272 research outputs found

    μ€‘μ¦μ—΄μ„±ν˜ˆμ†ŒνŒκ°μ†Œμ¦ν›„κ΅° λ°”μ΄λŸ¬μŠ€ 쀑화 ν•­μ²΄μ˜ 개발과 검증에 λŒ€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ˜κ³ΌλŒ€ν•™ ν˜‘λ™κ³Όμ • 쒅양생물학전곡,2019. 8. μ •μ€€ν˜Έ.Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease localized to China, Japan, and Korea that is characterized by severe hemorrhage and a high fatality rate. Currently, no specific vaccine or treatment has been approved for this viral disease. To develop a therapeutic agent for SFTS, we isolated antibodies from a phage-displayed antibody library that was constructed from a patient who recovered from SFTS virus (SFTSV) infection. One antibody, designated as Ab10, was reactive to the Gn envelope glycoprotein of SFTSV and protected host cells and A129 mice from infection in both in vitro and in vivo experiments. Notably, Ab10 protected 80% of mice, even when injected 5 days after inoculation with a lethal dose of SFTSV. Using cross-linker assisted mass spectrometry and alanine scanning, we located the non-linear epitope of Ab10 on the Gn glycoprotein domain II and an unstructured stem region, suggesting that Ab10 may inhibit a conformational alteration that is critical for cell membrane fusion between the virus and host cell. Ab10 reacted to recombinant Gn glycoprotein in Gangwon/Korea/2012, HB29, and SD4 strains. Additionally, based on its epitope, we predict that Ab10 binds the Gn glycoprotein in 247 of 272 SFTSV isolates previously reported. Together, these data suggest that Ab10 has potential to be developed into a therapeutic agent that could protect against more than 90% of reported SFTSV isolates.μ€‘μ¦μ—΄μ„±ν˜ˆμ†ŒνŒκ°μ†Œμ¦ν›„κ΅°μ€ 졜근 μƒκ²¨λ‚œ κ°μ—Όλ³‘μœΌλ‘œ, 쀑ꡭ, 일본, ν•œκ΅­ 지역에 μ œν•œμ μœΌλ‘œ λ°œμƒν•˜λ©°, μ‹¬ν•œ 체내 좜혈과 높은 μΉ˜μ‚¬μœ¨μ„ 보인닀. ν˜„μž¬ 이 λ°”μ΄λŸ¬μŠ€ μ§ˆν™˜μ— λŒ€ν•œ 특이적인 λ°±μ‹ μ΄λ‚˜ μΉ˜λ£Œμ œκ°€ ν—ˆκ°€λœ λ°”λŠ” μ—†λ‹€. μ€‘μ¦μ—΄μ„±ν˜ˆμ†ŒνŒκ°μ†Œμ¦ν›„κ΅°μ˜ 치료제λ₯Ό κ°œλ°œν•˜κΈ° μœ„ν•΄, λ¨Όμ € μ€‘μ¦μ—΄μ†ŒνŒκ°μ†Œμ¦ν›„κ΅° λ°”μ΄λŸ¬μŠ€μ˜ κ°μ—Όμ—μ„œ νšŒλ³΅ν•œ ν™˜μžλ‘œλΆ€ν„° 수립된 νŒŒμ§€-항체 λΌμ΄λΈŒλŸ¬λ¦¬λ‘œλΆ€ν„° 항체듀을 λΆ„λ¦¬ν•΄λƒˆλ‹€. κ·Έ 쀑, Ab10으둜 λͺ…λͺ…ν•œ ν•­μ²΄λŠ” μ€‘μ¦μ—΄μ„±ν˜ˆμ†ŒνŒκ°μ†Œμ¦ν›„κ΅° λ°”μ΄λŸ¬μŠ€μ˜ Gn 외막 λ‹Ήλ‹¨λ°±μ§ˆμ— λ°˜μ‘ν•˜μ˜€κ³ , μ‹œν—˜κ΄€λ‚΄ μ„Έν¬μ‹€ν—˜κ³Ό λ™λ¬Όμ‹€ν—˜μ—μ„œ μˆ™μ£Ό 세포와 A129 마우슀의 μ€‘μ¦μ—΄μ„±ν˜ˆμ†ŒνŒκ°μ†Œμ¦ν›„κ΅° λ°”μ΄λŸ¬μŠ€ 감염을 λ§‰λŠ” 효과λ₯Ό λ³΄μ˜€λ‹€. 특히, Ab10 ν•­μ²΄μ˜ 보호 νš¨κ³ΌλŠ” μΉ˜μ‚¬λŸ‰μ˜ λ°”μ΄λŸ¬μŠ€κ°€ μ£Όμž…λœ 5일 이후에도 80%의 λ§ˆμš°μŠ€μ—μ„œ λ³΄μ—¬μ‘Œλ‹€. κ°€κ΅μ œλ₯Ό μ΄μš©ν•œ μ§ˆλŸ‰λΆ„μ„κ³Ό μ•ŒλΌλ‹Œ μ•„λ―Έλ…Έμ‚° μΉ˜ν™˜ μŠ€μΊ” 기법을 톡해 Gn λ‹Ήλ‹¨λ°±μ§ˆμ˜ 도메인2κ³Ό 쀄기 뢀뢄에 μ‘΄μž¬ν•˜λŠ” Ab10 ν•­μ²΄μ˜ ꡬ쑰적 κ²°ν•© λΆ€μœ„ μœ„μΉ˜λ₯Ό μ°Ύμ•„λ‚Ό 수 μžˆμ—ˆκ³ , μ΄λŠ” Ab10 항체가 λ°”μ΄λŸ¬μŠ€μ™€ μˆ™μ£Ό 세포간 세포막 결합에 μ€‘μš”ν•œ λ°”μ΄λŸ¬μŠ€μ˜ ꡬ쑰 λ³€ν™”λ₯Ό 막을 수 μžˆμŒμ„ 보여쀀닀. Ab10 ν•­μ²΄λŠ” Gangwon/Korea/2012, HB29, SD4 λ°”μ΄λŸ¬μŠ€ λ³€μ’…μ˜ μž¬μ‘°ν•© Gn λ‹Ήλ‹¨λ°±μ§ˆμ— λͺ¨λ‘ κ²°ν•©ν–ˆλ‹€. 그리고 항체 κ²°ν•© λΆ€μœ„λ₯Ό ν† λŒ€λ‘œ ν•˜μ—¬ λΆ„μ„ν•œ κ²°κ³Ό, 기쑴에 λ°œν‘œλœ 272μ’…μ˜ μ€‘μ¦μ—΄μ„±ν˜ˆμ†ŒνŒκ°μ†Œμ¦ν›„κ΅° λ°”μ΄λŸ¬μŠ€ 뢄리주듀 쀑 247μ’…μ—μ„œ Gn λ‹Ήλ‹¨λ°±μ§ˆμ— κ²°ν•©ν•  수 μžˆλ‹€κ³  μ˜ˆμΈ‘λ˜μ—ˆλ‹€. λ”°λΌμ„œ, 이듀 κ²°κ³ΌλŠ” Ab10항체가 μΉ˜λ£Œμ œλ‘œμ„œ 개발될 κ°€λŠ₯성이 λ†’μœΌλ©°, 90% μ΄μƒμ˜ μ€‘μ¦μ—΄μ„±ν˜ˆμ†ŒνŒκ°μ†Œμ¦ν›„κ΅° λ°”μ΄λŸ¬μŠ€ λΆ„λ¦¬μ£Όλ“€λ‘œ λΆ€ν„° 보호 효과λ₯Ό 보일 수 μžˆμŒμ„ μ‹œμ‚¬ν•œλ‹€.1 Introduction 1 2 Materials and methods 20 3 Results 33 4 Discussion 64 5 References 70Docto

