112 research outputs found

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    MOSAR: A Soft-Assistive Mobilizer for Upper Limb Active Use and Rehabilitation

    Get PDF
    In this study, a soft assisted mobilizer called MOSAR from (Mobilizador Suave de Asistencia y Rehabilitación) for upper limb rehabilitation was developed for a 11 years old child with right paretic side. The mobilizer provides a new therapeutic approach to augment his upper limb active use and rehabilitation, by means of exerting elbow (flexion-extension), forearm (pronation-supination) and (flexion-extension along with ulnar-radial deviations) at the wrist. Preliminarily, the design concept of the soft mobilizer was developed through Reverse Engineering of his upper limb: first casting model, silicone model, and later computational model were obtained by 3D scan, which was the parameterized reference for MOSAR development. Then, the manufacture of fabric inflatable soft actuators for driving the MOSAR system were carried out. Lastly, a law close loop control for the inflation-deflation process was implemented to validate FISAs performance. The results demonstrated the feasibility and effectiveness of the FISAs for being a functional tool for upper limb rehabilitation protocols by achieving those previous target motions similar to the range of motion (ROM) of a healthy person or being used in other applications

    A fabric-based soft hand exoskeleton for assistance: the ExHand Exoskeleton

    Get PDF
    INTRODUCTION: The rise of soft robotics has driven the development of devices for assistance in activities of daily living (ADL). Likewise, different types of actuation have been developed for safer human interaction. Recently, textile-based pneumatic actuation has been introduced in hand exoskeletons for features such as biocompatibility, flexibility, and durability. These devices have demonstrated their potential use in assisting ADLs, such as the degrees of freedom assisted, the force exerted, or the inclusion of sensors. However, performing ADLs requires the use of different objects, so exoskeletons must provide the ability to grasp and maintain stable contact with a variety of objects to lead to the successful development of ADLs. Although textile-based exoskeletons have demonstrated significant advancements, the ability of these devices to maintain stable contact with a variety of objects commonly used in ADLs has yet to be fully evaluated. MATERIALS AND METHODS: This paper presents the development and experimental validation in healthy users of a fabric-based soft hand exoskeleton through a grasping performance test using The Anthropomorphic Hand Assessment Protocol (AHAP), which assesses eight types of grasping with 24 objects of different shapes, sizes, textures, weights, and rigidities, and two standardized tests used in the rehabilitation processes of post- stroke patients. RESULTS AND DISCUSSION: A total of 10 healthy users (45.50 ± 14.93 years old) participated in this study. The results indicate that the device can assist in developing ADLs by evaluating the eight types of grasps of the AHAP. A score of 95.76 ± 2.90% out of 100% was obtained for the Maintaining Score, indicating that the ExHand Exoskeleton can maintain stable contact with various daily living objects. In addition, the results of the user satisfaction questionnaire indicated a positive mean score of 4.27 ± 0.34 on a Likert scale ranging from 1 to 5

    Machine-Knitted Seamless Pneumatic Actuators for Soft Robotics: Design, Fabrication, and Characterization

    Get PDF
    Computerized machine knitting offers an attractive fabrication technology for incorporating wearable assistive devices into garments. In this work, we utilized, for the first time, whole-garment knitting techniques to manufacture a seamless fully knitted pneumatic bending actuator, which represents an advancement to existing cut-and-sew manufacturing techniques. Various machine knitting parameters were investigated to create anisotropic actuator structures, which exhibited a range of bending and extension motions when pressurized with air. The functionality of the actuator was demonstrated through integration into an assistive glove for hand grip action. The achieved curvature range when pressurizing the actuators up to 150 kPa was sufficient to grasp objects down to 3 cm in diameter and up to 125 g in weight. This manufacturing technique is rapid and scalable, paving the way for mass-production of customizable soft robotics wearables

