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ABSTRACT
A STUDY ON THE HIERARCHICAL CONTROL

STRUCTURE OF THE ISLANDED
MICROGRID

Fahad Alshammari

Marquette University, 2022

The microgrid is essential in promoting the power system’s resilience through
its ability to host small-scale DG units. Furthermore, the microgrid can isolate it-
self during main grid faults and supply its demands. However, islanded operation
of the microgrid is challenging due to difficulties in frequency and voltage control.
In islanded mode, grid-forming units collaborate to control the frequency and volt-
age. A hierarchical control structure employing the droop control technique pro-
vides these control objectives in three consecutive levels: primary, secondary, and
tertiary. However, challenges associated with DG units in the vicinity of distribu-
tion networks limit the effectiveness of the islanded mode of operation.

In MV and LV distribution networks, the X/R ratio is low; hence, the fre-
quency and voltage are related to the active and reactive power by line param-
eters. Therefore, frequency and voltage must be tuned for changes in active or
reactive powers. Furthermore, the line parameters mismatch causes the voltage
to be measured differently at each bus due to the different voltage drops in the
lines. Hence, a trade-off between voltage regulation and reactive power sharing
is formed, which causes either circulating currents for voltage mismatch or over-
loading for reactive power mismatch. Finally, the economic dispatch is usually
implemented in tertiary control, which takes minutes to hours. Therefore, an esti-
mation algorithm is required for load and renewable energy quantities forecasting.
Hence, prediction errors may occur that affect the stability and optimality of the
control.

This dissertation aims to improve the power system resilience by enhanc-
ing the operation of the islanded microgrid by addressing the above-mentioned
issues. Firstly, a linear relationship described by line parameters is used in droop
control at the primary control level to accurately control the frequency and voltage
based on measured active and reactive power. Secondly, an optimization-based
consensus secondary control is presented to manage the trade-off between voltage
regulation and reactive power sharing in the inductive grid with high line pa-
rameters mismatch. Thirdly, the economic dispatch-based secondary controller is
implemented in secondary control to avoid prediction errors by depending on the
measured active and reactive powers rather than the load and renewable energy
generation estimation. The developed methods effectively resolve the frequency
and voltage control issues in MATLAB/SIMULINK simulations.
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∆ωmax Maximum allowable change of angular frequency [rad/sec]

∆ f Change of frequency [Hz]

∆V Change of voltage [Volts]

∆Vmax Maximum allowable change of voltage [Volts]

δ Voltage phase angle [rad]

δωi Secondary corrective term for angular frequency at unit i [rad/sec]

δVi Secondary corrective term for voltage at unit i [Volts]

ωi Angular frequency at unit i [rad/sec]

ωnom nominal angular frequency [rad/sec]

θ Line impedance phase angle [rad]

τ Step size
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CHAPTER 1
INTRODUCTION

1.1 Significance of the Research Topic

Today’s modern societies are heavily dependent on the electrical power sec-

tor. It is considered a critical infrastructure that provides an ” Enabling function”

to other critical infrastructures such as water, gas, transportation, telecommuni-

cation, and safety. Therefore, a large-scale power outage has catastrophic conse-

quences and costs the economy tens of billions of dollars.

There are three main causes of power outages: natural disasters, technical

problems, and human-made power outages [1]. Climate change drives an increase

in major weather-related power outages. Figure 1.1 shows the major power out-

ages for the weather- and non-weather-related power outages. Extreme weather

conditions are considered high-impact and low-probability (HILP) events that im-

pact the power system’s resilience. Severe weather conditions are expected to in-

crease in the future [2]. Such events are usually ignored in reliability-based studies.

Therefore, the concept of resilience was introduced into power system studies to

provide more realistic modeling of the power system. The power system is not

only supposed to be reliable but also resilient against major power outages.

The IEEE Technical Report PES-TR65 defines resilience as “The ability to

withstand and reduce the magnitude and/or duration of a disruptive event.”[3].

It also comments on the key features that differentiate between resilience and reli-

ability as follows:

• Resilience involves all events, including HILP events, that are normally ex-

cluded from reliability calculations.
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Figure 1.1: Annual number of reported weather- and non-weather-related power
outages in the U.S., 1984–2012.

• Resilience considers the transition time between the power system states,

while reliability focuses only on the states where the power system ends up.

Therefore, resilience requires the characterization of the preparation before

events, the operational processes during them, and the response after them.

• Resilience captures the effects on the customer (similar to reliability), opera-

tors, and infrastructure.

For an occurrence of an event, the resilience of the power system includes short-

and long-term features. Therefore, the resilience evaluation is classified accord-

ing to the time of occurrence relative to the event in terms of planning, response,

and restoration [4]. Resilience-based planning covers all long-term measures, in-

cluding plant management, underground cables, and the design of power system

hardware. The resilience-based response focuses on preventive and emergency re-

sponses, including day-to-day and real-time measures. Resilience-based restora-

tion concentrates on recovery measures in the system. Figure 1.2 shows the clas-

sification of the power system’s resilience relative to the time of event occurrence

[1].
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Figure 1.2: Classification of power system resilience in terms of the time of an
event’s occurrence.

The microgrid is a crucial solution to improve the power system’s resilience

in all aspects [1]. For example, the ability of the microgrid to integrate small-scale

DG units enhances the power system’s resilience with resilience-based planning.

Furthermore, the ability of the microgrid to isolate itself during faults in the main

grid improves resilience through a resilience-based response [5]. The microgrid

also improves resilience-based restoration through black-start algorithms that con-

sider the microgrid as a black-start power supply. Furthermore, the improvement

in the resilience of the power system through microgrids was proven during Hur-

ricane Sandy, and the Sendai microgrid during the Great East Japan Earthquake

[6].

The global market for microgrids is growing from $19.3 billion in 2018 and

is expected to reach $36.3 billion in 2024, representing a growth of 10.9 %, as shown

in Figure 1.3 [7]. A new report by Guidehouse Insights predicts the growth of

clean energy microgrid capacity from 4,288.8 MW in 2022 to 20,053.9 MW in 2031
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Figure 1.3: The microgrid world market by region from 2015 to 2024.

[8]. According to the report, the main drivers of growth include the reduction of

energy storage costs, upgrades of microgrid controllers, the overall impulsion for

modular microgrids, and the potential energy offsets that remote microgrids can

provide. However, the main barriers are complications with renewable energy

deployments, a lack of agreement on the value of resilience, long delays during

microgrid interconnections, and compatibility issues.

The islanded microgrid is a challenging mode of operation that can limit

the advantages of microgrids to improve the resilience of the power system. In an

islanded microgrid, the frequency and voltage are controlled within the microgrid

itself. Grid-forming units collaborate to provide these functionalities using droop

control characteristics in a hierarchical control structure [9]. The control system

of the grid-forming units contains primary, secondary, and tertiary levels of hier-

archy. The functions of each level in the islanded microgrid are shown in Figure

1.4. The primary control, which has the fastest response, maintains the stability

of frequency and voltage control and ensures appropriate power-sharing between

units. Secondary control is required to compensate for the deviations in frequency
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Figure 1.4: The hierarchical control structure.

and voltage caused by primary control. Tertiary control is mainly dedicated to the

microgrid energy management system, which provides economical operation of

the microgrid with the use of various optimization methods [10].

The application of the hierarchical control structure in the microgrid, which

is usually located in distribution systems, limits the effectiveness of an islanded

microgrid during a power outage on the main grid. These limitations include in-

stability in frequency and voltage control, unequal power-sharing between units,

and the lack of economic consideration for grid-forming units during the island

mode of operation [10]. This dissertation focuses on improvements in the hierar-

chical control structure through improvements in these three aspects of operation

in islanded microgrids.

At the primary control level, the droop control is utilized to set the fre-

quency and control level based on changes in the measured active and reactive

power. In an inductive grid, the frequency is related to the active power and the

voltage to the reactive power. However, the grid has a mixed impedance in the

distribution network, and coupling between voltage and frequency occurs. Virtual
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impedance is used by feeding the output current through an artificial impedance,

in which the grid is considered inductive and then added to the reference voltage

[11, 12]. A similar technique is used to show the grid as resistive in a low-voltage

grid [13]. However, virtual impedance techniques are designed for static systems

where modification of the system configuration is not considered. Furthermore,

virtual impedance elements require a thorough design to avoid current spikes at

the initial connection of the DG unit [14]. Furthermore, a virtual frame transfor-

mation method is utilized by transferring the active and reactive power to a new

reference frame to eliminate the coupling between them. The droop control is then

applied using the transformed power quantities [15, 16]. However, the line pa-

rameters are required to be given in advance or can be estimated. In addition,

transformed quantities of active and reactive power are a function of real active

and reactive power. Therefore, the droop control coefficients are designed to share

transformed quantities rather than real quantities, degrading the power-sharing

accuracy.

At the secondary control level, the secondary control restores the voltage

and frequency to their nominal values. However, when there is a line parame-

ter mismatch in the inductive grid, the voltage drop in the lines causes the grid-

forming units to contribute reactive power differently. Therefore, when the sec-

ondary control objective is designed to restore the voltage to its nominal value,

reactive power sharing is mismatched, and the units share reactive power be-

yond their ratings. When the secondary control objective is to share the reactive

power equally between units, the voltage is mismatched, and the circulating cur-

rents flow between units. Some work has been done on accurately sharing reactive

power while bounding the voltage to limits in a consensus manner[17, 18, 19, 20].

In [20], two alternative output limitation methods were used to deal with volt-

age or reactive power-sharing limits for a consensus-based approach. However,
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all DGs must be connected to a common critical bus. The authors in [19] used

a predictive model control (MPC) to predict the optimal behavior of DG units in

terms of voltage regulation and power-sharing and to share it with neighboring

units described by the communication graph. Power transfer equations were used

to predict active and reactive power generation in coupling elements, and droop

control equations were used to predict the optimal behavior of the DG units. The

technical constraints, including limits for voltage and power capacity, were en-

forced by the MPC. However, the average voltage and frequency values for all

units are required, which requires the unit to communicate with all other units to

share extensive information. In [18], an optimization function was implemented

to minimize the trade-off between voltage regulation and the sharing of reactive

power subject to technical constraints of the DG output, including voltage limits

and reactive power capacity. However, the controller requires the line parameters

between the connected DGs, which is not practical in distribution systems. The

work in [17] implements two PI controllers for the secondary control level to keep

the voltage within a predefined range (containment-based controller) and main-

tain precise reactive power-sharing (consensus-based controller). However, when

precise reactive power-sharing cannot be maintained for the given voltage range,

settings are required to either enlarge the voltage range of the containment-based

controller to maintain precise reactive power-sharing or set the error saturation for

the consensus-based controller to allow a reactive power-sharing mismatch while

keeping the voltage range intact. Only the leader units can access the lower and

upper bounds of the voltage.

For the tertiary control level, the economic aspects are incorporated into is-

landed microgrid operation with either economic dispatch-based or optimal power

flow-based methods. Optimal power flow considers a variety of objective func-

tions subject to a range of constraints for all buses [21, 22, 23]. Optimal power
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flow-based techniques are usually done offline due to the non-convexity of opti-

mal power flow and the need for linear approximation or convex relaxation tech-

niques [24]. In contrast, in economic dispatch [25, 26, 27], units with different cost

coefficients are dispatched based on the lowest price, considering the maximum

capacity of the committed units and satisfying the equality of power balance. Eco-

nomic dispatch methods only consider generation units. Therefore, the economic

dispatch approach is more suitable for real-time applications. In [25], an economic

dispatch algorithm was proposed to dispatch active power in real-time; however,

grid-forming units were not considered. The authors in [27] propose a secondary

controller based on economic dispatch in real time for an islanded microgrid that

dispatches active power in correlation with frequency without considering reac-

tive power generation and voltage control.

1.2 Problem Statements

This dissertation aims to improve the operation of the islanded microgrid

by addressing three issues at all three levels of the hierarchical control structure,

including the primary, secondary, and tertiary levels, as follows

At the primary control level, the frequency and voltage are related to the

active and reactive power through a nonlinear relationship because of the mixed

impedance of the line. Thus, the accuracy of droop control equations is reduced,

causing instability of frequency and voltage control. This dissertation aims to im-

plement a linear relationship described by line parameters to be used in droop

control to improve the accuracy of power-sharing, thereby enhancing the stability

of frequency and voltage controls.

At the secondary control level applied to the inductive grid, line parame-

ter mismatches cause the voltage to be measured differently in each grid-forming

unit. Therefore, there is a trade-off between voltage regulation and reactive power-
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sharing. This dissertation aims to employ an optimization method to manage the

trade-off between these variables in the minimum communication link between

the grid-forming units.

The tertiary control level is responsible for the economic operation of the

islanded microgrid. It has a time constant of minutes to hours. Therefore, an

estimation algorithm is required to estimate the load and generation of renewable

energy. Therefore, an estimation error may occur and affect the efficiency of the

economic dispatch algorithm. This dissertation aims to eliminate the prediction

error in an economic dispatch by integrating the economic dispatch algorithm in

the secondary control level and eliminating the need for an estimation algorithm.

1.3 Dissertation Organization

This dissertation includes three independent topics to improve the islanded

operation of the microgrid through a hierarchical control structure. The first topic

is to improve the frequency and voltage stability in the microgrid at the primary

control level. The second topic focuses on the power-sharing issue that occurs in

secondary control. Finally, the issue of prediction error in economic dispatch is the

subject of the third topic.

Chapter 2 surveys the literature on the role of microgrids in improving the

resilience of the power system, the concept of microgrids, and the hierarchical con-

trol structure applied to the islanded microgrid. Furthermore, it discusses issues

related to hierarchical control structures.

Chapter 3 explains the primary control level of the islanded microgrid in the

context of hierarchical control structures. Furthermore, it shows the implemen-

tation of the generalized droop controller that solves the issue of the non-linear

coupling control between frequency and voltage at the primary control level.
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In Chapter 4, the role of secondary control is demonstrated in the hierarchi-

cal control structure of the islanded microgrid. In addition, distributed secondary

controllers based on averaging and consensus optimization are presented to man-

age the trade-off between voltage regulation and reactive power-sharing in the

inductive grid of the microgrid.

Chapter 5 demonstrates the economic operation applied by the tertiary con-

trol level to the islanded microgrids. Consequently, it shows the implementation

of the economic dispatch-based secondary controller to overcome the economic

dispatch prediction error in the islanded microgrid.

Chapter 6 validates the scalability of the proposed controllers by evaluating

their functionalities with the CIGRE North America Microgrid Benchmark System.

Chapter 7 concludes the dissertation by summarizing the content and pre-

senting future work and recommendations.

Finally, Appendices A, B, and C serve as supporting material for the content

of this dissertation.
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CHAPTER 2
LITERATURE REVIEW

This chapter provides an overview of the relevant literature that focuses

on the topic of the dissertation. The importance of microgrids in improving the

resilience of the power system is reviewed in the first section. Then, the concept

and related literature on microgrids are presented. Finally, the hierarchical control

structure of the microgrid and related issues in islanded mode are discussed and

reviewed.

2.1 Microgrid Role in Improving Power System Resilience

The resilience of power systems is defined by the North America Transmis-

sion Forum (NATF) as “The ability of the system and its components (i.e., both

the equipment and human components) to minimize damage and improve recov-

ery from non-routine disruptions, including high impact, low probability (HILP)

events, in a reasonable amount of time.” [28]. Events such as cyber-attacks, physi-

cal attacks, severe weather, wildfires, and fuel delivery failures are examples of the

HILP intended in resilience studies. Resilience aims to enable the power system

to handle such events. The U.S. Department of Energy addresses some challenges

associated with resilience in grid modernization initiatives as follows[29]:

• Ensuring a safe energy supply chain and delivery systems.

• Mitigating vulnerabilities related to interdependencies between the electric-

ity grid and other infrastructure.

• Increasing the availability of the system through current technologies, ar-

chitectures, and computing tools as the grid continues to evolve with the

addition of new technologies.
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• Understanding the human-machine interface and the effect of human behav-

ior, including social, physical, and economic impacts.

• Facilitate decisions and visualization tools for disaster prevention and recov-

ery by developing new analytical methods.

The typical performance of a more resilient power system during events

compared to a traditional one is shown in Figure 2.1. Improvement in the resilience

of the power system can be made according to three time-based categories, known

as resilience-based planning, response, and restoration [4]. Resilience-based plan-

ning is a long-term factor that concentrates on the infrastructure of the power sys-

tem and includes hardware- and software-based approaches [30]. The resilience-

based response focuses on the adaptability of the power system, including pre-

ventive and emergency responses. Resilience-based restoration tends to restore

the power system to its pre-event state with minimum restoration time, such as

black-start algorithms [31].

Figure 2.1: The performance levels of a resilient power system in the face of a
disruptive event.
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The microgrid plays an important role in enhancing these measures in many

ways, including its ability to be isolated, ancillary services, and energy reserves.

The Grid Modernization initiative implemented by the U.S. Department of En-

ergy has invested in a number of resilience-related projects, including ”Industrial

Microgrid Analysis and Design for Energy Security and Resiliency”. The project

aims to investigate, develop and analyze the risks, costs, and benefits of a micro-

grid at the UPS World Port and Centennial Hub facilities in Louisville, Kentucky

[29]. Several studies have indicated the importance of microgrids in improving

the resilience of power systems [32, 33]. The authors in [1] reviewed approaches,

methods, and techniques, as well as future trends, to improve the resilience of the

power system in the three categories. Their research emphasized the importance of

microgrids and DERs in improving the resilience of different aspects of the power

system.

2.1.1 Resilience-based Planning

Resilience-oriented planning is an important aspect that lays the founda-

tion for a resilient power system. The microgrid improves resilience-based plan-

ning through hardware- and software-based planning by integrating DERs and

energy storage units, as well as by operating the distribution system as a multi-

microgrid system. Furthermore, the microgrid allows the DERs to operate even

when the main grid is out. Therefore, these resources are not subject to disconnec-

tion during the main grid fault to provide energy to connected loads and maintain

continuity of supply. Investing in the integration of more DER and energy storage

units significantly improves the resilience of the power system [34].

Resilience-based planning includes the optimal allocation and sizing of DGs

in the distribution system and applies an appropriate control system to form mul-

tiple microgrids to accommodate the distribution system for HILP events. In [35],
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a stochastic-robust investment planning model was proposed to find the optimal

investment plan of microgrid resources to improve the resilience of microgrids

against HILP and low-impact, high-probability (LIHP) events. The authors in [36]

propose a planning strategy for the optimal location of DERs which divided the

distribution system into multi-microgrids based on load density to increase the

probability of critical loads being picked up after natural disasters. In [37], a ro-

bust sizing method and energy management scheme of multi-energy resource mi-

crogrids were proposed to minimize total annual expenses and boost system re-

silience during an extended grid outage. In terms of software-based planning, the

authors in [38] proposed a multi-controller software-defined networking (SDN) ar-

chitecture based on fog servers in multi-microgrids to improve the security, mon-

itoring, and control of the distribution system. Sedzro et al. [39] suggested a

methodology for the formation of microgrids in the distribution systems appli-

cable for general power network topologies, including radial and meshed config-

urations. The authors in [40] provided a quantitative analysis of the resilience of

the distribution systems with multiple microgrids and other resources to help the

distribution system operators in short-term planning and to justify the control ac-

tion.