    이둠적 합리성과 μ‹€μ²œμ  합리성

    Get PDF
    μš°λ¦¬λŠ” 세상에 λŒ€ν•˜μ—¬ μ•Œκ³ μž ν•˜μ—¬ μ΄λŸ¬μ €λŸ¬ν•œ λ―ΏμŒμ„ κ΅¬μ„±ν•œλ‹€. μš°λ¦¬λŠ” 또 이듀 믿음이 ν•©λ¦¬μ μœΌλ‘œ κ΅¬μ„±λ˜μ—ˆλŠ”κ°€λ₯Ό 묻고, 합리적인 λ―ΏμŒμ„ μœ„ν•œ 기쀀을 찾으렀 ν•˜λ©°, 이λ₯Ό ν†΅ν•˜μ—¬ 진리λ₯Ό ν–₯ν•œ 우리의 인식을 ν–₯μƒμ‹œν‚€κ³ μž ν•œλ‹€. ν•œνŽΈ μš°λ¦¬λŠ” 세상에 λŒ€ν•œ 진리 νƒκ΅¬λ§Œ ν•  μˆ˜λŠ” μ—†μœΌλ©°, ꡬ체적인 ν–‰μœ„λ₯Ό ν†΅ν•˜μ—¬ μ‹€μ²œν•˜λ©° μ‚΄μ•„κ°€μ•Ό ν•œλ‹€. ν˜„μ‹€ μƒν™©μ—μ„œμ˜ 우리의 ꡬ체적인 ν–‰μœ„λ₯Ό ν†΅ν•˜μ—¬ μ‹€μ²œν•˜λ©° μ‚΄μ•„κ°€μ•Ό ν•œλ‹€. ν˜„μ‹€ μƒν™©μ—μ„œμ˜ 우리의 ꡬ체적인 ν–‰μœ„κ°€ ν•©λ¦¬μ μœΌλ‘œ μ΄λ£¨μ–΄μ‘ŒλŠ”κ°€λΌλŠ” 질문이 μ œκΈ°λœλ‹€. ν˜„λͺ…ν•œ ν–‰μœ„ 선택을 μœ„ν•œ μ§ˆλ¬Έμ€ ν–‰μœ„ 지침을 μœ λ„ν•˜λ©° μš°λ¦¬λŠ” 이런 과정을 ν†΅ν•˜μ—¬ 합리적인 ν–‰μœ„μžκ°€ λ˜μ–΄ κ°„λ‹€. μ „μžμ™€ κ΄€λ ¨λœ ν•©λ¦¬μ„±μ˜ λ¬Έμ œλŠ” ν”νžˆ 인식적 λ˜λŠ” 이둠적 ν•©λ¦¬μ„±μ΄λΌλŠ” 제λͺ© ν•˜μ— 인식둠과 κ³Όν•™μ² ν•™μ˜ 탐ꡬ λŒ€μƒμ΄ λ˜μ–΄ μ™”λ‹€. λ°˜λ©΄μ— ν›„μžλŠ” μ‹€μ²œμ  ν•©λ¦¬μ„±μ΄λΌλŠ” 제λͺ© ν•˜μ— μ‚¬νšŒκ³Όν•™μž, μ² ν•™μž, μœ€λ¦¬ν•™μžλ“€μ˜ 관심이 λ˜μ–΄ λ…μžμ μΈ μ˜μ—­μœΌλ‘œ λ°œμ „ν•˜κ³  μžˆλ‹€

