clones and relational clones on a fixed finite domain is one of the cornerstones of the so-called algebraic approach to the computational complexity of non-uniform Constraint Satisfaction Problems (CSPs). Cohen et al. established a Galois connection between finitely-generated weighted clones and finitely-generated weighted relational clones [SICOMP'13], and asked whether this connection holds in general. We answer this question in the affirmative for weighted (relational) clones with real weights and show that the complexity of the corresponding valued CSPs is preserved

    An Algebraic Theory of Complexity for Discrete Optimization

    Get PDF
    International audienceDiscrete optimization problems arise in many different areas and are studied under many different names. In many such problems the quantity to be optimized can be expressed as a sum of functions of a restricted form. Here we present a unifying theory of complexity for problems of this kind. We show that the complexity of a finite-domain discrete optimization problem is determined by certain algebraic properties of the objective function, which we call weighted polymorphisms. We define a Galois connection between sets of rational-valued functions and sets of weighted polymorphisms and show how the closed sets of this Galois connection can be characterized. These results provide a new approach to studying the complexity of discrete optimization. We use this approach to identify certain maximal tractable subproblems of the general problem and hence derive a complete classification of complexity for the Boolean case

    Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

    Full text link
    Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(⋅\cdot) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation RR such that SAT(RR) can be solved at least as fast as any other NP-hard SAT(⋅\cdot) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MaxOnes(Γ\Gamma)) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(Δ\Delta)). With the help of these languages we relate MaxOnes and VCSP to the exponential time hypothesis in several different ways.Comment: This is an extended version of Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis, appearing in Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science MFCS 2014 Budapest, August 25-29, 201

    Algebraic Properties of Valued Constraint Satisfaction Problem

    Full text link
    The paper presents an algebraic framework for optimization problems expressible as Valued Constraint Satisfaction Problems. Our results generalize the algebraic framework for the decision version (CSPs) provided by Bulatov et al. [SICOMP 2005]. We introduce the notions of weighted algebras and varieties and use the Galois connection due to Cohen et al. [SICOMP 2013] to link VCSP languages to weighted algebras. We show that the difficulty of VCSP depends only on the weighted variety generated by the associated weighted algebra. Paralleling the results for CSPs we exhibit a reduction to cores and rigid cores which allows us to focus on idempotent weighted varieties. Further, we propose an analogue of the Algebraic CSP Dichotomy Conjecture; prove the hardness direction and verify that it agrees with known results for VCSPs on two-element sets [Cohen et al. 2006], finite-valued VCSPs [Thapper and Zivny 2013] and conservative VCSPs [Kolmogorov and Zivny 2013].Comment: arXiv admin note: text overlap with arXiv:1207.6692 by other author

    An algebraic theory of complexity for valued constraints: Establishing a Galois connection

    Get PDF
    Abstract. The complexity of any optimisation problem depends critically on the form of the objective function. Valued constraint satisfaction problems are discrete optimisation problems where the function to be minimised is given as a sum of cost functions defined on specified subsets of variables. These cost functions are chosen from some fixed set of available cost functions, known as a valued constraint language. We show in this paper that when the costs are non-negative rational numbers or infinite, then the complexity of a valued constraint problem is determined by certain algebraic properties of this valued constraint language, which we call weighted polymorphisms. We define a Galois connection between valued constraint languages and sets of weighted polymorphisms and show how the closed sets of this Galois connection can be characterised. These results provide a new approach in the search for tractable valued constraint languages

    Necessary conditions for tractability of valued CSPs

    Full text link
    The connection between constraint languages and clone theory has been a fruitful line of research on the complexity of constraint satisfaction problems. In a recent result, Cohen et al. [SICOMP'13] have characterised a Galois connection between valued constraint languages and so-called weighted clones. In this paper, we study the structure of weighted clones. We extend the results of Creed and Zivny from [CP'11/SICOMP'13] on types of weightings necessarily contained in every nontrivial weighted clone. This result has immediate computational complexity consequences as it provides necessary conditions for tractability of weighted clones and thus valued constraint languages. We demonstrate that some of the necessary conditions are also sufficient for tractability, while others are provably not.Comment: To appear in SIAM Journal on Discrete Mathematics (SIDMA

    Reconstruction of functions from minors

    Get PDF
    The central notion of this thesis is the minor relation on functions of several arguments. A function f: A^n→B is called a minor of another function g: A^m→B if f can be obtained from g by permutation of arguments, identification of arguments, and introduction of inessential arguments. We first provide some general background and context to this work by presenting a brief survey of basic facts and results concerning different aspects of the minor relation, placing some emphasis on the author’s contributions to the field. The notions of functions of several arguments and minors give immediately rise to the following reconstruction problem: Is a function f: A^n→B uniquely determined, up to permutation of arguments, by its identification minors, i.e., the minors obtained by identifying a pair of arguments? We review known results – both positive and negative – about the reconstructibility of functions from identification minors, and we outline the main ideas of the proofs, which often amount to formulating and solving reconstruction problems for other kinds of mathematical objects. We then turn our attention to functions determined by the order of first occurrence, and we are interested in the reconstructibility of such functions. One of the main results of this thesis states that the class of functions determined by the order of first occurrence is weakly reconstructible. Some reconstructible subclasses are identified; in particular, pseudo-Boolean functions determined by the order of first occurrence are reconstructible. As our main tool, we introduce the notion of minor of permutation. This is a quotient-like construction for permutations that parallels minors of functions and has some similarities to permutation patterns. We develop the theory of minors of permutations, focusing on Galois connections induced by the minor relation and on the interplay between permutation groups and minors of permutations. Our results will then find applications in the analysis of the reconstruction problem of functions determined by the order of first occurrence

    Tractability in Constraint Satisfaction Problems: A Survey

    Get PDF
    International audienceEven though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic
    • …
    corecore