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Coordinated Active Power Dispatch for a Microgrid
via Distributed Lambda Iteration

Jianqiang Hu, Michael Z. Q. Chen, Senior Member, IEEE, Jinde Cao, Fellow, IEEE,
Josep M. Guerrero, Fellow, IEEE

Abstract—A novel distributed optimal dispatch algorithm is
proposed for coordinating the operation of multiple micro units
in a microgrid, which has incorporated the distributed consensus
algorithm in multi-agent systems and the λ-iteration optimization
algorithm in economic dispatch of power systems. Specifically, the
proposed algorithm considers the global active power constraint
by adding a virtual pinner and it can deal with the optimization
problem with any initial states. That is, it can realize the
global optimization and avoid the defect of the initial conditions’
sensitivity in the optimization problem. On the other hand, the
proposed optimization algorithm can either be used for off-line
calculation or be utilized for on-line operation and has the ability
to survive single-point failures and shows good robustness in the
iteration process. Numerical studies in a seven bus microgrid
demonstrate the effectiveness of the proposed algorithm.

Index Terms—Microgrid, Distributed λ-iteration, Pinning con-
sensus, Optimal dispatch, Markets

NOMENCLATURE

N1 Number of DGs in the microgrid
N2 Number of ESUs in the microgrid
N Number of micro units in the microgrid (equals to

N1 +N2)
PD Power demand of all bus load in the mircogrid
PE Exchanged power (KW) of the tie line between the

microgrid and the main grid
ρd Retail price ($/KWh) for electricity in the microgrid
ρe Wholesale market price ($/KWh) for electricity in the

market
Pgi(0) Initial active power output of ith DG
Pgi Active power output of ith DG
Pmax
gi Maximum power output of ith DG

Pmin
gi Minimum power output of ith DG

P ∗
gi Optimal active power output of ith DG

Pbj(0) Initial active power output of jth ESU
Pbj Active power output of jth ESU

Manuscript received September 16, 2016; revised November 23, 2016 and
January 22, 2017; accepted February 21, 2017.

This work was jointly supported in part by the Research Grants Council,
Hong Kong, through the General Research Fund under Grant 17205414, the
HKU CRCG Seed Funding Programme for Basic Research 201411159037,
in part by the National Natural Science Foundation of China under Grant
nos. 61374053, 61573096, 61272530, and 51677173 and the 333 Engineering
Foundation of Jiangsu Province of China under Grant no. BRA2015286.

J. Hu and J. Cao are with Research Center for Complex Systems and
Network Sciences, and School of Mathematics, Southeast University, Nanjing
210096, China. E-mail: jqhuseu@gmail.com, jdcao@seu.edu.cn.

M. Z. Q. Chen is with the Department of Mechanical Engineering, The
University of Hong Kong, Pokfulam, Hong Kong SAR, China. E-mail:
mzqchen@hku.hk.

J. M. Guerrero is with the Department of Energy Technology, Aalborg
University, Aalborg DK-9220, Denmark. E-mail: joz@et.aau.dk.

P dch,max
bj Maximum discharging power of jth ESU

P ch,max
bj Maximum charging power of jth ESU

P ∗
bj Optimal active power output of jth ESU

λ∗ Optimal incremental cost of all micro units
λ0 Estimated optimal incremental cost of the MGCC
λ̂i Estimated optimal incremental cost of ith micro unit
λ̄i Upper bound of the incremental cost of ith micro unit
λi Lower bound of the incremental cost of ith micro unit
Pi Active power output of ith micro unit
Pm
i Maximal or minimal power output of ith micro unit

κ Regulation gain for the pinning signal system.
µ Coupled strength of the distributed communication

topology.
αi(βi, γi) Cost coefficients of micro units.

I. INTRODUCTION

M ICROGRID is a controllable microsystem formed by
distributed generators (DGs), energy storage units (E-

SUs) and local loads with the ability to operate connected to
the main grid or as an island mode [1], [2], [3], [4]. When
connecting to the main grid, microgrid serves as a prosumer
and can sell/buy electric power to/from the main grid by
participating in the electricity market. In practice, microgrid
can be an alternating current (AC) microgrid, direct current
(DC) microgrid, or hybrid AC/DC mircogrid according to
different transmission modes [5].
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Fig. 1. A typical hybrid AC/DC microgrid structure.

As can be seen from Fig. 1 (a typical structure for a
microgrid), there is a microgrid central controller (MGCC) in
the system, which is responsible for the maximization of the
profit by optimizing power outputs of local DGs/ESUs and the
power exchange with the main distribution grid on different
time scales. The optimized operating scenario is achieved by
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sending control signals to the micro source controllers and
load controllers in a centralized manner [6], [7], [8].

One significant feature of microgrids is that the high pen-
etration of flexible distributed micro units to the microsys-
tem, and the traditional centralized dispatch control system
becomes too complicated and low efficiency when processing
a diversity of optimization and control problems. Meanwhile,
a bidirectional communication structure is needed between the
MGCC and the terminal units in order to connect sampled data
from micro units and the MGCC is responsible for calculating
and issuing control signals to all terminal units. Distributed
technique have emerged with many merits, such as robustness,
reliability and lower cost to be implemented, which has the
good scalability and can survive single-point failures [9], [10].
Recently, distributed strategies have been utilized to solve
different problems in microgrid.

Complex operational tasks managed at a centralized level
can be decomposed into multiple undemanding operations
implemented at a component level by distributed strategies.
For example, distributed economic dispatch was considered in
[11], [12], [13] on the basis of the distributed optimization
theory. The authors in [14] investigated distributed active
and reactive power dispatch and demand response control
problems by the population game theory. Secondary voltage
control of microgrids was studied in [15], [16] based on
the distributed consensus algorithm of multi-agent systems.
Distributed cooperative control was utilized in [17], [18]
to coordinate multiple distributed generators for secondary
frequency and voltage control in microgrids. The authors in
[19], [20] proposed a distributed cooperative control strategy
for coordinating multiple energy storage units to support the
frequency control in microgrid systems.