    μ•” 진단 및 μΉ˜λ£Œμ— 적용 κ°€λŠ₯ν•œ 마이크둜파 λŠ₯동 집적 탐침에 κ΄€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2015. 2. ꢌ영우.λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μ•” 진단 및 μΉ˜λ£Œμ— 적용 κ°€λŠ₯ν•œ μ΄ˆμ†Œν˜• 마이크둜파 λŠ₯동 집적 탐침에 λŒ€ν•΄ κΈ°μˆ ν•˜μ˜€λ‹€. 생체 쑰직의 κ΄‘λŒ€μ—­ μΈ‘μ •κ³Ό μ €μ „λ ₯ μ˜¨μ—΄ μΉ˜λ£Œμ— 적용 ν•˜κΈ° μœ„ν•΄ μœ μ „μœ¨ μΈ‘μ • 회둜λ₯Ό ν‰λ©΄ν˜• 동좕 탐침에 μ§‘μ ν•˜μ˜€κ³ , 마이크둜파 λ°œμƒ 회둜λ₯Ό μ–΄ν”Œλ¦¬μΌ€μ΄ν„°μ— μ§‘μ ν•˜μ˜€λ‹€. MEMS 기술과 MMIC κΈ°μˆ μ„ μ μš©ν•¨μœΌλ‘œμ¨ 단일 ν”Œλž«νΌμ— μ§‘μ λœ μ‹œμŠ€ν…œμœΌλ‘œ κ΅¬ν˜„ν•˜μ—¬ 집적도λ₯Ό ν–₯상 μ‹œν‚€κ³ , μ‹œμŠ€ν…œμ„ μ†Œν˜•ν™” ν•˜μ˜€λ‹€. λ¨Όμ € multi-state reflectometerλ₯Ό μ΄μš©ν•˜μ—¬ μ•” 진단에 ν™œμš© κ°€λŠ₯ν•œλ³΅μ†Œ μœ μ „μœ¨ μΈ‘μ • κΈ°μˆ μ— λŒ€ν•΄ μ œμ•ˆν•˜μ˜€λ‹€. 2, 16 GHzμ—μ„œ λ™μž‘ν•˜λŠ” κ΄‘λŒ€μ—­ reflectometerλŠ” 이쀑 λŒ€μ—­ μœ„μƒ κ³ μ • 루프 (PLL), μž„ν”Όλ˜μŠ€ νŠœλ„ˆ, RF μ „λ ₯ κ²€μΆœκΈ° λ“±μ˜ MMIC와 MEMS 기반의 λ°©ν–₯μ„± κ²°ν•©κΈ°, ν‰λ©΄ν˜• 탐침을 μ§‘μ ν•˜μ—¬ κ΅¬ν˜„ν•˜μ˜€λ‹€. μ œμž‘ν•œ λŠ₯동 집적 탐침 μ‹œμŠ€ν…œμ„ μ΄μš©ν•˜μ—¬ 생체 쑰직과 μ•” 쑰직 λ“±μ˜ μœ μ „μœ¨μ„ μΈ‘μ •ν•¨μœΌλ‘œμ¨ μœ μš©ν•¨μ„ ν™•μΈν•˜μ˜€κ³ , μΈ‘μ •λœ μœ μ „μœ¨κ³Ό ν‘œμ€€κ°’μ„ λΉ„κ΅ν•˜μ—¬ μ‹œμŠ€ν…œμ˜ μΈ‘μ • 정확도λ₯Ό κ²€μ¦ν•˜μ˜€λ‹€. λ˜ν•œ μ €μ „λ ₯ 마이크둜파 μ˜¨μ—΄ 치료 μš”λ²•μ„ μœ„ν•œ λŠ₯동 집적 탐침을 κ°œλ°œν•˜μ˜€λ‹€. MEMS 곡정을 톡해 μ œμž‘ν•œ ν‰λ©΄ν˜• μ‹€λ¦¬μ½˜ 탐침에 μ „μ•• μ œμ–΄ λ°œμ§„κΈ°, ꡬ동 증폭기, μ „λ ₯ 증폭기λ₯Ό μ§‘μ ν•˜μ—¬ λŠ₯동 집적 탐침 μ‹œμŠ€ν…œμ„ μ œμž‘ν•˜μ˜€λ‹€. 치료λ₯Ό μ§„ν–‰ν•˜λŠ” λ™μ•ˆ, 마이크둜파의 μ „λ ₯을 μΈ‘μ •ν•  수 μžˆλ„λ‘ μ „λ ₯ κ²€μΆœκΈ°μ™€ λ°©ν–₯μ„± 결합기도 ν•¨κ»˜ μ§‘μ ν•˜μ˜€λ‹€. μ•”, 근윑 λ“± λ‹€μ–‘ν•œ 생체 쑰직을 μ΄μš©ν•œ μ‹€ν—˜μ˜ κ²°κ³Όλ‘œλΆ€ν„° Ku λŒ€μ—­μ˜ μ£ΌνŒŒμˆ˜μ—μ„œ μ €μ „λ ₯ 마이크둜파 μ˜¨μ—΄ μΉ˜λ£Œκ°€ κ°€λŠ₯함을 ν™•μΈν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ μžμ„± λ‚˜λ…Έμž…μžλ₯Ό μ΄μš©ν•œ μ˜¨μ—΄ μΉ˜λ£Œμ— μ μš©ν•˜κΈ° μœ„ν•΄ λŠ₯동 집적 탐침을 κ°œλ°œν•˜μ˜€λ‹€. μžμ„± λ‚˜λ…Έμž…μžκ°€ μ˜¨μ—΄ 치료 μš”λ²•μ— λ―ΈμΉ˜λŠ” 영ν–₯을 λΆ„μ„ν•˜κΈ° μœ„ν•΄ μ „μžκΈ°-μ—΄ κ²°ν•© 해석을 μˆ˜ν–‰ν•˜μ˜€κ³ , μ΄λ‘œλΆ€ν„° μžμ„± λ‚˜λ…Έμž…μžμ˜ 선택도 ν–₯상을 μœ„ν•œ 졜적의 주파수λ₯Ό κ²°μ •ν•˜μ˜€λ‹€. λ°œμ§„κΈ°μ™€ μ „λ ₯ 증폭기 MMIC와 이쀑 채널 둜그 μ „λ ₯ κ²€μΆœκΈ°, λ°©ν–₯μ„± κ²°ν•©κΈ°λ₯Ό 탐침에 μ§‘μ ν•˜μ—¬ μ‹œμŠ€ν…œμ„ μ œμž‘ν•˜μ˜€λ‹€. 이λ₯Ό μ΄μš©ν•œ μ‹€ν—˜ κ²°κ³Όλ‘œλΆ€ν„° λŠ₯동 집적 νƒμΉ¨μ˜ μ„±λŠ₯을 ν™•μΈν•˜μ˜€μœΌλ©°, μžμ„± λ‚˜λ…Έμž…μžκ°€ μ €μ „λ ₯ 및 μ•” 특이 마이크둜파 μ˜¨μ—΄ 치료의 효율과 선택도λ₯Ό ν–₯μƒμ‹œν‚€λŠ”λ° μœ μš©ν•¨μ„ κ²€μ¦ν•˜μ˜€λ‹€.This thesis presents miniaturized microwave active integrated probe systems applicable to cancer detection and treatment. To realize broadband detection and low-power hyperthermia, planar-type coaxial probes and heat applicators have been integrated with active circuits for permittivity measurement and microwave generation, respectively. Each integrated system is implemented on a single platform using Microelectromechanical Systems (MEMS) and monolithic microwave integrated circuit (MMIC) technologies for miniaturization and integration. First, a complex permittivity measurement technique using an integrated multi-state reflectometer (MSR) is proposed for cancer detection application. The broadband MSR covering both 2 and 16 GHz bands consists of a dual-band phase-locked loop, a directional coupler, an impedance tuner, two RF power detectors, and a micromachined silicon planar probe with an open-ended coaxial aperture. All the active and passive circuit components have been integrated on the micromachined probe platform in a small form factor of 6.8 mm Γ— 50 