550 research outputs found

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Cost-Based Droop Schemes for Economic Dispatch in Islanded Microgrids

    Get PDF
    In this paper, cost-based droop schemes are proposed, to minimize the total active power generation cost in an islanded microgrid (MG), while the simplicity and decentralized nature of the droop control are retained. In cost-based droop schemes, the incremental costs of distributed generators (DGs) are embedded into the droop schemes, where the incremental cost is a derivative of the DG cost function with respect to output power. In the steady state, DGs share a single common frequency, and cost-based droop schemes equate incremental costs of DGs, thus minimizing the total active power generation cost, in terms of the equal incremental cost principle. Finally, simulation results in an islanded MG with high a penetration of intermittent renewable energy sources are presented, to demonstrate the effectiveness, as well as plug and play capability of the cost-based droop schemes.Feixiong Chen, Minyou Chen, Qiang Li, Kaikai Meng, Yongwei Zheng, Josep M. Guerrero, Derek Abbot

    Optimal allocation and operation of droop controlled islanded microgrids: a review

    Get PDF
    Copyright: © 2021 by the authors. This review paper provides a critical interpretation and analysis of almost 150 dedicated optimization research papers in the field of droop-controlled islanded microgrids. The significance of optimal microgrid allocation and operation studies comes from their importance for further deployment of renewable energy, reliable and stable autonomous operation on a larger scale, and the electrification of rural and isolated communities. Additionally, a comprehensive overview of islanded microgrids in terms of structure, type, and hierarchical control strategy was presented. Furthermore, a larger emphasis was given to the main optimization problems faced by droop-controlled islanded microgrids such as allocation, scheduling and dispatch, reconfiguration, control, and energy management systems. The main outcome of this review in relation to optimization problem components is the classification of objective functions, constraints, and decision variables into 10, 9 and 6 distinctive categories, respectively, taking into consideration the multi-criteria decision problems as well as the optimization with uncertainty problems in the classification criterion. Additionally, the optimization techniques used were investigated and identified as classical and artificial intelligence algorithms with the latter gaining popularity in recent years. Lastly, some future trends for research were put forward and explained based on the critical analysis of the selected papers

    A Study on the Hierarchical Control Structure of the Islanded Microgrid

    Get PDF
    The microgrid is essential in promoting the power system’s resilience through its ability to host small-scale DG units. Furthermore, the microgrid can isolate itself during main grid faults and supply its demands. However, islanded operation of the microgrid is challenging due to difficulties in frequency and voltage control. In islanded mode, grid-forming units collaborate to control the frequency and voltage. A hierarchical control structure employing the droop control technique provides these control objectives in three consecutive levels: primary, secondary, and tertiary. However, challenges associated with DG units in the vicinity of distribution networks limit the effectiveness of the islanded mode of operation.In MV and LV distribution networks, the X/R ratio is low; hence, the frequency and voltage are related to the active and reactive power by line parameters. Therefore, frequency and voltage must be tuned for changes in active or reactive powers. Furthermore, the line parameters mismatch causes the voltage to be measured differently at each bus due to the different voltage drops in the lines. Hence, a trade-off between voltage regulation and reactive power-sharing is formed, which causes either circulating currents for voltage mismatch or overloading for reactive power mismatch. Finally, the economic dispatch is usually implemented in tertiary control, which takes minutes to hours. Therefore, an estimation algorithm is required for load and renewable energy quantities forecasting. Hence, prediction errors may occur that affect the stability and optimality of the control. This dissertation aims to improve the power system resilience by enhancing the operation of the islanded microgrid by addressing the above-mentioned issues. Firstly, a linear relationship described by line parameters is used in droop control at the primary control level to accurately control the frequency and voltage based on measured active and reactive power. Secondly, an optimization-based consensus secondary control is presented to manage the trade-off between voltage regulation and reactive power-sharing in the inductive grid with high line parameters mismatch. Thirdly, the economic dispatch-based secondary controller is implemented in secondary control to avoid prediction errors by depending on the measured active and reactive powers rather than the load and renewable energy generation estimation. The developed methods effectively resolve the frequency and voltage control issues in MATLAB/SIMULINK simulations

    Distributed Control Strategies for Microgrids: An Overview

    Get PDF
    There is an increasing interest and research effort focused on the analysis, design and implementation of distributed control systems for AC, DC and hybrid AC/DC microgrids. It is claimed that distributed controllers have several advantages over centralised control schemes, e.g., improved reliability, flexibility, controllability, black start operation, robustness to failure in the communication links, etc. In this work, an overview of the state-of-the-art of distributed cooperative control systems for isolated microgrids is presented. Protocols for cooperative control such as linear consensus, heterogeneous consensus and finite-time consensus are discussed and reviewed in this paper. Distributed cooperative algorithms for primary and secondary control systems, including (among others issues) virtual impedance, synthetic inertia, droop-free control, stability analysis, imbalance sharing, total harmonic distortion regulation, are also reviewed and discussed in this survey. Tertiary control systems, e.g., for economic dispatch of electric energy, based on cooperative control approaches, are also addressed in this work. This review also highlights existing issues, research challenges and future trends in distributed cooperative control of microgrids and their future applications

    Self-organizing Coordination of Multi-Agent Microgrid Networks

    Get PDF
    abstract: This work introduces self-organizing techniques to reduce the complexity and burden of coordinating distributed energy resources (DERs) and microgrids that are rapidly increasing in scale globally. Technical and financial evaluations completed for power customers and for utilities identify how disruptions are occurring in conventional energy business models. Analyses completed for Chicago, Seattle, and Phoenix demonstrate site-specific and generalizable findings. Results indicate that net metering had a significant effect on the optimal amount of solar photovoltaics (PV) for households to install and how utilities could recover lost revenue through increasing energy rates or monthly fees. System-wide ramp rate requirements also increased as solar PV penetration increased. These issues are resolved using a generalizable, scalable transactive energy framework for microgrids to enable coordination and automation of DERs and microgrids to ensure cost effective use of energy for all stakeholders. This technique is demonstrated on a 3-node and 9-node network of microgrid nodes with various amounts of load, solar, and storage. Results found that enabling trading could achieve cost savings for all individual nodes and for the network up to 5.4%. Trading behaviors are expressed using an exponential valuation curve that quantifies the reputation of trading partners using historical interactions between nodes for compatibility, familiarity, and acceptance of trades. The same 9-node network configuration is used with varying levels of connectivity, resulting in up to 71% cost savings for individual nodes and up to 13% cost savings for the network as a whole. The effect of a trading fee is also explored to understand how electricity utilities may gain revenue from electricity traded directly between customers. If a utility imposed a trading fee to recoup lost revenue then trading is financially infeasible for agents, but could be feasible if only trying to recoup cost of distribution charges. These scientific findings conclude with a brief discussion of physical deployment opportunities.Dissertation/ThesisDoctoral Dissertation Systems Engineering 201

    Coordinated Active Power Dispatch for a Microgrid via Distributed Lambda Iteration

    Get PDF

    Microgrid optimization, modelling and control

    Get PDF
    2014 Fall.To view the abstract, please see the full text of the document

    Identification and development of microgrids emergency control procedures

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    • …
    corecore