
DISTRIBUTED OPTIMIZATION WITH

ITS APPLICATIONS TO POWER

SYSTEMS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE & ENGINEERING

2019

Tianqiao Zhao

School of Electrical and Electronic Engineering



Contents

List of Figures 9

Symbols 13

Abbreviations 15

Abstract 17

Declaration 18

Copyright Statement 19

Publications 20

Acknowledgements 22

1 Introduction 24

1.1 Overview of Modern Power Systems . . . . . . . . . . . . . . . . . . . . . 24

1.1.1 Microgrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.1.2 Distributed Generation . . . . . . . . . . . . . . . . . . . . . . . . 26

2



1.1.3 Energy Storage System . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1.4 Plug-in Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Preliminaries 34

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.2 Nonsmooth Analysis and Differential Inclusions . . . . . . . . . . 35

2.2 Saddle Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Literature Review: Economic Operation in Microgrids 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Overview of Multi-agent Systems . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Multi-agent Systems in Modern Power Systems . . . . . . . . . . . 38

3.3 Economic Operation in Microgrids . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 PEVs Charging Management . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Energy Management System for Microgrids . . . . . . . . . . . . . 40

3.3.3 Energy Management System for Multiple Battery Energy Storage

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3



3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Distributed Initialization-Free Cost-Optimal Charging Control of Plug-in Elec-

tric Vehicles 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Problem Formulation for the Battery Charging Problem of PEVs . . . . . . 46

4.2.1 Battery Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Optimization Problem Formulation of PEVs . . . . . . . . . . . . . 48

4.3 Distributed Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Problem Reformulation . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Distributed Algorithmic Design . . . . . . . . . . . . . . . . . . . 52

4.3.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Distributed Agent Consensus-Based Optimal Resource Management for Micro-

grids 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4



5.2.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Distributed solution of dynamic economic dispatch . . . . . . . . . . . . . 71

5.3.1 Distributed Algorithm Design . . . . . . . . . . . . . . . . . . . . 72

5.3.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Case 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Case 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.3 Case 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Distributed Finite-Time Optimal Resource Management for Microgrids Based

on Multi-Agent Framework 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Multi-agent System Architecture of a Microgrid . . . . . . . . . . . . . . . 88

6.2.1 Multi-agent System Framework . . . . . . . . . . . . . . . . . . . 88

6.2.2 The Agent Description under MAS Framework . . . . . . . . . . . 88

6.3 Finite-time Distributed Optimal Solution for the Islanded Microgrid . . . . 91

6.3.1 Alternative Formulation . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.2 Finite-time Distributed Optimal Energy Management . . . . . . . . 93

6.4 Finite-time Distributed Solution for Grid-connected Microgrid . . . . . . . 96

6.5 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.1 Case 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5



6.5.2 Case 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5.3 Case 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5.4 Case 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Consensus-Based Distributed Fixed-time Economic Dispatch under Uncertain

Information in Microgrids 109

7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.1 Objective Function in the Microgrid . . . . . . . . . . . . . . . . . 109

7.2 Distributed Fixed-time Energy Management System under Uncertainty . . . 112

7.2.1 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.1 Parameter Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.2 Algorithm Implementation with Local Constraints . . . . . . . . . 119

7.3.3 Case 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3.4 Case 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.5 Case 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Cooperative Optimal Control of Battery Energy Storage System under Wind

Uncertainties in a Microgrid 127

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Network Model of Multiple Battery Energy Storage Systems . . . . . . . . 128

6



8.2.1 Overview of Multiple Battery Energy Storage Systems . . . . . . . 128

8.3 Distributed Energy Management of Battery Energy Storage Systems under

Wind Power uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.4 Consensus-based Cooperative Algorithm Design . . . . . . . . . . . . . . 131

8.4.1 Solution Set of Distributed Energy Management . . . . . . . . . . 132

8.4.2 Distributed Cooperative Algorithm Design . . . . . . . . . . . . . 132

8.4.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4.4 The Coordination of BESSs under Wind Power Generation Error . . 135

8.4.5 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . . . 136

8.5 Simulation Results and analysis . . . . . . . . . . . . . . . . . . . . . . . 136

8.5.1 Case 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.5.2 Case 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.5.3 Case 8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.5.4 Case 8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 Future Works 148

9.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 150

A Data for Test Systems 167

A.1 Line Data for IEEE 14-bus System . . . . . . . . . . . . . . . . . . . . . . 167

7



A.2 Line Data for IEEE 30-bus System . . . . . . . . . . . . . . . . . . . . . . 168

8



List of Figures

1.1 The conceptual model of a smart grid [1] . . . . . . . . . . . . . . . . . . . 25

1.2 Outlines of research scope . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 A diagram of the RG and parallel-connected ESS . . . . . . . . . . . . . . 41

4.1 The simple equivalent circuit model . . . . . . . . . . . . . . . . . . . . . 47

4.2 Distributed demand management for PEVs charging . . . . . . . . . . . . . 57

4.3 The general operation structure of ith agent . . . . . . . . . . . . . . . . . 59

4.4 The communication topology for PEVs charging . . . . . . . . . . . . . . 60

4.5 The charging power updates for PEVs . . . . . . . . . . . . . . . . . . . . 60

4.6 Total allocated charging power updates for PEVs . . . . . . . . . . . . . . 61

4.7 Allocated charging power updates for PEVs . . . . . . . . . . . . . . . . . 61

4.8 Supply-demand mismatch updates for PEVs . . . . . . . . . . . . . . . . . 62

4.9 The SoC updates for PEVs . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10 Allocated charging power updates for PEVs . . . . . . . . . . . . . . . . . 64

4.11 Supply-demand mismatch updates for PEVs . . . . . . . . . . . . . . . . . 64

4.12 Allocated charging power updates for 30-PEVs . . . . . . . . . . . . . . . 65

9



4.13 Supply-demand mismatch updates for 30-PEVs . . . . . . . . . . . . . . . 66

4.14 Allocated charging power updates for 60-PEVs . . . . . . . . . . . . . . . 66

4.15 Supply-demand mismatch updates for 60-PEVs . . . . . . . . . . . . . . . 67

5.1 General operation diagram of an agent. . . . . . . . . . . . . . . . . . . . . 77

5.2 IEEE 14-bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 The actual output power of RGs and ESSs . . . . . . . . . . . . . . . . . . 80

5.4 The supply-demand mismatch update . . . . . . . . . . . . . . . . . . . . 81

5.5 The actual output power of RGs and ESSs . . . . . . . . . . . . . . . . . . 81

5.6 The supply-demand mismatch update . . . . . . . . . . . . . . . . . . . . 82

5.7 The actual output power of RGs and ESSs during the single link failure . . 82

5.8 The supply-demand mismatch update . . . . . . . . . . . . . . . . . . . . 83

5.9 Total allocated output power . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.10 The actual output power of RGs and ESSs during the single node failure . . 84

5.11 The supply-demand mismatch update . . . . . . . . . . . . . . . . . . . . 85

5.12 The actual power output of RGs and ESSs . . . . . . . . . . . . . . . . . . 86

5.13 The supply-demand mismatch update . . . . . . . . . . . . . . . . . . . . 86

6.1 The communication network of agents in a microgrid . . . . . . . . . . . . 89

6.2 IEEE 14-bus system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 The marginal cost update with the proposed finite-time algorithm . . . . . . 101

6.4 The marginal cost update with the distributed gradient algorithm . . . . . . 102

10



6.5 The marginal cost update with the Laplacian-gradient dynamics . . . . . . 102

6.6 The marginal cost update with the proposed finite-time algorithm . . . . . . 103

6.7 The actual output power . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.8 An actual islanded system in China [2] . . . . . . . . . . . . . . . . . . . . 105

6.9 The marginal cost update with the proposed finite-time algorithm for an

actual islanded microgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.10 The actual output power . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.11 The marginal cost update . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.12 The actual output power . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 The incremental cost of participants . . . . . . . . . . . . . . . . . . . . . 121

7.2 The active power updates of participants . . . . . . . . . . . . . . . . . . . 121

7.3 The total active power of participants . . . . . . . . . . . . . . . . . . . . . 121

7.4 The incremental cost of participants under plug-and-play operation . . . . . 122

7.5 The active power updates of participants under plug-and-play operation . . 122

7.6 The total active power of participants under plug-and-play operation . . . . 123

7.7 The incremental cost under curtailments of renewable generation . . . . . . 124

7.8 The active power update under curtailments of renewable generation . . . . 124

7.9 The total active power under curtailments of renewable generation . . . . . 124

7.10 The incremental cost under varying demand . . . . . . . . . . . . . . . . . 125

7.11 The active power update under varying demand . . . . . . . . . . . . . . . 125

7.12 The total active power under varying demand . . . . . . . . . . . . . . . . 125

11



8.1 Multiple BESSs System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Coordination scheme of wind generation and BESSs . . . . . . . . . . . . 137

8.3 The control diagram for a BESS . . . . . . . . . . . . . . . . . . . . . . . 138

8.4 The time of use tariff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.5 The marginal cost update under the proposed algorithm . . . . . . . . . . . 140

8.6 The marginal cost update under the algorithm in [3] . . . . . . . . . . . . . 140

8.7 The marginal cost update under the proposed algorithm . . . . . . . . . . . 141

8.8 The output power update under the proposed algorithm . . . . . . . . . . . 141

8.9 The power balance estimation . . . . . . . . . . . . . . . . . . . . . . . . 142

8.10 The total output power of BESSs . . . . . . . . . . . . . . . . . . . . . . . 142

8.11 The output power profile of the wind power generation . . . . . . . . . . . 143

8.12 The output power update under the proposed algorithm . . . . . . . . . . . 144

8.13 The power balance estimation . . . . . . . . . . . . . . . . . . . . . . . . 144

8.14 Single line diagram of the 30-BESS system . . . . . . . . . . . . . . . . . 145

8.15 The output power update under the proposed algorithm . . . . . . . . . . . 146

8.16 The power balance estimation . . . . . . . . . . . . . . . . . . . . . . . . 146

12



Symbols

λ(·) The eigenvalue of a marix

λ2 (·) The smallest non-zero eigenvalue of (·)

[·]+ The projection operator on the non-negative real number

A The adjacency matrix of the graph

E The edge set of a graph

G A graph

L The Laplacian matrix

V The node set of a graph

‖·‖ The l2 Euclidean norm of a matrix or a vector

∂ f (·) The partial derivative of a function f (·) with respect to a variable x

O f (·) The gradient of a function f (·)

AT The transpose of a matrix or a vector A

ai agent i chosen control action

ai j The entry in the ith row and jth column of a matrix A

C (·) Cost function

diag(·) diagonal matrix

L The operation of Lie derivative

13



Pi Active power from ith agent

U (·) Utility function

vi ith node

14



Abbreviations

BESSs Battery Energy Storage Systems.

CG Conventional Generators.

DER Distributed Energy Resource.

DG Distributed Generator.

DGA Distributed Gradient Algorithm.

DoD Depth of Discharging.

EGD Economic Generation Dispatch.

EMS Energy Management Systems.

ESS Energy storage system.

EV Electric Vehicle.

ICE Internal Combustion Engine.

ISS Input-to-State Stability.

KKT KarushKuhnTucker.

LGD Laplacian-Gradient Dynamics.

MAS Multi-agent Systems.

MPPT Maximum Peak Power Tracking.

15



PCC Point of Common Coupling.

PEV Plug-in Electrical Vehicle.

PMS Power Management System.

PV Photovoltaic.

RG Renewable Generator.

RTP Real-time Price.

SG Synchronous Generator.

SoC State of Charge.

SSC Storage System Controller.

ToU Time-of-Use.

V2G Vehicle-to-Grid.

WT Wind Turbine.

16



The University of Manchester

Tianqiao Zhao

Doctor of Philosophy

Distributed Optimization with Its Applications to Power Systems

March 13, 2019

The traditional electric power grid is in the process of being transformed from the con-

ventional power grid to an intelligent grid, a so-called smart grid. The operation of smart

grids no longer has one-directional energy and information flow, and enables communica-

tion between utilities and consumers, which is a potential solution to motivating end users to

participate in the decision-making of a demand response. The traditional solution for energy

management problems is a centralized algorithm, which requires a control centre to collect

and process the algorithm. However, it could lose its effectiveness due to the increasing

level of distributed energy resources (DERs). The distributed method is a potential solution

to the problem caused by the centralized method.

