21 research outputs found

    Analysis and Design of Silicon based Integrated Circuits for Radio Frequency Identification and Ranging Systems at 24GHz and 60GHz Frequency Bands

    Get PDF
    This scientific research work presents the analysis and design of radio frequency (RF) integrated circuits (ICs) designed for two cooperative RF identification (RFID) proof of concept systems. The first system concept is based on localizable and sensor-enabled superregenerative transponders (SRTs) interrogated using a 24GHz linear frequency modulated continuous wave (LFMCW) secondary radar. The second system concept focuses on low power components for a 60GHz continuous wave (CW) integrated single antenna frontend for interrogating close range passive backscatter transponders (PBTs). In the 24GHz localizable SRT based system, a LFMCW interrogating radar sends a RF chirp signal to interrogate SRTs based on custom superregenerative amplifier (SRA) ICs. The SRTs receive the chirp and transmit it back with phase coherent amplification. The distance to the SRTs are then estimated using the round trip time of flight method. Joint data transfer from the SRT to the interrogator is enabled by a novel SRA quench frequency shift keying (SQ-FSK) based low data rate simplex communication. The SRTs are also designed to be roll invariant using bandwidth enhanced microstrip patch antennas. Theoretical analysis is done to derive expressions as a function of system parameters including the minimum SRA gain required for attaining a defined range and equations for the maximum number of symbols that can be transmitted in data transfer mode. Analysis of the dependency of quench pulse characteristics during data transfer shows that the duty cycle has to be varied while keeping the on-time constant to reduce ranging errors. Also the worsening of ranging precision at longer distances is predicted based on the non-idealities resulting from LFMCWchirp quantization due to SRT characteristics and is corroborated by system level measurements. In order to prove the system concept and study the semiconductor technology dependent factors, variants of 24GHz SRA ICs are designed in a 130nm silicon germanium (SiGe) bipolar complementary metal oxide technology (BiCMOS) and a partially depleted silicon on insulator (SOI) technology. Among the SRA ICs designed, the SiGe-BiCMOS ICs feature a novel quench pulse shaping concept to simultaneously improve the output power and minimum detectable input power. A direct antenna drive SRA IC based on a novel stacked transistor cross-coupled oscillator topology employing this concept exhibit one of the best reported combinations of minimum detected input power level of −100 dBm and output power level of 5.6 dBm, post wirebonding. The SiGe stacked transistor with base feedback capacitance topology employed in this design is analyzed to derive parameters including the SRA loop gain for design optimization. Other theoretical contributions include the analysis of the novel integrated quench pulse shaping circuit and formulas derived for output voltage swing taking bondwire losses into account. Another SiGe design variant is the buffered antenna drive SRA IC having a measured minimum detected input power level better than −80 dBm, and an output power level greater than 3.2 dBm after wirebonding. The two inputs and outputs of this IC also enables the design of roll invariant SRTs. Laboratory based ranging experiments done to test the concepts and theoretical considerations show a maximum measured distance of 77m while transferring data at the rate of 0.5 symbols per second using SQ-FSK. For distances less than 10m, the characterized accuracy is better than 11 cm and the precision is better than 2.4 cm. The combination of the maximum range, precision and accuracy are one of