In this manuscript, we consider the operation optimization
problem of a microgrid to maximize its profit via optimizing
the outputs of DGs and ESUs by proposing a distributed λ-
iteration algorithm. The basic idea of λ-iteration is that there
is an independent system operator (MGCC) who is responsible
for estimating the optimal incremental cost and broadcasting
the estimated value to all units, and then collects the power
outputs of all units to calculate next estimation value, which
has been utilized to solve economic dispatch problems in
power systems [21]. If the total power output is too low
(high), λ value will be increased (decreased) until finding
the desired operating point [22]. In the microgrid, MGCC is
the central decision-maker and perform all calculations in a
central level by the λ-iteration algorithm. Here, we introduce a
distributed λ-iteration algorithm to reduce the communication
and computation burden of MGCC and mathematically prove
the stability of the iteration algorithm.

Since micro units in the microgrid have the flexility to be in-
volved in or out the active power dispatch control process, we
illustrate the operation optimization problem in a distributed
way. The reasons why we introduce a distributed algorithm can
be stated in three aspects. Firstly, the centralized algorithm is
time-consuming when dealing with the optimization problem
with a large number of micro units for the information pro-
cessing, analyzing, calculating and issuing in every iteration
process. Secondly, the robustness of the centralized algorithm

is poor compared with the distributed one under the scenario
of single-point failure. Thirdly, the distributed algorithm has
good scalability for easy implementation of plugging-in and
plugging-out of the micro unit clusters [23], which is also easy
to be maintained under a lower operation cost.

The principal contribution of this paper lie in that: (1) We
generalize the traditional centralized λ-iteration algorithm to a
distributed one and illustrate the stability and the convergence
of the proposed distributed algorithm; (2) The distributed λ-
iteration algorithm is applied for the active power coordination
allocation process of multiple micro units in a microgrid,
which can realize the maximal profit of the microgrid in the
electricity market environment. The algorithm can guarantee
the convergence of economic operations with any initial states
of micro units; meanwhile the distributed calculation can be
implemented using a simple communication network, such as
local WiFi connections.

The rest of the paper is organized as follows. In Section
II, some preliminaries and problem formulation of microgrids
are provided. Section III presents the detailed distributed
algorithm and parameters designing steps. Section IV illus-
trates the simulation results on a seven-bus microgrid system.
Discussions on the proposed distributed λ-iteration algorithms
are provided in Section V. Finally, conclusion and future work
are presented in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Network Theory for Distributed Computation

Since distributed computation is based on distributed com-
munication, suppose the communication network among mul-
tiple interactive units can be modeled by a digraph G =
{V, E ,A}, where the nodes’ set V = {1, 2, . . . , N} in the
network denotes the set of individual units and the links’
set E denotes the set of communication lines. The edge
eij = (i, j) ∈ E indicates that jth unit can receive the
information from ith unit. A graph is said to be undirected
if eij ∈ E implies eji ∈ E . A directed graph is said to be
strongly connected if there exists a path between any pair of
two nodes with respect to the orientation of edges. A directed
tree is a digraph, where every node, except the root, has exactly
one parent node. A directed spanning tree of G is a directed
tree whose node set is V and whose edge set is a subset of E .
For a digraph G, the adjacency matrix A ∈ RN×N is defined
as aij ≥ 0, in which aij = 1 ⇔ eji(j ↪→ i) ∈ E while
aij = 0 if eji ̸∈ E , and it is further required that self links are
not allowed, i.e., aii = 0.

The Laplacian matrix L is defined as L = D − A,
where D is a diagonal matrix with dii =

∑
j ̸=i aij , thus

L has nonnegative diagonal entries and zero row sums. Let
dmax = max{dii} denote the maximal node in-degree of
digraph G. Then, the matrix Pϵ = I − ϵL is a nonnegative
and row stochastic matrix for all ϵ ∈ (0, 1/dmax), in which
Pϵ is called as the Perron matrix induced by digraph G.

B. λ-iteration Solving Economic Dispatch

The conventional economic dispatch problem aims at min-
imizing the total generation cost of generating units and de-
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termining the power output levels of online generators, which
can be formulated by the following optimization problem [24]:

minFcost(P ) =

N∑
i=1

Ci(Pi) (1)

s.t.


N∑
i=1

Pi = PD

Pmin
i ≤ Pi ≤ Pmax

i

(2)

for i = 1, . . . , N , where Ci(Pi) is the generation cost for ith
generating unit;

∑N
i=1 Pi is the total generated power which

is consumed by the active load demand PD; Pmin
i and Pmax

i

are the lower power bound and upper power bound for each
unit i, respectively.

The following provides the λ-iteration algorithm for the
economic dispatch problem (1) and (2), see Fig. 2. In each
step, the dispatch center estimates an incremental cost rate λ
and sends it to all units, and then collect all the power outputs
of units based on the issued λ. If the sum of all outputs of units
is far low, then the dispatch center will increase the λ value
and try another solution until finding the desired operating
point λ∗, i.e., |ε| ≤ TOLERANCE. Furthermore, the optimal
output of each unit can be calculated.
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Fig. 2. Solving economic dispatch problems (1) and (2) by a centralized
λ-iteration algorithm [22].

It has been shown that the λ-iteration procedure converges
very rapidly for this particular type of cooperative optimiza-
tion economic dispatch problem. The actual computational
procedure is slightly more complex than the steps in Fig. 2,
since it is necessary to observe the operating limits and the
prohibited operating zones of each unit during the process of
the computation [22].

C. Distributed (Pinning) Consensus Algorithm

For a large-scale multi-unit interactive system, there are
always three kinds of control strategies: centralized control,
decentralized control, and distributed control [25], [26]. While,
distributed control can realize a cooperative group objective

as centralized control by spare communication links among
neighbors and consensus is the basic coordination problem in
the distributed interactive system.