The research in this thesis mainly focuses on the feasibility of improving the energy man-

agement system (EMS) of smart grids from the demand side to the supply side. First, a

coordination strategy of the plug-in electric vehicle (PEV) charging process is studied by

maximizing the welfare and satisfaction of PEV owners.It is a distributed algorithm and

analysis shows that it solves the optimal charging problem in an initialization-free approach.

Second, the resource management of renewable generators (RGs) and energy storage sys-

tems (ESSs) is investigated. The objective is to minimize the curtailment of renewable

energy, and at the same time, to minimize the power losses of ESSs. An optimal solution

is proposed to the management problem by enhancing the communication and coordination

under a multi-agent system (MAS) framework. Third, from the above research, it is found

that the operation of microgrids may change frequently and without warning. A distributed

finite-time algorithm is designed for EMSs in a microgrid under different operation modes.

Fourth, a novel fixed-time distributed solution is introduced that both achieves a fast conver-

gence speed and is robust to dealing with uncertain information. Finally, a novel distributed

strategy for multiple BESSs is proposed for optimally coordinating them under uncertainties

of wind power generation while considering the privacy of users.
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Chapter 1

Introduction

1.1 Overview of Modern Power Systems

The traditional electric power grid is in the process of being transformed from the conven-

tional power grid to an intelligent grid due to the growing demand for electrical energy

from consumers, the integrated need for renewable energy resources, and the transforma-

tion of ageing power grid infrastructures. The future grid [4] is a so-called smart grid that is

an aggregation of distributed generation units, responsive demands, and storage units each

equipped with controllable power electronics devices connected to each other through com-

munication networks [5, 6].

The traditional power grid is centralized and has one-directional energy and information

flow. In contrast, as shown in Fig. 1.1, a smart grid is characterized by the bi-directional flow

of energy and information, and enables communication between utilities and consumers,

which is a potential solution to motivating end users to participate in the decision-making of

demand response. The following goals and characteristics are defined by the Energy Inde-

pendence and Security Act of 2007 (EISA), TitleXIII and National Institute of Technology

(NIST) [7]. First, a smart grid requires the dynamic optimization of grid operations and re-

sources with full cyber-security; second, it should deploy and integrate distributed resources
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Figure 1.1: The conceptual model of a smart grid [1]

and generation, including renewable resources; third, demand response, demand-side re-

sources, and energy-efficiency resources should be incorporated and developed; lastly, ad-

vanced electricity storage and peak-shaving technologies, including plug-in electric and hy-

brid electric vehicles, and thermal-storage air conditioning should be deployed and inte-

grated into smart grids.

These goals cannot be achieved without advanced control and optimization technologies.

Considering the number and variety of distributed controllable devices, managing a smart

grid requires a new paradigm shift in centralized EMS, which needs to consider the local in-

telligence of the distributed units and their communication capability [8]. Such units in Fig.

1.1 are able to sense their local environment, perform local computations, and coordinate

with their neighbours through local communications. These elements play an important role

in improving the flexibility and energy efficiency of smart grids.
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1.1.1 Microgrids

The conception of the microgrid is a key component of smart grids. Generally, variously

distributed generators (DGs) comprising wind turbines (WTs) and photovoltaic (PV) gen-

erators, energy storage systems (ESSs), loads and other devices are integrated into a micro-

grid to support a flexible and efficient electric network [9]. It can help to integrate these

low-carbon devices into the traditional power grid to enhance the reliability and reduce the

carbon emission. Furthermore, its structure is fundamental in supporting increasing pen-

etration of PEVs. On the one hand, the microgrid is a small-scale power system that can

achieve the power dispatch and supply-demand balance economically within the microgrid

because of the function of advanced EMSs. The EMS play a significant role in the control

of a microgrid, which is able to optimally dispatch the active power of controllable DERs

and control the consumption of controllable loads, subject to certain economic criteria. On

the other hand, a microgrid can be treated as a ’virtual’ power source or load. Through

the coordinated control of the output power of distributed generation within the microgrid,

the peak-shifting or load shaving can be realized, thus reducing the impact of intermittent

renewable generation on main grids or users. A microgrid is usually operated in the grid-

connected mode, which exchanges power with the main grid through the point of common

coupling (PCC) [10, 11]. Due to planned or unexpected reasons [12], the microgrid will be

operated in the islanded mode that needs to maintain its own active power supply-demand

balance. However, because of the intermittency of WTs and PVs, a microgrid has to face

new operational and control challenges of resource management, especially in the islanded

operation mode.

1.1.2 Distributed Generation

Generally, distributed generation includes combined heat and power (CHP), fuel cells, micro-

turbines, photovoltaic systems, wind turbines and hydroelectric energy, etc., and is intended

to be the main backup supplier of energy for improving the reliability in a microgrid. Due

to the flexibility and low-carbon feature of DERs, they can be installed sufficiently close to

energy consumers. As a result, the transmitting electricity loss could be reduced compared

to conventional power systems. However, due to their non-dispatchable feature, they are
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complemented by controllable generators such as diesel generators, and ESSs.

1.1.3 Energy Storage System

Distributed ESSs are referred to as devices that can absorb excessive power and compensate

for insufficient power during peak generation and load periods. Furthermore, the system

frequency in the low-inertia microgrid may change rapidly due to the increasing high pen-

etration of intermittent renewable generation. Distributed ESSs are power electronic-based

components and thus have a faster response time. Therefore, they are an ideal supplement

for intermittent distributed renewable generation, such as solar power and wind power gen-

eration, since they can store excess energy and rapidly feed it back when needed to minimize

the active power imbalance of an islanded microgrid.

1.1.4 Plug-in Electric Vehicles

Driven by electricity stored in its rechargeable battery, a PEV can be recharged by power

sources. It is widely recognized that electric vehicles (EVs) provide a promising alternative

to the traditional internal combustion engine (ICE) vehicles, as they can reduce both envi-

ronmental pollution and greenhouse effect. Enabling this transformation to PEVs will bring

potential benefits to the smart grid [13, 14].

1.2 Research Scope

The high penetration of renewable energy resources on the supply side or a large-scale in-

tegration of PEVs on the demand side might cause a more complicated design of EMSs in

smart grids. As already known, the intermittent nature of renewable energy resources means

that it is difficult to predict the output of a wind turbine or PV generation for the day-ahead

or even the hourly-ahead markets. In addition, improperly controlled and non-coordinated

PEVs could bring about an increase in peak demand that could destabilize the grid.
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Planning & Operational Problems in Power Grids

Ancillary
Services
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Management

Power Generation
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Figure 1.2: Outlines of research scope

In this thesis, the planning and operational problems of energy management in a smart grid

environment are considered, and the thesis is divided into two major parts: namely supply

side management and demand side management. As shown in Fig.1.2, at the demand side,

the main concern is PEV charging management while providing ancillary services. On the

other side, the problems of the supply side in this thesis are mainly: 1) power generation

management that consists of conventional generators (CGs) and ESSs; 2) distributed energy

resource management that focuses on the coordination of renewable energy resources and

ESSs.

As a result, the first part of this research aims to provide a charging strategy for PEVs that

avoids overload problems and maximizes user satisfaction. The second part is to coordinate

distributed energy resources and ESSs that respect certain operational requirements. The

third part investigates the energy management problem of a microgrid in different operation

modes. The fourth part studies the optimal dispatch problem of islanded microgrids under

uncertain information. The fifth part is the study of the cooperative control of ESSs.
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1.3 Contributions

This research investigates the energy management problem in the conception of smart grids.

The major contributions of this project involved in the thesis are summarised as follows:

• The PEVs charging problem is investigated for demand management:

1. The optimal strategy maximizes the welfare and satisfaction of PEV’s customers,

i.e., the charging cost and the rate of change of State of Charge (SoC), by min-

imizing deviations between the charging current and the desired current value

under the conditions of individual PEV charging limit.

2. Each PEV exchanges information with its own neighbours under a directed com-

munication graph rather than under undirected graphs. The computational and

communication burdens are shared among individual agents (PEVs) based on

this distributed scheme, and thus the proposed algorithm can be flexible and

scalable.

3. In the real application, initialized errors may exist in load satisfaction; the initialization-

free is desirable for a practical PEV charging control. To this end, by char-

acterizing the omega-limit set of trajectories in our strategy, it is shown that

the proposed algorithm does not require any specific initializing procedure and

therefore PEVs can start from any charging power allocation.

• Energy management problem is studied for minimizing the operational cost of renew-

able generators (RGs) and their parallel-connected battery energy storage systems

(BESSss) in an islanded microgrid:

1. By properly designing an objective function for RGs, the minimization of cur-

tailment cost of RGs is achieved while guaranteeing the equal power sharing

among RGs.

2. Implementing on a distributed manner through a communication network, the

proposed algorithm is robust to the single point failure as long as the communi-

cation network remains connected.
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3. To deal with the intermittency of renewable generation and load demand, an

analysis is provided to show that the proposed algorithm can work even under

the time-varying supply-demand imbalance.

• For microgrids that operate under various operating conditions, it is necessary to de-

velop an optimization algorithm that can converge at a fast speed and a convergence

time that can be estimated and tuned before implementation. To this end, a novel dis-

tributed algorithm is proposed to solve optimal resource management for a microgrids

different operation modes:

1. Novel objective functions are formulated for different microgrid modes to mini-

mize overall operation cost.

2. Instead of using projection methods [15, 16] to deal with generation constraints,

we apply a smooth ε-exact penalty function [17] in problem formulation to han-

dle the local constraints for the convenience of implementation.

3. A finite-time algorithm is adopted to achieve a higher convergence speed, which

is beneficial in maintaining the power balance of a low-inertial microgrid in the

presence of unknown changes and agent trips. Furthermore, the convergence

time can be estimated before implementation so that it can be tuned according

to real requirements.

• A novel fixed-time distributed EMS under uncertain information is proposed for the

economical and accurate operation of an islanded microgrid:

1. A new objective function is designed for BESSs considering their DoD cost.

2. In addition to the plug-and-play capability and scalability for the flexible oper-

ation of microgrids, the algorithm designed in this work guarantees the finite

setting time that can be estimated before implementation, as well as the robust

convergence of the optimal solution for the EMS, which achieves the objectives

of fast convergence speed and robustness against uncertain information simulta-

neously.

3. It is beneficial in maintaining the power balance of the low-inertial islanded mi-

crogrid in the presence of unknown changes and uncertainties.
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• A novel distributed algorithm is proposed to coordinate multiple BESSs under wind

uncertainties by maximizing the total welfare of BESSs:

1. By considering the energy efficiency and ToU pricing, an objective function is

formulated to maximize the total welfare of multiple BESSs that can encourage

BESSs to participate in grid regulation.

2. A coordination scheme of BESSs is proposed for multiple BESSs to maintain

active power balance under uncertainties of wind power generation .

3. The information sharing of the cost function may mean the participants have in

privacy concerns. The proposed algorithm is able solve the formulated problem

and respect the privacy of users at the same time, and is achieved by introducing

a mismatch estimator to update the local power output and by removing the

requirement of gradient information sharing.

1.4 Thesis Outline

In this research, the demand management of the PEV charging process is first investigated to

enable the plug-and-play operation of PEVs. This algorithm is extended to the supply side in

a microgrid, such as the energy management of RGs and ESSs. After starting from the EMS

design, we found that the operation of microgrids may change frequent and unpredicted,

it is desired to design an algorithm that can converge in a pre-determined time. From this

perspective, distributed finite-time algorithms are designed for microgrids under different

operating modes. In addition, a distributed robust finite-time algorithm is further proposed to

deal with the uncertain information during the management process. However, the previous

studies require the sharing of private information, e.g, gradients of cost functions. A novel

distributed optimization algorithm is designed to consider the user privacy.

To understand the whole thesis structure, a general overview is provided in this section.

Chapter 1 gives brief overviews of the modern power system and the essence of the smart

grid. Then, the motivations and scopes of this project are proposed. Afterwards, the contri-

butions that thesis makes to this research area, are discussed.



CHAPTER 1. INTRODUCTION 32

Chapter 2 contains notation and some preliminaries used throughout this thesis.