2.1.2 Resilience-based Response

The resilience-based response is the first stage of the resilience-based opera-

tion. Preventive and emergency responses are day-ahead and real-time measures,

correspondingly, and both are included in resilience-based response [4]. The pre-

ventive response includes actions available before the disaster occurs, while the

emergency response includes the actions taken in the aftermath of a disaster. The

preventive response is a day-ahead plan of the power system to alleviate the im-

pact of HILP events after warning of them. The preventive response aims to prede-
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termine the optimal topology of the power system to improve the response while

encountering such events [4]. Emergency response, however, aims to pick up the

maximum number of critical loads during the events using available spanning and

complementary reserves planned the day ahead. The typical solution to improve

the resilience-based response is utilizing resilience resources.

Microgrids can be used as local and community resources. The local re-

source supplies the loads within the microgrid boundary, while the community

resource extends the supply to include the loads outside the microgrid bound-

ary. The study in [41] provided an evolution to use the microgrid as a resilient

resource in three specific configurations: local resource, community resource, and

black start resource. The study concluded that it was feasible to use a microgrid to

support operations during severe weather events. In [42], a novel metric analysis

framework for control and management was proposed to improve the resilience of

network microgrids, including metrics to assess voltage deviation, line loss, per-

formance, and the number of restored loads. Liu et al. [43] proposed four resilience

indices to measure the impact of extreme events. As a result of this work, a re-

lationship was implemented between the utilization of multiple microgrids and

grid resilience employing the Markov model and the Monte Carlo simulation ap-

proach. Chen et al. [44] proposed a novel approach to form multiple microgrids in

the distribution network energized by available DG units after natural disasters.

Mixed-integer linear programming was used to maximize the number of ener-

gized critical loads while satisfying operational constraints.

2.1.3 Resilience-based Restoration

The main objective of power system restoration is to serve the maximum

number of electrical loads at the minimum time of the duration of the power out-

age after HILP events. Restoring the power system after the main outage involves
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three stages: evaluation, system restoration, and load restoration. In the first step,

the system status assessment is performed. Then, the available resources are deter-

mined. Finally, the locations of the higher-priority loads are identified. DG units

enhance grid resilience by improving generation availability (e.g., fuel cells, mi-

croturbines, wind turbines, and photovoltaic panels). Furthermore, microgrids are

employed to efficiently manage these DGs as well as other resources to improve

restoration following natural disasters.

The microgrid is widely recognized as an efficient solution to restore the

power system after major events. Several studies have been proposed to restore

the power system using the microgrid [45, 46, 47]. In [48], a comprehensive review

of service restoration was carried out by forming microgrids in the distribution

system that included benefits, challenges, and future trends. The authors in [49]

proposed a two-stage plan to restore critical loads in the distribution network by

coordinating available microgrids. In the first stage, the post-disaster topology

of electrical islands is determined based on active microgrids in the distribution

system. In the second stage, an optimization problem based on the generalized

Benders decomposition is proposed to maximize the restored critical loads. Khed-

erzadeh et al. [50] suggested a method to improve the restoration of service in

distribution networks using a spinning tree search strategy after HILP events. A

combination of reconfiguration and application of microgrids is proposed to en-

hance the restoration capability of the distribution system.

2.2 The Concept of Microgrid

The microgrid is widely recognized as a promising solution to inject more

small-scale renewable energy resources into existing power systems. Furthermore,

the microgrid is a crucial factor in boosting the reliability and resilience of the

power system through its capabilities and characteristics. The microgrid employs
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DERs such as solar photovoltaics (PVs), wind generators, microturbines, and en-

ergy storage systems (ESSs) to supply their own loads and support grids as inde-

pendent entities. The U.S. Department of Energy defines the microgrid as “a group

of interconnected loads and distributed energy resources (DERs) within clearly de-

fined electrical boundaries that acts as a single controllable entity relative to the

grid and can connect and disconnect from the grid to allow it to operate in both

grid-connected or island modes” [51]. The microgrid can improve the operation of

the power system in both grid-connected and islanded modes of operation. Dur-

ing grid-connected mode, the microgrid can provide active and reactive power as

well as ancillary services to the main grid. While in islanded mode, the microgrid

is disconnected from the main grid in an emergency condition to supply the loads

connected to it [9].

The concept of microgrids has been extensively reviewed in the literature

[52, 53, 54, 55, 56]. In [52], a comprehensive review of the literature related to

microgrids and challenges was presented that included the application of DERs,

the grid-supporting functionalities of the microgrid, economic aspects, and other

related issues. The authors in [53] focused on the architecture, control, and relia-

bility considerations for the microgrid. Furthermore, some studies reviewed other

aspects of microgrid, such as control [9, 57, 58, 59, 60], communication [61], protec-

tion [62, 63, 64, 65], and energy management [66, 67].

2.2.1 Microgrid Architectures and Components

The microgrid is usually located in a small geographic area as part of the

distribution system. Therefore, integrating DERs within the distribution system

omits costly transmission power losses, as in the centralized power system paradigm.

However, these transformations increase the demand for different architectures

and components to run the microgrid efficiently.
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At the point of common coupling (PCC), which is the connection point to

the main grid, the microgrid can take its own architecture. The microgrid architec-

ture is classified into three types, namely, AC, DC, and hybrid microgrids. The AC

microgrid requires minimal modification of the existing distribution system due to

existing AC infrastructures. On the contrary, the increasing number of DC loads, as

well as the dominant DC energy storage systems and renewable energy resources,

impose the need for a DC architecture to reduce the number of power electron-

ics converters, which increases implementation costs and conversion losses [68].

However, the DC microgrid architecture introduces a whole set of challenges as-

sociated with its realization in terms of protection and control [69, 70]. As a com-

promise solution, the hybrid architecture was proposed to increase the efficiency

of the microgrid [71]. However, coordination between AC and DC in terms of

power flow and sharing remains an active research area [72]. Figure 2.2 shows the

architectures of the AC, DC, and hybrid microgrids.

(a) AC microgrid (b) DC microgrid (c) Hybrid microgrid

Figure 2.2: Microgrid architectures.

The microgrid consists of DERs, loads, and protection devices among con-

trol, communication, and automation systems [52]. DERs are small-scale energy
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resources that are distributed within the microgrid’s boundary to supply the con-

nected loads. DERs include DGs and ESSs. The combination of these resources re-

duces the uncertainty of renewable energy resources and improves the continuity

of the energy supply. DERs contained within a microgrid must comply with IEEE

Standard 1547 [73]. A variety of DG technologies are used in microgrids includ-

ing PV, wind turbines, fuel cells, biomass, small hydro-turbines, micro-turbines,

and diesel generators. ESSs vary in their energy and power densities. High power

density ESSs are required in microgrids to improve their stability because of their

fast response. High energy density is utilized for energy management [74, 75].

Figure 2.3 represents different ESS technologies and their energy and power den-

sities. Loads in the microgrid are categorized into two types: fixed and flexible

(also known as adjustable or responsive). Fixed loads must be satisfied under nor-

mal operating conditions, while flexible loads respond to control signals. Flexible

loads can be curtailed (i.e., curtailable loads) or deferred (i.e., shiftable loads) in

response to economic initiatives or islanding requirements. Flexible loads are the

essence of Demand Side Management (DSM) programs and initiatives. DSM is de-

fined by the U.S. Department of Energy as “changes in electric usage by end-use

customers from their normal consumption patterns in response to changes in the

price of electricity over time, or to incentive payments designed to induce lower

electricity use at times of high wholesale market prices or when system reliabil-

ity is jeopardized” [76]. DSM has several economic, environmental, and reliability

benefits. The benefits of DSM include reducing costs, alleviating electrical system

emergencies, reducing the number of blackouts, increasing system reliability, and

deferring high investments in the capacity of the generation, transmission, and dis-

tribution networks [77]. Control, communication, and automation systems among

protection devices are required to provide appropriate operation of the microgrid

in the grid-connected and islanded modes of operation.
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Figure 2.3: Power and energy densities of different energy storage devices.

2.2.2 Microgrid Operation

The key benefit of the microgrid resides in its operating capabilities. The

microgrid has two modes of operation: grid-connected and islanded. In grid-

connected mode, the microgrid supports the main grid by supplying it and ancil-

lary services, while, in islanded mode, the microgrid can be isolated from the main

grid and supplies its own loads. The transition from islanded to grid-connected

mode requires that all units be synchronized with the main grid. However, the

transition from grid-connected to islanded mode requires an islanded detection

algorithm to ensure the stability of the isolated microgrid. The typical transitions

of the microgrid between modes are shown in Figure 2.4.

When the microgrid is required to connect to the main grid, the voltage

at the point of common coupling should be synchronized with the grid voltage

in terms of phase, frequency, and amplitude. However, the synchronization al-
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gorithm depends on the control strategy of the microgrid in islanded mode [78].

Based on control strategies in islanded mode, various synchronization methods

were proposed to ensure a seamless transition to grid-connected mode [79, 80].

In grid-connected mode, the microgrid can absorb or supply the main grid

with active and reactive power, and it works as a controllable load or source. The

microgrid should respond to the main grid commends signal as a single entity to

ensure stable operation of the main grid. Microgrids contribute to the reliability

and economic operation of the power system and provide ancillary services to the

main grid [81, 82]. Reliability indices such as SAIFI, SAIDI, CAIFI, and CAIDI are

evaluated in terms of average interruption frequency and/or duration. These in-

dices are significantly improved by deploying a microgrid in distribution systems

[52]. In addition, the microgrid provides a significant improvement in the eco-

nomic operation of the main grid due to the notable reduction of power losses and

its ability to host small-scale renewable resources. Ancillary services are needed

to maintain a reliable and secure supply of electricity. Ancillary services are com-

municated to DGs from the distribution network operator through a Microgrid

Central Controller (MGCC) or directly. The ability of DG or ESS to provide these

ancillary services depends on the dynamic behavior of the connected DG or ESS.

For instance, inertia control requires a fast-dynamic source to react to a disturbance

in milliseconds. Some examples of ancillary service provisions include reactive

power production and voltage control, frequency control reserves, provision for

backup and reserve power, and black start capability [59].

Islanded mode is a challenging mode of operation due to the absence of a

stiff grid. Issues such as instability, deteriorated power quality, low inertia, low

X/R ratio, and energy management issues limit the effectiveness of islanded mi-

crogrids [9]. When islanding is detected, the system controller aims to stabilize the

microgrid under islanding by injecting more energy to balance generation with
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demand. However, when the energy available in the microgrid is not enough to

supply the load, a load-shedding algorithm is triggered to avoid a blackout. The

load-shedding algorithm curtails a number of loads until the available generation

can provide the rest of the loads [83]. Furthermore, the microgrid control system

controls the frequency and voltage after islanded detection through the droop con-

trol technique. However, low inertia because of the domination of inverter-based

DGs and low X/R ratio because of the existence of a microgrid in the distribu-

tion system lead to difficulties in maintaining stable operation [84]. In addition,

the bidirectional power flow in islanded mode and the limited fault current of

inverter-based DGs cause complications in the islanded operation of a microgrid

[62].

The microgrid can be disconnected from the main grid intentionally (i.e.

maintain) or unintentionally (i.e., faults in the main grid). In both cases, the is-

landed mode should be detected as fast as possible to configure the microgrid

for working in such a mode (i.e., voltage and frequency control) before it is sub-

jected to power quality and stability issues. Most islanding detection techniques

use power quality indexes to detect the islanded mode. Islanded detection tech-

niques are classified into three categories: passive, active, and communication-

based [85]. Passive methods are based on changes in system parameters within a

certain tolerance when they exceed changes in normal conditions. These parame-

ters include voltage, frequency, rate of change of voltage (ROCOV) and frequency

(ROCOF), voltage phase, THD, selective harmonic (i.e., 3rd, 5th, etc.), and voltage

imbalance is typically used [86]. These methods are low-cost and simple to im-

plement. However, passive methods have a non-detection zone (NDZ) when the

power mismatch is relatively small and close to zero [87]. Hybrid passive tech-

niques are also considered to avoid the NDZ [88, 89]. In active islanding detec-

tion methods, a small disturbance is injected into the utility grid, and based on
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Figure 2.4: Microgrid transition status

its response, the decision to adopt islanded mode is formed [90]. These methods

significantly decrease the NDZ; however, they create power quality issues in the

microgrid. Communication-based methods are based on communication between

the utility grid and DGs. However, communication infrastructure is required for

islanding detection methods in the utility grid [86].

2.2.3 Microgrid Control

The control system of a microgrid is a key element to ensure appropriate

operation in both modes and the transition between them. IEEE defines the micro-

grid control system as ”A system that includes the control functions that define the

microgrid as a system that can manage itself, operate autonomously, and connect

to and disconnect from the main distribution grid for the exchange of power and

the supply of ancillary services; it includes the functions of the microgrid energy

management system (MEMS); it is the microgrid controller if implemented in the

form of a centralized system.” [91]. The microgrid control system consists of soft-

ware, hardware, or a combination of both that can be implemented in a centralized

or distributed structure. In the centralized structure, an MGCC is responsible for

supervisory functions and local controllers receive their reference setting from it.
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On the other hand, the local controllers are decision-making controllers in a dis-

tributed structure. Communication and automation systems are also employed to

facilitate the control functions of the microgrid. The most important differences

relevant to stability in microgrids compared to bulk power systems are the fol-

lowing: smaller system size, higher penetration of RES, higher uncertainty, lower

system inertia, lower X/R ratio of feeders, limited short-circuit capacity, and un-

balanced three-phase loading. These inherent differences between microgrids and

bulk power systems must be considered when designing the microgrid control

system [92]. IEEE Standard P2030.7 (IEEE Standard for the Specification of Micro-

grid Controllers) specified the core functions of the microgrid control system as

follows [93]:

• Functions to manage local resources and loads.

• Control functions for grid-connected mode, including power flow manage-

ment and supply of ancillary services for the local distribution system, and

potentially, the bulk system.

• Control functions for islanded mode including management of local genera-

tion, storage, and loads to optimize performance.

• Functions to ensure seamless connection and disconnection from the grid.

• Additional local functions for specific circumstances (such as renewable re-

source management, load prioritization, and support of grid reliability and

automation functions).

The control system of the microgrid has different functions according to the

mode of operation. For instance, the voltage and frequency control is maintained

by the main grid during the grid-connected mode. However, DERs are respon-

sible for those functionalities during islanding. Based on the function, the time

response requirement differs from one to another. In addition, some functions are

processed through different time scales. Therefore, a hierarchical control structure
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is proposed to provide those functions [84, 10, 9]. However, some challenges such

as V & f regulations, accurate load-sharing, power quality issues, DG coordina-

tion, and power generation and demand forecasting are associated with microgrid

control [94, 9].

2.2.4 Microgrid Protection

The presence of DERs in the distribution system creates challenges in mi-

crogrid protection that are not common in the traditional protection scheme for

the distribution network. The microgrid has its own features that require special

consideration in the design of the microgrid protection scheme as follows [62]

• Bidirectional Power flow

• The intermittent nature of a renewable-based microgrid

• Fault current level varies based on the mode of operation

• High penetration of inverter-based DERs.

The complication in the microgrid protection scheme occurs in terms of

fault current, relay coordination issues, and short-circuit level [63, 95, 62]. Due

to bidirectional power flow, traditional protective devices, such as unidirectional

over current relays and fuses, are ineffective in providing reliable and safe op-

eration for microgrids. For instance, at a microgrid with high DER penetration,

the power can flow in both directions in a bus. Therefore, when a fault occurs

in a feeder, unidirectional over-current relays fail to detect reverse fault currents,

and DERs continue to feed the fault. In addition, the intermittent nature of re-

newable energy resources causes fluctuations in power generation. Therefore, the

fault current level changes according to the production of renewable resources

[96]. Furthermore, the operation mode of the microgrid is altered between the

grid-connected and islanded modes. Therefore, a substantial impact on the short-

circuit level occurs due to a change in the equivalent impedance. Solutions for
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those issues are intensively addressed in the literature, including [97, 98, 99, 100].

Finally, inverter-based DGs have a limited fault current between 1.2 to 2 p.u which

leads to undetected faults [97, 99]. Altaf et al. [62] summarized these challenges as

shown in Figure 2.5.

Figure 2.5: Challenges in protection associated with AC microgrids

2.2.5 Microgrid Economic Operation

Microgrids offer economic benefits to the power system because of the prox-

imity of generation to load. Moreover, renewable energy generation in the micro-

grid provides less-expensive energy, especially during peak and congestion hours

of the utility grid. Microgrids can also sell the surplus energy and provide ancil-

lary services to the main grid to be paid and credited, thereby lowering the energy

cost. The economic evaluation of microgrids has been extensively studied in the

literature to explore their merits [60, 101, 102, 103]. These studies include planning,

scheduling, and DSM.
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Sizing the microgrid is an essential part of planning to optimize the invest-

ment of components, operation, and maintenance costs, as well as other aspects of

the microgrid’s reliability and operation [104, 105, 106]. Microgrid scheduling aims

to minimize an objective function subject to a variety of operational constraints,

such as energy balance, load management, and DER limitations. The objective

function can be used to minimize cost, losses, and CO2 emissions or maximize

profits. A multi-objective function utilizes a variety of objective functions to im-

prove the scheduling problem [107, 108]. The economic scheduling problem is

studied in terms of architecture and methodology. The architecture includes cen-

tralized [109] and distributed [110, 111] forms, while the methodology may include

deterministic [112], heuristic [113, 114], or stochastic [115] methods. Finally, DSM

is a promising economic aspect that is working on the load side to engage the con-

sumers in the process. The authors in [116] discussed the demand response in

terms of models, infrastructure, and communication, as well as the challenges and

future trends. DSM programs encourage consumers to modify their electricity us-

age and get paid to reduce consumption. To encourage customers to participate in

DSM programs, DSM initiatives include [52]

1. Promoting the use of energy-efficient products and equipment

2. Encourage customers to change non-critical electricity use from peak times

to evening and early morning hours.

3. Promoting high-efficiency building construction.

4. Promoting energy awareness and education.

2.2.6 Microgrid Cybersecurity

Cybersecurity is an important factor in smart grid operations in general.

Recently, the conducted studies on cybersecurity have been intensively reviewed



28

in literature [117, 118, 119] due to the increasing of cyberattacks in electricity in-

frastructure. In addition to the vulnerabilities of smart grid applications to cyber-

attacks that are classified based on the delivery methods, including cyber, commu-

nication, physical, and network-based attacks. These attacks include command

and code manipulations, Malware and false data injections, electromagnetic and

physical damage, and denial of service. According to [118], False Data Injection

attacks (FDIA) and Denial-of-Service (DoS) are the most common types of cyber-

attacks. In FDIA, the data sent from the sensors are manipulated without affecting

the code of the controllers. Whereas in DoS, the communication network is flooded

with meaningless packets, which leads to inaccessible networks due the excessive

traffic.

The cybersecurity methodologies to prevent or mitigate the impact of cy-

berattacks can be classified into two main categories; preventive and detection

approaches. Preventive approaches aim to prevent attacks on the system through

an encryption mechanism. However, the effectiveness of the preventive method

requires synchronous development with all components of the system which is

not practical for large systems and is expensive. In the detection approach, the

focus is on recognizing anomaly intrusion and applying mitigation methods to re-

store the system to its normal state. The detection methods have two categories;

model-based and data-driven detection algorithms.

The model-based algorithms detect anomalies in two steps. First, a state

estimation algorithm is calculated. Then, the estimated model is compared with

actual data from the grid to detect disparities. Weighted least squares estimators

were used to produce static-based estimation in [120]. The static-based estimation

only considers the current state of the system with no prior knowledge of earlier

steps. Dynamic-based state estimation was proposed to include previous states

of the system using Kalman filter estimation in [121]. Some other algorithms uti-
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lizing model-based detection methods that are estimation-free are reported in the

literature such as cooperative vulnerability factor [122] and A voting protocol for

Multi-agent system (MAS) [123]. Although the model-based detection approaches

are efficient and practical, their performance depends on the accuracy of the sys-

tem’s model.