the best reported among similar works in literature to the author’s knowledge. In the 60GHz close range CW interrogator based system, the RF frontend transmits a continuous wave signal through the transmit path of a quasi circulator (QC) interfaced to an antenna to interrogate a PBT. The backscatter is received using the same antenna interfaced to the QC. The received signal is then amplified and downconverted for further processing. To prove this concept, two optimized QC ICs and a downconversion mixer IC are designed in a 22nm fully depleted SOI technology. The first QC is the transmission lines based QC which consumes a power of 5.4mW, operates at a frequency range from 56GHz to 64GHz and occupies an area of 0.49mm2. The transmit path loss is 5.7 dB, receive path gain is 2 dB and the tunable transmit path to receive path isolation is between 20 dB and 32 dB. The second QC is based on lumped elements, and operates in a relatively narrow bandwidth from 59.6GHz to 61.5GHz, has a gain of 8.5 dB and provides a tunable isolation better than 20 dB between the transmit and receive paths. This QC design also occupies a small area of 0.34mm² while consuming 13.2mW power. The downconversion is realized using a novel folded switching stage down conversion mixer (FSSDM) topology optimized to achieve one of the best reported combination of maximum voltage conversion gain of 21.5 dB, a factor of 2.5 higher than reported state-of-the-art results, and low power consumption of 5.25mW. The design also employs a unique back-gate tunable intermediate frequency output stage using which a gain tuning range of 5.5 dB is attained. Theoretical analysis of the FSSDM topology is performed and equations for the RF input stage transconductance, bandwidth, voltage conversion gain and gain tuning are derived. A feasibility study for the components of the 60GHz integrated single antenna interrogator frontend is also performed using PBTs to prove the system design concept.:1 Introduction 1 1.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope and Functional Specifications . . . . . . . . . . . . . . . . . 4 1.3 Objectives and Structure . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Features and Fundamentals of RFIDs and Superregenerative Amplifiers 9 2.1 RFID Transponder Technology . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Chipless RFID Transponders . . . . . . . . . . . . . . . . . 10 2.1.2 Semiconductor based RFID Transponders . . . . . . . . . . 11 2.1.2.1 Passive Transponders . . . . . . . . . . . . . . . . 11 2.1.2.2 Active Transponders . . . . . . . . . . . . . . . . . 13 2.2 RFID Interrogator Architectures . . . . . . . . . . . . . . . . . . . 18 2.2.1 Interferometer based Interrogator . . . . . . . . . . . . . . . 19 2.2.2 Ultra-wideband Interrogator . . . . . . . . . . . . . . . . . . 20 2.2.3 Continuous Wave Interrogators . . . . . . . . . . . . . . . . 21 2.3 Coupling Dependent Range and Operating Frequencies . . . . . . . 25 2.4 RFID Ranging Techniques . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.0.1 Received Signal Strength based Ranging . . . . . 28 2.4.0.2 Phase based Ranging . . . . . . . . . . . . . . . . 30 2.4.0.3 Time based Ranging . . . . . . . . . . . . . . . . . 30 2.5 Architecture Selection for Proof of Concept Systems . . . . . . . . 32 2.6 Superregenerative Amplifier (SRA) . . . . . . . . . . . . . . . . . . 35 2.6.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . 42 2.6.3 Frequency Domain Characteristics . . . . . . . . . . . . . . 45 2.7 Semiconductor Technologies for RFIC Design . . . . . . . . . . . . 48 2.7.1 Silicon Germanium BiCMOS . . . . . . . . . . . . . . . . . 48 2.7.2 Silicon-on-Insulator . . . . . . . . . . . . . . . . . . . . . . . 