mm Γ— 0.6 mm. The performance of the fabricated integrated probe has been evaluated by comparing the measured permittivities of 0.9% saline, pork muscle, fat, and xenografted human breast cancer with the reference data. For low-power microwave hyperthermia, a Ku-band active integrated heat applicator is demonstrated. A planar-type coaxial applicator has been fabricated using silicon micromachining technology, on which a Ku-band voltage controlled oscillator (VCO), a driver amplifier, and a power amplifier (PA) have been integrated. A directional coupler and power detectors are employed for power monitoring. The fully integrated heat applicator has been realized in a small footprint of 8 mm Γ— 56 mm. In-vitro and in-vivo ablation experiments on pork muscle, fat, and human-cancer xenografted nude mouse demonstrate the feasibility of low-power hyperthermia using Ku-band microwaves. Finally, an active integrated heat applicator for magnetic nanoparticle (MNP)-assisted hyperthermia is developed. The effect of the MNP on microwave hyperthermia has been analyzed by a coupled electromagnetic-thermal analysis. The optimum frequency for hyperthermia is determined by the coupled analysis. A 2-GHz source module consisting of a VCO and a PA has been implemented in MMICs and integrated on the heat applicator platform. A dual-channel log detector and a directional coupler have been also employed to monitor the power levels during hyperthermia. Experiment results show not only sufficient heating performance of the integrated applicator, but also the effectiveness of the MNP for low-power and cancer-specific microwave hyperthermia.Abstract i Contents iv List of Figures viii List of Tables xv 1. Introduction 1 1.1 Motivation 1 1.2 Microwave Cancer Detection 4 1.3 Microwave Hyperthermia 5 1.4 Outline of Thesis 7 2. Active Integrated Probe for Cancer Detection 9 2.1 Introduction 9 2.2 Principle of Operation 13 2.2.1 Multi-State Reflectometer 14 2.2.2 Governing Equation for Complex Permittivity 15 2.2.3 Determination of Complex Permittivity 17 2.2.4 Calibration 19 2.3 Design and Fabrication 21 2.3.1 Micromachined Planar Coaxial Probe 21 2.3.2 Impedance Tuner 30 2.3.3 Directional Coupler 34 2.3.4 Power Detector 37 2.3.5 Signal Source 39 2.3.6 Active Integrated Probe System 43 2.4 Measurement Results 46 2.5 Summary 52 3. Ku-Band Active Integrated Heat Applicator for Cancer Ablation 54 3.1 Introduction 54 3.2 Design and Fabrication 57 3.2.1 Micromachined Planar Coaxial Applicator 58 3.2.2 Microwave Source 63 3.2.3 Power Monitoring Circuits 67 3.2.4 Ku-Band Active Integrated Applicator System 67 3.3 Experiment Results 70 3.4 Summary 77 4. Active Integrated Heat Applicator for Magnetic Nanoparticle-Assisted Hyperthermia 79 4.1 Introduction 79 4.2 Magnetic Nanoparticle (MNP) 82 4.2.1 Heating mechanism of MNP 83 4.2.2 Permeability of MNP 84 4.3 Coupled Electromagnetic-Thermal Analysis 88 4.3.1 Coupled Electromagnetic-Thermal Problems 88 4.3.2 Electromagnetic Analysis 92 4.3.3 Thermal Analysis 94 4.3.4 Analysis Results 96 4.4 Design and Fabrication 103 4.4.1 Spiral Applicator 104 4.4.2 Microwave Source 107 4.4.3 Power Monitoring Circuits 111 4.4.4 Active Integrated Applicator for MNP-Assisted Hyperthermia 119 4.5 Experiment Results 122 4.6 Summary 132 5. Conclusion 134 Bibliography 137 Abstract in Korean 152Docto