The other approach for detecting cyberattacks in smart grids is the data-

driven detection approach, where the need for a model is eliminated. Such ap-

proaches are preferable due to the detection accuracy and flexibility since it only

requires measured voltage and current data to be sent [117]. Depending on the

accuracy of historical data and the algorithm used, data-driven methods detect

the anomaly. A variety of methods are used for data-driven approaches, which

are categorized into machine learning and data mining algorithms. In machine

learning algorithms, supervised, unsupervised, and reinforcement learning algo-

rithms are used. The supervised machine learning algorithms require data to be

labeled in advance and then applied to the training process. Different types of su-

pervised machine learning algorithms are applied for cyberattacks detection, such

as linear regression[124], Support Vector Machine (SVM) [125], and Convolution

Neural Network (CNN) [126]. Whereas, the unsupervised machine learning algo-

rithms, such as K-mean clustering [127], the data grouped into clusters in which

the abnormal behaviors are classified as anomalies. The reinforcement learning

was also used for cyberattack detection algorithms in [128]. The second approach

in data-driven detection methods is the data mining approach in which large data

sets are explored to discover patterns as given in [129].

2.3 Hierarchical Control Structure in Islanded AC Microgrid

A microgrid’s control system should maintain the microgrid’s stable, reli-

able, and economic operation in both modes of operation. The desired operation
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of a microgrid’s control system should ensure [84, 9, 52, 10]:

• Voltage and frequency regulation in both modes of operation.

• An acceptable level of power quality.

• Accurate power-sharing and DG coordination.

• Synchronization with the main grid.

• Seamless transition from grid-connected to islanded mode.

• Power flow control between main grid and microgrid.

• Optimal microgrid operation cost.

The hierarchical control structure used in the conventional power system

is proposed to accommodate the above-mentioned control objectives at different

time scales. The implementation of hierarchical control allows the interaction be-

tween management and control operation of the main grid; therefore, harmonious

control of the microgrid within the main grid is improved, as well as their effec-

tive integration. The hierarchical control structure is implemented in the micro-

grid to minimize the operation cost while maximizing efficiency, reliability, and

controllability [59]. The hierarchical control structure is classified into three lev-

els: primary, secondary, and tertiary. Those three levels are distinguished by the

time scale in which they react and the infrastructure requirements (e.g., commu-

nication requirements). All DGs, controllable loads, and ESSs in a microgrid are

controlled through different levels of hierarchical structure, as shown in Figure 2.6.

Power quality control is included to ensure the high quality of the injected power

to the microgrid. The hierarchical control structure is addressed extensively in the

literature [130, 10, 131, 84, 57, 9].

2.3.1 Voltage and Current Control

DG units in microgrids have a cascaded control loop to control the injected

current and voltage. The typical requirements of this level of control are to have: i)



31

Unit iUnit i

DC

AC
M

icrogrid bus

Local 
measurments

V/I 
Control

+ Primary 
Control

Power 
Quality 
ControlSecondary 

Control
Tertiary 
Control

Figure 2.6: Hierarchical control structure.

zero steady-state error; ii) good reference tracking during transients; iii) high band-

width to ensure fast dynamics; and iv) good low-order harmonic rejection [132].

The inner control loop realizes the instantaneous current control to provide peak-

current protection. The current references of the inner control loop are generated

from an outer voltage loop with lower bandwidth to ensure dynamic decoupling

between the cascaded controllers.

The design methodology of cascaded loop controllers can be classified into

three types: i) synchronous reference frame control, ii) stationary reference frame

control, and iii) natural frame control [133]. The synchronous reference control

uses abc → dq transformation of control variables to control the DC components,

which facilitates filtering and control using a proportional-integral (PI) controller.

In the stationary reference control, the control variables are transformed into si-

nusoidal components using abc → αβ transformation; however, using the PI con-

troller leads to steady-state error, which can be removed by using the proportional

resonance (PR) controller instead. In natural frame control, a controller for each

phase is implemented; however, the type of phase connection (delta or wye) and
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whether there is an isolated neutral need to be considered.

The outer voltage loop receives its reference voltage according to the con-

trol strategy of the DG being controlled. In this level of control, the DG can operate

in two modes of control: PQ mode and VSI mode [84]. In PQ mode, the reference

inputs to the control system of the corresponding DG units are real and reactive

power. Those references are obtained from a higher level of hierarchical control

where the optimal unit commitment is performed. While in the VSI mode, the

references are the desired voltage and frequency of the microgrid to maintain the

voltage and frequency within their allowable limits. These two modes are classi-

fied based on their output control variables. In PQ mode, the control variables are

the active and reactive power injected with a specified voltage and frequency input

to feed the microgrid. In VSI mode, the voltage and frequency control variables are

based on the measured active and reactive power to form the microgrid.

Grid-following DGs

In grid-connected mode, the frequency and voltage are controlled predomi-

nantly by the main grid. Therefore, all DGs in the microgrid operate in PQ modes,

and active and reactive power references follow the predetermined values of a

higher hierarchy. These values depend on whether the DG consists of dispatch-

able units (e.g., diesel engine and fuel cell generator) adjusted based on dispatch

signals or non-dispatchable units adjusted based on MPPT strategy (e.g., variable

speed wind turbine and PV energy system). In PQ mode, the DG inverter is im-

plemented as a current-controlled inverter in which the active and reactive powers

are controlled and synchronized using a phase-locked loop (PLL)[134]. The control

system of a grid-following DG unit is shown in Figure 2.7
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Figure 2.7: Grid-following unit

Grid-forming DGs

In islanded mode, the microgrid is required to maintain the voltage and fre-

quency within a specific limit. Thus, one or more DGs are assigned to take over

the frequency and voltage control by modifying its control strategy to VSI mode.

In VSI mode, the DG inverter feeds the microgrid with active and reactive power

to keep the voltage and frequency within a predefined tolerance. In VSI mode, the

DG inverter acts as a voltage-controlled inverter. The voltage and frequency ref-

erences are generated by the higher hierarchical level and maintained by injecting

active and reactive power into the microgrid. Figure 2.8 shows the control system

of a grid-forming DG unit.

Grid-supporting DGs form the third category. These types of DGs are con-

sidered when more than one DG unit participates in frequency and voltage reg-

ulation. The grid-supporting units can be either a current-controlled-based DG
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Figure 2.8: Grid-forming unit

to support the frequency or a voltage-controlled-based DG to support the voltage

[59]. When a group of grid-supporting DGs is used, a power-sharing between

them is considered to avoid overloading.

2.3.2 Power Quality Control

It is essential to incorporate power quality in the context of the hierarchical

control structure. This is primarily because of the high uncertainty of generation

and the lack of inertia in microgrids that causes the system to be extremely os-

cillatory. Generation is uncertain because of the intermittent nature of renewable

energy resources, which is due to varying weather conditions. Therefore, in high-

penetration renewable energy microgrids, the system experiences a fast-changing

dynamic behavior. This fast dynamic is exacerbated when the inertia is low or

zero due to the existence of power electronic converters as the main interface be-
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tween DGs and the microgrid, which hides the dynamics of the DG itself behind

it. Besides, the dynamic and unbalanced loads lead to other quality-related is-

sues. Hence, power quality control aims to stabilize and ensure the high quality

of injected power to the microgrid. Inertia control and harmonic and unbalanced

voltage compensation are the main control objectives implemented in this course

of control.

In the islanded mode of operation, the inertia of the system is low or even

non-existent because of the high penetration of inverter-based DGs. Therefore,

when a disturbance occurs in the microgrid, stabilizing the frequency and voltage

is difficult and may result in loss of stability and blackout. The inertia control can

be implemented within the DG controllers to improve the stability of the micro-

grid by adding a virtual damping coefficient into the closed-loop control of the

DG control system [135, 136]. Inertia control is also achieved by employing the

rotating mass of variable-speed wind turbines and sacrificing the MPPT algorithm

when the wind speed is below the rated speed. However, at rated wind speed,

pitch control of the wind turbines can be activated without affecting the MPPT

algorithm [137].

One of the objectives of the DGs is to inject a current with low harmonic

distortion. IEEE Std 1547-2018 limited the total rated current distortion (TRD) to

5%, including higher order harmonics as given in Table 2.1 [73]. Current harmonic

distortion leads to various problems in the distribution system, such as heating

equipment, overloading neutrals, overheating transformers, nuisance tripping of

circuit breakers, and over-stressing power factor correction capacitors. Further-

more, these current harmonics lead to voltage harmonic distortion. This leads to

power quality degradation in the microgrid [138]. There are various methods used

to compensate for harmonics in DG controllers based on controller topology. In DG

controllers using the PI control method, the harmonic compensator is designed for
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Table 2.1: Maximum odd harmonic current distortion

Odd harmonic order h h < 11 11 ≤ h < 17 17 ≤ h < 23 23 ≤ h < 35 35 ≤ h < 50

#Percentage (%) 4 2 1.5 0.6 0.3

each harmonic order independently (i.e., 5th, 7th, etc.) Also, controllers based on

PR controllers achieve harmonic compensation by cascading several generalized

integrators tuned to resonate at the desired frequency [133]. Non-linear controllers

with fast dynamics have no issue with low-order harmonics.

Voltage imbalance may exist in the microgrid for various reasons such as

nonlinear or unbalanced loads, single-phase generators, or grid faults[139]. The

unbalanced voltage causes various undesirable consequences in the microgrid.

It has a negative impact on induction motors, power electronic converters, and

adjustable speed drives (ASDs). The International Electrotechnical Commission

(IEC) limits the acceptable voltage imbalance to less than 2% [140]. The DG’s out-

put can compensate for voltage imbalances in the microgrid. One approach is to

utilize a shunt inverter with a series inverter; the shunt inverter controls the active

and reactive power and the series inverter balances the line current and voltage

by injecting a negative-sequence voltage [141]. Another approach as in [142], is

based on controlling the DG as a negative sequence conductance to compensate

for voltage imbalance in the microgrid.

2.3.3 Primary Control Level

Primary control is the lowest level in the hierarchical control structure; hence,

it possesses the fastest response. The primary control functions include the sta-

bilization of the voltage and frequency of a microgrid subjected to an islanding

event where that microgrid may lose its voltage and frequency stability because

of the mismatch between the power generation and demand. In addition, the



37

primary control ensures accurate power-sharing between all DGs [84, 59]. The

power-sharing control is required to ensure proper power-sharing between units

participating in voltage and frequency regulation to avoid overloading [14]. The

primary control provides the reference points for the voltage and current control

loops of DERs.

Communication at this level is unfavorable because of high-bandwidth com-

munication requirements. However, some works consider communication-based

control, such as the central control method, master/slave control, and distributed

control. In central control methods[143, 144, 145], the MGCC periodically updates

the droop control characteristics through communication links that optimize the

operation of the microgrid while considering the stability of voltage and frequency.

Master/slave controls employ one unit as a master unit to regulate the output volt-

age and specify the current reference of the rest of the slave units through a high

bandwidth communication channel [146, 147]. In distributed control [148], the in-

stantaneous average current sharing is calculated and sent to a current sharing

bus, which is considered a current reference for each parallel converter. Another

strategy of distributed control utilizes cooperative control to employ a sparse com-

munication network in which the unit is only required to communicate with its

neighboring units [149, 150].

Non-communication methods employ droop control characteristics to over-

come the high-bandwidth communication requirements. Droop methods mimic

the principle of power balance of synchronous generators in the power system,

which is to reduce the frequency as the active power increases. Assuming a high

inductive grid, the droop equations can be given as

ωi = ωnom − Kpi(Pi − Pre f ) (2.1a)

Vi = Vnom − Kqi(Qi − Qre f ) (2.1b)
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Where ωi and Vi are the angular frequency and terminal voltage of ith unit, ωnom

and Vnom are the nominal angular frequency and terminal voltage, Kpi and Kqi are

active and reactive power droop coefficients, Pi and Qi are the measured active and

reactive power of ith unit, and Pre f and Qre f are the reference active and reactive

power, respectively.

The droop coefficients Kpi and Kqi identify the power-sharing capabilities of

each unit. Furthermore, the time constant of the closed-loop control depends only

on the droop control coefficients. The choice of the droop control coefficients also

affects the stability of the microgrid. Therefore, stability analysis should be used to

choose the appropriate values of the droop coefficients as given in [151, 152, 153].

The authors in [154] proposed a droop control that tunes the time constant without

interfering with steady-state power-sharing.

Although the conventional droop control method offers a communication-

free framework for the primary control level, challenges are associated with its

application to microgrids that impact its effectiveness. These challenges include

[14, 155, 9, 131, 156]:

• During islanded mode, the voltage and frequency of the microgrid depend

on the load. Therefore, steeper droops provide better load sharing but result

in greater frequency and voltage deviations or even instability.

• Conventional droop control assumes that the grid is highly inductive. How-

ever, microgrids are normally located in Medium Voltage (MV) or Low Volt-

age (LV) grids where the lines are mixed impedance or even resistive. There-

fore, this assumption is not valid in such grids.

• Unlike frequency, voltage is a local variable because of the voltage drop in

the lines with different impedance. Thus, an intrinsic trade-off is initiated

between voltage regulation and the sharing of reactive power.
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• The conventional droop control method focuses on fundamental power shar-

ing, which is averaged over one cycle. Therefore, harmonic load components

cannot be properly shared, leading to harmonic circulating currents and poor

power quality.

Several studies in the literature addressed these issues [157, 158, 159]. In

[13, 157], the droop control technique was designed for low voltage (LV) grids

where the grid is assumed to be resistive. In these techniques, the frequency is

controlled through reactive power and the voltage through active power. In a

Medium Voltage (MV) microgrid, the resistance of the line is approximately equal

to the reactance; hence, a coupling between active and reactive power occurs in

controlling voltage and frequency. Therefore, the authors in [160] proposed a V-

P-Q droop control method to regulate the PCC voltage with active and reactive

power droop coefficients. These droop coefficients are adjusted online through a

lookup table based on the PCC voltage level. Some other authors also suggested

virtual output impedance methods [158, 161]. In these methods, a virtual induc-

tance is embedded into the closed-loop control system through voltage reference

to emulate an inductive behavior. Therefore, the new reference voltage is given as

V∗
re f = Vre f − Zv(s)io (2.2)

Where Vre f is the no-load reference voltage, Zv(s) is the transfer function of virtual

impedance, i.e., Zv(s) = sLv, and io is the output current.

High-frequency noise due to the differentiation operator can cause instabil-

ity in the voltage closed-loop control. Therefore, a low-pass filter is used in combi-

nation with the virtual inductance [162]. Other authors further developed virtual

output impedance methods to realize better reactive and harmonic power-sharing

by introducing complex virtual impedance for the fundamental and selected har-

monic frequencies [159]. One method employed by [163] and [164] utilized the
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virtual frame transformation. In this method, an orthogonal linear rotational trans-

formation matrix is used to calculate ”modified” active and reactive powers, which

account for the line parameters. The rotational transformation matrix requires the

absolute value of the X/R ratio to be implemented. In [165], an adaptive voltage

droop scheme was used to compensate for the voltage drop in the line and im-

prove the stability of the system under overload conditions by adding two novel

terms to the droop control equations. However, the line parameters R and X are

required for the implementation of the controller. Another approach of adaptive

droop control was proposed in [166], in which the slope of the voltage drop in the

line is tuned to compensate for the effect of the mismatch in the voltage drop across

the feeder. Hybrid schemes have also been proposed in the literature [167, 168]. In

addition, other techniques such as current sharing [169], angle sharing [170, 171],

and voltage integral-based droop control [172] were also considered in the litera-

ture to tackle the primary control difficulties.

2.3.4 Secondary Control Level

Secondary control restores the voltage and frequency values to their nom-

inal values to compensate for the deviations caused by the primary control. Fur-

thermore, the secondary control is responsible for managing the trade-off between

voltage regulation and reactive power-sharing caused by the voltage drop in the

microgrid’s line with different parameters [9]. The secondary control has a slower

time constant to allow the primary control to reach a steady state value to avoid

control interaction. To account for the secondary control action, the droop control

equations given in (2.1a) and (2.1b) becomes

ωi = ωnom − Kpi(Pi − Pre f ) + δωi (2.3a)

Vi = Vnom − Kqi(Qi − Qre f ) + δVi (2.3b)
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Where δωi and δVi are the secondary control corrective terms, respectively.

The secondary control architecture is classified according to the commu-

nication infrastructure into three main categories: centralized (CSC), decentral-

ized (DESC), and distributed (DISC) [173]. The CSC structure operates in the

MGCC to collect data about the system through communication, compute the de-

sired setpoints for all units, and broadcast the setpoints to the corresponding units

[174, 175, 176]. The CSC requires high-bandwidth communication and a powerful

computational MGCC to perform the secondary control functionalities. The DESC

aims to provide secondary control functionalities without utilizing the commu-

nication infrastructure [177], [178]. However, such a structure suffers from poor

performance, especially in power-sharing, due to the lack of information about

the other units. Recently, the state estimation-based approach has been utilized

as an alternative for the communication infrastructure [179]. Finally, the DISC is

employed as a compromised structure in which the communication link is relaxed

and eliminates the need for an MGCC. The structure of DISC is implemented us-

ing an average-based approach, in which each unit measures its variables and then

transmits them to all other units to calculate the average between them [180, 181].

This type of DISC requires a communication link between all units participating

in frequency and voltage control. Another type of DISC is based on a consen-

sus approach in which communication is established between neighboring units

described by the connectivity of the graph [182, 183, 184, 185, 186, 187, 188]. In ad-

dition, some recent works employed an event-triggered approach to DISC in such

a way that the communication link is only established when a defined criterion is

initiated [189, 190, 191].

Several recent research projects have focused on trying to solve the poor

reactive power-sharing through DISC. In [184], a robust wireless communication

algorithm was used to collect information about voltage and frequency errors and
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the reactive power of all units based on distributed averaging. PI compensators

were utilized to restore the deviations of voltage, frequency, and reactive power-

sharing. The authors in [182] proposed a distributed control mechanism based on

a consensus protocol in which the trade-off between voltage regulation and reac-

tive power-sharing can be tuned based on the designer’s requirements. In [183],

A distributed averaging control scheme employing communication and compen-

sation layers utilized a multi-agent system-based (MAS-based) finite-time consen-

sus protocol for voltage restoration and reactive power-sharing. The communica-

tion layer collected the global information via a distributed MAS-based finite-time

information-sharing protocol, and the compensation layer used a PI controller to

compensate for the voltage deviation caused by the Q-V droop. In [191], an event-

triggered consensus secondary control was employed with a finite-time control

strategy to restore the frequency and voltage of units and provide accurate shar-

ing of reactive power. However, these studies focus on driving the voltage into a

common global consensus average while maintaining the reactive power-sharing

between units without considering upper or lower bounds for the voltages.