48 3 24GHz Superregenerative Transponder based Identification and Rang- ing System 51 3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 SRT Identification and Ranging . . . . . . . . . . . . . . . . 51 3.1.2 Power Link Analysis . . . . . . . . . . . . . . . . . . . . . . 55 3.1.3 Non-idealities . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.4 SRA Quench Frequency Shift Keying for data transfer . . . 61 3.1.5 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 Low Power Direct Antenna Drive CMOS SRA IC . . . . . . 66 3.2.1.1 Circuit analysis and design . . . . . . . . . . . . . 66 3.2.1.2 Characterization . . . . . . . . . . . . . . . . . . . 69 3.2.2 Direct Antenna Drive SiGe SRA ICs . . . . . . . . . . . . . 71 3.2.2.1 Stacked Transistor Cross-coupled Quenchable Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.2.1.1 Resonator . . . . . . . . . . . . . . . . . . 72 3.2.2.1.2 Output Network . . . . . . . . . . . . . . 75 3.2.2.1.3 Stacked Transistor Cross-coupled Pair and Loop Gain . . . . . . . . . . . . . . . . . 77 3.2.2.2 Quench Waveform Design . . . . . . . . . . . . . . 85 3.2.2.3 Characterization . . . . . . . . . . . . . . . . . . . 89 3.2.3 Antenna Diversity SiGe SRA IC with Integrated Quench Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2.3.1 Circuit Analysis and Design . . . . . . . . . . . . 91 3.2.3.1.1 Crosscoupled Pair and Sampling Current 94 3.2.3.1.2 Common Base Input Stage . . . . . . . . 95 3.2.3.1.3 Cascode Output Stage . . . . . . . . . . . 96 3.2.3.1.4 Quench Pulse Shaping Circuit . . . . . . 96 3.2.3.1.5 Power Gain . . . . . . . . . . . . . . . . . 99 3.2.3.2 Characterization . . . . . . . . . . . . . . . . . . . 102 3.2.4 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 103 3.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 106 3.3.1 Superregenerative Transponders . . . . . . . . . . . . . . . 106 3.3.1.1 Bandwidth Enhanced Microstrip Patch Antennas 108 3.3.2 FMCW Radar Interrogator . . . . . . . . . . . . . . . . . . 114 3.3.3 Chirp Z-transform Based Data Analysis . . . . . . . . . . . 116 4 60GHz Single Antenna RFID Interrogator based Identification System 121 4.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1 Quasi-circulator ICs . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1.1 Transmission Lines based Quasi-Circulator IC . . 126 4.2.1.2 Lumped Elements WPD based Quasi-Circulator . 130 4.2.1.3 Characterization . . . . . . . . . . . . . . . . . . . 134 4.2.1.4 Knowledge Gained . . . . . . . . . . . . . . . . . . 135 4.2.2 Folded Switching Stage Downconversion Mixer IC . . . . . 138 4.2.2.1 FSSDM Circuit Design . . . . . . . . . . . . . . . 138 4.2.2.2 Cascode Transconductance Stage . . . . . . . . . . 138 4.2.2.3 Folded Switching Stage with LC DC Feed . . . . . 142 4.2.2.4 LO Balun . . . . . . . . . . . . . . . . . . . . . . . 145 4.2.2.5 Backgate Tunable IF Stage and Offset Correction 146 4.2.2.6 Voltage Conversion Gain . . . . . . . . . . . . . . 147 4.2.2.7 Characterization . . . . . . . . . . . . . . . . . . . 150 4.2.2.8 Knowledge Gained . . . . . . . . . . . . . . . . . . 151 4.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 154 5 Experimental Tests 157 5.1 24GHz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.1.1 Ranging Experiments . . . . . . . . . . . . . . . . . . . . . 157 5.1.2 Roll Invariance Experiments . . . . . . . . . . . . . . . . . . 158 5.1.3 Joint Ranging and Data Transfer Experiments . . . . . . . 158 5.2 60GHz System Detection Experiments . . . . . . . . . . . . . . . . 165 6 Summary and Future Work 167 Appendices 171 A Derivation of Parameters for CB Amplifier with Base Feedback Capac- itance 173 B Definitions 177 C 24GHz Experiment Setups 179 D 60 GHz Experiment Setups 183 References 185 List of Original Publications 203 List of Abbreviations 207 List of Symbols 213 List of Figures 215 List of Tables 223 Curriculum Vitae 22