The coupled system for a one-dimensional continuous-time
integrator multi-unit system is provided as

ẋi(t) =
N∑
j=1

aij
(
xj(t)− xi(t)

)
, (3)

and its discrete-time counterpart is

xi(k + 1) = xi(k) + ϵ
N∑
j=1

aij
(
xj(k)− xi(k)

)
, (4)

for i = 1, 2, . . . , N , where ϵ is the discrete-time step satisfying
ϵ ∈ (0, 1/dmax).

In the vector notation, the discrete-time multi-unit system
(4) takes the form x(k + 1) = Pϵx(k), where Pϵ is the
Perron matrix of the communication topology G. Is has been
shown that [27] xi(k + 1) converges to

∑N
i=1 ωixi(0) under

the assumption that the communication topology is strongly
connected, where ωT = [ω1, . . . , ωN ] is the left eigenvalue
vector of matrix Pϵ with the eigenvalue 1, i.e., ωTPϵ = ωT

and 1T
Nω = 1, here 1N = [1, . . . , 1]N .

The converged consensus value depends on the communi-
cation topology and the initial state values of each unit, i.e.,
the well-known weighted average consensus for the first-order
discrete-time system. However, the average consensus value
in the above formula is not always the desired final state in
practice. In order to drive the multi-unit system to converge
to a given objective value (Leader), the distributed pinning
consensus protocol is introduced. The so-called “distributed
pinning control” means only a small fraction of the nodes in
the network are pinned by the control center to the objective
trajectory and the rest of the nodes communicate with each
other to reach the expected networked tracking.

The following distributed pinning protocol is a special case
for the continuous-time distributed system in [28]:

ẋi(t) =

N∑
j=1

aij
(
xj(t)− xi(t)

)
− di

(
xi(t)− θ(t)

)
, (5)

where i = 1, 2, . . . , N ; the pinning control gain di ≥ 0, in
which di = 0 indicates that ith unit is free of control; and θ is
an expected consensus state which can be a static or dynamic
trajectory.

If a node is pinned, i.e., di > 0, then it can access the
global objective θ(t). That is, an aditional communication link
is built between the pinner and the pinned nodes. By denoting
the objective trajectory θ(t) as the dynamics of an islote node
0 and we use the union of the digraph G and the node {0}
(G̃ , G ∪ {0}) to denote the pinning joint communication
topology. The Laplacian matrix of G̃ is

L̃ =

[
0 01×N

−d̃ L+D

]
,

in which d̃ = [d1, d2, . . . , dN ]T and D = diag{d̃} is the
pinning matrix. Before proposing the main results, we need
the following lemma.



IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMSVOL. *, NO. *, ** 2017 4

Lemma 1. [29] For the multi-unit system (5), if the pinning
joint communication topology has a directed spanning tree,
then L+D is a nonsingular M -matrix and the group value will
be synchronized to the leader’s equilibrium θ0 ( lim

t→∞
θ(t) =

θ0), i.e., lim
t→∞

(xi(t)− θ0) = 0.

D. Problem Formulation

Microgrid is a mini autonomous source-grid-load system,
which can operate in either grid-connected mode or islanded
mode through a static transfer switch, such as the structure
in Fig. 1. In the microgrid, MGCC serves as an independent
system operator who is responsible for the maximization of
total profit during interconnected operation by optimizing
the active power outputs of local DGs/ESUs and the power
exchange with the main grid.

The fluctuation of the tie line power between the main
grid and the microgrid reflects the dynamic power injection
from the distribution system to mircogrid or the injection from
mircogrid to the main grid. Suppose the positive direction of
the exchanged power of the tie line is the power injection
from the main grid to the mircogrid. Therefore, each grid-
connected mircogrid needs to purchase (or sell) electric power
from (or to) the distributed system and sell the electric power
to customers in the mircogrid. The tertiary frequency control
of microgrid will maximze its profit by determining the power
outputs of all distributed energy resources and energy storage
units such that the supply and demand balance is maintained.

Suppose there are N1 DGs and N2 ESUs in the microgrid
and the microgrid is operated in a grid-connected mode, then
the optimization model of the profit maximization can be
expressed as

maxF1(Pgi, Pbj)

= −ρePE + ρdPD −
N1∑
i=1

Cgi(Pgi)−
N2∑
j=1

Cbj(Pbj) (6)

subject to the active power balance constraint

N1∑
i=1

Pgi +

N2∑
j=1

Pbj + PE = PD (7)

where Cgi(·) and Cbj(·) are the cost functions of the ith DG
and the jth ESU, which are always approximated by quadratic
functions, provided as

Cgi(Pgi) =
(Pgi − α1,i)

2

2β1,i
+ γ1,i, ∀1 ≤ i ≤ N1,

Cbj(Pbj) =
(|Pbj | − α2,j)

2

2β2,j
+ γ2,j , ∀1 ≤ j ≤ N2,

where α1,i, β1,i, γ1,i are the cost coefficients of the ith DG
and α2,j , β2,j , γ2,j are the cost coefficients of the jth ESU.

The capacity constraint of ith DG is given as

Pmin
gi ≤ Pgi ≤ Pmax

gi (8)

with Pmin
gi and Pmax

gi (KW) being the minimum and maximum
regulation capacities.

Furthermore, each ESU has two operational states, i.e., the
discharging state as a generating unit and the charging state
as a controllable load. Thus, the constraints are divided into
two categories with the discharging power constraint being

0 ≤ Pbj ≤ P dch,max
bj , (9)

and the charging power constraint being

−P ch,max
bj ≤ Pbj ≤ 0. (10)

Based on the established profit maximization optimization
problem, MGCC in microgrids is responsible for optimizing
the active power output of all micro units so as to acquire
the maximal profit via distributing the power demand among
micro units or tie line between the microgrid and main grid.