Recently, some work has been done to share the reactive power accurately

while bounding the voltage to limits in a consensus manner[17, 18, 19, 20]. [17]

implemented two PI controllers in the secondary control level to keep the volt-

age within a predefined range (a containment-based controller) and maintain pre-

cise reactive power-sharing (a consensus-based controller). However, when pre-

cise reactive power-sharing cannot be maintained for the given voltage range, set-

tings are required to either enlarge the voltage range of the containment-based

controller to keep precise reactive power-sharing or set the error saturation for

the consensus-based controller to allow a reactive power-sharing mismatch while

keeping the voltage range intact. Additionally, only leader units can access the

voltage lower and upper bounds. In [20], two alternative output limitation meth-
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ods were used to deal with either the voltage or reactive power-sharing bounds

proposed for the consensus-based approach. However, all DGs must be connected

to a common critical bus. The authors in [19] employed a model predictive control

(MPC) to predict the optimal behavior of DG units in terms of voltage regulation

and power-sharing and share it with neighbor units described by the communica-

tion graph. The power transfer equations were used to predict the active and re-

active power generation in the coupling elements and were combined with droop

control equations to predict the optimal behavior of the DG units. The techni-

cal constraints contain voltage and power capacity limits. However, the average

voltage and frequency value for all units is required, which requires the unit to

communicate with all other units to share extensive information. In [18], an op-

timization function was implemented to minimize the trade-off between voltage

regulation and reactive power-sharing subject to the technical constraints of the

DGs output, including voltage limits and reactive power capacity. However, the

controller requires the line parameters between connected DGs, which is not prac-

tical in distribution systems.

2.3.5 Tertiary Control Level

Tertiary control is the highest level in the hierarchical control structure and

is located at the host grid level. It coordinates the operation of multiple microgrids

that interact with each other to achieve optimal distribution system operation. The

tertiary control has a large timescale in the order of minutes [9]. In microgrids, the

tertiary control is activated in grid-connected mode since the economic operation

is the responsibility of the distribution network operator (DNO). However, some

work has been done to integrate economic operation within islanded microgrids

[192, 193, 194].
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The integration of economic aspects with microgrid operation can be cate-

gorized into economic dispatch-based, and optimal power flow-based approaches.

In economic dispatch [25, 26, 27], units with different cost coefficients are dis-

patched based on the lowest price, considering the maximum capacity of the com-

mitted units and satisfying power balance equality. On the other hand, optimal

power flow considers a variety of objective functions subjected to a range of con-

straints [21, 22, 23]. Optimal power flow-based techniques are usually performed

offline due to the non-convexity of optimal power flow and the need for linear

approximation or convex relaxation techniques [24]. Therefore, the economic dis-

patch approach is more suitable for real-time applications.

Economic dispatch algorithms for islanded microgrids are usually performed

on the grid-following units where the reference of active power is determined by

these algorithms. Zhiyuan et al. [194] proposed a consensus-based economic dis-

patch algorithm to solve the energy management problem for the islanded micro-

grid considering the active power with constraints in unit capacity. In [25], an

economic dispatch algorithm was presented to dispatch active power in real-time;

however, the grid-forming units were not considered. The authors in [27] pro-

posed a real-time economic dispatch-based secondary controller for an islanded

microgrid that dispatches the active power in correlation with frequency without

considering reactive power generation and voltage control. In [195], a two-layer

model was used to provide economic dispatch to the islanded microgrid in a dis-

tributed manner where the microgrid was considered as the lower layer while the

communication network was the upper layer. In the communication layer, two

control laws were derived to ensure supply-demand balance and solve the eco-

nomic dispatch problem.



45

CHAPTER 3
GENERALIZED DROOP CONTROL

3.1 Introduction

When the microgrid is isolated from the main grid, the grid-forming units

control the frequency and voltage to maintain the microgrid’s stability. The hi-

erarchical control structure provides these functionalities through three levels of

control. Droop control is used at the primary level to sustain the microgrid’s fre-

quency and voltage and maintain the power-sharing between units according to

their power rating. Units generate active and reactive powers appropriate for their

rating by varying their terminal frequency and voltage. However, the microgrid is

implemented in a distribution network where the voltage level is medium. In such

a voltage level, the X/R ratio approaches unity; hence, the frequency and voltage

are related to the active and reactive powers through a non-linear relationship of

line impedance. Therefore, frequency and voltage must be tuned to supply active

or reactive power. Otherwise, instability of frequency and voltage control occurs

in the islanded microgrid.

In this chapter, generalized droop control is proposed for the droop con-

trol level to maintain the stability of frequency and voltage regardless of the X/R

ratio level. In the generalized droop control, a normalized dependency matrix is

derived from identifying the per-unit relationship between the frequency and volt-

age with active and reactive powers. Then, droop control utilizes the dependency

matrix to achieve an accurate relationship between frequency and voltage with ac-

tive and reactive powers. To implement the dependency matrix, the X/R ratio is

required to calculate the line impedance phase angle. The phasor Measurement

Unit (PMU) communicates the grid voltage and current through synchrophasor
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communication to calculate the line’s active and reactive power consumed. Then,

the line parameters are estimated and used to generate the normalized depen-

dency matrix. The results of this chapter are based mainly on [196].

The controller proposed in this chapter implements a per-unit linear rela-

tionship between frequency and voltage with active and reactive powers to be

used in droop control equations. The features of the proposed controller include

• The frequency and voltage are precisely tuned based on the measured active

and reactive powers.

• The X/R ratio is obtained from the line active and reactive power.

• The dependency matrix elements take values from -1 to 1 based on the per-

unit relationship between the variables.

The chapter is organized as follows. First, section 3.2 illustrates the main

objectives of the primary control level used for the grid-forming unit, and the issue

of droop control in a mixed impedance grid is introduced. Then, in Section 3.3, the

proposed generalized droop controller is derived and implemented. Then, section

3.4 presents the simulation results and discussion. Finally, Section 3.5 concludes

the chapter.

3.2 Primary Control in Islanded Microgrid

During grid-connected mode, frequency and voltage are controlled by the

main grid. However, when a fault occurs in the main grid, the microgrid is dis-

connected and continues to operate in islanded mode, supplying its load. Grid-

forming units rapidly take over the frequency and voltage control to ensure a

seamless transition. Load shading may require curtailing some loads based on

the available power to maintain the frequency and voltage within a stable limit.

However, one grid-forming unit may overload during operation based on its ca-

pacity. Therefore, a group of grid-forming units is utilized to share the load based
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on the droop control technique, in which each unit is allowed to vary its terminal

frequency and voltage based on its active and reactive power ratings.

Grid-forming units employ a hierarchical control structure to maintain the

frequency and voltage of the microgrid at three sequential levels structured based

on different time constants to avoid interaction of control objectives at each level.

Figure 3.1 shows the control system of grid-forming units working in parallel. The

required active and reactive power is supplied at the primary control level by tun-

ing the frequency and voltage correspondingly. Then, the secondary control re-

stores the voltage and frequency deviations caused by the primary control to their

nominal values. The tertiary control level ensures an economical and reliable mi-

crogrid operation and includes supervisory control. The control signals of those

levels are used to generate the reference values of frequency and voltage, which

are processed through voltage and current control loops to ensure an appropriate

quality of output quantities and provide current protection to the connected in-

verter. The inverter receives PWM signals to convert the DC power to AC power

and maintains the frequency and voltage based on the reference signals from the

controller. Finally, the output is connected to the grid bus through an LC filter to

reduce harmonic distortion.
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Figure 3.1: The hierarchical control structure of grid-forming units.

3.2.1 Droop Control in Mixed Impedance Microgrid

Consider an inverter-based unit connected to a grid bus through a line

impedance |Z|∠θ as seen by the inverter as shown in Figure 3.2. The complex

power flow is given as

S = Vg I∗ =

∣∣Vg
∣∣ |Vs|∠(θ − δ)

|Z| −
∣∣Vg
∣∣2 ∠θ

|Z| (3.1)

Where
∣∣Vg
∣∣ and |Vs| are the magnitude of grid voltage and source voltage, respec-

tively, and δ is the power angle.

Based on (3.1), the active and reactive powers flow equations are given as.

P =
|Vg||Vs|cos(θ − δ)

|Z| −
|Vg|2cos(θ)

|Z| (3.2a)
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Figure 3.2: Inverter-based unit connected to a grid bus.

Q =
|Vg||Vs| sin (θ − δ)

|Z| −
|Vg|2 sin(θ)

|Z| (3.2b)

The interconnection line impedance is transformed to a complex format as

|Z|∠θ = Rl + jXl = |Z| cos (θ) + j|Z| sin (θ) hence, cos (θ) and sin (θ) are given as

cos (θ) = Rl/|Z| (3.3a)

sin (θ) = Xl/|Z| (3.3b)

Equating (3.2) in (3.3) and assuming the power angle δ is small for line

impedance analysis, hence, sin δ ∼= δ and cos δ ≈ 1. The delivered active and reac-

tive powers are given as

P =
|Vg|

R2
l + X2

l
[Rl(|Vs| − |Vg|) + Xl(|Vs|δ)] (3.4a)

Q =
|Vg|

R2
l + X2

l
[−Rl(|Vs|δ) + Xl(|Vs| − |Vg|)] (3.4b)

(3.4) is given in matrix form asP

Q

 =

 |Vg||Vs|Xl

R2
l +X2

l

|Vg|Rl

R2
l +X2

l

−|Vg||Vs|Rl

R2
l +X2

l

|Vg|Xl

R2
l +X2

l


 δ(

|Vs| −
∣∣Vg
∣∣)
 (3.5)
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The power angle and the voltage magnitude difference can be found by

investing (3.5) as  δ(
|Vs| −

∣∣Vg
∣∣)
 =

 Xl
|Vg||Vs|

− Rl
|Vg||Vs|

Rl
|Vg|

Xl
|Vg|


P

Q

 (3.6)

3.2.2 Droop Control Equations

In droop control, the power angle δ is related to the change of frequency

∆ω, and the voltage magnitude difference (|Vs| − |Vg|) is related to the change of

voltage ∆V given as a function of negative droop coefficients Kp and Kq multiplied

by measured active and reactive power. The droop coefficients are chosen to relate

the maximum change of frequency (∆ωmax) and voltage (∆Vmax) to the rated active

(Pmax) and reactive power (Qmax) of the unit as shown in the following relation.

Kp = ∆ωmax/Pmax (3.7a)

Kq = ∆Vmax/Qmax (3.7b)

Therefore, droop control equations are given as∆ω

∆V

 = A

−KpP

−KqQ

 (3.8)

Where A is a 2x2 dependency matrix, A =

a11 a12

a21 a22


The quantities in (3.8) are then used to produce the reference frequency and

voltage based on the following:

ωre f = ωnom + ∆ω (3.9a)

Vre f = Vnom + ∆V (3.9b)

Matrix A is a dependency matrix that identifies the relationship between

the change of frequency and voltage to the drooped active and reactive power.
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According to (3.7), elements a11 and a22 are functions of the line reactance (X), and

the elements a12 and a21 are functions of the line resistance (R). In a high voltage

grid where X/R, the resistance is neglected, and the elements of the dependency

matrix in equation (3.9) are given as a11 = a22 = 1 and a12 = a21 = 0. In other

words, the change of frequency depends on the active power, and the change of

voltage is related to the reactive power. While, in a low voltage grid, the grid is

resistive, and the relation between the resistance and reactance is given as R ≫ X.

Neglecting the line reactance, the dependency matrix elements are given as a11 =

a22 = 0 and a12 = a21 = 1. As a result, the change in frequency is related to the

reactive power, and the change in voltage is related to the active power. However,

at medium voltage, both resistance and reactance are considered, and the changes

in frequency and voltage are given as a combination of active and reactive power.

Therefore, a mechanism to relate droop control to the equivalent impedance is

required, especially because the microgrid is typically located in medium and low

voltage grids.

3.3 The Proposed Generalized Droop Control

According to (3.9), the elements of dependency matrix A vary between -

1 and 1 through 0 where -1 indicates inversely entirely dependent, 0 infers fully

independent, and 1 implies entirely dependent. These elements vary according to

the line impedance as shown in (3.7). To include the line impedance effect in the

droop control, the dependency matrix should consider a normalized version of the

equivalent impedance so that the dependence of changes in frequency and voltage

is accurately described based on the equivalent impedance.
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3.3.1 Derivation of Normalized Dependency Matrix

To identify the normalized dependency matrix, consider the relationship

matrix given in (3.7) given asb11 b12

b21 b22

 =

 Xl
|Vg||Vs|

− Rl
|Vg||Vs|

Rl
|Vg|

Xl
|Vg|

 (3.10)

From (3.10), one can identify the normalized dependency matrix as follows.a11 a12

a21 a22

 =

 b11
|b11|+|b12|

b12
|b11|+|b12|

b21
|b21|+|b22|

b22
|b21|+|b22|

 =

 Xl
Xl+Rl

− Rl
Xl+Rl

Rl
Rl+Xl

Xl
Rl+Xl

 (3.11)

As shown in (3.11), the normalized dependency matrix has taken values

between -1 and 1. Therefore, when the resistance is neglected, as in a high voltage

grid, the frequency and voltage changes are only dependent on active and reactive

power correspondingly and vice versa in a low voltage grid when the equivalent

reactance is neglected. Additionally, for a medium voltage grid, considering Rl =

Xl, the change of frequency and voltage are dependent on both active and reactive

power by 50% each.

3.3.2 Identify the Normalized Dependency Matrix Elements

The line resistance and reactance need to be known to identify elements

of the normalized dependency matrix. However, these parameters are subject to

change due to grid reconfiguration and temperature affecting the line parameter

values. Therefore, employing phasor measurement based on synchrophasor com-

munication enables rapid and accurate measurements of the magnitude and phase

angle of voltage and current [197].

Considering the system given in Figure 3.2, a phasor measurement unit can

be used to communicate the grid voltage and current. In the controlled unit, the
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active and reactive power consumed by the line is calculated based on the com-

municated signals subtracting receiving end power from the power generated by

the unit. Per phase line resistance and reactance are found as follows.

Rl =
Pline

3I2 (3.12a)

Xl =
Qline

3I2 (3.12b)

The line impedance angle θ is related to X/R ratio based on (3.3) as

θ = tan−1
(

Xl
Rl

)
(3.13)

Using (3.13), the phase angle is used to generate the estimated normalized

dependency matrix as follows

sin(θ)
sin (θ) + cos(θ)

=
Xl

Xl + Rl
(3.14a)

cos(θ)
sin (θ) + cos(θ)

=
Rl

Xl + Rl
(3.14b)

Designating KP for frequency and Kq for voltage, the frequency and voltage devi-

ations are given as

∆ω = −a11KpP + a12KpQ (3.15a)

∆V = −a21KqP − a22KqQ (3.15b)

Figure 3.3 shows the proposed generalized droop control for the primary control

level. First, the measured P and Q are utilized to identify the equivalent impedance

angle based on (3.12). Then, a normalized dependency matrix is generated using

(3.10). Finally, the dependency matrix used for generalized droop control is given

in (3.8).
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Figure 3.3: The block diagram of the proposed droop controller.

3.4 Simulations Results

The proposed droop controller was validated through a test system that in-

cluded two units supplying a common load through a line impedance, as shown

in Figure 3.4. The system and line parameters are shown in Table 3.1 along with

the controllers’ parameters. In this section, the proposed droop controller was

simulated for different load conditions in inductive, mixed impedance, and resis-

tive grids. The frequency and voltage deviations were observed along with the

measured active and reactive power. The estimated X/R ratio was compared with

actual values, and the corresponding dependency matrix was produced.

At the beginning of the simulation, the active and reactive power loads were

as shown in Table 3.1. At t = 2s, the reactive power load was reduced to 5kVAR

while the active power remained the same. The active power was decreased to

5kW at t = 4s, and the reactive power stayed at 5kVAR. The frequency and volt-

age deviations given in (3.15) were observed along with the measured active and

reactive powers. Additionally, the estimated X/R ratio was measured and com-

pared with its reference value. Finally, the dependency matrix elements shown in
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(3.13) were implemented based on the estimated X/R ratio observed during the

simulation.

Unit 1

Load

Unit 1

|𝑽𝟏|∠𝜽𝟏 

|𝑽𝟐|∠𝜽𝟐 

𝑹𝑳𝟏 + 𝒋𝑿𝑳𝟏 

𝑹𝑳𝟐 + 𝒋𝑿𝑳𝟐 
𝑷𝒍𝒐𝒂𝒅 + 𝒋𝑸𝒍𝒐𝒂𝒅 

Figure 3.4: Single line diagram of the test system.

Table 3.1: Specifications of the test system

System
parameter value parameter value

RMS Voltage (VRMS) 220V Switching frequency ( fsw) 10KHz

DC Voltage (VDC) 700V Nominal frequency ( fnom) 50Hz

DGs

parameter DG1 DG2

Kpi 49µrad/W.sec 188µrad/W.sec

Kqi 1.3mV/VAR 2.6mV/VAR

R f 0.1 Ω 0.1 Ω

L fi 1.35mH 1.35mH

C fi 50µF 50µF

Line

Grid Type RL1 + jLL1 RL2 + jLL2 X/R

Resistive 0.56 + j0.168Ω 0.56 + j0.168Ω 0.3

Mixed 0.56 + j0.56Ω 0.56 + j0.56Ω 1

Inductive 0.56 + j3.92Ω 0.56 + j3.92Ω 7

Load Pload + jQload 10KW + j10KVAR



56

3.4.1 Resistive Grid

In this section, the proposed droop controller was subjected to a resistive

grid with an R/X ratio of 0.3. As shown in Figure 3.5, the change of reactive power

at t = 2s was mainly related to the frequency deviation and barely affects the

voltage deviation. At t = 4s, the active power reduction increased the voltage

level at a higher rate than the frequency decreased. Note that, the reactive power

is inversely related to the frequency as shown in (3.5). Additionally, the estimated

X/R ratio was identical to the actual value 0.3, which generated the dependency

matrix in Figure 3.5.

3.4.2 Mixed Impedance Grid

A similar scenario was applied for a mixed impedance grid with an X/R

ratio of 1. Figure 3.6 shows the system behavior under mixed impedance. Since

the relationship of voltage and frequency to the active and reactive power was

50% as described in the dependency matrix, the changes in frequency at equal

active and reactive power is zero, as shown in (3.15). Both frequency and voltage

changed simultaneously according to their droop coefficients when the active and

reactive power changed.

3.4.3 Inductive Grid

For an inductive grid, the X/R ratio was chosen to be 0.7. Figure 3.7 shows

the controller behavior under the inductive grid. Based on the dependency matrix,

the frequency was dependent on the active power by 70% and on the active power

by 30% and vice versa for the voltage. At t = 2s, the voltage reacted to the reactive

power change more than it reacted to other types of grids. A similar reaction was

observed for the frequency with active power change at t = 4s.
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Figure 3.5: System behavior under a resistive grid.
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Figure 3.6: System behavior under a mixed impedance grid.
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Figure 3.7: System behavior under an inductive grid.
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3.5 Conclusions

This chapter aims to improve the droop control technique subjected to a

mixed impedance grid. In such a grid, the active power variation is a function of

both frequency, and voltage as well as the reactive power. Therefore, frequency

and voltage need to be tuned accordingly to accurately share power. A normal-

ized dependency matrix was used to explore the per-unit relationship between fre-

quency and voltage with the active and reactive power based on line impedance.

To construct the dependency matrix, the X/R ratio was estimated using a pha-

sor measurement unit that communicated the grid voltage and current phasors.

The unit calculated the power in the line and then estimated the X/R ratio. Fi-

nally, a simulation using MATLAB/SIMULINK was implemented for a test system

subjected to inductive, mixed, resistive impedance grids. The simulation results

showed superior performance compared to conventional droop control under dif-

ferent grid types.
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CHAPTER 4
CONSENSUS OPTIMIZATION-BASED SECONDARY CONTROL

4.1 Introduction

In an islanded microgrid, grid-forming units collaborate to maintain the

microgrid’s voltage and frequency by utilizing the droop control technique in a hi-

erarchical control structure, including primary, secondary, and tertiary levels. The

primary control adjusts the frequency and voltage based on the active and reac-

tive power change to maintain the microgrid’s stability and preserve the power-

sharing between units utilizing the droop control technique. Secondary control

interferes with restoring frequency and voltage to their nominal values. However,

traditional droop control applied to an inductive grid with mismatched line pa-

rameters experiences a trade-off between reactive power-sharing and voltage reg-

ulations. This trade-off is because the higher voltage drop in the lines with higher

impedance causes the voltage at each unit’s terminal to be measured differently.