    μ•„κ΅¬μŠ€ν‹΄ μΏ μ—λ°”μ˜γ€ŽλΌν‹΄μ•„λ©”λ¦¬μΉ΄ 자본주의 λ°œλ‹¬μ‚¬γ€

    Get PDF
    ν•„μžλŠ” 1986λ…„ λ©•μ‹œμ½”κ΅­λ¦½λŒ€ν•™κ΅(UNAM)라틴아메리카 μ§€μ—­ν•™κ³Όλ‘œ μœ ν•™μ„ κ°”λ‹€. ν•™κΈ°κ°€ μ‹œμž‘ν•˜κΈ°κΉŒμ§€λŠ” μ•½κ°„μ˜ μ‹œκ°„μ΄ μžˆμ–΄μ„œ ν•™κ³Ό ꡐ수λ₯Ό μ°Ύμ•„λ΅™κ³  미리 읽을 λ§Œν•œ 책을 μ†Œκ°œν•΄ 달라고 λΆ€νƒν–ˆλ‹€. κ·Έλ•Œ μ΄κ²ƒλ§Œμ€ κΌ­ 읽고 였라고 μΆ”μ²œν•΄μ€€ 책이 λ°”λ‘œ 에두아λ₯΄λ„ κ°ˆλ ˆμ•„λ…Έμ˜γ€Žμˆ˜νƒˆλœ λŒ€μ§€γ€, μŠ€νƒ λ¦¬ μŠ€ν…ŒμΈκ³Ό 바바라 μŠ€ν…ŒμΈμ˜ γ€ŽλΌν‹΄μ•„λ©”λ¦¬μΉ΄μ˜ 식민 μœ μ‚°γ€, μ•„κ΅¬μŠ€ν‹΄ 쿠에바 (AgustΓ­n Cueva, 1937~1992)의 γ€ŽλΌν‹΄μ•„λ©”λ¦¬ μΉ΄ 자본주의 λ°œλ‹¬μ‚¬γ€(El desarrollo del capitalismo en America Latina) μ΄λ ‡κ²Œ μ„Έ κΆŒμ΄μ—ˆλ‹€. λ‚˜λŠ” 이 책듀을 λͺ¨λ₯΄λŠ” 단어 ν•˜λ‚˜ν•˜λ‚˜ 빠짐없이 사전을 μ°Ύμ•„κ°€λ©΄μ„œ 정말 꼼꼼히 μ½μ—ˆλ‹€. κ΅­λ‚΄μ—μ„œλŠ” μ‰½κ²Œ μ ‘ν•  수 μ—†μ—ˆλ˜ μ‹œκ°, κ·Έμ•Όλ§λ‘œ μžμ‹ μ˜ 문제λ₯Ό μžμ‹ μ˜ λ°©μ‹μœΌλ‘œ μ΄ν•΄ν•˜κ³ μž ν•˜λŠ” 참신함이 λ‹λ³΄μ΄λŠ” μ±…λ“€μ΄μ—ˆλ‹€. λ‚˜λŠ” 이 μ„Έ ꢌ의 책을 톡해 라틴아메리카에 λŒ€ν•΄ λˆˆμ„ 뜨게 λ˜μ—ˆκ³ , μ§€κΈˆκΉŒμ§€λ„ κ·Έλ•Œ μŠ΅λ“ν•œ μ‹œκ°μ΄ λ‚˜μ˜ 라틴아메리카 μΈμ‹μ˜ κΈ°λ³Έ 바탕을 ν˜•μ„±ν•˜κ³  μžˆλ‹€

    κ³΅λŒ€μ™€ λ†μƒλŒ€ λŒ€ν•™μ›μƒμ„ μœ„ν•œ μ›Œν¬μˆ: λ‹€μ‹œ 배운 λ§ν•˜κ³  μ“°κΈ°

    Get PDF
    μžμ‹ μ΄ 가지고 μžˆλŠ” μ§€μ‹μ΄λ‚˜ 생각을 λ‹€λ₯Έ μ‚¬λžŒμ—κ²Œ μ „λ‹¬ν•˜κ³ μž ν•  λ•Œ κΈ€μ΄λ‚˜ 말을 μ‚¬μš©ν•˜κ²Œ λœλ‹€. 아무리 μš°μˆ˜ν•œ 연ꡬ결과라도 λ§μ΄λ‚˜ κΈ€λ‘œμ¨ μ œλŒ€λ‘œ ν‘œν˜„ν•˜μ§€ λͺ»ν•œλ‹€λ©΄ 빛을 보지 λͺ»ν•˜κ³  땅속에 묻히게 될 것이닀. λ‚˜λ₯Ό ν¬ν•¨ν•œ λŒ€λΆ€λΆ„μ˜ κ³΅λŒ€μƒλ“€μ€ λ§μ΄λ‚˜ κΈ€λ‘œ ν‘œν˜„ν•˜λŠ” λŠ₯λ ₯이 λΆ€μ‘± ν•΄, 연ꡬλ₯Ό μ§„ν–‰ν•˜λ©΄μ„œλ„ 항상 κ·Έ 뢀뢄에 λ§μ„€μž„κ³Ό 두렀움이 μ•žμ„ λ‹€. 쒋은 연ꡬ 결과뿐만 μ•„λ‹ˆ 라, κ·Έ 연ꡬ κ²°κ³Όλ₯Ό νƒ€μΈμ—κ²Œ μ •ν™•ν•˜κ³  잘 μ „λ‹¬ν•˜κ³  μ‹Άλ‹€λŠ” μš•λ§μ— νœ©μ‹Έμ—¬ 있던 이 λ•Œ, 마침 λ‚˜ 의 μ΄λŸ¬ν•œ μš•λ§μ„ ν•΄μ†Œν•΄ μ€„λ§Œν•œ <κ³΅κ³ΌλŒ€ν•™ λŒ€ν•™μ›μƒμ„ μœ„ν•œ μ›Œν¬μˆ -κ°•μ˜λ²•μ—μ„œ λ…Όλ¬Έμž‘μ„±λ²• κΉŒμ§€->을 κ΅μˆ˜ν•™μŠ΅κ°œλ°œμ„Όν„°μ—μ„œ κ°œμ΅œν•œλ‹€λŠ” μ†Œμ‹μ„ λ“£κ³  κ³§λ°”λ‘œ μ‹ μ²­ν•˜κ²Œ λ˜μ—ˆλ‹€

    라틴아메리카 톡합과 λΆ„μ—΄ : 남미ꡭ가연합, 라틴아메리카-μΉ΄λ¦¬λΈŒν•΄ ꡭ가곡동체, λ‚¨λ―Έκ³΅λ™μ‹œμž₯, νƒœν‰μ–‘ 동맹