Remark 1. The generation cost function of distributed gen-
erators is always expressed by a general quadratic form
[30], [22], or a piecewise quadratic cost function [31], or a
nonconvex cost function [32], and so on. While, the quadrat-
ic cost function is commonly utilized by power engineers
or theoretical research. As for distributed energy storage,
there are various types of electricity storage methods, such
as pumped hydro storage, thermal energy storage, chemical
storage, and flywheel energy storage [33]. The function of
electricity storage is similar to the charging and discharging
process of a battery. Initially, the power energy must be
transformed into another form of storable energy and to be
transformed back when needed. Taking the pumped hydro
storage [34] as an example, the principle is generally well
known: during periods when power demand is low, water
stations use electricity to pump the water from the lower
reservoir to the upper reservoir. When power demand is very
high, the water flows out of the upper reservoir and activates
the turbines to generate high-value electricity for peak hours.
There are many possible techniques for energy storage, found
in practically all forms of energy: mechanical, chemical, and
thermal. Therefore, the operation cost of buffer storage should
be considered.

The operation cost of the ESU is just like a power plant
and the difference lies in the fact that there are two stages,
i.e., charging and discharging process. For a ESU plant with
a specified energy capacity, the economic dispatch of it can be
achieved by maximizing the fuel-cost savings of thermal units.
Additional fuel cost is needed to supply the equivalent power
without ESU. Therefore, we still assume the cost function of
operating energy storage units follows a quadratic function,
provided in the problem formulation subsection.

III. DISTRIBUTED λ-ITERATION OPTIMIZATION

A. Solution without Power Constraints

If there are no capacity constraints for the DGs and ESUs,
then the optimization model reduces to be the objective
function (6) with the equality constraint (7). By eliminating
the variable PE in the objective function through the equality
PE = PD −

∑N1

i=1 Pgi −
∑N2

j=1 Pbj , one has the following
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minimum optimization function

minF2(Pgi, Pbj)

=

N1∑
i=1

[Cgi(Pgi)− ρePgi] +

N2∑
j=1

[Cbj(Pbj)− ρePbj ] (11)

subject to constraint (7). We furthermore simplify the opti-
mization model by augmenting the optimization variable P =
[Pg1, . . . , PgN1 , Pb1, . . . , PbN2 ] and denote N = N1+N2, then
such an optimization problem (11) and (7) is equivalent to


minF3(P ) =

N∑
i=1

C̃i(Pi) =
N∑
i=1

[Ci(Pi)− ρePi]

s.t.
N∑
i=1

Pi + PE = PD

(12)

The well-known solution to such an optimization problem
(12) is the equal incremental cost criterion, i.e., ∂C̃i(Pi)

∂Pi
=

∂C̃j(Pj)
∂Pj

= λ∗, ∀1 ≤ i, j ≤ N and
∑N

i=1 Pi + PE = PD,
where λ∗ is called the optimal incremental cost, which can be
calculated by

λ∗ =
PD − PE −

∑N
i=1 αi∑N

i=1 βi

− ρe.

If the optimal value λ∗ is shared with each unit, then
the optimal power output for ith unit can be calculated as
P ∗
i = βi(λ

∗ + ρe) + αi, ∀1 ≤ i ≤ N , where α =
[α1, . . . , αN ] = [α1,1, . . . , α1,N1 , α2,1, . . . , α2,N2 ], similarly
for parameters βi, γi.

The maximal profit Fmax
1 can be calculated by Fmax

1 =
(ρd − ρe)PD − Fmin

3 through the optimal solution of the
optimization problem (12).

We introduce a distributed λ-iteration algorithm to solve the
centralized optimization problem. Each unit cannot acquire the
optimal incremental cost in the distributed scenario. In order to
update its power output, units try to estimate the optimal value
of λ∗. Suppose the real-time estimation of ith unit is λ̂i(t),
which is characterized by the following distributed differential
equation

˙̂
λi(t) = µ

N∑
j=1

aij
(
λ̂j(t)− λ̂i(t)

)
− diµ

(
λ̂i(t)− λ0(t)

)
,

(13)

where µ is the coupling strength of the distributed protocol, aij
is the element of the adjacent matrix A of the communication
topology among the participating units; and di = 1 if the
ith unit is pinned by the MGCC, otherwise di = 0. The initial
estimation value λ̂i(0) =

Pi(0)−αi

βi
−ρe, and Pi(0) is the initial

state of ith unit. And λ0(t) is the pinning signal generated from
MGCC, which is updated by

λ̇0(t) = κ
(
PD − PE −

N∑
i=1

Pi(t)
)
,

Pi(t) = βi(λ̂i(t) + ρe) + αi,

(14)

and the initial value λ0(0) is set to be the average value of all
the pinned units, i.e., λ0(0) = ave

(
λ̂pin
i (0)

)
.

Remark 2. If all units are pinned by the MGCC, then
di = 1, ∀1 ≤ i ≤ N , which reduces to be the centralized
optimization algorithm (traditional λ-iteration algorithm). On
the other hand, the optimal incremental cost λ∗ can be
calculated by MGCC under a cooperative scenario where
the private cost information of all units are reported to
MGCC, that is, λ0(t) ≡ λ∗. Then, the estimation value of
each unit will converge to the optimal value even with the
distributed algorithm (13) under the assumption that the joint
communication topology has a directed spanning tree.

In the implementation of the distributed iteration algorithm,
continuous-time differential equations (13) and (14) need to
be transformed to discrete-time difference equations. Here, we
utilize the Euler method to derive the discrete-time system:

λ̂i(k + 1) = λ̂i(k) + µh

N∑
j=1

aij
(
λ̂j(k)− λ̂i(k)

)
− diµh

(
λ̂i(k)− λ0(k)

)
λ0(k + 1) = λ0(k) + κh

(
PD − PE −

N∑
i=1

Pi(k)
)

(15)

and the output power of ith unit is calculated by

Pi(k) = βi(λ̂i(k) + ρe) + αi, (16)

where h is the discretization step, i.e., the sampling period for
the practical operation system.