Therefore, the reactive power deteriorates if the secondary control is to restore

the voltages to their nominal value. On the contrary, if the secondary control is

to keep equal reactive power-sharing, the voltage is mismatched, and circulating

currents flow between units. The secondary control level manages the trade-off

between voltage regulation and reactive power-sharing in the inductive grid as an

additional function.

Inspired by the fact that the global consensus average of a directed graph is

reached when the difference between each unit and its neighbor is zero, a convex

optimization function is implemented to minimize the power-sharing difference

between each unit and its neighbor, which becomes zero at the optimal solution.

Then, internal technical constraints are enforced to keep the frequency at the nom-
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inal value and limit the voltages within the range % ± 5 of the nominal value. The

technique in this chapter allows reactive power-sharing to reach a global consen-

sus average for all units when the voltage limits are not pushed to the boundary.

At the voltage boundary, the controller guarantees a minimum difference in reac-

tive power-sharing from the global consensus average. The optimization function

is implemented in real-time in a discrete manner such that the optimal solution is

obtained before it is applied to the system. This chapter is based on works given

in [198, 199].

An analysis is carried out for the reachability of the controller to the global

consensus average at the optimal solution. The salient features of the controller

proposed in this chapter can be listed as follows:

• The controller is implemented to seek the global consensus average of power-

sharing (Regulator consensus); therefore, there is no need for a leader unit to

capture a reference value.

• Only information about power-sharing is communicated between units, which

reduces the communication intensity in the communication network.

• At the voltage limit, the reactive power-sharing autonomously starts to di-

verge optimally without modifying the controller settings.

This chapter is organized as follows. In Section 4.2, the role of the grid-

forming unit in the secondary control of islanded microgrid is identified in the

context of the hierarchical control structure, in addition to the issue of poor reac-

tive power-sharing. Section 4.3 presents an analysis to verify the optimality and

consensus reachability for an unconstrained convex optimization function. Then,

section 4.4 presents the proposed optimization-based consensus secondary con-

troller’s implementation where the optimization function is derived, and the con-

straints are defined for the islanded microgrid. The simulation results of the con-
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troller’s performance and behavior in islanded microgrids are presented in Section

4.5. Finally, Section 4.6 provides conclusions for the proposed controller.

4.2 Secondary Control in Islanded Microgrid

During islanded mode, grid-forming units collaborate to regulate the fre-

quency and voltage of the microgrid. The hierarchical control structure is em-

ployed to perform these functionalities through primary and secondary control,

assuming that the grid is inductive based on the following

ωi = ωnom − Kpi Pi + δωi (4.1a)

Vi = Vnom − Kqi Qi + δVi (4.1b)

Where ωi and Vi are the angular frequency and terminal voltage of ith unit,

ωnom and Vnom are the nominal angular frequency and terminal voltage, Kpi and

Kqi are active and reactive power droop coefficients, Pi and Qi are measured active

and reactive power of ith unit, and δωi and δVi are the secondary control corrective

terms, respectively.

A grid-forming unit employing the hierarchical control structure is shown

in Figure 4.1. The local controller receives the reference voltage amplitude and

frequency from the primary control level and commands the connected unit to fol-

low its reference by generating the modulation index to pulse width modulation.

Primary control produces reference voltage and frequency by mimicking the syn-

chronous machine’s behavior in the inductive grid, where the change in frequency

is related to the change of the active power, and the change in voltage is associ-

ated with the change of the reactive power. The secondary control aims to restore

the terminal voltage and frequency to their nominal values by generating the error

terms δωi and δVi to the primary control on a slower timescale. The timescales of

these levels of control are detached to avoid interaction between the control levels.
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In addition to restoring terminal voltage and frequency, secondary control ensures

proper power-sharing between units. Therefore, three philosophies are introduced

in the literature to deliver those functionalities, namely, Decentralized Secondary

Control (DESC), Centralized Secondary Control (CSC), and Distributed Secondary

Control (DISC) [173]. These philosophies are classified based on communication

link implementation. In DESC, the communication layer is omitted; however, in

CSC and DISC, the communication is established between the unit and MGCC or

neighbor units, respectively.

Decentralized secondary control restores the terminal voltage and frequency

solely based on local measurements. However, power-sharing is poor due to the

voltage drop in the lines. Centralized secondary control is dependent on the Mi-

crogrid Control Center (MGCC) to obtain appropriate voltage and frequency refer-

ence values for secondary control. However, intensive communication is required

between the MGCC and the grid-forming units. Furthermore, a computation bur-

den can limit the extendibility of the microgrid. Distributed secondary control is

based on cooperation between all grid-forming units to reach proper reference val-

ues, ensuring proper restoration and power-sharing between units. In distributed

secondary control, the plug-and-play feature is preserved since disconnection and

connection of units do not require a centralized controller to change its setting. The

distributed secondary control, which is based on the averaging technique, utilizes

a peer-to-peer communication mechanism to reach average frequency and voltage

errors, as well as average reactive power-sharing. Another type of distributed con-

trol uses consensus-based communication to reach proper values restoration and

power-sharing between units through communication with neighboring units.
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Figure 4.1: Grid-forming unit in the hierarchical control structure.

4.2.1 Reactive power-sharing

The droop coefficients identify the amount of power-sharing for each unit

based on its rated power, as shown in the following

Kpi = ∆ωmax/Pmax
i (4.2a)

Kqi = ∆Vmax/Qmax
i (4.2b)



66

Where ∆ωmax and ∆Vmax are the maximum allowable changes in angular frequency

and terminal voltage, and Pmax
i and Qmax

i are active and reactive rated power of

each unit, respectively.

The load is adequately shared when all units compensate for the same amount

of Kpi Pi and Kqi Qi. The condition under which power-sharing is satisfied is given

as follows

Kp1 P1 = Kp2 P2 = . . . = Kpi Pi = ∆ωmax (4.3a)

Kq1 Q1 = Kq2 Q2 = . . . = Kqi Qi = ∆Vmax (4.3b)

The system’s frequency is a global variable; therefore, the active power-sharing be-

tween units is satisfied at the primary level. However, the terminal voltage of each

unit is affected by the line impedance; hence, a different voltage is observed in each

unit. Secondary control is used to enhance the sharing of reactive power between

units in addition to its functionality to restore the frequency and voltage to their

nominal values. Figure 4.2 shows the droop characteristics of two grid-forming

units, including frequency and voltage as a function of active and reactive power,

respectively, as treated at primary and secondary levels. For P − ω droop char-

acteristics, two units with different droop coefficients converge onto a common

steady-state angular frequency ωi with active power (P1 and P2) shared between

them based on their primary level’s droop coefficient values. Then, the secondary

control level restores the frequency to its nominal value ωnom, without affecting

the active power-sharing. However, the Q − V droop characteristic shows that

two units with similar droop coefficients converge onto different voltages at the

primary level corresponding to the reactive power Q1 and Q2. As a result, the

voltages converge onto a common nominal voltage at the secondary control level,

while the reactive power-sharing (Q′
1 and Q′

2) is exacerbated.
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Figure 4.2: Droop characteristics of two grid-forming units

4.2.2 Sensitivity Analysis

It is essential to study the effect of a change per unit of line parameter mis-

match on the change per unit of reactive power mismatch. Considering a system

composed of two units sharing a load through a line impedance as given in Figure

4.3, the reactive power generated by each unit is given as

Qi =
Vpcc(Vi − Vpcc)

XLi

(4.4)

The reactive power-sharing mismatch is given as a function of the line impedance mis-

match as follows

∆Q =

∣∣∣∣∣
(

Vpcc
(
V1 − Vpcc

)
XL1

)
−
(

Vpcc
(
V2 − Vpcc

)
XL2

)∣∣∣∣∣ (4.5)

Assuming the line 1 impedance (XL1 ) and line 2 impedance (XL2) vary from 100% to 200% of their

per-unit values, which are assumed to be 0.0389pu. The amount of reactive power mismatch in pu

is observed in Figure 4.4. The reactive power mismatch is kept at zero when the lines are equivalent.

However, the reactive power mismatch increases as the line impedance mismatch increases.
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Figure 4.3: Two units are supplying a common load.

Figure 4.4: Sensitivity analysis of the line impedance mismatch to the reactive
power mismatch.
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4.3 Analysis of Optimization-Based Control for Uniform Power-Sharing between Units

In this section, an analysis of the reachability of the global consensus average given as

1/N ∑N
i=1 xi is derived for a system described by the directed graph shown in Figure. 4.5 for units

seeking the minimum difference between its output and its neighbor. The graph given in this

analysis is balanced and strongly connected, as explained in Appendix A.

V1

V3V2

V4

a
1

2

𝑨 =   

𝟎 𝒂𝟏𝟐 𝟎 𝟎
𝟎 𝟎 𝒂𝟐𝟑 𝟎
𝟎 𝟎 𝟎 𝒂𝟑𝟒

𝒂𝟒𝟏 𝟎 𝟎 𝟎

  

Figure 4.5: An example of constructing an adjacency matrix for four nodes.

Consider N units connected according to a topology described by a directed graph (di-

graph) G. Let the state variable x be the reactive power-sharing between units. Each unit has access

to only its state xi and its neighbor xj. Using the droop control equation given in (4.1b) without

the secondary control correction term, one can obtain the representation of the state space of the

system by defining the state as xi = Kqi Qi = Vnom − Vi and differentiating the state equation with

respect to time as.

ẋi = −V̇i = ui (4.6)

Define a cost function that aims to minimize the difference in power-sharing between unit i and

unit j as follows

min
xi

N

∑
i=1

f (xi, t) (4.7)

Assumption 1. There exists a continuous x∗i (t) that minimizes the team cost function given in (4.7)
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Assumption 2. Function f (xi, t) is twice differentiable with respect to xi, with invertible Hessian H(xi, t),

∀ xi, t.

Lemma 1. let f (x) be a continuous differentiable convex function. The function f (x) is minimized at x∗ if

and only if ∇ f (x) = 0 [200].

Lemma 2. let f (x) be a convex function, and assumption 2 holds, then Hessian is a positive definite func-

tion. Hence, the direction of Newton’s step is in a descending direction unless ∇ f (x) = 0.

By applying the Newton step for solving the optimization function, the control input ui is

derived as

ui = −H−1(xi, t)
(

τ∇ f (xi, t) +
∂

∂t
∇ f (xi, t)

)
(4.8)

Theorem 1. Given that the cost function f (xi, t) satisfies the assumptions 1 and 2, using (4.8) in (4.6),

xi(t) converges to an optimal value xi
∗(t), the minimizer of (4.7) i.e. limt→∞ xi(t) → x∗i (t).

Proof. Define a positive-definite Lyapunov function candidate W = 1
2∇ f (xi, t)T∇ f (xi, t). The

derivative of W along xi is Ẇ = ∇ f (xi, t)T H(xi, t)ẋi + ∇ f (xi, t)T ∂
∂t∇ f (xi, t). Equating (4.8) in

(4.6) we obtain Ẇ = −τ∇ f (xi, t)T∇ f (xi, t). Therefore, Ẇ < 0 for ∇ f (xi) ̸= 0, which guarantees

that ∇ f (xi) asymptotically converges to zero as t → ∞. Then, under assumption 1 and using the

lemma 1 and 2, xi(t) converges to x∗i (t) and f (xi, t) will be minimized [201].

Consensus is achieved for the system given in Figure 4.5, when all units share the same

amount of power, satisfying the following equality defined for a unit i at optimal solution.

x∗i = 1/N
N

∑
i=1

x∗i (4.9)

Remark 1. The unconstrained problem in (4.7) tries to demand all units to follow a global consensus average

of power-sharing xi. When power-sharing xi is subjected to internal constraints that prevent xi from reaching

a global consensus average, the objective function will keep the difference from the global consensus average

at a minimum.

4.4 Proposed Optimization-based Consensus Control

The secondary control terms δωi and δVi in (4.1a) and 4.1b constitute the functionalities

of the secondary control. Those terms are dispatched based on an optimization problem. The
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controller aims to minimize reactive power-sharing mismatch and keep active power-sharing equal

between units at nominal frequency. Due to the inherited trade-off between voltage regulation and

reactive power-sharing, the voltage is restricted within a limit, that is, ±5% of the nominal voltage.

In the following sections, the optimization problem’s derivation is performed, which contains an

objective function to minimize the reactive power-sharing mismatch between units subjected to

constraints to obtain equal active power-sharing, restore frequency at a nominal value, and keep

the voltage within a predefined limit.

4.4.1 Objective Function

The secondary controller’s objective function is to minimize the power-sharing mismatch

between units in a consensus manner where each unit communicates its power-sharing with its

neighbor to reach a global consensus average. Expressing the active and reactive power-sharing

of unit i given in (4.3a) and (4.3b) as xωi and xvi respectfully, a quadratic optimization function is

defined to minimize the mismatch between xωi and xvi with their neighbor xωj and xvj described

by the connected directed graph as

min
xωi ,xvi

||xωi − xωj ||
2 + ||xvi − xvj ||

2 (4.10)

The objective function given in (4.10) satisfies assumptions 1 & 2; therefore, theorem 1 is valid. The

active and reactive power-sharing can be represented in terms of the voltage secondary control

correction term as

xωi = ωnom − ωi + δωi (4.11a)

xvi = Vnom − Vi + δvi (4.11b)

Therefore, the objective function in (4.10) can be written in terms of active and reactive power-

sharing as

min
xωi ,xvi

||(ωnom − ωi + δωi )− xωj ||
2 + ||(Vnom − Vi + δvi )− xvj ||

2 (4.12)

4.4.2 Nominal Frequency Constraint

The angular frequency of unit i(ωi) should track the nominal angular frequency i.e.,ωi =

ωnom. By imposing a convex constraint on the value of δωi , tracking ωnom is guaranteed. The

constraint on δωi can be obtained from 4.11a as

δωi = KpiPi (4.13)
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4.4.3 Terminal Voltage constraint

A constraint on the voltage magnitude is imposed to maintain the voltage within a spec-

ified range i.e., ±5% of its nominal value. As a result, reactive power is minimized, while the

voltage magnitude is kept within the given limit. By defining the minimum and maximum voltage

limits Vmin and Vmax, respectively, the inequality constraint that keeps the voltage Vi between those

values is given as

Vmin ≤ Vnom − KqiQi + δVi ≤ Vmax (4.14)

The term KqiQi is obtained by local measurements. Note that the variables Vmin and Vmax are

tunable parameters chosen based on the system operator requirements.

4.4.4 Minimization Algorithm

The optimization function is used to minimize the difference in active and reactive power-

sharing between grid-forming units while keeping the angular frequency at its nominal value, and

terminal voltage within its accepted tolerance. The optimization function generates optimal values

of secondary control correction terms in (4.1a) and (4.1b) satisfying the following objectives:

(i) The differences in active and reactive power-sharing are minimized based on the objective

function given in (4.12).

(ii) The angular frequency of each unit ωi is restored to its nominal value as in (4.13).

(iii) The terminal voltage at each unit Vi is within its tolerance as in (4.14).

The overall optimization problem is provided as

minimize ||(ωnom − ωi + δωi )− xωj ||2 + ||(Vnom − Vi + δvi )− xvj ||2

subject to δωi = KpiPi

Vmin ≤ Vnom − KqiQi + δVi ≤ Vmax

(4.15)

The proposed secondary control is shown in Figure 4.6. The controller obtains the power-

sharing data from its neighbor unit j through low bandwidth communication and measures its

terminal voltage and frequency and its corresponding active and reactive powers. Those data are

processed in a convex optimization function to obtain the minimum active and reactive power-

sharing between units while keeping the constraints satisfied. The output of the secondary control

represents the optimal voltage and frequency error terms that feed into the primary control. The
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error terms are optimal in terms of minimizing the difference in active and reactive power-sharing.

The optimization function minimizes a quadratic objective function over convex equality and in-

equality constraints. Therefore, the minimum value obtained is guaranteed to be the optimal global

solution for the convex set [200].
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Figure 4.6: Optimization-based consensus secondary control.

4.5 Simulation Results

The proposed controller was validated on a test system given in Figure 4.7 which repre-

sents the test model of a microgrid with four DG units and two loads. The line parameters of

line 2 were different from lines 1&3 to show the trade-off between voltage regulation and reactive

power-sharing under line parameters mismatch. All units had the same reactive power-sharing
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droop coefficients such that any reactive power mismatch was solely caused by the line parameters

effect. Table 4.1 shows the system specification of the DG units, lines, and loads. The optimization

function was implemented in CVX/CVXGEN to generate fast custom optimization solver suitable

for real-time applications [202]. An overview of CVX/CVXGEN is given in Appendix B.
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Figure 4.7: Single-line diagram of the microgrid test system .

Two communication network topologies were used to validate the optimization-based sec-

ondary controller; consensus-based and centralized-based topologies. In consensus-based topol-

ogy, each unit communicates its power-sharing with its neighbor as given in Figure 4.8a. The

configuration is called a directed graph, where arrows indicate the data flow from one unit to an-

other. While centralized-based topology employs a central processor to collect the power-sharing

from all units, calculate the average, and transmit the average power-sharing to all units as shown

in Figure 4.8b. The two-way data transmission stream increases the communication links required

in the network. It also could be done in a distributed manner by implementing a two-way commu-

nication link between all units in such a way that each unit received the power-sharing data from

all units and calculated the average in its own local controller.

4.5.1 Control Objective

The proposed controller was simulated for different control objectives with consensus-

based communication topology given in Figure 4.8a to validate the ability of the controller to reach
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Table 4.1: Specifications of the test system

System

Parameter Value Parameter Value

VRMS 220V fsw 10KHz

VDC 700V fnom 50Hz

DGs

Parameter DG 1&2 DG 3&4 Unit

Kpi 49 125 µrad/W.sec

Kqi 2 2 mV/VAR

R fi 0.1 0.1 Ω

L fi 1.35 1.35 mH

C fi 50 50 µF

Rci 30 30 mΩ

Lci 0.35 0.35 mH

Lines

Parameter Value Unit

Zl1 0.23 + j0.318 mΩ

Zl2 0.35 + j1.847 mΩ

Zl3 0.23 + j0.318 mΩ

Loads
Pload1 + jQload1 36 + j36 KVA

Pload2 + jQload2 45 + j36 KVA

the global consensus average as explained in Section 4.3 where the states are the power-sharing

variables Kpi Pi and Kqi Qi and the input variables are the frequency and voltage correction terms

δωi and δVi . The following sections show the system variables for three different cases, including

unconstrained, and constrained for voltage regulation, and reactive power-sharing.

Unconstrained Problem

In the first simulation, the unconstrained problem was considered, in which the controller

seeks minimum power-sharing between units without frequency and voltage constraints to vali-

date the ability of the controller to reach a global consensus average of power-sharing. The fre-

quency and voltage constraints were removed to confirm that the global consensus average of
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Figure 4.8: Communication topology employed for the optimization-based
secondary controller.

power-sharing is reached as proven analytically in Section 4.3. In Figure 4.9, the active and reac-

tive power-sharing reached the global consensus average using the input control signals generated

from the optimization solver. The control signals were given as frequency and voltage correction

terms. The frequency and voltage variables were out of limits because there were no constraints

imposed on their values. Consequently, the active and reactive powers were only shared based on

their droop control coefficients. Note that the control signals for active power-sharing for all units

were zeros when there were no constraints on the frequency values, which indicates the global

consensus average for active power can be reached without an effort from the secondary control.