Chapter 3 provides a literature review on the economic operation in microgrids. The prob-

lems of PEV charging management, resource management and optimal coordination of

BESSs are studied. Recent advances in different methods can be found in this Chapter.

Moreover, the gaps between the existing results and future needs are identified.

Chapter 4 studies the management problem during the charging procedure of PEVs for

maximizing user satisfaction and welfare, while respecting each PEV’s physical constraints.

An objective function is formulated to represent the interests of users. Then, a distributed

cooperative scheme of PEVs is proposed to solve the problem in an initialization-free way.

Chapter 5 investigates the resource management problem of RGs and parallel-connected

BESSs. The objective functions for RGs and BESSs are formulated to minimize the system

operational cost. The power sharing among RGs and the minimization of BESS power

loss are achieved when the optimization problem is solved. Then, a distributed solution is

introduced to solve this problem that is further robust to the single point/link failure.

Chapter 6 proposes a two-level optimization system for optimal resource management for

both grid-connected and islanded microgrid modes. For the islanded mode, the objective

is defined to minimize overall system cost while maintaining supply-demand balance. In

contrast, a grid-connected microgrid should follow the command generated by the main grid.

Therefore, an objective function is defined to make the marginal cost to each participant

equal to the price set by the main grid. Then, different distributed algorithms are proposed

to solve the formulated problems

Chapter 7 proposes a fixed-time distributed EMS under uncertain information in an is-

landed microgrid. The proposed EMS can achieve optimal dispatches in the fixed-time that

can be estimated or designed before implementation and is simultaneously robust against

uncertain information.

Chapter 8 investigates the coordination problem of BESSs under uncertainties of wind

power generation. A coordination scheme is introduced to enhance the BESS’s performance

under uncertain power output from wind turbines while increasing their profits and energy

efficiency.
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Chapter 9 provides suggestions for future work. This chapter includes the possible exten-

sions and interesting topics are also suggested for future research.

1.5 Summary

This chapter has introduced the background of a modern power system and the essential

elements of smart grids. The motivation and research scope of this thesis have also been

outlined. In addition, the contributions are discussed. Finally, the organization of each

chapter has been summarized.
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Preliminaries

2.1 Notation

In this section, we recall some preliminaries about graph theory, nonsmooth analysis and

differential inclusions that are used. For l ∈ R, we denote Hl = {x ∈ Rn | 1T
n x = l}, where

1n = [1,1 . . . ] ∈ Rn. Let B(x,ε) = {y ∈ Rn | ‖y− x‖ < ε}. A set-value map X : Rn ⇒ Rm

each value in Rn associates with a set in Rm. For u ∈ R, [u]+ denotes max{0,u}. Also, for

B0 ∈ Rn, B0 = [b10, . . . ,bi0]
T , where bi0 6= 0 denotes the ability of ith agent to receive the

information of the total supply/demand power; bi0 = 0 otherwise; and 1T
n B0 = 1.

2.1.1 Graph Theory

Following [18, 19], we present some basic notions of a directed graph. A directed graph is

defined by G = (V ,E), where V = {ν1,. . . , νn} denotes the node set and E ∈V ×V is the

edge set. If (νi, ν j) ∈E means node νi is a neighbour of node ν j. A directed graph contains

a directed spanning tree if there exists a root node that has directed paths to all other nodes.

A directed graph is strongly connected if there exists a directed path that connects any pair

of vertices. For a directed graph G , its adjacency matrix A = [ai j] in Rn×n is defined by

aii = 0, ai j = 1 if (ν j,νi) ∈ E and ai j = 0 otherwise. A weighted graph G = (V ,E ,A)

consists of a digraph (V , E) and an adjacency matrix A ∈ Rn×n
≥0 with ai j > 0 if and only
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if (i, j) ∈ E . The weighted in-degree and out-degree of i are defined as din(i) = ∑
n
j=1 ai j

and dout(i) = ∑
n
j=1 a ji, respectively. The Laplacian matrix L = [Li j] ∈Rn×n associates with

G is defined as Lii = ∑ j 6=i ai j and Li j = −ai j, i 6= j. G is defined as weight-balanced if

dout(ν) = din(ν), for all ν ∈ V iff 1T
n L = 0 iff L +LT is positive semi-definite. If G is

strongly connected and weight-balanced, zero is a simple eigenvalue zero of L +LT . In this

case, there is

xT (L +LT )x≥ λ2(L +LT )

∥∥∥∥x− 1
n

1T
n 1nx

∥∥∥∥2

, (2.1)

where λ2(L +LT ) is the smallest non-zero eigenvalue of L +LT .

2.1.2 Nonsmooth Analysis and Differential Inclusions

Following [20, 21], we present some basic notions of nonsmooth analysis and differential

inclusions, respectively. A function f : Rn → Rm is locally Lipschitz at x ∈ Rn if for y,

y
′ ∈ B(x, ε),

∥∥∥ f (y)− f (y
′
)
∥∥∥ ≤ Lx

∥∥∥y− y
′
∥∥∥, where Lx, ε ∈ (0, ∞). A function f : Rn→ Rm is

said as regular at x ∈ Rn if, for all ν ∈ Rn, the right and generalized directional derivatives

of f at x in the direction of ν coincide [21]. A function is regular at x, if it is continuously

differentiable at x. A convex function is regular.

Considering a set-valued map H : Rn⇒ Rn, a differential inclusion on Rn is defined by

ẋ ∈H (x). (2.2)

The set of equilibria of (2.2) is denoted by Eq(H ) = {x ∈ Rn|0 ∈H (x)}. A local Lipschitz

function f : Rn⇒ R, the set-valued Lie derivative LH f ,Rn⇒ R, of f with respect to (2.2)

is defined as

LH f = {b ∈ R | ∃v ∈H (x) s.t. α
T v = b for all α ∈ ∂ f (x)}. (2.3)

For any ε ∈ (0,∞), a set-valued map H : Rn ⇒ Rm is upper semi-continuous at x ∈ Rn

if there exists δ ∈ (0,∞) such that H (y) ⊂ H (x)+B(0,ε) for all y ∈ B(x,δ). Also, H is

locally bounded at x ∈ℜn if there exist ε,δ ∈ (0,∞) such that ‖z‖ ≤ ε for all z ∈ H (y) and

y ∈ B(x,δ). Let Ω f be the set of points where f is not differentiable, and the generalized
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gradient of f is defined as

∂ f (x) = co{ lim
k→∞
O f (xk) | xk→ x,xk 6∈Ω f ∪S}

where co denotes convex hull and S is a set of measure zero.

A solution of ẋ ∈H (x) on [0,T ]⊂R is defined as an absolutely continuous map x : [0,T ]→

Rn that satisfies (2.2) for almost all t ∈ [0,T ]. Also, if H is locally bounded, upper semi-

continuous, and takes non-empty, compact, and convex values, then the existence of solu-

tions is guaranteed.

Theorem 2.1.1. (LaSalle Invariance Principle for differential inclusions) [22] Let H : Rn⇒

Rn be locally bounded, upper semicontinuous, with non-empty, compact, and convex val-

ues. let f : Rn → R be locally Lipschitz and regular. If S ⊂ Rn is compact and strongly

invariant under (2.2) and maxLH f (x) ≤ 0 for all x ⊂ S, then the solutions of (2.2) starting

at S converge to the largest weakly invariant set M contained in S
⋂
{x ∈ Rn | 0 ∈ LH f (x)}.

Moreover, if the set M is finite, then the limit of each solution exists and is an element of M.

2.2 Saddle Points

The set of saddle points of a C 1 function F : X ×Y → R is denoted by Saddle(F). If there

exist open neighbourhoods Ux ⊂ X of x∗ and Uy ⊂ Y of y∗ such that

F(x∗,y)≤ F(x∗,y∗)≤ F(x,y∗) (2.4)

for all y∈Uy and x∈Ux, and for (x∗,y∗)∈ Saddle (F), the points x∗ ∈X and y∗ ∈Y are the

local minimizer and local maximizer of the map x 7→ F(x,y∗) and y 7→ F(x∗,y) respectively.

The point (x∗,y∗) are a global min-max saddle point of F are Ux∗ = X and Uy∗ = Y . Also,

the set of saddle points of a convex-concave function F is convex.
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Literature Review: Economic Operation

in Microgrids

3.1 Introduction

This chapter concludes two sections. In Section 3.2, it provides a review of existing results

on applications of MAS used for power systems and distributed energy management. Then,

a literature review of typical economic operation problem in microgrids and the correspond-

ing key issues are given in Section 3.3.

3.2 Overview of Multi-agent Systems

The evolution of modern power systems towards decentralized and scalable architectures

brings new challenges to traditional system operators in terms of the control and manage-

ment of modern power systems. MAS framework is a potential solution to meet these chal-

lenges [23]. Designing a MAS in the context of power systems, power system elements are

evolved in a given environment, and modelled as distributed intelligent agents with char-

acteristics of reactivity, pro-activeness and social ability. It is applicable to any level of
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partitioning according to certain tasks; an individual agent could potentially represent a dis-

tributed energy (DER), a consumer or even a large region of the network.

3.2.1 Multi-agent Systems in Modern Power Systems

MAS-based strategies [24] have been applied to a variety of power system applications,

including load restoration [25], frequency regulation [26] and reactive power control [27].

How- ever, the MAS-based solutions in those research studies are based on set rules, and

lack a rigorous stability analysis. The existing distributed solution is proposed under the

undirected communication network, which requires a bi-directional communication, rather

than a possible single-directional communication. In contrast, the scheme with directed in-

formation flow would have lower communication costs [28]. Since the development of the

smart grid is becoming highly scalable due to the integration of smart meters and control-

lable devices, the scalability of distributed resource management will be strengthened by

introducing directed communication [29].

3.3 Economic Operation in Microgrids

The economic operation of microgrids involves optimal energy management on both supply

and demand sides. The supply side, which includes resource management and optimal man-

agement of BESSs, aims to minimize the total operating cost on the generation side while

meeting some equality and inequality constraints. On the demand side, demand manage-

ment, i.e. PEV charging management, is designed to encourage consumers to participate in

the power system and market operations to increase grid sustainability.

The following subsections provide a literature review for the economic operation of micro-

grids.

Firstly, in respect of smart grids, PEV charging management is introduced in Section Sec-

tion 3.3.1. Secondly, the energy management problems regarding microgrids, under differ-

ent operation modes, are discussed in Section 3.3.2. Thirdly, the problems regarding the
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cooperative optimal control of multiple BESSs are discussed in Section 3.3.3. In addition,

the corresponding key issues of these problems are also discussed in each corresponding

each subsection. Finally, a brief summary is given in Section 3.4.

3.3.1 PEVs Charging Management

In this section, the PEV charging problem for demand management is considered, which

aims to coordinate the charging process of a large number of PEVs in a distributed ap-

proach. The large-scale integration of PEVs may induce both adverse effects and incentives

simultaneously on future grids. One of the apparent impacts is that the grid would be desta-

bilized with a higher peak demand due to PEV integration [30]. On the other hand, the

grid can benefit from the integration in load profile levelling and frequency regulation since

PEVs can be treated as a flexible load due to their charging property [31]. Additionally, the

satisfaction of PEV customers should be improved by designing a proper coordination strat-

egy, which can achieve a high acceptance rate of EV utilization. The main concerns of PEV

users are the total charging time, the total charging cost and the SoC at the end of the charg-

ing process. Therefore, with the development of vehicle-to-grid (V2G) technology [32, 33],

it is important to design efficient energy-management policies to control and optimize the

charging process of EVs for smart grid development [34]. The purpose of this work is to de-

sign a proper cooperative control strategy to maximize the benefits and satisfaction of PEVs

customers while satisfying the constraints of PEV operations.