Theorem 1. Suppose the pinning joint communication topol-
ogy between MGCC and participate units is connected for
an undirected topology or has a directed spanning tree for
a directed topology, the proposed distributed λ-iteration algo-
rithm 1 solves the optimization problem (12), i.e., the estimated
incremental cost λ̂i and output power Pi asymptotically con-
verge to the optimal values λ∗ and P ∗

i globally, respectively.

Proof: To begin with, we define two error variables,
the estimation error variable ei(t) = λ̂i(t) − λ0(t) and the
translation variable r(t) = λ0(t) − λ∗. According to the
equilibrium equation of (14), one has

PD − PE −
N∑
i=1

[βi(λ
∗ + ρe) + αi] = 0. (17)

Furthermore, it is easy to derive the error system
ėi(t) = µ

N∑
j=1

aij
(
ej(t)− ei(t)

)
− diµei(t)− ṙ(t),

ṙ(t) = −κ
N∑
i=1

βi

(
ei(t) + r(t)

)
.

(18)
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Algorithm 1 Distributed λ-iteration Optimization
Require: Load demand PD and exchange power of the tie-

line PE ;
Laplacian matrix L and Pinning matrix D;
Initial states of units Pi(0);
Value for stopping rule TOLERANCE;
Pinning joint communication topology has a directed
spanning tree.

Ensure: Optimal incremental cost λ∗ and output power P ∗
i .

1: Solve the linear matrix equation (L + D)ξ = 1N to get
a positive column vector ξ = [ξ1, . . . , ξN ] and set Θ =
diag{ξ} and calculate λmin = λmin{Θ(L + D) + (L +
D)TΘ}.

2: Set a positive regulation gain κ and then choose the gain
µ by

µ >
2κ

λmin
Θ1NB +

κ

2λminB1N
M,

where M = [Θ1NB1N − BT ][(Θ1NB1N )T − B] and
B= [β1, . . . , βN ].

3: Run the distributed iterations (15) and (16) until

|PD − PE −
N∑
i=1

Pi(k)| < TOLERANCE.

4: Acquire the steady-state values λ∗ ≈ λ0(k);
5: return Optimal solutions P ∗

i ≈ Pi(k).

By denoting e(t) = [e1(t), . . . , eN (t)]T , the error system
(18) can be transformed into the following augmented one{

ė(t) = −µ(L+D)e(t) + κ1N

(
Be(t) +B1Nr(t)

)
,

ṙ(t) = −κB
(
1Nr(t) + e(t)

)
.

(19)

Then, consider the following Lyapunov candidate:

V (t) =
1

2
r2(t) +

1

2
eT (t)Θe(t), (20)

where Θ is a positive definite matrix given in Algorithm 1.
Then the time derivative of V (t) along the solution of error
system (19) is

V̇ (t) =− κr(t)(B1N )r(t)− κr(t)Be(t)

+ κeT (t)(Θ1NB1N )r(t) + κeT (t)(Θ1NB)e(t)

− µ

2
eT (t)

(
Θ(L+D) + (L+D)TΘ

)
e(t)

,zT (t)Ωz(t),

where z(t) = [rT (t), eT (t)]T and Ω is given as follows:

Ω =
[
−κB1N

κ
2 [(Θ1NB1N )T−B]

∗ κΘ1NB−µ
2 [Θ(L+D)+(L+D)TΘ]

]
. (21)

By the Schur complement Lemma, one knows that Ω < 0
is equivalent to κ > 0 and

κΘ1NB − µ

2
[Θ(L+D) + (L+D)TΘ] +

κM

4B1N
< 0,

from which one can derive the scope of the parameter µ. This
completes the proof, i.e., the estimated incremental cost λ̂i

asymptotically converge to the optimal values λ∗ globally.

B. Solution with Power Constraints

When considering the regulation capacities of DGs and
ESUs, expressed as

Pmin
i ≤ Pi ≤ Pmax

i , (22)

the optimal incremental cost λ∗ satisfied the following opti-
mum condition,

Pi − αi

βi
= λ∗, for Pmin

i ≤ Pi ≤ Pmax
i ,

Pi − αi

βi
< λ∗, for Pi = Pmax

i ,

Pi − αi

βi
> λ∗, for Pi = Pmin

i .

(23)

By denoting Gp as the set of units whose optimal outputs
are their maximal or minimal capacities. Then the optimal
incremental cost λ∗ can be calculated by

λ∗ =

PD − PE −
∑

i∈GP

Pm
i −

∑
i/∈Gp

αi∑
i/∈Gp

βi
− ρe.

The distributed algorithm (15) considered the output con-
straint of Pi(k) by the following updating equation:

Pi(k) = gi
(
λ̂i(k)

)
,

=


Pmax
i , if λ̂i(k) > λi

βi(λ̂i(k) + ρe) + αi, if λi ≤ λ̂i(k) ≤ λi

Pmin
i , if λ̂i(k) < λi

(24)

where λi = (Pmin
i − αi)/βi and λi = (Pmax

i − αi)/βi.

Algorithm 2 Distributed λ-iteration Constrainted Optimiza-
tion
Require: Load demand PD and exchange power of the tie-

line PE ;
Laplacian matrix L and Pinning matrix D;
Initial states of units Pi(0);
Value for stopping rule TOLERANCE;
Pinning joint communication topology has a directed
spanning tree.

Ensure: Optimal incremental cost λ∗ and output power P ∗
i .

1: Set the gains µ and κ in the distributed iteration (15) by
Algorithm 1 and update the output Pi(k) by (24) until

|PD − PE −
N∑
i=1

Pi(k)| < TOLERANCE.

2: Acquire the steady-state values λ∗ ≈ λ0(k);
3: return Optimal solutions P ∗

i ≈ Pi(k).