However, the voltage correction terms of the unconstrained problem had various values attempt-

ing to unify the reactive power-sharing between units, which implies the voltages at each unit are

measured differently due to the voltage drop in the lines.

Constrained Problem for Voltage Regulation

The second simulation studied the effect of the trade-off between the reactive power-

sharing and the voltage regulation as explained in Section 4.2. The objective function seeks the

minimum power-sharing difference between units subjected to equality constraints, where the fre-

quency and voltage are constrained to follow their nominal values. The simulation setting repre-

sents the case where the voltages of the units are strict about following the reference values while

the reactive power-sharing is allowed to mismatch based on the line impedance and reactive power
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droop coefficients. Thus, units may share reactive power beyond their reactive power capacity.

Figure 4.10 shows that the active power-sharing reached the global consensus average while the

reactive power-sharing failed due to the strict voltage constraints. Unit 3 contributed more reac-

tive power than any other unit, although all units had similar reactive power droop coefficients.

This implies the measured voltage at unit 3 had the lowest value among other units due to the

higher voltage drop in the line. The frequency and voltage were kept at their nominal values. This

is the case where the constraints drive the states to fail in reaching the global consensus average

discussed in Remark 1. However, this case may fit some microgrid operators, who require strict

voltage regulations and allow the reactive power-sharing to deviate optimally.

Constrained Problem for Reactive power-sharing

Finally, to manage the trade-off between voltage regulation and reactive power-sharing in

acceptable behavior, a constraint was imposed on the terminal voltage in such a way the voltage

limits were relaxed and allowed to vary within % ± 5 of its nominal value. Therefore, all units

could reach the global consensus average of reactive power-sharing within these allowable voltage

limits. The optimization problem in this simulation is given in Figure 4.6. As shown in Figure

4.11, all units behaved similarly to the previous section for active power and frequency values.

However, because of the relaxed constraint imposed on the voltage, the reactive power for all units

reached the global consensus average while the voltages were kept within the predefined range.

The input signal correction terms for the voltages were generated so that all units kept the voltage

limit unviolated while the global consensus average was reached. Note that unit 3 reactive power

was reduced significantly while unit 2 increased its reactive power to reach a consensus with other

units. This case managed the trade-off between voltage regulation and reactive power-sharing in

such a way that the voltage limits were not violated. However, voltages were allowed to vary

within the given limits to keep units aligned with the global consensus average of reactive power-

sharing.
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Figure 4.9: System variables for the unconstrained problem.
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Figure 4.10: System variables for constrained problem for voltage regulation.
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Figure 4.11: System variables for constrained problem for reactive power-sharing.



81

4.5.2 Communication Channel Comparison

In this section, a comparison between consensus-based and centralized-based communica-

tion topology, as described in Figure. 4.8, has been performed on the proposed optimization-based

secondary controller. In consensus-based communications, units broadcast their power-sharing

values to their corresponding neighbor in one direction, forming a directed graph shown in Figure

4.8a, therefore, the communication link is minimum. On the other hand, centralized-based com-

munication collects information about power-sharing from all units, calculates the global average

value then, and then forwards the global average value to all units forming a two-way commu-

nication channel between the centralized processor and all grid-forming units in the system as

shown in Figure 4.8b. This can also be done in a distributed manner, as explained at the begin-

ning of this section. The objective function used for this simulation was constrained to reactive

power-sharing given in the previous section. Figure 4.12a shows the active and reactive power-

sharing along with their average values obtained by the consensus-based communication layer,

while Figure 4.12b shows an application of a centralized-based communication layer. The active

power-sharing was identical for both communication layers. However, the reactive power-sharing

took about 6sec to reach the average values for both topologies. Note that the reactive power-

sharing with consensus-based communication topology oscillated more closely around the global

average before they converged as compared with the centralized-based communication system.
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Figure 4.12: Active and reactive power-sharing generated from the
optimization-based secondary controller with different communication
topologies.
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4.5.3 Controller Behavior Under Line Parameters Mismatch

To observe the controller behavior under different line parameters mismatch, line 2 in Fig-

ure 4.7 was subjected to different values. The line parameters values for line 2, which are given in

Table 4.1 were halved at the beginning of the simulation. At t = 10s, the line parameters of line

2 were restored to their given value. Then, line 2 parameters were multiplied by a factor of 4 at

t = 20s.

Figure. 4.13 shows the frequencies, voltages, active and reactive powers of all units. For

active powers, there was no interaction between the frequency regulation and the active power-

sharing; hence the frequencies were restored probably without affecting the active power-sharing.

Notice that as line parameters were increased, the active powers were increased to compensate

for line losses. However, reactive power-sharing had an interfering effect between reactive power-

sharing and voltage regulation. At the start of the simulation, the reactive powers were shared

equally between the units, and the voltage was kept within limits. When Zl2 increased, the voltage

differences increased while the reactive power-sharing was kept at the global consensus average.

At t = 20s where Zl2 is increased four times, the upper and lower voltage limits were reached;

therefore, there was not enough capacity for the controller to reach the global consensus average

for all units and unit 2 reactive power-sharing deviated from other units. However, due to the

convexity nature of the controller equations, the minimum deviation from the global consensus

average was guaranteed.
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Figure 4.13: The controller behavior under different line parameter values.

4.5.4 Resilience-based Cybersecurity

Smart grid applications are vulnerable to cyberattacks targeting the control systems of mi-

crogrids through different levels. As discussed in section 2.2.6, the detection algorithms are used
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to detect cyberattacks and apply corrective measures to maintain the system’s operation. These

measures aim to isolate parts of the system that are under cyberattack. To boost the robustness of

the proposed controller against such attacks, the connectivity graph should preserve the balanced

and strongly connected properties. Therefore, undirected edges are used to preserve those prop-

erties when a unit or a communication link is disconnected from the system, as shown in Figure

4.14. Such a communication paradigm adds redundancy to the communication links between units

so that each unit in the system is reachable by any other unit through multiple paths. Two cases

were considered to validate the proposed controller’s resilience to cyberattacks. In the first case,

the False Data Injection Attack (FDIA) was detected in the communication link. While the second

case considered the FDIA detected in the unit.
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Figure 4.14: Undirected graph connectivity for the proposed controller.
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Disconnection of a Communication Link

In this section, FDIA was assumed to be detected at the communication link between units

3&4 at t = 5sec. Therefore, the communication link was disconnected to avoid false data, as shown

in Figure 4.15. In Figure 4.16, the system variables are shown for disconnection of the communi-

cation link between units 3 & 4 at t = 5sec. The disconnection did not affect the system variables

because the property of a balanced and strongly connected graph was still preserved using an undi-

rected graph for the communication layer. Therefore, units 3&4 indirectly communicated with each

other through units 1 & 2.

Unit 1

Unit 3Unit 2

Unit 4

𝑿
𝒗
𝟏
&
𝑿
𝝎
𝟏
 

𝑿𝒗𝟐&𝑿𝝎𝟐
 

𝑿
𝒗
𝟑 &

 𝑿
𝝎
𝟑  

𝑿𝒗𝟒&𝑿𝝎𝟒
 

𝑿𝒗𝟑& 𝑿𝝎𝟑
 

𝑿
𝒗
𝟒 &
𝑿
𝝎
𝟒  

𝑿𝒗𝟏&𝑿𝝎𝟏
 

𝑿
𝒗
𝟐
&
𝑿
𝝎
𝟐
 

Unit 1

Unit 3Unit 2

Unit 4

𝑿
𝒗
𝟏
&
𝑿
𝝎
𝟏
 

𝑿𝒗𝟐&𝑿𝝎𝟐
 

𝑿𝒗𝟒&𝑿𝝎𝟒
 

𝑿𝒗𝟑& 𝑿𝝎𝟑
 

𝑿𝒗𝟏&𝑿𝝎𝟏
 

𝑿
𝒗
𝟐
&
𝑿
𝝎
𝟐
 

Figure 4.15: System variables for disconnection of the communication link
between units 3 & 4.
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Figure 4.16: System variables for disconnection of the communication link
between units 3 & 4.

Disconnection of a Unit

This section focuses on the detection of FDIA at the unit’s controller. Unit 3 was discon-

nected from the system at t = 5sec. Figure 4.17 shows the system’s connectivity after unit 3 was dis-

connected. Figure 4.18 shows the system variables for disconnection of unit 3 as given at t = 5sec.

The system could keep power sharing between the remaining units at a global consensus average

while keeping the frequency and voltage within their limits.
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Figure 4.17: System variables for disconnection of the communication link
between units 3 & 4.
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Figure 4.18: System variables for disconnection of unit 3.
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4.6 Conclusions

This chapter applied an optimization-based consensus controller to the secondary control

of islanded microgrids. The controller’s function was to maintain the global consensus average of

active and reactive power-sharing while restoring the frequency to its nominal value and keeping

the voltages within the allowable limit of (i.e., ±5%). A real-time quadratic convex optimization

function was implemented by CVX/CVXGEN and embedded in a simulation model using MAT-

LAB/SIMULINK. The controller’s performance and behavior were validated through simulations

for different control objectives. In addition, consensus-based and centralized-based communica-

tion models were compared for the proposed controller. The proposed controller efficiently kept

the voltage and frequency levels within allowable limits and the power-sharing difference at a

minimum mismatch. Moreover, the controller’s behavior under different line parameter values

was studied. The simulation showed that the reactive power-sharing started to mismatch opti-

mally when the voltage limits were reached, and there was not enough capacity for the controller

to keep the reactive power-sharing in global consensus average values.
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CHAPTER 5
ECONOMIC DISPATCH-BASED SECONDARY CONTROL

5.1 Introduction

In microgrids, the economic considerations are usually taken at the tertiary control level,

which is managed by the distribution network operator (DNO). Economic dispatch and optimal

power flow are standard algorithms implemented at this level. In such algorithms, the time con-

stant takes several minutes to hours. Therefore, the loads and renewable energy production are

required to be estimated. The estimation-based methods introduce uncertainty to the optimization

function that degrades the optimal solution.

In this chapter, the economic dispatch algorithm is implemented within the secondary

control level for an islanded microgrid. The proposed secondary control levels aim to dispatch

active power based on fuel cost, restore the frequency and voltage to their nominal values, and

manage the reactive power-sharing. A real-time optimization function is employed to solve the

economic dispatch problem and manage the reactive power generation in relation to frequency

and voltage, respectively. The proposed controller assumes the grid is inductive; hence, the active

power only depends on the frequency and reactive power on the voltage. A coupling inductance

is used to realize this assumption. The frequency and voltage are kept at nominal values to avoid

circulating currents, while the generated active and reactive powers are subjected to maximum

power capacity constraints. The controller proposed in this chapter is based on work given in

[203].

The proposed controller integrates the economic dispatch algorithm into the secondary

control of grid-forming units in an islanded microgrid. The features of the proposed controller can

be summarized as follows:

• The active power is generated based on an economic dispatch algorithm subjected to maxi-

mum active power capacity and nominal frequency constraints.

• The reactive power is managed so that the reactive powers are maintained below their max-

imum capacity and the voltages are maintained at their nominal values.

• The algorithm is performed in real-time on a timescale 0.5 sec such that the required powers

are based on measurements to avoid prediction errors caused by the estimation of loads and

renewable energy generation quantities.
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This chapter is organized as follows. First, section 5.2 introduces the hierarchical control

structure of grid-forming units in islanded mode. Then, in Section 5.3, the optimization function

of the proposed controller is derived and explained. Next, in Section 5.4, the simulation results are

presented and compared with the decentralized secondary controller. Finally, Section 5.5 provides

conclusions and future work for the proposed controller.

5.2 Tertiary Control in islanded Microgrid

The hierarchical control structure equations employing the droop control method that con-

trols the grid-forming units in islanded mode are given as follows.

ωi = ωnom − Kpi (Pi − Pre fi
) + δωi (5.1a)

Vi = Vnom − Kqi(Qi − Qre fi) + δVi (5.1b)

Where ωi and Vi are the angular frequency and terminal voltage of ith unit, ωnom and Vnom are the

nominal angular frequency and terminal voltage, Kpi and Kqi are active and reactive power droop

coefficients, Pi and Qi are measured active and reactive power of ith unit, Pre f and Qre f are the

reference values of active and reactive power commanded by tertiary control level, and δωi and δVi

are the secondary control corrective terms, respectively.

The overall control system of the grid-forming units is shown in Figure5.1. The droop con-

trol equations set the voltage and frequency reference values by measuring the active and reactive

power and receiving the primary, secondary, and tertiary command signals. Then, the voltage and

frequency reference values are processed through the internal control loops of the grid-forming

units. The active and reactive powers Pre fi
and Qre fi

of the tertiary control level are responsible for

the economic operation of the islanded microgrid. These economic aspects are regarded as optimal

power flow or economic dispatch problems.

5.2.1 Optimal Power Flow

In optimal power flow, we are interested in the minimum or maximum feasible set of the

objective function that satisfies the equality and inequality constraints. The objective function can

be used to minimize fuel cost, line losses, voltage deviation, CO2 emissions, or maximize profit

and penetration of renewable energy. The optimization problem can be in the form of a single

objective or a multi-objective. The multi-objective function is solved by either Pareto or scalariza-

tion methods. In the Pareto method, the line between the two optimal solutions of multi-objective
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Figure 5.1: Hierarchical control structure.

optimization is called the Pareto line. Any point on this line is an optimal solution in such a way

that moves to the optimal point of one variable affects the other. In the Scalarization method, the

objective functions are prioritized in the sense that the optimal solution of one of the objectives is

more favorable than the other. The fuel cost function can be given as

C(Pre fi
) =

N

∑
i=0

aiP2
re fi

+ biPre fi
+ ci (5.2)

Where ai, bi, and ci are the generation cost parameters of ith DG unit.

To consider the operation limits while optimizing the objective function, constraints are

subjected to the optimization problem. These constraints are either hard constraints that must be

satisfied or soft constraints that are allowed to deviate from a tolerance based on a penalty factor

in the objective function. Some examples of constraints applied to OPF are listed in Table 5.1. The

optimal power flow considers each system bus, including the generation, load, and slack buses.

To perform a convex optimization, the objective function and constraints must be convex

or affine functions. Therefore, linearization or convex relaxation is required. Linearization of non-

convex constraints is based on assumptions on the grid such that the constraints become convex,
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Table 5.1: Examples of constraints applied to OPF.

Constraint Equation Description

Power
flow con-
straints

Pi = |Vi|∑n
k=1 |Vk|(Gikcos(θi − θk) + Biksin(θi − θk))

Qi = |Vi|∑n
k=1 |Vk|(Giksin(θi − θk)− Bikcos(θi − θk))

Ensures
power flow
equations
are satis-
fied

Power bal-
ance con-
straints

∑N
i=1 Sre fi = ∑N

i=1 Sline
i,k + ∑N

j=1 Sload
j Ensures

the con-
servative
principle is
satisfied

Thermal
capacity
con-
straints

fik(Vi, Vk) ≤ Imax
i,k Ensures

resistive
losses in
the line
within an
acceptable
range

Active
power
generation
capacity
con-
straints

Pmin
re fi

≤ Pre fi ≤ Pmax
re fi

Limits of
the active
power gen-
eration

Reactive
power
generation
capacity
con-
straints

Qmax
re fi

≤ Qre fi ≤ Qmax
re fi

Limits of
the reactive
power gen-
eration

Voltage
mag-
nitude
limit con-
straints

(Vmin
i )2 ≤ |Vi|2 ≤ (Vmax

i )2 Ensures
voltages at
buses are
within a
given range
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such as DC-OPF and linearization around the no-load voltage profile. The DC-OPF, for instance,

includes four assumptions that hold for the transmission system as follows

1. The line is lossless, and the shunt elements are neglected

2. The angle between buses is small such that sin(θi − θj) ≈ (θi − θj)

3. The voltage magnitude at each bus is 1pu.

4. The reactive power flow is neglected.

However, the convex relaxations enclose the non-convex feasible spaces associated with the power

flow equations in a larger space, such as Semidefinite Programming (SDP) and Second Order Cone

Programming (SOCP). The advantage of solving OPF problems by a convex relaxation is the ability

to certify a solution as being globally optimal: if an optimal solution of a relaxation satisfies an

easily checkable condition.

The overall optimization problem aims to minimize the generation cost through generated

active (Pre fi
) and reactive (Pre fi

) powers in generation buses by solving the following optimization

function.

min
N

∑
i=0

C(Pre fi
) (5.3a)

Pi = |Vi|
n

∑
k=1

|Vk|(Gikcos(θi − θk) + Biksin(θi − θk)) (5.3b)

Qi = |Vi|
n

∑
k=1

|Vk|(Giksin(θi − θk)− Bikcos(θi − θk)) (5.3c)

N

∑
i=1

Pre fi
=

N

∑
i=1

Pline
i,k +

N

∑
j=1

Pload
j (5.3d)

N

∑
i=1

Qre fi
=

N

∑
i=1

Qline
i,k +

N

∑
j=1

Qload
j (5.3e)

fik(Vi, Vk) ≤ Imax
i,k (5.3f)

Pmin
re fi

≤ Pre fi
≤ Pmax

re fi
(5.3g)

Qmax
re fi

≤ Qre fi
≤ Qmax

re fi
(5.3h)

(Vmin
i )2 ≤ |Vi|2 ≤ (Vmax

i )2 (5.3i)
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5.2.2 Economic Dispatch

Economic dispatch uses an optimization function to set an optimal reference power for

each unit that controls voltage and frequency. The economic dispatch solution is specified through

variables Pre fi
and Qre fi

in the droop control equations given in (5.1a) and (5.1b). The optimiza-

tion function minimizes a cost function subjected to power balance and unit capacity constraints.

Unlike the OPF, the economic dispatch considers only generation units. Considering a quadratic

global cost function that minimizes the generation cost of each unit as given in (5.2). The optimiza-

tion function pursues the minimum cost of generation while keeping the constraints on the power

balance and the unit’s capacity satisfied.

min
N

∑
i=0

C(Pre fi
) (5.4a)

Pi ≤ Pre fi
≤ Pi (5.4b)

N

∑
i=0

Pre fi
= Pload (5.4c)

Where C(Pre fi
) represents the generation cost function, Pi and Pi represent the minimum and max-

imum of the rated capacity of the ith DG unit, respectively.

In the economic dispatch algorithm, renewable energy resources such as PV and wind

energy systems that utilize MPPT are considered negative loads, adding to the load demands con-

nected to the microgrid. Furthermore, given that the tertiary control level has a time scale in order

of minutes, the loads and renewable energy generation quantities require estimation, which intro-

duces prediction errors to the optimization function that degrade the efficiency of the economic

dispatch of the microgrid.

5.3 Proposed Economic Dispatch-based Secondary Control

The proposed economic dispatch-based controller uses a centralized real-time optimiza-

tion function to provide cost minimization, reactive power-sharing management, and frequency

and voltage restorations at the secondary control level. The proposed controller utilizes the droop

control equations that control the grid-forming units to maintain the frequency and voltage of the

microgrid. The droop control equations in (5.1a) and (5.1b) are adopted without considering the

secondary control corrective terms as

ωi = ωnom − Kpi (Pi − Pre fi
) (5.5a)



96

Vi = Vnom − Kqi (Qi − Qre fi
) (5.5b)

The variables Pre fi
and Qre fi

are proposed to provide the economic dispatch-based sec-

ondary control signals through an optimization function that minimizes the generation cost sub-

ject to the constraints of secondary control functionalities. The controller attempts to control the

measured active and reactive power (Pi and Qi) through variables Pre fi
and Qre fi

as

Pi = 1/Kpi (ωnom − ωi) + Pre fi
(5.6a)

Qi = 1/Kqi (Vnom − Vi) + Qre fi
(5.6b)

In (5.6a) and (5.6b), the microgrid is assumed to be inductive, where the frequency is con-

trolled by the active power and the voltage by the reactive power.