    Get PDF
    남미 λ…λ¦½μ˜ μ˜μ›… μ‹œλͺ¬ 볼리바λ₯΄λŠ” λ…λ¦½νˆ¬μŸ λ‹Ήμ‹œ μž μ‹œ ν”Όμ‹ ν–ˆλ˜ μžλ©”μ΄μΉ΄μ—μ„œ 보낸 νŽΈμ§€μ—μ„œ λ‹€μŒκ³Ό 같은 ꡬ상을 μ–ΈκΈ‰ν–ˆλ‹€. μ‹ λŒ€λ₯™ 전체λ₯Ό 각 지역 간에 λ°€μ ‘νžˆ μ—°κ²°λœ, ν•˜λ‚˜μ˜ 고리λ₯Ό 가진, ν•˜λ‚˜μ˜ κ΅­κ°€λ‘œ λ§Œλ“€κ³ μž ν•˜λŠ” μ‹œλ„λŠ” μ›…λŒ€ν•œ κ΅¬μƒμž„μ— ν‹€λ¦Όμ—†λ‹€. 우리 λͺ¨λ‘λŠ” 같은 역사, ν•˜λ‚˜μ˜ μ–Έμ–΄, μœ μ‚¬ν•œ κ΄€μŠ΅κ³Ό 쒅ꡐλ₯Ό 가지고 있기 λ•Œλ¬Έμ— μ—°λ°©μ œ ν˜•νƒœμ˜ 단일 μ •λΆ€λ₯Ό ν˜•μ„±ν•˜λŠ” 것은 λ‹Ήμ—°ν•œ 일이닀. ν•˜μ§€λ§Œ 그의 μ‹€ν˜„μ€ 지리적 ν•œκ³„, 지역 이기주의, 각 지역 κ°„μ˜ μ„œλ‘œ λ‹€λ₯Έ 성격 λ“±μ˜ μš”μΈμœΌλ‘œ ν˜„μ‹€μ μœΌλ‘œ κ°€λŠ₯ν•˜μ§€ μ•Šμ•˜λ‹€. 그리고 κ³„μ†ν•΄μ„œ μ΄λ ‡κ²Œ λ§ν–ˆλ‹€. μš°λ¦¬κ°€ λ‹€λ₯Έ μ„œκ΅¬ κ°•λŒ€κ΅­λ“€κ³Ό κ²½μŸν•˜κΈ° μœ„ν•΄μ„œλŠ” λ°˜λ“œμ‹œ 톡합을 이루어야 ν•˜μ§€λ§Œ μ§€κΈˆμ²˜λŸΌ μ΄λ ‡κ²Œ λΆ„μ—΄λœλ‹€λ©΄ μš°λ¦¬λŠ” κ²°μ½” ν–‰λ³΅ν•΄μ§ˆ 수 없을 것이닀. κ²°μ½”!이것이 λ°”λ‘œ μš°λ¦¬κ°€ μ˜€λŠ˜λ‚  라틴아메리카 톡합을 이야기 ν•  λ•Œ 자주 μ–ΈκΈ‰ν•˜λŠ” μ‹œλͺ¬ 볼리바λ₯΄μ˜ κΏˆμ΄λ‹€. λ² λ„€μˆ˜μ—˜λΌμ˜ μ°¨λ² μŠ€κ°€ 생전에 λΌν‹΄μ•„λ©”λ¦¬μΉ΄μ˜ 톡합을 κ·Έλ ‡κ²Œ κ°•μ‘°ν–ˆλ˜ 것도 λ°”λ‘œ 그런 κΏˆμ„ μ‹€ν˜„ν•˜κ³ μž ν•˜λŠ” μ†Œλ§ λ•Œλ¬Έμ΄μ—ˆλ‹€

    의료용 인체 μ‚½μž…λ¬Όμ„ μœ„ν•œ 무선 μ €μ „λ ₯ μ†‘μˆ˜μ‹ κΈ°μ— κ΄€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2016. 2. λ‚¨μƒμš±.This thesis presents the wireless transceiver for medical implant application. The high propagation loss in human body which has high relative permittivity and conductive makes the implantable device be required for high sensitivity. Moreover, the device should have low power consumption to use for wireless implant medical application due to a restricted battery life. Also, this problem should be solved for on-body device considering integration with mobile device in the future. Simultaneously, the specific medical application such as epiretinal prosthesis, multi-channel electroencephalogram sensor demand high-data rate. Therefore, it is a main challenge that enhancing the devices power consumption and data-rate for implantable medical application. In order to enhance the performance of the device, several techniques are proposed in implantable human body transceivers. Firstly, the propagation loss in human-body is calculated for determine the frequency for medical implant application. The frequency bands allocated by FCC or MICS are too narrow and high lossy bands in human-body. For this reason, the optimum frequency for Implantable medical device is found by using Frisss formula and the link budget is calculated for capsule endoscopy system. The optimum frequency is verified through image recovery experiment in liquid human phantom and pig by using designed capsule endoscopy system. Secondly, the Super-Regenerative Receiver (SRR) with Digital Self-Quenching Loop (DSQL) is proposed for low power consumption. The proposed DSQL replaces the envelope detector used in a conventional SRR and minimizes power consumption by generating a self-quench signal digitally for a super-regenerative oscillator. The measurement results are given to show the performance of the proposed receiver. Thirdly, the RF Current Reused and Current Combining (CRCC) Power Amplifier (PA) is proposed for low power and high-speed transmitter. Normally, the PA having low output power has a feasibility issue that an optimum impedance of PA is too high to match with antenna impedance. For this reason, obtaining the maximum efficiency of PA is difficult for conventional structure. Moreover, conventional PAs output bandwidth is to be narrow due to high impedance transform ratio between PAs output and antennas input impedances. The CRCC structure solves this issue by decreasing the impedance transform ratio. The transmitter with CRCC PA is designed and verified through the measurement.Chapter 1. Introduction 1 1.1. WBAN (Wireless Body Area Network) 1 1.2. Challenges in Designing Transceiver for Medical Implant Application 7 Chapter 2. Propagation Loss in Human Body 10 2.1. Introduction 10 2.2. Far field approximation in human-body 13 2.3. Calculation of propagation loss in human-body 15 2.3.1. Frisss formula 15 2.3.2. Efficiency of transmitting antenna in human-body 17 2.4. Calculation of propagation loss in human-body and conclusion 19 Chapter 3. A Design of Transceiver for Capsule Endoscopy Application 21 3.1. Introduction 21 3.2. System Link Budget Calculation 24 3.3. Implementation 26 3.3.1. Transmitter with class B amplifier 26 3.3.2. Super-heterodyne receiver with AGC 28 3.3.3. Measurement results 30 3.4. Image recovery experiment 35 3.4.1. Integration of capsule endoscopy 35 3.4.2. Image recovery in the liquid human phantom 38 3.4.3. Image recovery in a pigs stomach and large intestine 40 3.5. Conclusion 41 Chapter 4. Super-Regenerative Receiver with Digitally Self-Quenching Loop 42 4.1. Introduction 42 4.1.1. Selection of receivers architecture for implantable medical device 44 4.1.2. Previous study of super-regenerative receiver 50 4.2. Main idea of proposed super-regenerative receiver 51 4.3. Description of proposed receiver 53 4.3.1. Digital self-quenching loop 55 4.3.2. Low noise amplifier and super-regenerative oscillator 57 4.3.3. Active RC filter for low power consumption 59 4.4. Experimental results 63 4.5. Summary and conclusion 69 Chapter 5. A Transmitter with Current-Reused and Current-Combining PA 71 5.1. Introduction 71 5.1.1. Previous study of OOK transmitter 72 5.2. Main idea of proposed transmitter 73 5.3. Description of proposed transmitter 79 5.3.1. Current-combining and current-reused PA 79 5.3.2. Ring oscillator with driving buffer 83 5.4. Experimental Results 85 5.5. Summary and conclusion 93 Chapter 6. Conclusion 95 Chapter 7. Appendix 97 7.1. Output spectrum of OOK signal 97 7.2. Theoretical BER of OOK comunication 99 Bibliography 101 초 둝 109Docto