Proposition 1. Suppose the joint communication topology
between MGCC and participate units is connected for an undi-
rected topology or has a directed spanning tree for a directed
topology, the proposed distributed λ-iteration algorithm (15)
based on (24) solves the optimization problem (12) with the
additional constraint (22), i.e., the output power Pi converge
to the optimal value P ∗

i with finite steps.
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This Proposition is a generalization of Theorem 1, where
the capacity constraints have been taken into account in the
optimization iteration. When the microgird is operated in a
grid-connected mode, the coordinated active power dispatch
problem of the microgid is always solvable due to the existence
of the exchanged power with the main grid. When the micro-
gird is operated in an isolated mode, the coordinated active
power dispatch problem of the microgid is solvable under the
assumption that all the power supply from the sources is able
to satisfy the demand of the load. Therefore, the optimization
problem is always solvable.

Proposition 1 under these two operating scenarios can be
classified as the following two cases: (1) If the intersection
of the incremental cost intervals

∩
1≤i≤N [λi, λ̄i] ̸= ∅, then

there exists a common optimal incremental cost λ∗. And all
the incremental costs λi(1 ≤ i ≤ N) will converge to the
optimal value within finite steps; (2) If the intersection of the
incremental cost intervals

∩
1≤i≤N [λi, λ̄i] = ∅, then partial

incremental costs λi, i ∈ [1, N ] converge to the boundary
of the incremental cost interval, i.e., some units with lower
operating costs operate in their maximum output powers’
states. Thus, according to Theorem 1, the iteration updating
in Proposition 1 is valid in the practical operation.

Remark 3. Distributed consensus algorithms of multi-agent
systems have been adopted extensively to solve the economic
dispatch problems in power systems, such as [35], [36],
[37], [38]. Compared with these published works, the main
difference of this paper lies in that we introduce a pinning term
in the distributed iteration such that the distributed algorithm
turns out to be a leader-following consensus algorithm [39],
[40], [41] and coincides with the distributed λ-iteration algo-
rithm. This algorithm has no restrictions on the initial states
of the participating units and can be applicable to any initial
states of micro units, which can either be utilized for off-line
calculation or be used for on-line operation.

Remark 4. The distributed algorithm (13) can be replaced
with a fixed-time or a finite-time one, which can speed up the
convergence speed of the algorithm, given as

˙̂
λi =µ1

N∑
j=1

aijsig
p
(
λ̂j − λ̂i

)
− diµ1sig

p
(
λ̂i − λ0

)
+ µ2

N∑
j=1

aijsig
q
(
λ̂j − λ̂i

)
− diµ2sig

q
(
λ̂i − λ0

)
,

where µ1, µ2 are the coupling strengths of the distributed
protocol, aij is the element of the adjacent matrix A of the
communication topology among the participating units; and
di = 1 if the ith unit is pinned by the MGCC, otherwise
di = 0. The function sigp(·) = sign(·)| · |p. Especially, when
p = 1, q = 0 and sig(x) = x, the above algorithm reduces to
be the previous one (13).

IV. CASE STUDIES

In this section, the proposed distributed λ-iteration algo-
rithms are tested on a seven-bus microgrid system and the
physical topology structure is given in Fig. 3, where there

are seven DGs and three ESUs and seven-bus loads. The red
dashed lines represent the communication links among MGCC
and units. The cost coefficients and capacity constraints for
these units are provided in Tab. I.
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Fig. 3. Seven-bus microgrid with seven DGs and three ESUs.

TABLE I
DG AND ESU’S PRIVATE PARAMETERS.

DGs’ parameters (α, β, γ(×103)); (unit: KW)
DG α1,i β1,i γ1,i Pmin

g,i Pmax
g,i

DG1 -0.0593 0.0069 -0.2032 10 60
DG2 -0.0313 0.0050 -0.0502 10 60
DG3 -0.0219 0.0064 -0.0063 8 60
DG4 -0.0120 0.0048 0.0628 3.8 40
DG5 -0.0245 0.0061 -0.0073 5.4 45
DG6 -0.0345 0.0048 -0.0616 4.2 18
DG7 -0.0065 0.0053 0.0470 7.8 45

ESUs’ parameters (α, β, γ(×103)); (unit: KW)
ESU α2,i β2,i γ2,i P dch,max

b,i P ch,max
b,i

ESU1 -0.3170 0.0333 -1.4153 25 20
ESU2 -0.1331 0.0156 -0.4891 30 25
ESU3 -0.1677 0.0192 -0.6931 45 40

A. Case 1: The full participation of DGs and ESUs

We consider the discharging mode of ESUs, i.e., the storage
units serve as generating units to provide the active power
sharing and the communication topology (red dashed lines) is
provided in Fig. 3, where only the third DG and the third ESU
are pinned by MGCC. Suppose the power demand in this MG
is PD = 370 kW and the injection power from the main grid
is PE = 120 kW; the wholesale market price ρe = 1.2 $/kWh,
and the retail price ρd = 1.8 $/kWh. The initial states of DGs
are given by Pg(0) = [30, 20, 40, 15, 18, 6, 20] KW and the
initial states of ESUs are given by Pb(0) = [10, 12, 21] kW.
By setting κ = 0.01, one can derive that µ > 1.7773 and we
set µ = 3.82 in the simulation. The sampling period is set to
be h = 0.02 and the stop rule TOLERANCE = 0.4, one can
solve the profit maximal problem by the proposed distributed
λ-iteration algorithms.

Then, it is easy to derive the optimal incremental cost
λ∗ = 8.6431 (see Fig. 4) by utilizing the distributed algorithm
1 without considering the capacities of each units and the
corresponding active power outputs for DGs are P ∗

g1 = 9.0418
kW, P ∗

g2 = 17.3866 kW, P ∗
g3 = 41.2305 kW, P ∗

g4 = 34.8194
kW, P ∗

g5 = 35.5010 kW, P ∗
g6 = 12.8470 kW, P ∗

g7 = 45.8619
kW and the discharging power of ESUs are P ∗

b1 = 11.0689
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kW, P ∗
b2 = 20.6586 kW, P ∗

b3 = 21.5775 kW, which are shown
in Fig. 5.