The coordination control and demand management problem for PEVs can be formulated as

an optimization problem in a centralized manner [35–39]. Such kinds of control strategies

usually require a control centre, i.e., an aggregator, to receive the charging status of each

PEV from the charging station and a powerful computation centre to process the substantial

information collected from PEVs [40]. However, with a large number of EVs introduced

as controllable units, traditional centralized approaches may lose their efficiency due to the

intractable computation burden, and they are sensitive to single-point failures. To over-

come such problems, the decentralized PEVs coordination control strategies are presented

in [41–45]. In [41], a decentralized approach is proposed for each charging station to reg-

ulate its charging power by responding to an external signal. The decentralized approach
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only collects a PEV’s own information, which can relieve computation burdens on the con-

trol. However, a central external signal, i.e., a coordination control signal [42] or a real-time

pricing signal [43], must be sent to an aggregator. A fully decentralized strategy only needs

local information that is presented in [44, 45]. However, it is difficult to adjust droop co-

efficients to instantaneous operating conditions in real time when there is a lack of broadly

available information in practice.

Key Issues of PEVs Charging Management

Concerning the charging management process of a large number of PEVs, there are existing

distributed optimal strategies in literature that consider the charging control of EVs [46–48].

?]. Indeed, these strategies could be the alternative solutions to dealing with the large-scale

charging problems of PEVs. However, despite the practical implementation of charging

strategies, the concerns of PEV users have not been fully addressed, and it cannot be guar-

anteed that the strategy can work due to the unpredictable nature of users charging behaviour

and time-varying charging power available from the grid. Unfortunately, little attention has

been paid to these issues.

3.3.2 Energy Management System for Microgrids

The task of energy management involves coordinating the dispatch of energy resources, in

an economical way, which both meets the demands of consumers and minimizes generation

costs. For this task, a proper algorithm is required to schedule power outputs of energy

resources to meet the load demand while maintaining the system’s constraints in a cost-

effective way by minimizing generation costs to all participants.

The energy management problem has been widely researched in demand response, eco-

nomic generation dispatch (EGD), and loss minimization by different methods such as an-

alytical methods [49, 50], hierarchical schemes [51–53], heuristic methods [54, 55] or cen-

tralised control schemes [56, 57]. These methods are effective for conventional power sys-

tems. How- ever, they may lose control efficiency in a microgrid due to the high penetration

of RGs. The reason is that a powerful computation centre is indispensable for processing
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Figure 3.1: A diagram of the RG and parallel-connected ESS

substantial collected data from RGs and ESSs in a microgrid [58]. As a result, it brings

intractable computation burden, and is sensitive to single-point failures. In addition, the

participants in the microgrid may be unwilling to release their local information globally

such as local cost/utility function and power consumption [59]. The above problems can

be avoided by solving the resource management problem in a distributed manner that only

utilizes local information through a local private communication network [60]. In addition,

an algorithm is proposed to solve the optimal reconfiguration problem in a distributed sys-

tem [61]. Therefore, it is important to design a distributed solution that promotes the most

flexible, reliable, and cost-effective development of a microgrid.

Key issues in Energy Management System in an Islanded Microgrid

Due to the intermittency of WTs and PVs, an islanded microgrid will face new operational

and control challenges with regard to resource management. A solution is to install fast

response ESSs for these non-conventional and intermittent renewable sources [62,63]. Such

a hybrid system consists of load demands, distributed RGs and parallel-connected ESSs as

depicted in Fig. 3.1 [64]. However, the integration of RGs and parallel-connected ESSs is

limited by some adverse constraints [65–67], i.e. regulation problem [65]. Besides, inte-

grating ESSs may require additional investment and increase in operating costs with strong

physical restrictions [68]. Since subventions may be restricted in the short term, the objec-

tive is to reduce generation costs by adopting a proper resource management approach.
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Results in existing literature have considered distributed solutions to optimal schedule gen-

eration supply and load demand [16, 69–75]. In [69], the power allocation problem of

distributed ESSs was solved by a consensus-based control strategy. An external leader is

needed to collect and broadcast the total supply-demand power mismatch, which means the

control strategy is not fully distributed, and is sensitive to the measurement errors of actual

power deviations. In [70], a distributed economic operation strategy for a microgrid was

proposed to minimize the economic cost by jointly scheduling various participants without

considering the single link/node failure. In [71] and [72], the authors presented a consen-

sus+innovation framework and a consensus method for the economic dispatch problem in

power systems, which employs a projection scheme to handle inequality constraints. As

reported in [74], by modelling the distributed generators (DGs) and loads as agents, the mi-

crogrid can be operated economically through the management of DGs and price-sensitive

loads in a MAS. Also, in [75], the active and reactive power of the islanded microgrid are

dispatched optimally by a two-layer networked and distributed method in a MAS frame-

work. A fully distributed control strategy is proposed in [16]. However, this control strategy

relies on a specific initialization procedure during each update step.

Key issues in Energy Management System for Different Microgrid Modes

In addition to the above issues, in microgrids under different modes, due to the unpredictable

nature of a microgrid, changes in their operation modes may be unpredicted and frequent

[76, 77]. Therefore, fast convergence algorithms are required to effectively coordinate both

dispatchable and non-dispatchable energy resources to maintain microgrid stability [12,78],

which is necessary for facilitating the development of a microgrid. To this end, a proper

algorithm is required to schedule power outputs of energy resources to meet the load demand

effectively at a fast and estimable convergence speed.

Key issues in Energy Management System under uncertain information in Microgrids

The microgrid may face not only frequent and unpredicted changes, but also uncertain in-

formation in EMSs. The existing EMS solutions may not be able to act fast enough to
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effectively maintain microgrid stability. Recently, literature [79,80] proposed distributed al-

gorithms with fast response time for EMS problems,which do not consider uncertain infor-

mation such as the inaccurate prediction of renewable generation [81] and communicational

and computational uncertainties during the power management [82]. Although these algo-

rithms are actually fast enough, the lack of robust design for uncertainties may result in an

unreliable EMS and even the instability of islanded microgrids. Therefore, the distributed

EMS that has both a fast convergence speed and is robust against uncertain information

should be further considered.

3.3.3 Energy Management System for Multiple Battery Energy Stor-

age Systems

With a properly designed pitch angle and rotor speed control strategy [83,84], the effective-

ness of the wind power generation for maintaining grid frequency stability has been verified

by several existing research studies in different areas, such as inertial, primary and second

frequency control [85, 86]. However, due to the intermittency of wind power generation

supply, a microgrid faces new challenges in terms of its operation and control, especially

under high penetration levels. As a result, integrating high penetration wind power genera-

tion would affect the stability of a microgrid, which may cause a mismatch between supply

and demand when the available wind power generation is not equal to total load demand.

As mentioned in Section 3.3.2, installing BESSs for the intermittent renewable sources

[87–89] is a promising solution, since they can provide a faster response in terms of ab-

sorbing excessive power and compensating for insufficient power during peak generation

and load periods respectively. Thus, the active power imbalance caused by integrating high

penetration wind power generation can be addressed by properly installing and coordinating

the BESSs.

The cooperative approaches in the existing studies are mainly clarified into three categories,

namely centralized schemes [56, 90], decentralized approaches [91] and distributed control

strategies. The smart grid will consist of more distributed controllable BESSs with the

ability to exchange information through a communication network. Therefore, the emerging
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management solution for multiple BESSs should be efficient for an economically.

Key Issues in Energy Management for Multiple BESSs

Recently, the control and optimization of BESSs have drawn the attention of researchers

[92–95]. In [92], the size of operation BESSs is optimized based on adjusting SoC limits.

In [93], group BESSs are coordinated by a distributed control algorithm for voltage and fre-

quency deviation regulation. To achieve the SoC equalization, authors in [94] improved the

conventional droop control by modifying a virtual droop resistance according to the SoC im-

balance. A cooperative control method is presented in [95] for BESSs based on time-of-use

(ToU) pricing. However, the relevant results in existing literature are designed by assuming

that the energy efficiency of multiple BESSs remains a constant value. It is indicated that the

variation of charging/discharging efficiency of multiple BESSs is indispensable [96]. Addi-

tionally, the experiment in [97] shows that energy efficiency fluctuates drastically according

to the charging/discharging rate and SoC. In this case, energy efficiency should be taken

into consideration in the optimization and control design of multiple BESSs. Furthermore,

the owners of BESSs may not willing to share their private information, such as informa-

tion about cost/utility functions. It is therefore desirable to design a novel algorithm that

considers the privacy of users.

3.4 Summary

In this chapter, an overview of applications of MAS used for power systems and typical

optimization problems in microgrids, including PEV charging management, EMSs in mi-

crogrids and cooperative optimal control of BESSs, has been provided. Furthermore, the

corresponding key issues of these problems have been identified. The remaining chapters

will focus on designing proper solutions to these issues through different optimization mod-

els and algorithms.



Chapter 4

Distributed Initialization-Free

Cost-Optimal Charging Control of

Plug-in Electric Vehicles

4.1 Introduction

PEVs provide a promising alternative solution to the reduction of environmental pollution

and fuel emissions. As the key issues indicated in Section 3.3.1, a well-designed charging

coordination approach is needed to minimize the impact on the power system when a large

number of PEVs is connected to the grid. The desired strategy should solve the problem in

a distributed manner while both meeting system interests, i.e., the welfare and satisfaction

of PEV customers, and respecting the charging constraint of each PEV.

To this end, this chapter focuses on designing a novel distributed optimal control strategy to

solve the optimal charging problems of PEVs. The analysis in Section 4.3 shows that the

proposed strategy solves the key issues raised in Section 3.3.1 successfully.

45
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4.2 Problem Formulation for the Battery Charging Prob-

lem of PEVs

We assume that multiple PEVs are plugged into a charging station under a specific optimal

charging control to schedule their charging profiles during the total charging duration time

T . The charging station knows the total charging power capacity over a PEVs charging

period. Each PEV is charged with a constant charging current to reach its desired SoC.

The objective is to design an optimal control method in terms of the economic factors of

the PEV charging process, such as the total charging time, the total charging cost, etc. To

address this objective, the modelling of the PEV battery and its charging property is first in-

vestigated. The existing results on the PEV battery modelling mainly consider two aspects:

a) equivalent circuit models [98, 99] and b) electrochemical models [100]. For the equiv-

alent circuit models, they are mainly used for online estimation and power management,

and the electrochemical models are usually adopted for battery design optimization, health

characterization, and health-conscious control.

4.2.1 Battery Modelling

For the purpose of optimal charging control design, an equivalent circuit model is adopted

in [101], which considers a Li-ion battery as an ideal energy storage unit. This model has

been validated based on test data [102]. All the analyses in this section are based on the

approximate battery model in which the battery parameters are independent of the depth of

discharge (DoD), SoC and temperature. Such assumptions are widely applied in [48, 103,

104] for the optimization and control design.

The model is described as a constant voltage source in series with a constant resistance that

considers resistive energy losses. This model can be represented as:

Vi =Vo,i +RiIi, (4.1a)

µ̇i =
Ii

Qi
, (4.1b)

where Vi is the terminal voltage, Vo,i denotes the open circuit voltage, Ri represents the
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Figure 4.1: The simple equivalent circuit model

equivalent battery internal resistance, Ii is the charging current, Qi represents the battery

charge capacity, and µi is the battery state of charge SoC, of ith PEV, respectively. Note that

Vo,i can vary with SoC. We treat it as a constant voltage source since the variation of Vo,i is

very small within 25%−90% SoC for lithium-ion batteries [104].

When a PEV is being charged after it is plugged in, the power consumed by the ith PEV can

be represented by multiplying the terminal voltage and its charging current,

PEV,i =Vo,iIi +RiI2
i , (4.2)

where PEV,i is the instantaneous charging power. Hence, the battery charging current can be

expressed as

Ii =
1

2Ri
(
√

4RiPEV,i +V 2
o,i−Vo,i). (4.3)

The battery charging current and power are positive during the charging process and negative

for the discharging process.

4.2.2 Constraints

The physical limits are represented by the following constraints.

Global Constraint of the Charging Power Allocation

There is a limit to the total amount of power that a charging station can provide; therefore

the total amount of charging power of all PEVs should not exceed the stations total available
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power Ptotal, which is modelled as an upper bound of the utility’s power delivery

n

∑
i=1

PEV,i ≤ Ptotal. (4.4)

Local Constraint of Each PEV

The allocated charging power of each PEV is locally bounded by different physical factors,

such as the upper bound of the outlet’s power output, the charging current’s tolerance and the

charging level [47]. One local constraint is proposed to map the physical above constraints,

i.e.,

0≤ PEV,i ≤ PM
EV,i (4.5)

where PM
EV,i is the maximum charging power of ith PEV that considers the above limitations.