    RF TRANSCEIVER DESIGN FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Aplicaciones avanzadas del principio superregenerativo a comunicaciones por radiofrecuencia

    Get PDF
    There exists today an increasing demand for wireless devices which require low cost and minimum power consumption radiofrequency front-ends. Precisely, these are two remarkable characteristics of the superregenerative receiver (SR). In this thesis, we present some novel applications of the SR receiver which make use of both simple methods and simple implementations that fit perfectly with its main features. The superregenerative reception principle was presented for the first time in 1922, and it was initially used with analog amplitude modulations, such as voice communications. The same principle was spread to digital amplitude modulations in applications where data transmission was required. Moreover, it has also been used in frequency modulation reception through an FM-to-AM conversion mechanism, but due to the inherent characteristics of the receiver, it is only suitable with wide band modulations.In the latest few years, some SR receiver proposals for phase modulation detection have emerged. It has been demonstrated that, with this type of modulation, the resulting architecture might be even simpler than the traditional ones devoted to detect amplitude modulations. This thesis advances in this line and its main goal is to discover new possibilities of the SR receiver in angular modulation detection, which have been little exploited so far. With this aim, a variety of prototypes were designed and implemented for PSK modulations on the one hand and, on the other hand, for narrow band FSK modulations. More specificifically, the thesis describes a SR QPSK transceiver and a SR M-PSK transceiver. These transceivers make use of a digital phase detection technique that is very simple. In order to confirm the viability of the proposed idea, some implementations in the HF band operating at a symbol rate of 10 kHz were developed. Regarding frequency modulations, we present a SR receiver detection method suitable for the narrowband case. This method is based on the observation of the instantaneous phase once per symbol, so that we are able to detect the received frequency through the value of the detected phase. For this case two implementations are presented: a SR receiver for Sunde's FSK modulation, and a SR receiver for MSK modulation. By using the designed SR receiver for the MSK modulations as a starting point, a SR MSK transceiver compatible with the IEEE 802.15.4 standard is implemented. This standard defines the physical layer and the medium access control (MAC) layer used for low speed wireless personal area network, a field in which the SR receiver fits perfectly. Finally, we describe a synchronization method for SR MSK receivers at the symbol, chip and frame levels. This method is presented in a general way and it is able to sinchronize through any preamble satisfying some specific requirements. In particular, we describe an implementation that aims to synchronize IEEE 802.15.4 standard frames. Simplicity has been prioritized in all the presented designs and implementations in order to potentiate the characteristic low cost and low power consumption features of the SR receiver. Likewise, we prove that this kind of receiver is especially efficient in the detection of phase and narrowband frequency modulations.Actualmente existe una demanda creciente de dispositivos inalámbricos que requieren el uso de front-ends de radiofrecuencia de bajo coste y consumo de potencia reducido, requisitos en los que el receptor superregenerativo (SR) destaca de forma especial. En esta tesis, se presentan distintas aplicaciones novedosas del receptor SR con métodos e implementaciones simples en consonancia con sus principales prestaciones. El principio de recepción superregenerativo fue presentado en el año 1922, siendo utilizado en sus inicios para modulaciones analógicas de amplitud como, por ejemplo, comunicaciones de voz. El mismo principio fue extendido posteriormente a modulaciones de amplitud digitales en aplicaciones que requerían la transmisión de datos. Por otro lado, también se ha utilizado en la recepción de modulaciones de frecuencia, mediante un mecanismo de conversión de modulación de frecuencia a modulación de amplitud. Sin embargo, debido a las características intrínsecas del receptor, este solo resulta adecuado para modulaciones de banda ancha. En los últimos años, han surgido algunas propuestas de receptor SR para modulaciones de fase. Se ha demostrado que, con este tipo de modulaciones, la arquitectura resultante puede ser incluso más simple que las tradicionales para la detección de modulaciones de amplitud. Esta tesis avanza precisamente en esta línea y tiene como objetivo descubrir nuevas posibilidades de utilización del receptor SR en la detección de modulaciones angulares, poco explotadas hasta el momento en combinación con este tipo de receptor. Con este objetivo, se diseñan e implementan diversos prototipos para modulaciones de fase PSK, por un lado, y para modulaciones de frecuencia FSK de banda estrecha, por otro. Más concretamente, se describe un transceptor SR QPSK y un transceptor SR M-PSK. Estos transceptores se basan en una técnica de detección de fase digital de gran simplicidad. Se han realizado implementaciones en la banda de HF operando a una frecuencia de símbolo de 10 kHz, con el fin de demostrar la viabilidad del concepto propuesto. Con respecto a las modulaciones de frecuencia, se presenta un método de detección con receptor SR para el caso de banda estrecha. Este método se basa en observar la fase instantánea una vez por símbolo, consiguiendo detectar la frecuencia recibida a través del valor de la fase detectada. En este caso, se presentan dos implementaciones: un receptor SR para la modulación FSK de Sunde y un receptor SR para la modulación MSK. Utilizando el receptor SR para la modulación MSK diseñado como punto de partida, se implementa un transceptor SR MSK compatible con el estándar 802.15.4. Este estándar define la capa física y la capa de control de acceso al medio (MAC) para redes inalámbricas de área personal de baja velocidad, ámbito en el cual el receptor SR encaja a la perfección. Finalmente, se describe un método de sincronización para receptores SR MSK a nivel de símbolo, de chip y de trama. Este método se presenta de forma genérica, pudiéndose sincronizar con cualquier preámbulo que cumpla unas características determinadas. En particular, se describe una implementación que tiene como objetivo sincronizar tramas del estándar IEEE 802.15.4

    A Fully Integrated CMOS Receiver.