Here, Figs. 4 and 5 illustrate the dynamic response curves
for the distributed system (15) and (16), but the distributed λ-
iteration algorithm breaks out the circulation by the stop rule
TOLERANCE = 0.4 (see Fig. 6).
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Fig. 4. Case 1: The estimated incremental costs by Algorithm 1.
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Fig. 5. Case 1: The active power outputs of DGs/ESUs by Algorithm 1.
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Fig. 6. Case 1: The supply and demand balance by Algorithm 1.

Furthermore, we utilize the distributed iterations (15) and
(24) by considering the capacity constraints of the units, it
can be derived that the corresponding active power outputs
for DGs are P ∗

g1 = 9.3565 kW, P ∗
g2 = 17.4053 kW, P ∗

g3 =
41.6542 kW, P ∗

g4 = 34.7387 kW, P ∗
g5 = 35.5236 kW, P ∗

g6 =
12.8647 kW, P ∗

g7 = 45 kW and the discharging powers of
ESUs are P ∗

b1 = 11.8866 kW, P ∗
b2 = 20.7166 kW, P ∗

b3 =
20.8538 kW, which are shown in Fig. 8 and the incremental
cost for each unit is given in Fig. 7. They illustrate the dynamic
response curves for the distributed system (15) and (24), but
the distributed λ-iteration algorithm breaks out the circulation
by the stop rule TOLERANCE = 0.4 (see Fig. 9).

Employing the proposed algorithms, all units can coordinate
each other to minimize the total cost while converging to the
optimal operation point subject to the power balance constrain-
t. On the other hand, as can be seen form the simulation results,
there is a common consensus state λ∗ for all participating
units in the scenario of without capacity constraints and all
participating units do not have a common consensus state λ∗

due to the fact that part of units operate at their boundaries.

B. Case 2: Exit of ESUs and Time-varying Demand

In this simulation scenario, the cost and capacity parameters
of DGs and ESUs are the same as in Case 1. The main
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Fig. 7. Case 1: The estimated incremental costs by Algorithm 2.
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Fig. 8. Case 1: The active power outputs of DGs/ESUs by Algorithm 2.
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Fig. 9. Case 1: The supply and demand balance by Algorithm 2.

difference is that we consider the case that the load demand
is a time-varying one in different dispatch periods and the
participating unit may be plugged-in or plugged-out. Here, we
only consider two dispatch periods in the simulation. Suppose
the load demand is PD = 370 kW and the injection power
from the main grid is PE = 120 kW; the wholesale market
price ρe = 1.2 $/kWh and the retail price ρd = 1.8 $/kWh
in the first dispatch period and in the second dispatch period
(such as 15 min dispatch period), the load demand turns out to
be PD = 400 kW and the injection power from the main grid
is PE = 170 kW; the wholesale market price ρe = 1.4 $/kWh
and the retail price ρd = 2.0 $/kWh. Meanwhile, suppose all
DGs and ESUs participate the active power allocation in the
first dispatch period and all ESUs exit in the second dispatch
period and the load demand will be shared by all DGs. The
communication topology of all DGs in this scenario is given
in Fig. 10 and only the third DG is pinned by the MGCC.
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Fig. 10. The communication topology among seven DGs.

Next, the initial states of all DGs and ESUs in the first
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dispatch period are the same as in Case 1 and the initial states
of all DGs in the second dispatch period are the steady-state
of the result of first dispatch period. By setting κ1 = 0.01
and µ1 = 3.82 in the first dispatch period; and κ2 = 0.01
and µ2 = 6.82 in the next dispatch period; and the sampling
period h = 0.02; the stop rule TOLERANCE1 = 0.4 and
TOLERANCE2 = 0.2, one can solve the profit maximal
problem by the proposed distributed λ-iteration algorithms.

The simulation results of all DGs without and with capacity
constraints via the distributed λ-iteration algorithms 1 and 2
are provided in Figs. 11–16.

0 10 20 900 910 920 930
4

6

8

10

12

X: 15
Y: 8.643

Time (sec)

λ 0(t
) 

an
d 

λ i(t
)(

1≤
 i≤

 N
)

X: 50
Y: 9.206

No longer changes for ESUs

Fig. 11. Case 2: The estimated incremental costs by Algorithm 1.

10 20 900 910
−20

0

20

40

60

Time (sec)

P
G

(t
) 

an
d 

P
B
(t

)

Fig. 12. Case 2: The active power outputs of DGs/ESUs by Algorithm 1.
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Fig. 13. Case 2: The supply and demand balance by Algorithm 1.

In the second dispatch period, all ESUs exit the dispatch sys-
tem and therefore their output powers stay at the steady-states
of the previous dispatch period. The DGs will accomplish the
active power demand by updating their output according to
the distributed λ-iteration algorithms. As can be seen from
the simulation results, all DGs operate to the new equilibrium
under the time-varying load demand.

C. Case 3: The Plugging-in DGs to Share the Active Power

In this mode, we consider the scenario that two additional
DGs and bus loads are connected to the microgrid, labeled by
DG8, DG9 and L8, L9. The new communication topology
after the pulgging in the additional DGs is shown in Fig. 17,
and the private coefficients for DGs are provided in Table II.

Suppose the load demand is PD = 410 kW and the injection
power from the main grid is PD = 120 kW; the whole market
price ρe = 1.2 $/kWh and the retail price ρd = 1.8 $/kWh are
the same before and after the plugging-in of the additional DGs
and loads. While, after the connecting of DGs, the new load
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Fig. 14. Case 2: The estimated incremental costs by Algorithm 2.
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Fig. 15. Case 2: The active power outputs of DGs/ESUs by Algorithm 2.
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Fig. 16. Case 2: The supply and demand balance by Algorithm 2.

TABLE II
THE PRIVATE PARAMETERS FOR DG8 AND DG9.