    λ””ν΄νŠΈ μ‚¬νƒœλ‘œ λ³Έ ν‚€λ₯΄μΉ˜λ„€λ₯΄μ£Όμ˜(Kirchnerismo)

    Get PDF
    μ˜€λŠ˜λ‚  μ•„λ₯΄ν—¨ν‹°λ‚˜μ˜ λͺ¨λ“  ν˜„μƒμ€ 2001λ…„ κ²½μ œμœ„κΈ°μ˜ λ°œμƒκ³Ό 그둜 μΈν•œ ν‚€λ₯΄μΉ˜λ„€λ₯΄μ£Όμ˜μ˜ νƒ„μƒμ—μ„œλΆ€ν„° μ‹œμž‘λœλ‹€. 2001λ…„ 12μ›” νƒœν™˜μ œλ„μ˜ λΆ•κ΄΄λ‘œ μ‹œμž‘λœ κ²½μ œμœ„κΈ°λŠ” μ•„λ₯΄ν—¨ν‹°λ‚˜ μ—­μ‚¬μ˜ ν•œ μ‹œκΈ°λ₯Ό λ§ˆκ°ν•˜λŠ” μ€‘λŒ€ν•œ μ‚¬κ±΄μ΄μ—ˆλ‹€. ꡭ민듀은 λΆ„λ…Έν–ˆκ³  μ •μΉ˜κ³„μ— λŒ€ν•œ λΆˆμ‹ μ€ 극에 λ‹¬ν–ˆλ‹€. ꡭ민듀은 μ •μΉ˜κ³„κΈ‰ μ „λ°˜μ„ λΆ€μ •ν•˜λ©΄μ„œ λͺ¨λ‘ 꺼져라λ₯Ό μ™Έμ³€λ‹€. 이런 μƒν™©μ—μ„œ μš°νŒŒλŠ” 상황을 보닀 더 μžκ·Ήν•˜λ©΄μ„œ 이λ₯Ό μ§„μ •μ‹œν‚€κΈ° μœ„ν•΄μ„œλŠ” κ΅­κ°€ νŒŒμ‚°μ„ μ„ μ–Έν•˜κ³  ꡭ제적인 μ „λ¬Έκ°€ μœ„μ›νšŒμ— λͺ¨λ“  결정을 μœ„μž„ν•΄μ•Ό ν•œλ‹€κ³  μ£Όμž₯ν–ˆλ‹€. 그에 λ°˜ν•΄ μ’ŒνŒŒλŠ” νŠΉλ³„ν•œ λŒ€μ•ˆ 없이 λŒ€μ˜μ œ 거뢀와 μ§μ ‘λ―Όμ£Όμ£Όμ˜ κ°•ν™”λ₯Ό λ‚΄μ„Έμ› λ‹€. μœ„κΈ° νƒˆμΆœμ΄λΌλŠ” κ΄€μ μ—μ„œ λ³΄μˆ˜μ •κΆŒ 심지어 κΆŒμœ„μ£Όμ˜ μ •κΆŒμ΄ λ“€μ–΄μ„€ κ°€λŠ₯성이 없지 μ•Šμ•˜μ§€λ§Œ 닀행이도 μœ„κΈ°μƒν™©μ€ 평화적이고 μ˜¨κ±΄ν•˜κ³  μ μ§„μ μœΌλ‘œ μ „κ°œλ˜μ—ˆλ‹€. 그런 κ³Όμ •μ—μ„œ 2003λ…„ 5월에 μ‹€μ‹œλœ λŒ€ν†΅λ Ή μ„ κ±°μ—μ„œ λ„€μŠ€ν† λ₯΄ ν‚€λ₯΄μΉ˜λ„€λ₯΄(Néstor Kirchner)λ₯Ό μ€‘μ‹¬μœΌλ‘œ ν•˜λŠ” 페둠 쒌파 그룹듀이 ꢌλ ₯을 μž‘μ•˜λ‹€