    Full text link
    The rapidly growing wireless communication market is creating an increasing demand for low-cost highly-integrated radio frequency (RF) communication systems. This dissertation focuses on techniques to enable fully-integrated, wireless receivers incorporating all passive components, including the antenna, and also incorporating baseband synchronization on-chip. Not only is the receiver small in size and requires very low power, but it also delivers synchronized demodulated data. This research targets applications such as implantable neuroprosthetic devices and environmental wireless sensors, which need short range, low data-rate wireless communications but a long lifetime. To achieve these goals, the super-regenerative architecture is used, since power consumption with this architecture is low due to the simplified receiver architecture. This dissertation presents a 5GHz single chip receiver incorporating a compact on-chip 5 GHz slot antenna (50 times smaller than traditional dipole antennas) and a digital received data synchronization. A compact capacitively-loaded 5 GHz standing-wave resonator is used to improve the energy efficiency. An all-digital PLL timing scheme synchronizes the received data clock. A new type of low-power envelope detector is incorporated to increase the data rate and efficiency. The receiver achieves a data rate up to 1.2 Mb/s, dissipates 6.6 mW from a 1.5 V supply. The novel on-chip capacitively-loaded, transmission-line-standing-wave resonator is employed instead of a conventional low-Q on-chip inductor. The simulated quality factor of the resonator is very high (35), and is verified by phase-noise measurements of a prototype 5GHz Voltage Control Oscillator (VCO) incorporating this resonator. The prototype VCO, implemented in 0.13 µm CMOS, dissipates 3 mW from a 1.2 V supply, and achieves a measured phase noise of -117 dBc/Hz at a 1 MHz offset. In the on-chip antenna an efficient shielding technique is used to shield the antenna from the low-resistivity substrate underneath. Two standalone on-chip slot antenna prototypes were designed and fabricated in 0.13 µm CMOS. The 9 GHz prototype occupies a die area of only 0.3 mm2, has an active gain of -4.4 dBi and an efficiency of 9%. The second prototype occupies a die area of 0.47 mm2, and achieves a passive gain of approximately -17.0 dBi at 5 GHz.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60739/1/shid_1.pd

    Energy Aware RF Transceiver for Wireless Body Area Networks (WBAN)

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network

    의료용 인체 삽입물을 위한 무선 저전력 송수신기에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 남상욱.This thesis presents the wireless transceiver for medical implant application. The high propagation loss in human body which has high relative permittivity and conductive makes the implantable device be required for high sensitivity. Moreover, the device should have low power consumption to use for wireless implant medical application due to a restricted battery life. Also, this problem should be solved for on-body device considering integration with mobile device in the future. Simultaneously, the specific medical application such as epiretinal prosthesis, multi-channel electroencephalogram sensor demand high-data rate. Therefore, it is a main challenge that enhancing the devices power consumption and data-rate for implantable medical application. In order to enhance the performance of the device, several techniques are proposed in implantable human body transceivers. Firstly, the propagation loss in human-body is calculated for determine the frequency for medical implant application. The frequency bands allocated by FCC or MICS are too narrow and high lossy bands in human-body. For this reason, the optimum frequency for Implantable medical device is found by using Frisss formula and the link budget is calculated for capsule endoscopy system. The optimum frequency is verified through image recovery experiment in liquid human phantom and pig by using designed capsule endoscopy system. Secondly, the Super-Regenerative Receiver (SRR) with Digital Self-Quenching Loop (DSQL) is proposed for low power consumption. The proposed DSQL replaces the envelope detector used in a conventional SRR and minimizes power consumption by generating a self-quench signal digitally for a super-regenerative oscillator. The measurement results are given to show the performance of the proposed receiver. Thirdly, the RF Current Reused and Current Combining (CRCC) Power Amplifier (PA) is proposed for low power and high-speed transmitter. Normally, the PA having low output power has a feasibility issue that an optimum impedance of PA is too high to match with antenna impedance. For this reason, obtaining the maximum efficiency of PA is difficult for conventional structure. Moreover, conventional PAs output bandwidth is to be narrow due to high impedance transform ratio between PAs output and antennas input impedances. The CRCC structure solves this issue by decreasing the impedance transform ratio. The transmitter with CRCC PA is designed and verified through the measurement.Chapter 1. Introduction 1 1.1. WBAN (Wireless Body Area Network) 1 1.2. Challenges in Designing Transceiver for Medical Implant Application 7 Chapter 2. Propagation Loss in Human Body 10 2.1. Introduction 10 2.2. Far field approximation in human-body 13 2.3. Calculation of propagation loss in human-body 15 2.3.1. Frisss formula 15 2.3.2. Efficiency of transmitting antenna in human-body 17 2.4. Calculation of propagation loss in human-body and conclusion 19 Chapter 3. A Design of Transceiver for Capsule Endoscopy Application 21 3.1. Introduction 21 3.2. System Link Budget Calculation 24 3.3. Implementation 26 3.3.1. Transmitter with class B amplifier 26 3.3.2. Super-heterodyne receiver with AGC 28 3.3.3. Measurement results 30 3.4. Image recovery experiment 35 3.4.1. Integration of capsule endoscopy 35 3.4.2. Image recovery in the liquid human phantom 38 3.4.3. Image recovery in a pigs stomach and large intestine 40 3.5. Conclusion 41 Chapter 4. Super-Regenerative Receiver with Digitally Self-Quenching Loop 42 4.1. Introduction 42 4.1.1. Selection of receivers architecture for implantable medical device 44 4.1.2. Previous study of super-regenerative receiver 50 4.2. Main idea of proposed super-regenerative receiver 51 4.3. Description of proposed receiver 53 4.3.1. Digital self-quenching loop 55 4.3.2. Low noise amplifier and super-regenerative oscillator 57 4.3.3. Active RC filter for low power consumption 59 4.4. Experimental results 63 4.5. Summary and conclusion 69 Chapter 5. A Transmitter with Current-Reused and Current-Combining PA 71 5.1. Introduction 71 5.1.1. Previous study of OOK transmitter 72 5.2. Main idea of proposed transmitter 73 5.3. Description of proposed transmitter 79 5.3.1. Current-combining and current-reused PA 79 5.3.2. Ring oscillator with driving buffer 83 5.4. Experimental Results 85 5.5. Summary and conclusion 93 Chapter 6. Conclusion 95 Chapter 7. Appendix 97 7.1. Output spectrum of OOK signal 97 7.2. Theoretical BER of OOK comunication 99 Bibliography 101 초 록 109Docto