DGs’ parameters (α, β, γ,×103; unit: KW)
DG α1,i β1,i γ1,i Pmin

g,i Pmax
g,i

DG8 -0.0550 0.0596 -0.1861 8 42
DG9 -0.0281 0.0379 -0.0456 8 40

demand increases to PD = 445 kW and the injection power
from the main grid reduces to PD = 115 kW. The initial
states of the DGs and ESUs are the same with values in Case
1, and the initial states of DG8 and DG9 are Pg8(0) = 10
kW, Pg9(0) = 12 kW.
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Fig. 17. The communication topology among nine DGs and three ESUs.

Here, the dispatch period before the connecting of additional
DGs and loads is labeled as the first dispatch period and the
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latter dispatch period is labeled as the second dispatch period.
Along with the active power changes of load and units, the
power output of each units need to adjust its outputs so as
to achieve the new equilibrium. By setting κ1 = 0.01, one
can derive that µ1 > 1.7773; and κ2 = 0.01, one can derive
that µ1 > 1.4732 and we set µ1 = 3.82 in the first dispatch
period and µ2 = 6.82 in the second dispatch period; and the
sampling period h = 0.02; the stop rule TOLERANCE1 = 0.4
and TOLERANCE2 = 0.2, one can solve the profit maximal
problem by the proposed distributed λ-iteration algorithms.
The optimal output power can be derived by the proposed
distributed algorithm through the optimal incremental cost.

The simulation results of all DGs without and with capacity
constraints via the distributed λ-iteration algorithms 1 and 2
are provided in Figs. 18–23.
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Fig. 18. Case 3: The estimated incremental costs by Algorithm 1.
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Fig. 19. Case 3: The active power outputs of DGs/ESUs by Algorithm 1.

0 10 20 900 910 920 930

200

250

300

350

400

450

Time (sec)

P
Gsu

m
(t

) 
an

d 
P

D
−

P
E

Stop here for TOLERANCE=0.4

Stop here for TOLERANCE=0.2

Fig. 20. Case 3: The supply and demand balance by Algorithm 1.

In the second dispatch period, additional loads and DGs
are connected to the microgird suddenly, which has caused
a shock to the microgrid and the steady operation state of
the microgrid is broken at this time. As can be seen form
the simulation results, the proposed distributed λ iteration
algorithm has shown good scalability and robustness in the
whole dispatch process. The proposed distributed algorithm
can restore the steady operation of the microgrid and the new
equilibrium is achieved after the disturbance.

V. DISCUSSION

This paper generalizes the traditional centralized λ-iteration
algorithm to a distributed one, which is coinsided with leader-
following consensus control in multi-agent systems. In the
centralized λ-iteration algorithm, the total power response and
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Fig. 21. Case 3: The estimated incremental costs by Algorithm 2.
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Fig. 22. Case 3: The active power outputs of DGs/ESUs by Algorithm 2.
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Fig. 23. Case 3: The supply and demand balance by Algorithm 2.

the estimation value of the optimal incremental cost are both
global information. The MGCC is in charge of the data collec-
tion and information broadcasting. All the iteration calculation
and information processing are performed by the MGCC.
However, in the proposed distributed λ-iteration algorithm, the
global information is only shared with pinned units instead of
all micro units. On the other hand, the optimal incremental
cost is estimated by each units through local interactions.
Thus, local WiFi connections are sufficient for the communi-
cation requirement. Compared with the traditional centralized
optimization algorithm for the main grid, distributed strategy
is more suitable for microgrid since the number of DGs in
microgrids is more flexible as a result of disconnecting or
adding units.

1) Implementation: In the proposed distributed λ-iteration
algorithm, a communication network is needed to realize
the information sharing among multiple DGs and each DG
can connect to its neighbors by WiFi connection or wired
connection as long as the directed communication topology
has a directed spanning tree rooted at the centralized pinner
or the undirected communication topology is connected. On
the other hand, the MGCC only needs to pin its neighboring
DGs and the initial value for the centralized pinner is set to be
the averaged initial states of the pinned DGs; the initial value
for each estimator is initialized by the active power output of
each DG.

2) Operation Cost: In the proposed distributed lambda
iteration algorithm, the computation cost of the MGCC is
greatly reduced compared with the traditional centralized one.
The iteration computation in the distributed algorithm has
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been decomposed to all micro units and each unit updates
it estimation value according to the distributed protocol by
communicating with its neighbours. In the centralized lambda
iteration algorithm, MGCC is the central controller and all u-
nits are connected to it by setting bidirectional communication
links with MGCC; while in the distributed lambda iteration
algorithm, the communication structure has been changed to
a more general one and not all units have to be connected
to the MGCC and only the pinned units are connected to the
MGCC.

3) Applications: The distributed λ-iteration algorithm can be
used in different application scenarios, such as active power
allocation among multiple DGs and ESUs in a microgrid in
this paper; energy optimization among multiple microgrids to
provide ancillary service; charging and discharging control
for multiple ESUs to provide microgrid tie-line smoothing
services; load shedding among multiple load aggregators to
provide frequency regulation service and so on.

In summary, the proposed distributed λ-iteration algorithm
based on the leader-following consensus strategy is an efficient
active power allocation algorithm for multiple interactive units
in a microgrid.

VI. CONCLUSION AND FUTURE WORKS

This paper proposed a distributed λ-iteration algorithm to
solve economic operation problem of microgirds with/without
unit constraints, which could be used to deal with economic
dispatch problems in power systems as well. Compared with
the existing distributed optimization methods, our proposed
algorithm considers the global active power constraint by
adding a virtual pinner and it can deal with optimization
problem with any initial states. The optimization algorithm
is partially distributed such that each unit in the mircrogrid
only communicates with its neighbors and part of the units
have direct communications with MGCC as long as the joint
communication topology between MGCC and participate units
is connected for an undirected topology or has a directed
spanning tree for a directed topology. The distributed al-
gorithm can also enable the plug-and-play of some extra
units in microgrids. Lastly, simulation results validated the
effectiveness of the proposed algorithm.

Future works will be focused on the reference tracking
implementation problems of source controllers in the terminal
DGs or ESUs.
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