4.2.3 Optimization Problem Formulation of PEVs

The charging time length over the charging duration Ti of ith PEV is denoted by ∆T , and the

time slots is expressed as Ki =
Ti

∆T , k ∈ Ki := {1, ...,Ki}.

In [105], a real-time price (RTP) model is formulated as the derivative of the generation

sup- ply cost, which represents the marginal cost of the generation supply. Therefore, based

on a similar concept in [106], the generation supply cost of ith PEV is supposed to Cg,i =

1
2a(∑Ki

k=1 PEV,i(k))2 + b(∑Ki
k=1 PEV,i(k))+ c with proper parameters a, b, and c. Therefore,

a RTP model for ith PEV is adopted linearly with respect to its total demand during the

charging duration, such that

Pre,i = a
Ki

∑
k=1

PEV,i(k)+b. (4.6)

Note that the RTP model is widely applied for the coordination of PEV’s charging process

[107, 108].

Furthermore, the ith PEV needs to reach its desired SoC, µ∗i by its deadline that is determined

by
Ki

∑
k=1

PEV,i(k)∆Ti = (µ∗i −µi(0))Qi. (4.7)
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By substituting (4.7) into (4.6), the price model is expressed as

Pre,i = a
(µ∗i −µi(0))Qi

Ti
+b. (4.8)

The satisfaction of PEV customers with the charging service is usually dependent upon the

SoC of their vehicles when the charging process is finished. Therefore, a concave utility

function is defined to represent the satisfaction of the ith PEV customer, which relates to

changing rate of SoC, such that

UEV,i(µ̇i) =−

(
Pre,i

Ki∆T 2

2

)
µ̇i

2 +
(
Pre,i(µ∗i −µi(0))∆T

)
µ̇i. (4.9)

It should note that the utility function has the following properties:

• The satisfaction of PEV’s customers is increasing according to the changing rate of

SoC.

• The utility function has the decreasing marginal utility.

The utility function has been widely applied in [107, 109–111] for PEV charging coordi-

nation problems. From the users’ perspective, the utility function of PEV users should be

maximized when PEVs are connected to the charging station through a Smart Charger. The

Smart Charger can regulate the charging current to maximize consumer satisfaction. It is de-

sired to discover an optimal charging current for each plugged PEV according its own utility

function. Therefore, the optimal charging current reference for each PEV is formulated as

follows. The utility function is rewritten as:

UEV,i =−

(
Pre,i

Ki∆T 2

2Q2
i

)
I2
i +

(
Pre,i(µ∗i −µi(0))∆T

Qi

)
Ii (4.10)

Then, by taking the derivative of (4.10) with respect to Ii and equating to zero, the bliss point

of the charging current of the utility function is

Ire f
i = argmax

Ii
(Ui(µ̇i)) =

µ∗i −µi(0)
Ti

Qi, (4.11)

where Ti = Ki∆T .
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To maximize the satisfaction of each PEV user, the PEV should be ideally charged accord-

ing to the desired charging current obtained in (4.11). However, due to the total available

charging power constraints, it is almost impossible to realize the desired current charging

for all PEVs. Therefore, inspired by a similar formulation process in [48], the objective

function for PEVs is formulated by minimizing the difference between the charging current

and the desired reference, i.e., fi(PEV,i) = εi(I
re f
i − Ii)

2. The total deviations are denoted by

f (PEV ) with PEV = [PEV,1, . . . ,PEV,n]
T ∈ Rn. With (4.3), the objective function is written as

Min f (PEV ) =Min
n

∑
i=1

εi(I
re f
i − Ii)

2

=Min
n

∑
i=1

εi{(Ire f
i )2 +

V 2
o,i

2R2
i
+

2Ire f
i Vo,i

Ri

−
Vo,i +2RiI

re f
i

2R2
i

√
4RiPEV,i +V 2

o,i +
PEV,i

Ri
}, (4.12)

where εi is a non-negative weight given by εi =
1

µiTi+κ
.

This prior weight is introduced in terms of the current SoC and the total charging time of

the ith PEV. A small positive value, κ, is set to avoid singularity. The weight can prioritize

PEVs based on the time of charge and the remaining SoC to be charged.

The first three terms in (4.12) are independent of the decision variable PEV,i, which can be

neglected from the objective function. Hence (4.12) can be further simplified as

Min
n

∑
i=1

εi

(
PEV,i

Ri
−

Vo,i +2RiI
re f
i

2R2
i

√
4RiPEV,i +V 2

o,i

)
s.t. 0≤ PEV,i ≤ PM

EV,i, (4.13)

Furthermore, for the purpose of fully using the available power, we assume that ∑
n
i=1 PEV,i =

Ptotal.

The objective function (4.13) is convex, and the set of charging power allocations satisfying

the box constrain is Fbox = {PEV,i ∈ R | 0 ≤ PEV,i ≤ PM
EV,i}. We denote the feasibility set

of the above optimal problem as FEV = {PEV,i ∈ R | 0≤ PEV,i ≤ PM
EV,i and 1T

n PEV = Ptotal}.

Besides, the solution is denoted by F ∗EV ,.

A centralized strategy can solve the above problem, but it requires a powerful control centre
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to receive all the information of each PEV for data management, communication and pro-

cessing. The objective is to design a distributed cooperative control algorithm such that it

can optimally allocate the charging power of all PEVs based on their priorities. Furthermore,

from any initial conditions, this novel charging control algorithm can accommodate plug-

and-play operations and perform well under the time-varying supply-demand condition in

an isolated power system.

4.3 Distributed Optimal Solution

In this section, a distributed control algorithm is proposed to solve the optimal charging

control problem.

4.3.1 Problem Reformulation

The inequality constraint may cause difficulties in the optimal control design. Thus, the

exact penalty function method is utilized to tackle this problem. The optimization problem

(4.13) is reformulated by rewriting the objective function of ith PEV, i.e.

gi(PEV,i) = fi(PEV,i)+
1
ε
([PEV,i−PM

EV,i]
+). (4.14)

and g(PEV ) = ∑
n
i=1 gi(PEV,i), which subjects to the available charging power constraint

1T
n P∗EV = Ptotal.

Note that g(PEV ) is convex, locally Lipschitz, and continuously differentiable on R except at

PEV,i = PM
EV,i. According to the Proposition 5.2 in [112], the original optimization problem

(4.13) and the reformulated optimal charging problem coincide if there exists ε ∈ R>0 such

that

ε <
1

2maxPEV∈FEV

∥∥5 f (PEV )
∥∥

∞

. (4.15)

In our control design, we assume that (4.15) holds this condition.

A useful Lemma based on [113] is introduced as follows
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Lemma 4.3.1. Since g(PEV,i) is convex, locally Lipschitz, and continuously differentiable

except at PEV,i = PM
EV,i, the charging optimal problem has a solution P∗EV ∈Rn if and only if,

there exists σ ∈ R such that

σ1n ∈ ∂g(P∗EV ) and 1T
n P∗EV = Ptotal. (4.16)

4.3.2 Distributed Algorithmic Design

In [112], the author first proposed an algorithm to solve an ED problem in a distributed

manner, i.e.,

ṖEV,i ∈ − ∑
j∈N(i)

ai j(∂gi(PEV,i)−∂g j(PEV, j)). (4.17)

However, it requires that the initial condition starts from the feasible set. To further solve

the problem in an initialization-free way, a distributed optimal solution is presented to the

optimal charging problem as below in which a novel feedback term is introduced to maintain

supply-demand balance. It allows the power allocation of each PEV to start from any initial

conditions.

ṖEV,i ∈− ∑
j∈N(i)

ai j(∂gi(PEV,i)−∂g j(PEV, j))+ γxi, (4.18a)

ẋi =−β(xi− (bi0Ptotal−PEV,i))

−α ∑
j∈N(i)

ai j(xi− x j)− ∑
j∈N(i)

ai j(ηi−η j), (4.18b)

η̇i =αβxi, (4.18c)

where α,β,γ ∈R>0 are the parameters to be designed, N(i) denotes the neighbour set of ith

PEV. In (4.18a), the first term explores the minimization of the total cost and a feedback ele-

ment, γxi, enforces ith PEV to satisfy the supply-demand equality condition. Furthermore, xi

is designed to track the average signal 1
n(Ptotal−1T

n PEV (t)) for each PEV i∈ {1, . . . ,n}. The

proposed algorithm solves the optimal problem regardless of initial values of (P0,x0,η0). As

proved by [114], the dynamic estimation method (4.18b) - (4.18c) is a low-pass filter that

ensure robust average consensus estimation in a sensor network.
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4.3.3 Convergence Analysis

For convergence analysis, the algorithm is rewritten in a compact form represented by the

set-valued map XEV

ṖEV ∈ −L∂g(PEV )+ γx, (4.19a)

ẋ =−αLx−β(x− (B0Ptotal−PEV ))−Lη, (4.19b)

η̇ = αβx, (4.19c)

where x,η are the column vectors of xi,and ηi respectively.

We characterize the ω-limit set of the trajectories of (4.19) with any initial conditions in

Rn×Rn×Rn.

Lemma 4.3.2. The ω-limit set of the trajectories of (4.19) with any initial conditions in

Rn×Rn×Rn is contained in HPtotal ×H0×H0.

Proof. Defining ψ(t) = 1T
n PEV (t)−Ptotal, one has

ψ̇(t) = 1T
n ṖEV (t) = 1T

n γx(t), (4.20)

and

ψ̈(t) =−1T
n βγx(t)+1T

n βγ(B0Ptotal−PEV (t))

=−βγψ(t)−βψ̇(t). (4.21)

The system can be rewritten as

ż = Az, (4.22)

where z = [z1,z2]
T , and z1 = ψ,z2 = ψ̇. The system matrix, A, is obtained as

A =

 0 1

−βγ −β

 .
Let M ∈ R2×2 be

M =
1

2γβ2

β2 +βγ+(βγ)2 β

β 1+βγ

 , (4.23)
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which satisfies AT M+MA+ I = 0. Define Vz = zT Mz as a Lyapunov function candidate for

(4.22), and the derivative of Vz is

V̇z =−zT z. (4.24)

Therefore, we can deduce that lim
t→∞

zi(t) = 0 for i = 1,2, and the convergence rate is expo-

nential. Furthermore, zi(t) = 0 implies that 1T
n PEV (t)→ Ptotal and 1T

n x(t)→ 0. Note that

1T
n η̇ = 0, as 1T

n x(t)→ 0.

Based on Lemma 5.3.1 and the Proposition A.1 in [22], we now ready to establish that, with

(4.19), the trajectories of the charging power allocations of PEVs converge to the solution

of the optimal charging problem.