    Integrated Circuit and System Design for Cognitive Radio and Ultra-Low Power Applications

    Get PDF
    The ubiquitous presence of wireless and battery-powered devices is an inseparable and invincible feature of our modern life. Meanwhile, the spectrum aggregation, and limited battery capacity of handheld devices challenge the exploding demand and growth of such radio systems. In this work, we try to present two separate solutions for each case; an ultra-wideband (UWB) receiver for Cognitive Radio (CR) applications to deal with spectrum aggregation, and an ultra-low power (ULP) receiver to enhance battery life of handheld wireless devices. Limited linearity and LO harmonics mixing are two major issues that ultra-wideband receivers, and CR in particular, are dealing with. Direct conversion schemes, based on current-driven passive mixers, have shown to improve the linearity, but unable to resolve LO harmonic mixing problem. They are usually limited to 3rd, and 5th harmonics rejection or require very complex and power hungry circuitry for higher number of harmonics. This work presents a heterodyne up-down conversion scheme in 180 nm CMOS technology for CR applications (54-862 MHz band) that mitigates the harmonic mixing issue for all the harmonics, while by employing an active feedback loop, a comparable to the state-of-the art IIP3 of better than +10 dBm is achieved. Measurements show an average NF of 7.5 dB when the active feedback loop is off (i.e. in the absence of destructive interference), and 15.5 dB when the feedback loop is active and a 0 dBm interferer is applied, respectively. Also, the second part of this work presents an ultra-low power super-regenerative receiver (SRR) suitable for OOK modulation and provides analytical insight into its design procedure. The receiver is fabricated in 40 nm CMOS technology and operates in the ISM band of 902-928 MHz. Binary search algorithm through Successive Approximation Register (SAR) architecture is being exploited to calibrate the internally generated quench signal and the working frequency of the receiver. Employing an on-chip inductor and a single-ended to differential architecture for the input amplifier has made the receiver fully integrable, eliminating the need for external components. A power consumption of 320 µW from a 0.65 V supply results in an excellent energy efficiency of 80 pJ/b at 4 Mb/s data rate. The receiver also employs an ADC that enables soft-decisioning and a convenient sensitivity-data rate trade-off, achieving sensitivity of -86.5, and -101.5 dBm at 1000 and 31.25 kbps data rate, respectivel
    corecore