    A soft, synergy-based robotic glove for grasping assistance

    Get PDF
    This paper presents a soft, tendon-driven, robotic glove designed to augment grasp capability and provide rehabilitation assistance for postspinal cord injury patients. The basis of the design is an underactuation approach utilizing postural synergies of the hand to support a large variety of grasps with a single actuator. The glove is lightweight, easy to don, and generates sufficient hand closing force to assist with activities of daily living. Device efficiency was examined through a characterization of the power transmission elements, and output force production was observed to be linear in both cylindrical and pinch grasp configurations. We further show that, as a result of the synergy-inspired actuation strategy, the glove only slightly alters the distribution of forces across the fingers, compared to a natural, unassisted grasping pattern. Finally, a preliminary case study was conducted using a participant suffering from an incomplete spinal cord injury (C7). It was found that through the use of the glove, the participant was able to achieve a 50% performance improvement (from four to six blocks) in a standard Box and Block test

    A fabric-based soft hand exoskeleton for assistance: the ExHand Exoskeleton

    Get PDF
    Introduction: The rise of soft robotics has driven the development of devices for assistance in activities of daily living (ADL). Likewise, different types of actuation have been developed for safer human interaction. Recently, textile-based pneumatic actuation has been introduced in hand exoskeletons for features such as biocompatibility, flexibility, and durability. These devices have demonstrated their potential use in assisting ADLs, such as the degrees of freedom assisted, the force exerted, or the inclusion of sensors. However, performing ADLs requires the use of different objects, so exoskeletons must provide the ability to grasp and maintain stable contact with a variety of objects to lead to the successful development of ADLs. Although textile-based exoskeletons have demonstrated significant advancements, the ability of these devices to maintain stable contact with a variety of objects commonly used in ADLs has yet to be fully evaluated. Materials and methods: This paper presents the development and experimental validation in healthy users of a fabric-based soft hand exoskeleton through a grasping performance test using The Anthropomorphic Hand Assessment Protocol (AHAP), which assesses eight types of grasping with 24 objects of different shapes, sizes, textures, weights, and rigidities, and two standardized tests used in the rehabilitation processes of post- stroke patients. Results and discussion: A total of 10 healthy users (45.50 ± 14.93 years old) participated in this study. The results indicate that the device can assist in developing ADLs by evaluating the eight types of grasps of the AHAP. A score of 95.76 ± 2.90% out of 100% was obtained for the Maintaining Score, indicating that the ExHand Exoskeleton can maintain stable contact with various daily living objects. In addition, the results of the user satisfaction questionnaire indicated a positive mean score of 4.27 ± 0.34 on a Likert scale ranging from 1 to 5

    A Linear Actuator/Spring Steel-Driven Glove for Assisting Individuals with Activities of Daily Living

    Get PDF
    Over three million people in the U.S. suffer from forearm and hand disabilities. This can result from aging, neurological disorders (e.g., stroke), chronic disease (e.g., arthritis), and injuries. Injuries to hands comprise one-third of all work-related injuries worldwide. This can lead to difficulties with activities of daily living (ADL), where one needs to grasp, lift, and release objects in the household. There is a rise in demand for assistive orthoses and gloves that can allow many people to regain their grasping/releasing ability and, thereby, their independence. The main contribution of this thesis is developing an assistive glove with the actuating mechanism comprised of linear actuators and strips of spring steel to enable bidirectional motion of users\u27 fingers during ADL. The target group of people to use this proposed actuation system was chosen to those who had only diminished hand grasping capabilities. There are already many different gloves in the market. Each one uses different methods of actuation and force transmission, as well as different control methods. These gloves were analyzed by looking at their actuation mechanisms, control systems, and the benefits and downfalls of each one. Vigorous testing was conducted to choose the most effective components for the actuating mechanism. Then, an assistive glove was fabricated which included a control system box that could be easily worn on the forearm of the user. Tests were conducted on the glove to test its effectiveness when the user’s hand was completely passive using four to six participants. Motion capture, force, and electromyography (EMG) data were collected and from those, range of finger motion, maximum grasping capabilities, maximum force generation, and muscle activity were analyzed. The glove was shown to actuate the fingers enough to grasp objects with different sizes ranging in diameter from 40mm to 80mm, with maximum possible weight able to be picked up being around 1000g for the larger sizes. The glove could generate 4N-5N to the index and middle fingers and 10N to the thumb. EMG analysis showed that using the glove to pick up heavy objects caused a decrease in muscle activity of up to 80%. From this analysis, it was shown that the glove has potential to assist with ADL and would provide greater independence for those with diminished hand grasping abilities
    • …
    corecore