Theorem 4.3.1. The trajectories of (4.19) converge to the solution of the optimal charging

problem if α,β,γ ∈ R>0 satisfy the condition that

γ

αβλ2(L +LT )
+

βλmax(LT L)

2
< λ2(L +LT ). (4.25)

Proof. A change of coordinates is introduced to shift the equilibrium point of (4.19) to the

origin. With η̄ = Lη−β(B0Ptotal−PEV ), the set-valued map XEV is transformed as

XEV (PEV ,x,η) ={[−Lξ+ γx,−(αL +βI)x− η̄,

(αβL + γβI)x−βLξ]T ∈ R3n | ξ ∈ ∂g(PEV )}. (4.26)

Consider a candidate Lyapunov function V2 : R3n→ R≥0,

V2 = g(PEV )+
1
2

γβ‖x‖2 +
1
2
‖βx+ η̄‖2 , (4.27)

and let ϕ1 = x,ϕ2 = βx+ η̄, then

V2 = g(PEV )+
1
2

γβ‖ϕ1‖2 +
1
2
‖ϕ2‖2 . (4.28)

Define the overall coordinate transformation T : R3n→ R3n as

[PEV ,ϕ1,ϕ2]
T = T (PEV ,x,η)

= [PEV ,x,βx+Lη−β(B0Ptotal−PEV )]
T . (4.29)
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Next step is to prove that, in the new coordinate, the trajectories of (5.1) converge to the set

F̄op = T (F ∗op) = F ∗EV ×{0}×{0}. (4.30)

Note that g is locally Lipschitz and regular, while the set-valued map XEV is locally bounded,

upper semi-continuous, and takes non-empty, compact and convex values. Take the set-

valued Lie derivative LXEV V2 : Rn⇒ R of V2(PEV ,ϕ1,ϕ2) along the XEV ,

LXEV V2 = {−ξ
T Lξ+ γξ

T
ϕ1− γαβϕ

T
1 Lϕ1

−β‖ϕ2‖2−βϕ
T
2 Lξ | ξ ∈ ∂g(PEV )}. (4.31)

Denote δ = [δ1,δ2,δ3]
T , where δ1 = ξ ∈ ∂g(PEV ), δ2 = βγϕ1 and δ3 = ϕ2 respectively. A

continuous function is defined as w: R3n×R3n→ R3n,

w(PEV ,ϕ1,ϕ2,δ) =[−Lδ1 + γϕ1,−αLϕ1−ϕ2,βγϕ1−βϕ2−βLδ1]
T , (4.32)

and hence dynamics (4.26) can be expressed as

XEV (PEV ,ϕ1,ϕ2) ={w(PEV ,ϕ1,ϕ2,δ) | δ ∈ ∂V2(PEV ,ϕ1,ϕ2)}. (4.33)

Since the directed graph G is strongly connected and weight-balanced with the fact that

1T
n ϕ1 = 0 for (PEV ,ϕ1,ϕ2) ∈HPtotal ×H0×H0,

δ
T w(PEV ,ϕ1,ϕ2,δ) =−

1
2

ξ
T (L +LT )ξ+ γξ

T
ϕ1

− 1
2

αβγϕ
T
1 (L +LT )ϕ1−β‖ϕ2‖2−βϕ

T
2 Lξ

≤−1
2

λ2(L +LT )

∥∥∥∥ξ− 1
n

1T
n 1nξ

∥∥∥∥2

+ γ(ξ− 1
n

1T
n 1nξ)T

ϕ1−
1
2

αβγλ2(L +LT )‖ϕ1‖2

−β‖ϕ2‖2−βϕ
T
2 L(ξ− 1

n
1T

n 1nξ) (4.34)

Defining ϑ = ξ− 1
n(1

T
n 1nξ), and φT = [ϑT ,ϕT

1 ,ϕ
T
2 ], we have

δ
T w(PEV ,ϕ1,ϕ2,δ)≤ φ

T Rφ (4.35)

where

R =


−1

2λ2(L +LT )I 1
2γI −1

2βLT

1
2γI −1

2αβγλ2(L +LT )I 0

−1
2βLT 0 −βI

 .
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Applying the Schur complement, R ∈ R3n×3n is negative definite if

− 1
2

λ2(L +LT )I

−
[

1
2γI −1

2βLT

]−1
2αβγλ2(L +LT )I 0

0 −βI


−1 1

2γI

−1
2βL


=−1

2
λ2(L +LT )I +

γ

2αβλ2(L +LT )
I +

β

4
LT L ,

is negative definite, which is guaranteed by (4.25). Hence, δT w(PEV ,ϕ1,ϕ2, δ) ≤ 0, and

δT w(PEV , ϕ1, ϕ2, δ) = 0 if and only if φ = ϕ1 = ϕ2 = 0. Reasoning with Lemma A.1 [22],

we conclude that 0 ∈ LXEV V2 if and only if there exists σ ∈R such that σ1n ∈ ∂g(P∗EV ). With

Lemma 4.3.1, P∗EV ∈ FEV being a solution of the optimal charging problem.

The last step is to show the trajectories of T are bounded. This follows similar lines in [22],

and therefore we omit it.

Remark 4.3.1. The convergence of the proposed algorithm (4.18) does not rely on a spe-

cific graph. With this property, PEVs can easily implement plug-and-play operations, when

a PEV arrives in or departs from the charging station. Furthermore, the proposed algo-

rithm does not require any specific initializing procedures. Hence, PEVs can start from any

charging power allocations.

4.4 Simulation Results and Analysis

In the simulation studies, several cases are used to validate the effectiveness of the proposed

distributed optimal strategy. The algorithm is tested for a 5-PEV system on a PC with

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz and 4GB RAM in MATLAB/Simulink. The

parameters of the PEV battery are listed in Table 4.1, which are taken from the typical

battery charging profiles provided in [115]. It is assumed that the PEVs are able to interact

with their adjacent neighbours in the communication network. The total available charging

power can be accessed by several PEVs with 1T
n B0 = 1.. Without loss of generality, we

assume that PEV1 knows the total available charging power.



CHAPTER 4. DISTRIBUTED INITIALIZATION-FREE CHARGING CONTROL 57

Table 4.1: Parameters of PEV Batteries
Vo,i(V ) Ri(Ohm) Qi(A.h) SoC(0) SoC∗ PM

EV,i(kW )

Vehicle 1 303 1.13 25 0.20 0.90 3.3
Vehicle 2 292 1.08 30 0.24 0.85 3.3
Vehicle 3 289 1.17 28 0.30 0.80 3.3
Vehicle 4 301 1.12 29 0.18 0.85 3.3
Vehicle 5 298 1.07 32 0.25 0.90 3.3
Vehicle 6 306 1.14 35 0.21 0.90 3.3

Figure 4.2: Distributed demand management for PEVs charging

4.4.1 Algorithm Implementation

The proposed optimal solution can be implemented in a MAS framework as shown in

Fig. 4.2. The step-by-step algorithm for the ith PEV agent is shown in Algorithm. 1, and

Fig. 4.3 gives the general operation structure of ith agent. The communication topology for

PEVs charging is shown as Fig. 4.4. Each PEV is plugged into the charging station through a

recharging socket, which is assigned as an agent. The recharging socket only interacts with

its neighbouring agents to exchange the information, i.e., (PEV,i,xi). Each agent deploys

the proposed algorithm (5.1) in Section IV which will provide an optimal power charging

reference for all PEVs.

Remark 4.4.1. The applicability of the proposed algorithm can be investigated by calculat-

ing the minimum amount of data exchanged by each node. To this end, a simulation study is
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Table 4.2: Total amount of data of the communication line between PEV1 and PEV2

Num of Variable
bits

(Single-precision) Sample Rate Data

P1 1 32bit 100Hz 3200bps
z1 1 32bit 100Hz 3200bps
η1 1 32bit 100Hz 3200bps

Total amount of data 9600bps

provided to show the minimum amount of data exchanged by each node on the communica-

tion network. In this simulation study, the communication network is designed as a directed

graph, and the communication channel between each PEV has the same tolerance as for

the data transmission. Without loss of generality, the data exchanged in the communication

channel between PEV1 and PEV2 was calculated. The sample time is set at 0.01s (100Hz).

The algorithm in this study has three states for each agent that requires three real numbers.

The amount of data of one directed communication channel from PEV1 to PEV2 can be cal-

culated as Table 4.2. As the result show, the minimum amount of data of the communication

channel from PEV1 to PEV2 is 9.6Kbps.

Remark 4.4.2. The results of these simulation studies are obtained based on rigorous pa-

rameter selection, which is taken from a standard charging profile, and the constraint of the

charging rate is set based on the Level 2 charging profile. As a result, the proposed algorithm

is well-adapted to a real PEV charging problem. Furthermore, as Remark 4.4.1 indicates,

the minimal amount of data exchanged by each PEV may be compatible with the throughput

of modern communication systems. With the above analysis, it is shown that the proposed

algorithm can be potentially implemented in a testbed.

4.4.2 Simulation Studies

In the case studies, the designed parameters are chosen as α= 12, β= 0.4, γ= 2, ε= 0.0085,

which satisfy the condition in (4.15), and (4.25) specified in Theorem 4.3.1. In Case

4.4.1,investigates the optimal charging problem with the constant total available charging

power while the plug-and-play operation is considered. Case 4.4.2 investigates the perfor-

mance of the proposed strategy under the time-varying available charging power supply.

Finally, the scalability analysis is validated in Case 4.4.3.
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Algorithm 1 DISTRIBUTED OPTIMAL CHARGING CONTROL ALGORITHM

Initialization:
For i ∈ {1, . . . ,n}
PEV,i = PEV,i(0), xi = xi(0), ηi = ηi(0)

Consensus Algorithm:
Select α, β, γ ∈ R>0
Check If variables the inequality (4.25),{

Yes, Flag = 1→ Continue
No, Flag = 0→ Go back to Select

(4.36)

Coordination
Each PEV i communicates with its adjacent PEV agent, and updates (PEV,i,xi,ηi) accord-
ing to (4.18a)-(4.18c) in Section IV.
End if Each PEV achieves the optimal operation

Initialization 
Procedure 

Distibuted Optimal 
solution(25a) - (25c)  

Local Intial 
Information

Neighboring PEV 
Agent j 

(PEV,j, xEV,j)

(PEV,i, xEV,i)

Neighboring PEV 
Agent k

 ith PEV
P*

EV

ith PEV Agent

Figure 4.3: The general operation structure of ith agent
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Figure 4.4: The communication topology for PEVs charging
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Figure 4.5: The charging power updates for PEVs
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Figure 4.6: Total allocated charging power updates for PEVs
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Figure 4.7: Allocated charging power updates for PEVs
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Figure 4.8: Supply-demand mismatch updates for PEVs
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Figure 4.9: The SoC updates for PEVs
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Case 4.4.1. In this case, the total available charging power is assumed as 12kW. As shown

in Figs. 4.5 - 4.6, the charging rates of all PEVs quickly converge to their optimal values,

while the total allocated charging power converges to 12kW, i.e., the total available charging

power.

The plug-and-play adaptability of our strategy is investigated, e.g., 1) an EV arrives in the

charging station at an arbitrary time; 2) an EV leaves the charging station when its SoC is

charged to its desired value. The total available charging power is still 12kW. The communi-

cation network is weight-balanced, when PEVs are moving in and out. Here an imbalance-

correcting algorithm [116] is applied to this communication network design. Supposing that

each agent can correct its weight by sending and receiving information from its neighbours,

the digraph adapts and becomes weight-balanced in a finite time. Figs. 4.7 - 4.9 show the

charging power allocations of PEVs during their charging process, the demand-supply mis-

match and the SoC of PEVs. As shown in Fig. 4.7, the charging power allocations of each

PEV converge to their optimal values. When one PEV, e.g., PEV6, arrives at the charging

station, the charging power allocation can converge to the optimal values with the proposed

strategy. After PEV3 leaves the charging station, the proposed strategy guarantees that the

remaining PEVs can still reach their optimal charging rates by sharing the total available

charging power. As shown in Fig. 4.8,during the whole PEV charging process, the devia-

tions between the total available charging power and the total allocated charging power are

very small. Fig. 4.9 gives the SoC update of the PEV charging process when a PEV leaves or

arrives at the charging station. When PEV6 arrives at the charging station at a random time,

its SoC starts from 20% and increases during the charging process. The SoC of PEV3 drops

to zero because it has been charged to the desired SoC, and it is ready to depart from the

station. Therefore, the proposed strategy will have little effect on the frequency disturbance

of the system, which may be applied to isolated systems such as an autonomous microgrid.

Case 4.4.2. The effectiveness of the proposed strategy under a time-varying supply-demand

condition is validated in this case. An isolated microgrid consisting of DGs and loads is

considered here. Due to the intermittent nature of renewable energy sources, particularly

wind power generation, the generated power may fluctuate and cause a frequency fluctuation

problem in the microgrid. PEVs installed on the customer side are employed as a flexible
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Figure 4.10: Allocated charging power updates for PEVs
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Figure 4.11: Supply-demand mismatch updates for PEVs
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Figure 4.12: Allocated charging power updates for 30-PEVs

load for alleviating frequency fluctuation [117]. To this end, we consider a time-varying non-

PEV load condition with the total available power given by Ptotal = 12000+700sin(0.005t).

The communication network and the other operating conditions are the same as those in

Case 4.4.1. As shown in Figs. 4.10 - 4.11, the allocated charging powers converge to

their op- timal values under the time-varying supply-demand condition, while the mismatch

between supply and demand power converges to zero. In addition, Fig. 4.11 shows that

the proposed strategy effectively offsets the supply-demand mismatch, which will help with

frequency fluctuation (caused by the intermittent nature of renewable sources) regulation.