5.3.1 Cost Minimization

In the microgrid, different generation technologies are used for grid-forming units. There-

fore, the generation cost may differ from one unit to another. A quadratic cost function is used to

express the cost of generation as

C(Pi) = aiP2
i + biPi + ci (5.7)

Where ai, bi, and ci are generation cost coefficients associated with the generation cost of unit i.

Therefore, the objective function aims to minimize the generation cost given in (5.7). Equat-

ing (5.6a) in (5.6b), the cost function in terms of generated active power is given as

C(Pi) = ai(1/Kpi (∆ωi) + Pre fi
)2 + bi(1/Kpi (∆ωi) + Pre fi

) + ci (5.8)

5.3.2 Active and Reactive power management

In a grid-forming unit control system, power-sharing is required to ensure that the ratings

of the units are not exceeded, and each unit shares power based on its ratings. However, the

frequency and voltage regulations must be considered in the droop control equations as given in

(5.5a) and (5.5b). Therefore, maintaining equal power-sharing at nominal frequency and voltage

values is the desired behavior. However, the reactive power is shared not only based on reactive

power droop coefficients but also based on the measured voltage at the terminal of each unit. As

a result, a trade-off occurs between voltage regulation and reactive power-sharing. Hence, the

proposed controller sets an upper limit for the active and reactive power generation to ensure that
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the unit’s ratings are not exceeded. Other constraints are imposed on the voltage and frequency to

restore their nominal values and hence avoid circulating currents. The active and reactive power

constraints are given as

1/Kpi (ωnom − ωi) + Pre fi
≤ Pi (5.9a)

1/Kqi (Vnom − Vi) + Qre fi
≤ Qi (5.9b)

5.3.3 Frequency and Voltage restorations

In secondary control of the microgrid, it is desired to keep the frequency and voltage in all

grid-forming units at the same values to avoid circulating currents. Therefore, according to (5.5a)

and (5.5b), the frequency and voltage of all units follow the nominal value when the measured

active and reactive power are equal to their reference values. However, the active power is sub-

jected to economic dispatch to minimize the cost of active power generation. Therefore, the power

balance constraint requires that the sum of measured active powers be equal to the sum of active

output powers.
N

∑
i=0

Pm =
N

∑
i=0

Pi (5.10)

Equating (5.6a) in (5.10) as

N

∑
i=0

Pmi =
N

∑
i=0

(1/Kpi (ωnom − ωi) + Pre fi
) (5.11)

Given that frequency is a global variable and the variable ωi is the same at all units, the

constraint that keeps the change of frequency at zero can be given as

N

∑
i=0

Pmi =
N

∑
i=0

Pre fi
(5.12)

For reactive power, it is sufficient to keep the measured reactive power equal to the reactive

output power in each unit to restore the voltages in all units to their nominal values. When the

rated output reactive power is reached, the voltage is allowed to be decreased to keep the reactive

output power below the rated values as given in (5.9b). The constraint that governs reactive power

management is given as

Qmi = Qre fi
(5.13)

The proposed economic dispatch-based controller requires a centralized processor to gen-

erate the optimal solution for the secondary controller. The data of the measured active and reactive
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power, as well as the measured frequency and voltages, are collected in the centralized proces-

sor, which generates the optimal solution for reference values of active and reactive power. Then,

these results are sent to all grid-forming units that participate in frequency and voltage control

in islanded mode. Figure 5.2 shows the proposed controller architecture in which the economic

dispatch-based controller is implemented at the secondary control level and sends its signals to the

primary control level. The overall optimization problem is given as

minimize ai(1/Kpi (ωnom − ωi) + Pre fi
)2 + bi(1/Kpi (ωnom − ωi) + Pre fi

) + ci

subject to 1/Kpi (ωnom − ωi) + Pre fi
≤ Pi

1/Kqi (Vnom − Vi) + Qre fi
≤ Qi

∑N
i=0 Pmi = ∑N

i=0 Pre fi

Qmi = Qre fi

(5.14)
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Figure 5.2: Economic dispatch-based secondary controller

5.4 Simulation Results

The proposed secondary controller was validated through simulation for a microgrid test

system shown in Figure 5.3. All units sent the measured quantities to the central controller and

received the reference values of active and reactive powers in (5.5). The secondary control func-

tionalities of the proposed controller, including economic dispatch, reactive power management,

and frequency and voltage restoration, were considered in the control signal Pre fi
& Qre fi

. The

system parameters are listed in Table 5.2. The active and reactive power droop coefficients were

chosen to be identical for all units to observe the controller’s behavior based solely on the pro-

posed optimization function. The cost of generation is given in Table 5.2, where the cost is ranked

in ascending order such that unit 1 is the cheapest and unit 4 is the most expensive in terms of
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Figure 5.3: Single-line diagram of the microgrid test system.

generation cost.

5.4.1 Performance of Controller

The behavior of the economic dispatch-based secondary controller was validated for the

system given in Figure 5.3. In addition, the system was subjected to the load given in Table 5.2. The

secondary control optimization function was implemented in a real-time centralized solver with a

time step of 0.5sec generated by CVX/CVXGEN code generator explained in Appendix B [202].

Figure 5.4 shows all unit variables, including frequency, voltage, active, and reactive pow-

ers. For active power, the controller effectively dispatched the active power based on the generation

cost, while the frequency was kept at a nominal value for all units. For reactive power, the voltages

were maintained at nominal values, and the reactive power generations were below the reactive

power ratings.



101

Table 5.2: Specifications of the test system

System

Parameter Value Parameter Value

VRMS 220V fsw 10KHz

VDC 700V fnom 50Hz

DGs

Parameter DG 1&2 DG 3&4 Unit

Pi 50 50 KW

Qi 20 20 KVAR

Kpi 49 49 µrad/W.sec

Kqi 2 2 mV/VAR

Rci 30 30 mΩ

Lci 0.35 0.35 mH

Lines

Parameter Value Unit

Zl1 0.23 + j0.318 mΩ

Zl2 0.35 + j1.847 mΩ

Zl3 0.23 + j0.318 mΩ

Loads
Parameters Value Unit

Pload1 + jQload1 36 + 36 KVA

Pload2 + jQload2 45 + 36 KVA

Cost coefficients

DGs ai bi ci

DG 1 0.002 15 0

DG 2 0.003 20 0

DG 3 0.004 25 0

DG 4 0.005 30 0

Unit $/MW2hr $/MWhr $/hr
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Figure 5.4: Economic dispatch-based secondary control.

5.4.2 Comparison with decentralized secondary control

To verify the generation cost reduction of the proposed controller, the economic dispatch-

based secondary controller was compared to a decentralized secondary controller. The objective of

the decentralized secondary controller is to restore the frequency to its nominal values regardless

of the active power management. In the decentralized controller, the droop control equations,

given in (5.1), were employed. The secondary control corrections terms δωi and δVi were used to

compensate for the frequency and voltage deviations in the unit’s terminal.

In Figure 5.5, the variables of the system are shown for decentralized secondary control.

The active power was only dispatched based on the droop control coefficient. The active power was

shared equally between units because all units have similar active droop coefficients. Figure 5.6

shows the cost of generation of both controllers. The economic dispatch-based secondary controller

effectively reduces the cost by %7.
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Figure 5.5: Decentralized secondary controller.
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Figure 5.6: Comparison with the decentralized secondary controller.
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5.5 Conclusions

This chapter employed the secondary control level of grid-forming units to provide fre-

quency and voltage restorations, reactive power management, and economic dispatch. An opti-

mization function was derived for providing these functionalities and implemented in a real-time

solver on a timescale of 0.5 sec to avoid interaction with the primary control level and allow the

controller to solve the optimization problem. The proposed controller was simulated using MAT-

LAB/SIMULINK and compared to a decentralized secondary control with the objective of restor-

ing the frequency and voltage of grid-forming units to their nominal values. In addition, the con-

troller effectively dispatched the active power of units based on their cost. As a result, the cost of

generation was reduced by 7%.
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CHAPTER 6SCALABILITY VALIDATION ON CIGRE NORTH AMERICA MICROGRID BENCHMARK
SYSTEM

6.1 Introduction

In this chapter, the scalability of the proposed controllers is validated in the CIGRE North

American LV distribution network benchmark. The CIGRE benchmark was modified to be pre-

sented as an islanded microgrid by disconnecting it from the main grid and integrating DG units

within its defined boundaries.

This chapter is structured as follows. Section 6.2 introduces the North America LV CIGRE

distribution network benchmark with corresponding modifications to simulate the islanded micro-

grid. The generalized droop control was applied to the primary control of the CIGRE benchmark in

section 6.3. In section 6.4, the secondary control of the islanded microgrid was implemented by the

optimization-based consensus secondary controller and results are shown for two cases. Section 6.5

shows the economic operation of the islanded microgrid by applying the economic dispatch-based

secondary controller. Finally, Section 6.6 summarizes this chapter.

6.2 CIGRE North America LV Distribution System

CIGRE Task Force (TF) C6.04.02 sets a baseline for testing the integration of DER and Smart

Grid technology [204] to promote the analysis of the integration of DER at high voltage, medium

voltage, and low voltage levels for the specifications of European and North American power sys-

tems. The benchmark provides a platform for analyzing, designing, and validating methods for

the integration of renewable and distributed energy resource networks. These methods cover vari-

ous domains, including operation and control, planning and design, power quality, protection, and

stability.

CIGRE MV and LV distribution system benchmarks are widely used for microgrid appli-

cations due to their diversity of available specifications. In this dissertation, the North American

LV commercial distribution benchmark was modified to serve as an islanded microgrid. The North

America commercial benchmark is a 12-bus system located in a low-voltage distribution system.

The X / R ratio is approximately 0.11, which makes it a practical candidate for validation of the

generalized droop control proposed in Chapter 3. However, for the application of secondary con-

trollers proposed in Chapters 4 and 5, a coupling impedance was used to increase the inductivity of
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the system. A value of 30 + j1mΩ was placed at the terminal of each grid-forming unit to increase

the X/R ratio to approximately 10. Furthermore, the line parameters mismatch between lines is

generally low, which is suitable for case 2 of the optimization-based consensus secondary control

in Chapter 4, where the voltage is kept at nominal values while the reactive power-sharing is min-

imized. Given that the CIGRE benchmark is based on real-life applications, the cost minimization

algorithm proposed in Chapter 5 is a useful economic application for it.

The commercial feeder of the North America LV distribution network benchmark was

slightly modified to present an islanded microgrid with a defined boundary. The PCC was placed

at the distribution transformer where the islanded operation was initiated by switching off the

PCC switch. Additionally, four grid-forming units were randomly installed in the system to oper-

ate the microgrid during disconnect from the main grid. Figure 6.1 shows the modified single-line

diagram of the commercial feeder of the North America LV distribution network benchmark. Grid-

forming units are located on buses 5,7,9 and 10. The system data is given in Table 6.1 where the

data are derived from the CIGRE benchmark data as given in Appendix C.
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Figure 6.1: The modified commercial feeder of LV North America distribution
system benchmark.
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Table 6.1: The modified commercial feeder parameters

DGs

Parameters Value Kpi Kqi

Unit 1 120 + j60 KVA 2.6µΩrad/Ws 0.23mV/VAR

Unit 2 120 + j60 KVA 2.6µΩrad/Ws 0.23mV/VAR

Unit 3 120 + j60 KVA 2.6µΩrad/Ws 0.23mV/VAR

Unit 4 120 + j60 KVA 2.6µΩrad/Ws 0.23mV/VAR

Lines

Parameters Value Unit

Z1−2 2.5583 + j2.1 mΩ

Z1−5 27.3 + j2.58 mΩ

Z1−6 27.3 + j2.58 mΩ

Z1−7 27.3 + j2.58 mΩ

Z2−3 8.57 + j2.34 mΩ

Z2−8 27.3 + j2.58 mΩ

Z2−9 18.56 + j1.75 mΩ

Z3−4 5.83 + j1.59 mΩ

Z3−10 18.56 + j1.76 mΩ

Z3−11 18.56 + j1.76 mΩ

Z4−12 8.73 + j0.83 mΩ

Loads

Parameters Value Unit

P5 + jQ5 9.09 + j4.4 KVA

P6 + jQ6 12.15 + j5.88 KVA

P7 + jQ7 14.365 + j8.9 KVA

P8 + jQ8 12.15 + j5.88 KVA

P9 + jQ9 16.05 + j5.27 KVA

P10 + jQ10 9.59 + j3.15 KVA

P11 + jQ11 16.05 + j5.27 KVA

P12 + jQ12 9.09 + j4.4 KVA
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6.3 Generalized Droop Control

In Chapter 3, the generalized droop control was validated for a four-bus system where

three cases are simulated resistive, mixed-impedance, and inductive grid. In this section, the gen-

eralized droop control is applied to the CIGRE benchmark to ensure the scalability of the proposed

controller. The CIGRE benchmark for commercial feeders was located on the LV distribution net-

work, where the X / R ratio is significantly small. The calculated value of the X/R ratio according

to the locations of the units in Figure 6.1 is 0.11 on average where the grid was assumed to be

resistive.

Figure 6.2 shows the changes in frequency and voltages, active and reactive power, the

estimated and calculated X/R ratio, and the elements of the dependency matrix for the generalized

droop controller applied for the primary control of grid-forming units. At t = 2sec the load on bus

C9 with 16.05 + j5.27KVA was disconnected. Then, the load on bus C12 with 9.09 + j4.4KVA was

disconnected at t = 4sec.

Given that the grid was resistive, the voltage changes more for a greater change in active

power, as can be seen for the disconnection of the load on bus C9. The system was stabilized by ap-

plying the generalized droop control and could estimate the X/R ratio to use it in the dependency

matrix. In the dependency matrix, the absolute values of elements a12 and a21 were almost 0.9, and

0.1 for a11 and a22, indicating the dependence of frequency on reactive power and voltage on active

power. This behavior is typical for a resistive grid. Note that the change in frequency was positive

due to the linear relationship between frequency and reactive power given in (3.15a) and a higher

value of a12 as compared to a11.
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CIGRE LV benchmark.
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6.4 Optimization-Based Consensus Secondary Control

The optimization-based consensus secondary controller proposed in Chapter 4 was ap-

plied to the secondary control of grid-forming units. A coupling impedance of 30 + j1mΩ was

applied to each unit’s terminal to increase the X/R ratio to approximately 10 since the proposed

controller was designed for an inductive grid. The proposed controller was applied for two cases

in terms of the control objective. The first case was constrained for voltage regulation where the

voltage was kept at a nominal level, i.e., 120V, while the reactive power mismatch was minimized.

In the other case, the reactive power mismatch was minimized as long the voltage was kept within

a predefined limit, i.e., ±5%. However, the controller aimed to reduce differences in reactive

power-sharing in highly mismatched line impedance systems. In the CIGRE benchmark, the line

impedance mismatch is minimal; therefore, the optimization function given in case 2, where the

objective function was restricted for voltage regulation, is more suitable for the commercial feeder

of the LV CIGRE benchmark.

Figure 6.3 shows the variables of grid-forming units for the proposed controller with a con-

trol objective to keep the voltage at a nominal value while minimizing the reactive power-sharing

mismatch. This was achieved during the experiment. Note that, due to the minimal mismatch

between the impedance of the lines, the reactive power-sharing mismatch was minimized as ex-

plained in Section 4.2.

In Figure 6.4, the grid-forming unit variables of the optimization-based consensus con-

troller are shown for the control objective to keep the voltage within ±5% of nominal value while

minimizing the reactive power-sharing mismatch between units. Although the voltage constraint

was not reached, the voltages were mismatched to allow unified reactive power-sharing among

units.
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6.5 Economic Dispatch Secondary Control

The secondary controller based on economic dispatch in Chapter 5 is capable of reducing

the cost of generation by 7%. The proposed controller was applied to the NA CIGRE benchmark

with similar cost coefficients given in Table 5.2.

Figure 6.5 shows the variables of the grid-forming units with the economic dispatch-based

secondary controller. Units dispatch active power based on their cost of generation. The frequency

and voltage were kept at nominal values. In contrast, Figure 6.6 shows the variables when a de-

centralized secondary control was used to restore only the frequency and voltage of the units. The

active power was dispatched based on the droop control coefficients without considering the cost

of generation. In Figure 6.7, a comparison between the generation costs of the two controllers is

shown. The secondary controller based on economic dispatch reduced the cost of generation by

approximately 13%.

6.5.1 The effect of conductivity on economic dispatch.

The proposed economic dispatch-based secondary controller was implemented based on

the assumption that the grid was inductive where the active power was dispatched by controlling

the frequency and reactive power by controlling the voltage. According to (3.5), even with an in-

ductive grid (X ≫ R), there is a voltage component in active power and a frequency in reactive

power. However, as the inductivity of the grid increases, these components fade. Therefore, the

economic operation is improved as the inductivity of the grid increases because the active power

is further decoupled from the voltage, which has the objective of managing the reactive power.

Additionally, the above phenomena explain the reactive power mismatch in Figure 6.5. In (3.6), the

voltage was constrained at a nominal value while the active power changed based on economic dis-

patch. Therefore, to keep the voltage constant, the reactive power changes in the opposite direction

of active power.
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6.6 Conclusions

The North America LV CIGRE distribution network benchmark was used to validate the

scalability of the proposed controllers. It was modified to emulate an islanded microgrid by inte-

grating grid-forming units and disconnecting it from the main grid. For the primary control, the

generalized droop control was applied to show the effectiveness of the controller in maintaining

the stability of frequency and voltage control under the CIGRE benchmark, which is a resistive grid

with an X/R ratio of approximately 0.11. In addition, the optimization-based consensus secondary

controller was applied, including two control objectives constrained to voltage regulation and reac-

tive power-sharing. Finally, the economic dispatch-based secondary controller was applied to the

CIGRE benchmark. The proposed controller improved the cost of generation by 13%. The effect of

the inductivity of the grid for economic dispatch-based controllers is also discussed.
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CHAPTER 7
CONCLUSIONS

This dissertation aimed to enhance the resilience of power systems by improving the is-

land operation of microgrids. These enhancements addressed three known issues found in the

frequency and voltage control of islanded microgrids as applied by grid-forming units employing

a hierarchical control structure. The issues discussed in this dissertation included the non-linear

relationship between frequency and voltage with active and reactive power in a mixed impedance

grid, the trade-off between voltage regulation and reactive power-sharing in an inductive grid

with highly mismatched line impedance, and prediction errors in economic dispatch caused by

estimation of load and renewable energy generation. The proposed controller for the primary con-

trol level was capable of maintaining the stability of the frequency and voltage control in resistive,

mixed-impedance, and inductive grids. Furthermore, the optimization-based consensus secondary

controller was able to maintain equal sharing of reactive power within predefined voltage limits to

allow units to share reactive power based on their ratings and avoid circulating currents. Finally,

the economic operation was improved for grid-forming units by utilizing the economic dispatch-

based controller at the secondary control level, eliminating the need for an estimation algorithm

for load and renewable energy generation. Solving these issues helps the power system improve

resilience-based operation in the form of response to and recovery from HILP events.

This chapter is structured as follows. In Section 7.1, the dissertation is summarized along

with the key contributions of this research. Section 7.2 discusses the recommendation and exten-

sions that could improve the work proposed in this dissertation.