    λ² λ„€μˆ˜μ—˜λΌ μ •μΉ˜κ²½μ œ ν˜„ν™©κ³Ό 전망

    Get PDF
    λ² λ„€μˆ˜μ—˜λΌμ˜ κ²½μ œμƒν™©μ€ 기초체λ ₯만 놓고 λ³Ό λ•Œ μ‹€μ œ κ·Έλ ‡κ²Œ λ‚˜μ˜μ§€λ§Œμ€ μ•Šλ‹€. λ² λ„€μˆ˜μ—˜λΌ 수좜의 90% 이상을 μ°¨μ§€ν•˜λŠ” μ„μœ μ˜ μƒμ‚°λŸ‰κ³Ό μˆ˜μΆœλŸ‰μ€ κ΅­μ œμœ κ°€μƒμŠΉμ„ 이끌기 μœ„ν•œ 차베슀의 μ „λž΅μ  선택에 따라 1997λ…„ 각각 328만 bpd(일일 μ›μœ μƒμ‚°λŸ‰)와 306만 bpdμ—μ„œ 2010λ…„ 222만 bpd와 169만 bpd둜 상당뢀뢄 κ°μ†Œν–ˆμ§€λ§Œ, 2010λ…„ 이후 λ‹€μ‹œ μ¦κ°€ν•˜κΈ° μ‹œμž‘ν–ˆλ‹€. 졜근 μƒμ‚°λŸ‰κ³Ό μˆ˜μΆœλŸ‰μ€ 각각 230만 bpd와 170만 bpd μˆ˜μ€€μ„ μœ μ§€ν•˜κ³  μžˆλ‹€. μ•žμœΌλ‘œλŠ” μ€‘κ΅­μ˜ νˆ¬μžμ— νž˜μž…μ–΄ μƒμ‚°λŸ‰κ³Ό μˆ˜μΆœλŸ‰μ΄ λ”μš± 증가할 μ˜ˆμ •μ΄λ‹€. λ˜ν•œ μ΄ˆμ€‘μ§ˆμœ κ°€ 전체 맀μž₯λŸ‰μ— ν¬ν•¨λ˜λ©΄μ„œ λ² λ„€μˆ˜μ—˜λΌμ˜ μ„μœ  맀μž₯λŸ‰μ€ 1995λ…„ 644μ–΅ 배럴 μˆ˜μ€€μ—μ„œ 2013λ…„ 2,975μ–΅ 배럴 μˆ˜μ€€μœΌλ‘œ κΈ‰μƒμŠΉν–ˆλ‹€. μœ κ°€ λ˜ν•œ 졜근 λ°°λŸ΄λ‹Ή 100 λ‹¬λŸ¬ μˆ˜μ€€μ—μ„œ μ•ˆμ •μ μœΌλ‘œ μœ μ§€λ˜κ³  μžˆλ‹€. κ·Έ κ²°κ³Ό λ² λ„€μˆ˜μ—˜λΌλŠ” 2010λ…„ 이후 λΌν‹΄μ•„λ©”λ¦¬μΉ΄μ—μ„œ μ§€μ†μ μœΌλ‘œ κ²½μƒμˆ˜μ§€ ν‘μžλ₯Ό λ‚΄λŠ” 거의 μœ μΌν•œ λ‚˜λΌκ°€ λ˜μ—ˆλ‹€

    μΏ λ°”μ˜ 지정학적 κ°€μΉ˜μ™€ ν•œκ΅­μ˜ 싀리

    Get PDF
    λ―Έκ΅­κ³Ό μΏ λ°”κ°€ 관계 κ°œμ„ μ„ μ‹œμž‘ν•œ 이후 세계가 λ‹€μ‹œ μΏ λ°”λ₯Ό μ£Όλͺ©ν•˜κ³  μžˆλ‹€. μš°λ¦¬λ‚˜λΌ λ˜ν•œ λΌν‹΄μ•„λ©”λ¦¬μΉ΄μ˜ λ§ˆμ§€λ§‰ 남은 미수ꡐꡭ 쿠바에 큰 관심을 기울이기 μ‹œμž‘ν–ˆλ‹€. κ·ΈλŸ¬λ‚˜ μΏ λ°”λŠ” 사싀 인ꡬ 1,100만 λͺ…, λ…„ GDP 규λͺ¨ 1,200μ–΅ λ‹¬λŸ¬κ°€ 쑰금 λ„˜λŠ” 카리브 ν•΄μ˜ μž‘μ€ λ‚˜λΌμ΄λ‹€. 인ꡬ 규λͺ¨λ‘œλ³΄λ‚˜, GDP규λͺ¨λ‘œ λ³΄λ‚˜ 라틴아메리카 33개ꡭ 쀑 10번째 정도 규λͺ¨μ˜ λ‚˜λΌμ— λΆˆκ³Όν•˜λ‹€. λΌν‹΄μ•„λ©”λ¦¬μΉ΄μ˜ 3λŒ€κ΅­(브라질, λ©•μ‹œμ½”, μ•„λ₯΄ν—¨ν‹°λ‚˜)은 물둠이고, 4쀑견ꡭ(페루, λ² λ„€μˆ˜μ—˜λΌ, μ½œλ‘¬λΉ„μ•„, 칠레)에도 μ†ν•˜μ§€ λͺ»ν•œλ‹€. λΌν‹΄μ•„λ©”λ¦¬μΉ΄μ—μ„œ 쿠바와 μœ μ‚¬ν•œ 규λͺ¨μ˜ λ‚˜λΌλ‘œλŠ” 에콰도λ₯΄λ‚˜ κ³Όν…Œλ§λΌ 정도가 μžˆλ‹€. 일인당 GDP도 PPPκΈ°μ€€μœΌλ‘œ 10,000λ‹¬λŸ¬λ₯Ό 쑰금 λ„˜λŠ” μˆ˜μ€€μœΌλ‘œ 라틴아메리카 κΈ°μ€€μ—μ„œλ„ λΉˆκ΅­μ— μ†ν•œλ‹€. κ·ΈλŸ¬λ‚˜ μΏ λ°”μ˜ μ‘΄μž¬κ°μ€ 그런 μ™Έν˜•μ μΈ κ΅­κ°€ 규λͺ¨μ— λΉ„ν•΄ 훨씬 λ‘λ“œλŸ¬μ§„λ‹€. κ·Έλ ‡λ‹€λ©΄ μΏ λ°”μ˜ νŠΉλ³„ν•¨μ€ 무엇이며, μ„Έκ³„λŠ” μ™œ 쿠바에 μ£Όλͺ©ν•˜λŠ”κ°€
    • …
    corecore