Case 4.4.3. The scalability of the proposed strategy is validated. To do so, we implement the

optimal control strategy to both 30-PEV system and 60-PEV system, and The total available

charging power is supposed to be 60kW and 120kW, respectively. The communication

network is weight-balanced and strongly connected.

As shown in Fig. 4.12 and Fig. 4.14, the proposed strategy can guarantee the allocated

charging powers to converge to their optimal values within 25s. Figs. 4.13 - 4.15 illustrate

the deviations of demand and supply power can converge to zero. It is worth noting that

the convergence of the proposed algorithm is mainly determined by parameter selection and

the knowledge of the communication network. The convergence can be ensured for a large

number fleet by maintaining the inequality (4.25).
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Figure 4.13: Supply-demand mismatch updates for 30-PEVs
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Figure 4.14: Allocated charging power updates for 60-PEVs
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Figure 4.15: Supply-demand mismatch updates for 60-PEVs

It should be noted that the proposed algorithm is applicable in a real scenario since the re-

quired communication network for data transmission is acceptable for a real communication

network and the computational cost is acceptable for running an embedded system.

4.5 Conclusion

In this chapter, a cooperative distributed control strategy is proposed for PEV optimal charg-

ing by maximizing the welfare and satisfaction of PEV customers while considering the

charging constraints of PEVs. The proposed distributed algorithm is implemented based on

MAS-framework under a directed communication graph, which is robust to dealing with

single-link failures compared with centralized methods. The initializing procedures are no

longer needed in this control design. Thus, the PEVs can start from any charging power

allocations. In addition, since the convergence of the proposed algorithm does not rely

on a specific graph, it allows plug-and- play operation during the PEV charging process.

Furthermore, the proposed distributed strategy can handle the time-varying supply-demand

mismatch problem in isolated systems.



Chapter 5

Distributed Agent Consensus-Based

Optimal Resource Management for

Microgrids

5.1 Introduction

This chapter considers the optimal resource management problem for an islanded microgrid.

Microgrids provide a promising approach to deal with challenges regarding the integration

of distributed renewable generation and ESSs. However, as indicated in Section 3.3.2, re-

source management in a microgrid encounters a new difficulty, i.e. supply-demand imbal-

ance, caused by the intermittence of renewable sources. Therefore, an optimal solution is

proposed to the resource management by enhancing communication and coordination un-

der a multi-agent system framework. An agent is a participant, for instance, the distributed

RGs/ESSs of the microgrid. With this MAS, the distributed optimal solution only utilizes

local information, and interacts with neighbouring agents. Thus, single-node congestion

is avoided since the requirement for a central control centre is eliminated, and it is robust

against single-link/node failures. The analysis will show that the proposed solution can

solve the resource management problem in an initialization-free manner. Additionally, the

68
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proposed strategy can maintain the supply-demand balance under a time-varying supply-

demand deviation.

5.2 Problem Formulation

The resource management of RGs is formulated to minimize the generation cost while sat-

isfying the supply-demand constraint and the RG constraints. In this section, the objective

function, while considering both RGs and parallel-connected ESSs costs, is constructed as:

Min C(PR, PE) = ∑
i∈NRG

fi(PR,i(t))+ ∑
j∈NESS

g j(PE, j(t)) (5.1)

where NRG and NESS are the sets of RGs and ESSs, respectively. fi(PR,i(t)) and g j(PE, j(t))

are the cost function for ith RG and jth ESS, for i ∈NRG and j ∈NESS. PR,i(t) and PE, j(t)

are the output power of ith RG and jth ESS. Moreover, define Ck(PR,i, PE, j) = fi(PR,i(t))+

g j(PE, j(t)) and C(PR, PE) = ∑k∈N Ck(PR,i, PE, j) with PR = [PR,i(t), . . . ,PR,n(t)]T ∈ Rn and

PE = [PE, j(t), . . . ,PR,n(t)]T ∈ Rn.

Then, the RG’s objective of economic dispatch is to minimize the curtailment of renewable

energy in a microgrid. To this end, the cost function of the ith RG is expressed as

fi(PR,i(t)) = aiPR,i(t)2 +biPR,i(t)+ ci (5.2)

where Pmax
R,i is the predicted maximum power generation capacity of ith RG, and ai =

εi
2Pmax

,

bi = −εi, and ci =
εiPmax

2 , respectively. A trade-off factor εi difference between the ca-

pacity and generation cost, which can be selected according to the capacity required, the

installation and other costs known as ’balance of system cost’ for each type of renewable

source [70, 118]. The formulated objective function (5.2) has a similar format to the cost

function in [119, 120] with different the parameter setting. In addition, (5.2) indicates that

a lower power generation cost is realized when the deviation of actual output power PR,i(t)

between Pmax
R,i is minimized. Hence, the minimization of renewable energy curtailment can

be derived by minimizing the generation cost of RGs [121].

Following [122],a convex quadratic cost function is adopted to represent the power loss of

ESSs during the charging/discharging process, i.e.,
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g j(PE, j(t)) = a jPE, j(t)2 +b jPE, j(t)+ c j (5.3)

where a j, b j and c j are the non-negative parameters of jth ESS, which can be selected in

terms of the Amoroso and Cappuccino’s experimental results [123].

5.2.1 Constraints

The physical limitations on the operation of the studied system are presented as follows:

Global Constraint

Since the change of frequency within a microgrid is mainly affected by the supply-demand

mismatch, the supply-demand balance should be maintained to ensure the stability of the

microgrid. To this end, the active power balance in a microgird can be expressed as:

PD(t) = ∑
i∈NRG

PR,i(t)+ ∑
j∈NESS

PE, j(t) (5.4)

where PD(t) is the total load demand.

Local Constraints

The actual output power of each RG and ESS should belong to a feasible range, i.e.,

Pmin
R,i ≤ PR,i ≤ Pmax

R,i

Pmin
E, j ≤ PE, j ≤ Pmax

E, j (5.5)

where Pmin
R,i and Pmax

R,i are the lower and upper bound for the ith RG; Pmin
E, j and Pmax

E, j are the

lower and upper bound for the jth ESS.
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5.2.2 Objective Function

Considering both the global constraints (5.4) and local constraints (5.5), the resource man-

agement problem is formulated as

Min C(PR, PE)

subject to

PD(t) = ∑
i∈NRG

PR,i(t)+ ∑
j∈NESS

PE, j(t),

Pmin
R,i <PR,i < Pmax

R,i , for i ∈NRG

Pmin
E, j <PE, j < Pmax

E, j , for j ∈NESS. (5.6)

Remark 5.2.1. In the formulation of the objective function, the cost function is used to re-

flect the operating cost of the islanded microgrid. The formulated cost function consists of

a generation cost of each RG and a charging/discharging cost of each BESS. The genera-

tion cost of RGs is formulated to minimize the curtailment of renewable energy when the

minimized generation cost is achieved. In the meantime, the cost function of BESSs rep- re-

sents the power losses during the charging/discharging process as indicated in [122], which

maximizes the actual power output of BESSs while minimizing the power losses. For this

reason, the total operating cost will be minimized by the proposed cost function.

The feasibility set and the solution set of the resource management problem is denoted by

FRM and F ∗RM, respectively. Denote PE = [PE,1, . . . ,PE,n]∈Rn and PR = [PR,1, . . . ,PR,n]∈Rn,

respectively. A useful Lemma in [113] is introduced as follows

Lemma 5.2.1. Since Ck(PR,i,CE, j) is convex, locally Lipschitz, and continuously differen-

tiable, the optimization problem has a solution (P∗R,P
∗
E)∈Rn if and only if ∃σ∈R such that σ1n ∈

∂PRC(PR,PE), and σ1n ∈ ∂PEC(PR,PE), and 1nP∗R +1nP∗E = PD.

5.3 Distributed solution of dynamic economic dispatch

The formulated problem (5.6) is a convex optimization problem with both equality and in-

equality constraints. Traditional centralized strategies may have some challenges, such as
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computation burden and non-timely response. In this section, in order to overcome these

challenges, we develop a distributed cooperative strategy to deal with the resource manage-

ment problem is developed, which only utilizes locally available information and interacts

with its adjacent agents.

5.3.1 Distributed Algorithm Design

Inspired by the dynamic average consensus estimation method proposed in [124], a dis-

tributed solution is developed for resource management, which allows the power allocation

of RGs and ESSs to start from any initial condition. The distributed algorithm is formulated

as:

ṖR,i =− ∑
h∈NRG

aih(∂PR,iCi(PR,i,PE, j)

−∂PR,hCh(PR,h,PE, j)), (5.7a)

ṖE, j =− ∑
k∈NESS

a jk(∂PE, jCi(PR,i,PE, j)

−∂PE,kCk(PR,i,PE,k))+ γx j, (5.7b)

ẋ j =−β(x j− (bi0PD−PE, j−PR,i))

−α ∑
k∈NESS

a jk(x j− xk)− ∑
k∈NESS

a jk(η j−ηk), (5.7c)

η̇ j =αβx j, (5.7d)

where α, β, γ∈R>0 are the parameters to be designed. NRG and NESS denotes the neighbour

set of ith RG and jth ESS, respectively. In addition, x j is designed to track the difference

between supply and demand, PD−1T
n PE−1T

n PR. Both RGs and ESSs are deployed through

a Laplacian-gradient algorithm to explore the minimization of the generation cost. Mean-

while, we introduce a feedback element, γx j for jth ESS to meet the supply-demand equality

condition.

Remark 5.3.1. Note that the renewable generation may not be considered as dispatchable if

it is controlled in maximum peak power tracking (MPPT) mode because of their intermittent

and irregular nature. because of its intermittent and irregular nature. As a result, RGs

are not used to compensate the supply-demand mismatch. Thus, only ESSs are deployed
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to maintain the supply-demand balance in the control design. The feedback term is only

introduced for the jth ESS to satisfy the supply-demand equality condition. Furthermore,

the ith RG only implements (5.7b) to explore the minimization of its own generation cost.

5.3.2 Convergence Analysis

The algorithm is rewritten in a compact form for convergence analysis as

ṖE =−LE∂PEC(PR,PE)+ γx, (5.8a)

ṖR =−LR∂PRC(PR,PE), (5.8b)

ẋ =−αLEx−β(x− (B0PD−PE −PR))−LEη, (5.8c)

η̇ = αβx, (5.8d)

where x, η are the column vectors containing xi, and ηi, respectively. LE and LR denote the

corresponding Laplacian matrix of network connections of ESSs and RGs, respectively.

Let Pk = PR,i +PE, j, and P = [P1, . . . ,Pn] ∈ Rn. The ω-limit set of the trajectories of (5.7)

under any initial condition in Rn×Rn×Rn is first characterized. Then, with T=Rn×Rn×

Rn and T0 = HPD×H0×H0, the following lemma is introduced.

Lemma 5.3.1. The ω-limit set of any trajectory of (5.8) with any initial condition in (Pk,0,x0,η0)∈

T is contained in T0.

Proof. Defining φ(t) = 1T
n P−PD, one has

φ̇(t) = 1T
n γx(t), (5.9)

and

φ̈(t) = 1T
n γẋ(t)

=−1T
n βγx(t)+1T

n βγ(x− (B0PD−P))

=−βγφ(t)−βφ̇(t). (5.10)

The system can be rewritten as a linear system ż = Az with z = [z1,z2]
T , and z1 = φ(t),z2 =
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φ̇(t). The system matrix is

A =

 0 1

−βγ −β

 .
Let R ∈ R2×2 be

R =
1

2γβ2

β2 +βγ+(βγ)2 β

β 1+βγ

 , (5.11)

which satisfies AT R+RA+ I = 0. Define Vz = zT Rz as a Lyapunov function candidate, and

the derivative of Vz is

V̇z =−zT z. (5.12)

Therefore, it can be deduced that (φ(t); φ̇)→ 0. Furthermore, φ = 0 implies that 1T
n PE(t)+

1T
n PR(t)→ PD and 1T

n x(t)→ 0. Note that 1T
n η̇ = 0, as 1T

n x(t)→ 0.

Remark 5.3.2. The proof of Lemma 5.3.1 establishes the exponential stability of the de-

mand mismatch dynamics. With the Theorem 5.4 in [125], it can ensure the input-to-state

stability(ISS). Thus it is robust to arbitrary bounded perturbations. Additionally, from the

Lyapunov equation Vz = zT Rz, it follows Theorem 4.6 in [125] that gives the convergence

rate as ∥∥x(t)
∥∥≤√λmax(R)

λmin(R)
e

−1
λmax(R)

∥∥x(0)
∥∥ . (5.13)

The demand mismatch dynamics depends on the topology of the communication network.