7.1 Summery and Contributions

In Chapter 1, the significance of research on improving the islanded operation of micro-

grids in the context of improving the overall resilience of the power system was discussed. Fur-

thermore, the control challenges associated with an islanded microgrid employing a hierarchical

control structure were reviewed in light of recent literature. It was pointed out that there is a need

for stable and economical operation of frequency and voltage control of grid-forming units employ-

ing a hierarchical control structure in an islanded microgrid. The organization of this dissertation

was also outlined in this chapter.
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Chapter 2 reviewed the literature on three topics related to this research. In the first part,

the role of microgrids in improving the resilience of power systems was discussed in three regards:

resilience-based planning, response, and restoration. The second part reviewed the concept of the

microgrid and recent works on its operation, control, protection, and economic aspects. In the third

part of this chapter, the literature on the hierarchical control structure of islanded microgrids was

explored, along with associated issues.

A generalized droop controller to improve the stability of frequency and voltage control

in a mixed impedance grid was discussed in Chapter 3. The primary control level was explained

along with the issue of instability of frequency and voltage control in a mixed impedance grid. The

proposed generalized droop controller was designed and simulated in this chapter. In addition, a

discussion of the dependency matrix elements was presented.

In Chapter 4, The issue of the trade-off between voltage regulation and reactive power-

sharing in an inductive grid was introduced, along with a discussion about the secondary control

level of a hierarchical control structure. Furthermore, the optimization-based consensus secondary

controller was proposed to overcome this issue with minimal communication links between units.

Simulation results to verify the effectiveness of the proposed controller were presented.

The economic operation of frequency and voltage control in an islanded microgrid was in-

troduced in Chapter 5. The optimal power flow and economic dispatch algorithms were discussed,

along with the need to use an estimation algorithm to predict the loads and renewable energy gen-

eration quantities. The proposed economic dispatch-based secondary controller was implemented

in real-time to eliminate the prediction caused by the estimation-based optimization algorithms.

The effectiveness of the proposed controller in the simulation was validated in this chapter.

Chapter 6 validated the scalability of the proposed controllers in the commercial feeder

of the North American CIGRE LV distribution network. The CIGRE benchmark was modified

to incorporate grid-forming units with the microgrid boundary defined by placing the PCC be-

tween the feeder and the main grid. The generalized droop controller was applied to the CIGRE

benchmark, and the results of the simulation were shown. Additionally, the optimization-based

controller was applied with two control objectives, including constraints for voltage regulation

and reactive power-sharing. Finally, the economic operation of the CIGRE model for applying the

economic dispatch-based secondary controller was shown.
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7.1.1 Key Contributions

This dissertation focuses on improving the islanded operation of microgrids with a hierar-

chical control structure. The key contributions of the presented work include three aspects of an

islanded microgrid.

At the primary control level, the proposed generalized droop control could maintain the

stability of the frequency and voltage control for resistive, mixed-impedance, and inductive grids.

The key features of the proposed controller are as follows.

• The frequency and voltage were tuned precisely based on the measured active and reactive

power.

• The X/R ratio was obtained from the active and reactive power consumed in the lines.

• The dependency matrix elements took values from -1 to 1 based on the per-unit relationship

between the variables.

At the secondary control level, the optimization-based consensus secondary controller

aims to manage the trade-off between voltage regulations and reactive power-sharing in an in-

ductive grid with highly mismatched line impedance. The contribution of the proposed controller

can be listed as follows:

• An analysis was carried out for the controller to reach the global consensus average at the

optimal solution using the Lyapunov theory.

• The controller was fully distributed because it was implemented to seek the global con-

sensus average of power-sharing (regulator consensus); therefore, there was no need for a

leader unit to capture a reference value.

• Only information about power-sharing was communicated between units, which reduced

the communication intensity in the communication network.

• At the voltage limit, the reactive power-sharing autonomously started to diverge optimally

without the need for modification of the controller settings.

Another controller was proposed for the secondary control level to improve the economic

operation of the islanded microgrid. The economic dispatch-based secondary controller aims to
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reduce the cost of generation in the inductive grid by omitting the need for estimation-based al-

gorithms to predict the load and renewable energy generation quantities, which causes prediction

errors. The key features of the proposed controller can be summarized as:

• The active power was generated based on an economic dispatch algorithm subject to maxi-

mum active power capacity and nominal frequency constraints.

• The reactive power was managed in such a way that the reactive power values were main-

tained below their maximum capacity, and the voltages were maintained at their nominal

values.

• The algorithm was performed in real-time on a 0.5 sec timescale such that the required power

values were based on measurements to avoid prediction errors caused by the estimation of

loads and renewable energy generation units.

7.2 Recommendation and Future work

The results using the controllers developed in this study have indicated the following areas

for further investigation.

• The generalized droop controller used as coefficients for active and reactive powers, the

f − P droop coefficient (∆ωmax/Pmax) to control the frequency and the V − Q droop coeffi-

cient (∆Vmax/Qmax) to the voltage. A more precise representation of the power-sharing is to

use (∆ωmax/Qmax) for ( f − Q) sharing and (∆Vmax/Pmax) for (V − P) sharing. However, a

stability analysis is required to ensure the proper selection of these values.

• The proposed controller implements a linear relationship between frequency and voltage

with active and reactive power. Therefore, coupling between variables can complicate the

control objective for higher levels in a hierarchical control structure.

• The power-sharing in the proposed controller considers the average power over one cycle.

A modification to share the power for non-linear load sharing would be considered.

• For the optimization-based consensus secondary controller, a study of the time of conver-

gence to the consensus global average of power-sharing and its relation to the magnitude of

line parameter mismatch is an important area for future research, especially with the use of

an optimization-based approach.
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• Further testing is required to validate the plug-and-play capabilities and behavior of the

controller under pocket loss and communication link failure.

• For the economic dispatch-based controller, the distributed secondary controller is pre-

ferred in microgrid applications because it can reduce computation loading on the micro-

grid central controller and communication intensity while avoiding a single point of failure.

Many distributed optimization algorithm methods can be utilized for the proposed con-

troller.

• More investigation is needed under units reaching their rated active and reactive power to

observe the behavior of the proposed controller under such conditions.

• The proposed controller assumes that the grid is inductive by utilizing a coupling inductance

at the unit’s terminal. For a mixed impedance grid, the coupling between the active and

reactive power in controlling the frequency and voltage occurs. Therefore, a modification for

the controller so it can provide its functionalities under a mixed impedance grid is preferred.

• For overall hierarchical control structure, the proposed controllers can be combined in a

hierarchical control structure to satisfy each control objective addressed in this dissertation.

However, the coupling between frequency and voltage with active and reactive power in

the generalized droop control causes different control objectives for the same variables, i.e.,

frequency and voltage. Therefore, decoupling these variables improves the integration of

the proposed controllers.

• When the frequency is decoupled from the reactive power and the voltage from active

power, converting the economic dispatch-based controller to a distributed optimization prob-

lem allows an optimization function to provide unified reactive power-sharing and an eco-

nomic dispatch for active power in a single optimization function.
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APPENDIX A
PRELIMINARY ON GRAPH THEORY

In Chapter 4, the communication network is modeled as a graph with directed edges corre-

sponding to the information flow between units. Units are modeled as nodes on the graph, called

agents. The overall dynamical system representing these nodes is called a multi-agent dynami-

cal system. The dynamical system interacts with the agents’ local feedback control protocols to

produce the interconnected nodes’ overall behaviors. This appendix is based mainly on [211].

A.1 Definitions and Connectivity

A graph is made up of the pair G(V , E) where V = {V1, · · · ,VN} is a collection of N nodes

or vertices and E is a collection of arcs or edges. Elements of E are depicted as an arrow with a tail

at Vi and a head at Vj and are labeled as (Vi,Vj), which is known as an edge or arc from Vi to Vj.

The graph is assumed to be simple for the sake of this study, meaning that there are no self-loops

and no duplicate edges connecting the same pairs of nodes (Vi,Vi), i.e., (Vi,Vi) /∈ E , ∀i. For an edge

(Vi,Vj), node Vi is referred to as the parent and node Vj as the child, and edge (Vi,Vj) is said to be

outgoing with respect to node Vi and incoming with respect to node Vj. The in-degree of Vi is the

number of edges having Vi as a head, and the out-degree of a node Vi is the number of edges having

Vi as a tail. The set of (in-degree) neighbors of a node Vi is donated as Ni = {Vj : (Vj,Vi) ∈ E}, i.e.,

the set of nodes with edges incoming to Vi. The in-degree of the node Vi is equal to the number of

neighbors |Ni|.

When the in-degree for each node Vi ∈ V equals the out-degree, the graph is said to be

balanced. The graph is referred to as bidirectional if (Vi,Vj) ∈ E ⇒ (Vj,Vi) ∈ E , ∀i, j, otherwise as

a directed graph or digraph. The weight aij is associate with each edge (Vj,Vi) ∈ E . The nonzero

weights in this analysis are presumed to be strictly positive. A graph is said to be undirected if

aij = aji, ∀i, j, i.e. if it is bidirectional and the weights of edges (Vi,Vj) and (Vj,Vi) are the same.

A sequence of nodes V0,V1, · · · ,Vr such that (Vi,Vi+1) ∈ E , i ∈{0, 1, · · · ,

r− 1} is known as a directed path. The node Vi is connected to the node Vj if there is a directed path

from Vi to Vj. The distance from Vi to Vj is the length of the shortest path from Vi to Vj. Graph G

is strongly connected if Vi,Vj are connected for all distinct nodes Vi,Vj ∈ V . For both bidirectional

and undirected graphs, when there is a directed path from Vi to Vj, then there is a directed path

from Vj to Vi.
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A directed tree is a connected digraph in which each node except one, called a root, has an

in-degree equal to 1. A spanning tree of a digraph is a directed tree formed by graph edges that

connects all graph nodes. A graph is said to have a spanning tree if a subset of the edges creates a

directed tree. This implies that all nodes in the graph can be reached from a single node, the root,

by following the edge arrows. A graph may have more than one spanning tree. Define the root set

or the leader set of a graph as the set of nodes that are the roots of all spanning trees. The graph is

strongly connected if it at least contains one spanning tree. If a graph is strongly connected, then

all nodes are root nodes.

A.2 Graph Matrices

Given the edge weights aij, an adjacency or connectivity matrix of a graph A = [aij] can be

represented with weights aij > 0 if (Vj,Vi) ∈ E and aij = 0 otherwise. Self-edges are not allowed

(i.e., aii=0) unless otherwise indicated. Define the weighted in-degree of node Vi as the ith row sum

of A

di =
N

∑
j=1

aij (A.1)

And the weighted out-degree of node Vi as the ith column sum of A

do
i =

N

∑
j=1

aji (A.2)

The in-degree and out-degree are local properties of the graph. The adjacency matrix A

of an undirected graph is symmetric, such that A = AT . If the weighted in-degree is equal to

the weighted out-degree for all i, then the graph is considered to be weighted balanced. If all

the nonzero edge weights are equal to 1, this is similar to the definition of a balanced graph. An

undirected graph is weight balanced since if A = AT , then the ith row sum equals the ith column

sum.

Defining the diagonal in-degree matrix D = diag(di), the weighted graph Laplacian matrix

is given as L = D − A. Note that, the graph Laplacian matrix L has all row sums equal to zero.

The graph Laplacian matrix is essential in the study of dynamical multi-agent systems on graphs.

Many properties of a graph are studied in terms of the graph Laplacian matrix.
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(a) A directed graph. (b) Spanning tree in the directed graph.

Figure A.1: An example of a directed graph.

A.3 Directed Graph Example

Consider the directed graph shown in Figure A.1 with all edge weights equal to 1. The

graph is strongly connected since there is a path between any two nodes. A spanning tree with

root node 1 is shown in bold in Figure A.1. There are other spanning trees in the graph. Every

node is a root node since the graph is strongly connected.

The adjacency matrix A, the diagonal in-degree matrix D, and graph Laplacian matrix L

are given by.

A =



0 0 1 0 0 0

1 0 0 0 0 1

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0


D =



1 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 0 0 2


L =



1 0 −1 0 0 0

−1 2 0 0 0 −1

−1 −1 2 0 0 0

0 −1 0 1 0 0

0 0 −1 0 1 0

0 0 0 −1 −1 2
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APPENDIX B
CVX/CVXGEN

In Chapters 4 and 5, a convex optimization solver is used to provide functionalities of

the secondary control level. CVX/CVXGEN software tool generates a real-time custom solver

with high-speed capabilities suitable for secondary control applications. In this appendix, the

CVX/CVXGEN software tool is introduced to transform the convex optimization problem to C-

code. Furthermore, the optimization problems, given in Chapter 4 and Chapter 5, are shown.

B.1 An Overview

CVX/ CVXGEN is a software tool that takes high-level descriptions of convex optimiza-

tion problems and generates custom C-Code to create a reliable and fast solver for a class of convex

optimization problems. Using disciplined convex programming (DCP) techniques, convex opti-

mization problems are reduced into small convex quadratic programs. CVX/CVXGEN generates

code that is simple and library-free, making it suited for embedding in real-time applications. Be-

cause the produced code is branch-free, its runtime behavior is predictable. The combination of

static and dynamic regularization, as well as iterative refinement in the search direction computa-

tion, results in a high-performance solver [202].

The CVX/CVXGEN code generator creates source code based on a problem family de-

scription generated using disciplined convex programming. The source code is then compiled into

a customized embedded solution. Finally, in a real-time application, the input is directly fed into

the embedded solution, yielding an optimal point x∗ as shown in Figure B.1.

Figure B.1: The process of generating a custom solver in CVX/CVXGEN.
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B.2 Generating the Custom Code

The optimization function is required to be converted to disciplined convex programming

before it is processed in the CVX/CVXGEN to generate the custom code. Figure B.2 and Figure B.3

show the problems given in Chapters 4 and 5, correspondingly.

Figure B.2: Optimization problem of Chapter 4 converted to DCP.

CVX/CVXGEN conducts syntax, dimension, and convexity checks on each problem de-

scription. Then, it converts the description into a custom C solver. CVX/CVXGEN requires no

configuration more than the problem description to generate the solver. Several sittings, including

the duality gap boundaries, equality and inequality residuals, maximum number of iterations, and

other settings, can be modified for the designed solver.
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Figure B.3: Optimization problem of Chapter 5 converted to DCP.
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APPENDIX C
CIGRE NORTH AMERICA MICROGRID BENCHMARK

In Chapter 6, the North America LV distribution system CIGRE benchmark is used to vali-

date the proposed controllers. The CIGRE distribution system includes three feeder types; residen-

tial, industrial, and commercial. The commercial subnetwork is selected in this dissertation for its

suitability for the proposed controllers’ features, including balanced three phases and the voltage

level. In this appendix, the North America LV distribution system CIGRE benchmark for commer-

cial application, used in Chapter 6 is discussed in terms of specifications and system parameters.

C.1 An Overview

The CIGRE benchmark network for low-voltage distribution (LV) reflects a real-world LV

network that supports user flexibility for studying DER integration. The benchmark for the LV

distribution system is specified for residential, industrial, and commercial feeders; however, any

combination of these feeders can be utilized to model a particular study. Figure C.1 shows the

single-line diagram of the LV distribution network for the North America benchmark, including

residential, industrial, and commercial feeders.

C.2 System specifications

The structure and specifications of the North American LV distribution network bench-

mark differ from those of the European one. The North American LV distribution network has a

system frequency of 60Hz, and the nominal voltage varies depending on the feeder type. The LV

distribution system is radial in design, with consumers connecting anywhere along the lines. Be-

cause the residential feeder contains single-phase loads, it is intrinsically imbalanced. The lines can

be underground or overhead. Underground lines are typically found in densely populated urban

areas, while overhead lines are found in rural areas.

C.3 Network Data

The commercial LV distribution network benchmark for North America is used as a micro-

grid benchmark in this dissertation, where the point of common coupling (PCC) is located at C0 in

Figure C.1. In Table C.3, the line installation data, including connections and line types for the com-

mercial feeder is shown where OH stands for the overhead line and UG for the underground line.
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Figure C.1: CIGRE North America LV distribution network benchmark

The primitive impedance matrices for overhead lines are shown in Table C.3 and for underground

in Table C.3. The coupling impedance between phases is not considered in Chapter 6. These data

are accommodated to 3-ph and Ω/m to be used on the system in MATLAB/SIMULINK.

C.4 Loads Data

Table C.4 shows the values of the peak loads for all nodes of the commercial feeder bench-

mark. The single-phase values assume 120 V. Each load represents a group of users. The data is

presented in terms of apparent power and corresponding power factor.
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Table C.1: Connections and line parameters of the commercial feeder of North
American LV distribution network benchmark

Line segmentNode fromNode toConductor ID/[m]Installation

1 C1 C2 OH1 25 OH 3-ph

2 C2 C3 UG3 25 UG 3-ph

3 C3 C4 UG3 17 UG 3-ph

4 C1 C5 OH3 25 OH 3-ph

5 C1 C6 OH3 25 OH 3-ph

6 C1 C7 OH3 25 OH 3-ph

7 C2 C8 OH3 17 OH 3-ph

8 C2 C9 OH3 17 OH 3-ph

9 C3 C10 UG4 17 UG 3-ph

10 C3 C11 UG4 17 UG 3-ph

11 C4 C12 UG4 8 UG 3-ph

Table C.2: Primitive impedance matrices of three-phase overhead lines of North
American LV distribution network benchmark

Conductor ID/ Installation
The primitive impedance matrix [Ω/km]

A B C N

OH1 / 3-ph

A 0.161 + j0.8590.059 + j0.7800.059 + j0.7540.059 + j0.780

B 0.059 + j0.7800.161 + j0.8590.059 + j0.7800.059 + j0.754

C 0.059 + j0.7540.059 + j0.7800.161 + j0.8590.059 + j0.780

N 0.059 + j0.7800.059 + j0.7540.059 + j0.7800.161 + j0.859

OH3 / 3-ph

A 1.151 + j0.9550.059 + j0.8600.059 + j0.8340.059 + j0.860

B 0.059 + j0.8601.151 + j0.9550.059 + j0.8600.059 + j0.834

C 0.059 + j0.8340.059 + j0.8601.151 + j0.9550.059 + j0.860

N 0.059 + j0.8600.059 + j0.8340.059 + j0.8601.151 + j0.955
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Table C.3: Primitive impedance matrices of three-phase underground lines of
North American LV distribution network benchmark

Conductor ID/ Installation
The primitive impedance matrix [Ω/km]

A B C N

UG3 / 3-ph

A 0.402 + j0.9080.059 + j0.8230.059 + j0.7970.059 + j0.823

B 0.059 + j0.8230.402 + j0.9080.059 + j0.8230.059 + j0.797

C 0.059 + j0.7970.059 + j0.8230.402 + j0.9080.059 + j0.823

N 0.059 + j0.8230.059 + j0.7970.059 + j0.8230.402 + j0.908

UG4 / 3-ph

A 1.151 + j0.9550.059 + j0.8600.059 + j0.8340.059 + j0.860

B 0.059 + j0.8601.151 + j0.9550.059 + j0.8600.059 + j0.834

C 0.059 + j0.8340.059 + j0.8601.151 + j0.9550.059 + j0.860

N 0.059 + j0.8600.059 + j0.8340.059 + j0.8601.151 + j0.955

Table C.4: Load parameters of North American LV distribution network
benchmark

Node Apparent Power, S [KVAS] Power Factor, p f

C5 10.1 0.90

C6 13.5 0.90

C7 16.9 0.85

C8 13.5 0.90

C9 16.9 0.95

C10 10.1 0.95

C11 16.9 0.95

C12 10.1 0.9
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