However, the convergence rate does not directly depend on the knowledge of the Laplacian

matrix.

We are now ready to complete the convergence analysis. By applying (5.8), the trajectories

of the actual output power of RGs and their parallel-connected ESSs converge to the solution

of the optimization problem.

Theorem 5.3.1. The trajectories of (5.8) converge to the solution of the optimal charging

problem if α,β,γ ∈ R>0 satisfy the following conditions, i.e.,

βλmax(LT
R LR)

2λ2(LR +LT
R )
≥ 0, (5.14)
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and
γ

αβλ2(LE +LT
E )

+
βλmax(LT

E LE)

2
< λ2(LE +LT

E ). (5.15)

Proof. A change of coordinates is performed to shift the equilibrium point of (5.8) to the

origin, i.e., η̂ = LE −β(B0PD−PE −PR). Then, the dynamics (5.8) can be transformed as

ṖE =−LEξ1 + γx,

ṖR =−LRξ2,

ẋ =−αLEx−β(x− (B0PD−PE −PR))−LEη,

˙̂η = αβLEx+ γβx−βLEξ1−βLRξ2, (5.16)

with ξ1 ∈ ∂PEC(PR,PE) and ξ2 ∈ ∂PRC(PR,PE).

Next step is to prove that the trajectories of (5.8) converge to the optimal solution of the

formulated problem in the new coordinates.

Consider a candidate Lyapunov function

V =C(PR,PE)+
1
2

γβ‖θ1‖2 +
1
2
‖θ2‖2 . (5.17)

where an additional transformation is introduced to more easily identify the candidate Lya-

punov function, with θ1 = x and θ2 = βx+ η̂.

Then the time derivative of (5.17) along the trajectories of (5.8) is given as

V̇ =−ξ
T
1 LEξ1 + γξ

T
1 θ1−ξ

T
2 LRξ2− γαβθ

T
1 LEθ1

−βθ
T
2 θ2−βθ

T
2 LEξ1−βθ

T
2 LRξ2

=−1
2

ξ
T
1 (LE +LT

E )ξ1 + γξ
T
1 θ1−

1
2

ξ
T
2 (LR +LT

R )ξ2

− 1
2

γαβθ
T
1 (LE +LT

E )θ1−β‖θ2‖2−βθ
T
2 LEξ1−βθ

T
2 LRξ2 (5.18)

Since the directed graph G is strongly connected and weight-balanced with the fact that
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1T
n θ1 = 0 for (PE ,PR,θ1,θ2) ∈ T0, one has

V̇ ≤−1
2

λ2(LE +LT
E )

∥∥∥∥ξ1−
1
n

1T
n 1nξ1

∥∥∥∥2

+ γ(ξ1−
1
n

1T
n 1nξ1)

T
θ1

− 1
2

λ2(LR +LT
R )

∥∥∥∥ξ2−
1
n

1T
n 1nξ2

∥∥∥∥2

−β‖θ2‖2

− 1
2

γαβλ2(LE +LT
E )‖θ1‖2−βθ

T
2 LE(ξ1−

1
n

1T
n 1nξ1)

−βθ
T
2 LR(ξ2−

1
n

1T
n 1nξ2) (5.19)

Defining ψ1 = ξ1− 1
n(1

T
n 1nξ1), ψ2 = ξ2− 1

n(1
T
n 1nξ2) and υT

1 = [ψT
1 ,θ

T
1 ,θ

T
2 ], υT

2 = [ψT
2 ,θ

T
2 ],

we have

V̇ ≤ υ
T
1 J1υ1−υ

T
2 J2υ2, (5.20)

where

J1 =

−1
2λ2(LE +LT

E )In MT
12

M12 M22

 ,

with MT
12 =

[
1
2γIn −1

2βLT
E

]
. and furthermore, M22 =

−1
2αβγλ2(LE +LT

E )In 0

0 −βIn

 and

J2 =

−1
2λ2(LR +LT

R )In −1
2βLT

R

−1
2βLR 0

 .
Resorting to the Schur complement, J1 is negative definite if

−1
2

λ2(LE +LT
E )In +

γ

2αβλ2(LE +LT
E )

In +
β

4
LT

E LE

is negative definite, and J2 is positive definite if

βλmax(LT
R LR)

2λ2(LR +LT
R )

(5.21)

is positive definite, respectively. Furthermore, we can conclude that V̇ ≤ 0 by applying

(5.15) and (5.14). Hence, with the application of LaSalle Invariance principle, we deduce

that V̇ = 0 iff ψ1 = ψ2 = θ1 = θ2 = 0 , which implies that ∂PEC(PR,PE) ∈ span{1n} and

∂PRC(PR,PE)∈ span{1n}. Recalling the Lemma 5.3.1 and the characterization of optimizers

in Lemma 5.2.1, it indicates (P∗E ,P
∗
R) is a solution of the optimization problem.
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Figure 5.1: General operation diagram of an agent.

Remark 5.3.3. The local inequality constraints are taken into account by applying addi-

tional projection operations to each RG and ESSs. As shown in the literature [126, 127],

the projection operation does not affect the convergence analysis of the distributed optimal

strategy.

Remark 5.3.4. It might be possible to include the operating limits of the power network,

such as voltage and line flow limits in the proposed algorithm by applying the projec-

tion method, which may lead to different optimization results. Additionally, the proposed

method can also deal with the model of the transmission loss in [128], which assumes each

agent could estimate the power loss of the line adjacent to it. With the available estimation

value, each agent could add this value to the load quantity, which would result in the network

discovering a new optimization result that considers power loss.

5.4 Simulation Results and Analysis

In the following case studies, the designed parameters are chosen as α = 14, β = 0.6, γ = 3,

which satisfies the condition specified in Theorem 5.3.1. The parameters of RGs and ESSs

are summarized in Table 5.1. Each participant in the microgrid is regarded as an agent that

equips with two level controls, i.e. top level control and bottom level control as shown in

Fig. 5.3.2.
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Figure 5.2: IEEE 14-bus system.

The first two cases test the proposed control strategy based on the IEEE 14-bus system with

the base power Pbase=100kW, and the communication topology is shown as Fig. 5.2. In

Case 5.1, the optimal resource management problem is studied under both constant supply-

demand deviation and time-varying deviation conditions. Case 5.2 investigates the perfor-

mance of the proposed strategy under the link/node failures. To accomplish the tractability

of the demonstration, it is assumed that if the single-link/node failure occurs in the commu-

nication topology, the rest of the weighted-balanced digraph should still remain connected,

and thus the remaining nodes would be able to operate with their neighbouring nodes con-

tinuously [47]. Finally, the scalability analysis is validated in Case 5.3 in the IEEE 162-bus

system with various RGs and ESSs, such as WTs, PVs, Solar thermal, BESSs and fuel

cells. Without loss of generality, it is assumed that ESS1 knows the total supply-demand

mismatch.
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Table 5.1: Simulation Parameters
a j b j Pmin

E, j (p.u.) Pmax
E, j (p.u.)

ESSs

ESS1 0.83 0.007 0 50
ESS2 0.79 0.006 0 50
ESS3 0.90 0.009 0 50
ESS4 0.93 0.012 0 50
ESS5 0.78 0.008 0 50

Predicated
Maximum
Capacity

Pmin
R,i (p.u.) Pmax

R,i (p.u.) εi

PVs
PV1 60 0 60 0.1
PV2 62 0 65 0.2
PV3 65 0 65 0.1

WTs
WT1 67 0 67 0.1
WT2 68 0 68 0.2

5.4.1 Case 5.1

In this case, the performance of the proposed distributed strategy for resource management

is investigated in the IEEE 14-bus system. The designed communication network of agents

can be independent of the physical bus connections, which is a directed network in this

simulation study.

1) Constant Supply-demand Mismatch Condition: The total supply-demand mismatch

is assumed as 500 p.u.. As shown in Figs. 5.3 and 5.4, the power allocations of

RGs and parallel-connected ESSs quickly converge to their optimal values, while the

supply-demand balance converges to zero, i.e., the optimization objective is achieved.

2) Time-varying Supply-demand Mismatch Condition: if renewable energy resources

are controlled by MPPT algorithms, this may cause a time-varying supply-demand

imbalance when the available renewable generation cannot meet load demands. As

a result, in this subcase, the time-varying imbalance is modelled by a time-varying

function, i.e., PD = 500+10sin(0.05t) p.u.. The simulation results are shown in Figs.

5.5 and 5.6. The allocated actual powers converge to their optimal values, and the

deviation between supply and demand power is close to zero.
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Figure 5.3: The actual output power of RGs and ESSs

In this case study, it is shown that the proposed strategy effectively offsets the supply-

demand mismatch, which will help with frequency regulation in an islanded microgrid.

5.4.2 Case 5.2

The robustness of single link/node failure is investigated in this case. In the first subcase,

it is assumed that a breakdown of the transmission line for ESS3 is at 10s, and it can still

communicate with its neighbours. Because RGs are not used for tackling demand mismatch,

the remaining ESSs have to undertake the supply-demand balance in a fast response time.

At 30s, the emergency line is employed, and hence ESS3 is plugged in to support the load

demand. The results are shown in Figs. 5.7 - 5.9. After ESS3 is unplugged, the power

allocations of all participants converge to the new optimal values. Furthermore, the supply-

demand mismatch can be handled by the remaining ESSs. When ESS3 is connected again,

all the results converge to those of the previous ones.

Next, the second subcase is considered when ESS3 fails to operate at 6s and recovers at

40s. Upon failure, ESS3 loses communication with its neighbours, and the remaining ESSs

remain connected to support the load demand. The results in Fig. 5.10 and Fig. 5.11

show that the other participants can converge to a new optimal operation condition, and the

supply-demand mismatch is eliminated when ESS3 fails. Moreover, the results converge to
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Figure 5.4: The supply-demand mismatch update
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Figure 5.5: The actual output power of RGs and ESSs
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Figure 5.6: The supply-demand mismatch update
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Figure 5.7: The actual output power of RGs and ESSs during the single link failure
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Figure 5.8: The supply-demand mismatch update
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Figure 5.9: Total allocated output power
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Figure 5.10: The actual output power of RGs and ESSs during the single node failure

those of the previous ones after ESS3 is repaired.

It should be noted that during single link/node failure, the supply-demand deviations are

small. Therefore, the proposed strategy will have little effect on the frequency disturbance

of the system, which may be applied to isolated systems such as an autonomous microgrid.

Remark 5.4.1. One of the necessary conditions for the convergence of the proposed algo-

rithm is the connectivity of the communication network. Therefore, when single- link/node

failure occurs, the optimal solution is guaranteed if the communication network remains

connected. Distributed information is also used in the proposed algorithm rather than global

information, which is robust to dealing with link failures if the failure does not affect the

connectivity of the communication network. Also, when one node fails to communicate

with the other neighbours, the remaining groups of nodes can continue their operations if

the network is connected.

5.4.3 Case 5.3

The scalability of the proposed strategy is validated. This is achieved by implementing the

optimal control strategy to the modified IEEE 162-bus system. There are three types of RGs

in this system, i.e., eight PVs, eight WTs and one solar thermal, and two types of ESSs, i.e.,



CHAPTER 5. DISTRIBUTED OPTIMAL RESOURCE MANAGEMENT SYSTEMS 85

0 10 20 30 40 50 60

Time (s)

-40

-20

0

20

40

60

80

100

120

P
o
w

e
r
 (

p
.u

.)

Figure 5.11: The supply-demand mismatch update

battery storage system and fuel cells. The cost functions of the fuel cell and solar thermal

are based on the cost model in [129, 130], respectively. The communication network is

weight-balanced and strongly connected. The initial condition is given by [131] with a total

load demand of 18422 MW.

As shown in Fig. 5.12 and Fig. 5.13, the proposed strategy can guarantee the allocated

charging powers to converge to their optimal values within 12s while the deviations of de-

mand and supply power converge to zero, demonstrating that the proposed algorithm is

scalable.

5.5 Conclusion

In this chapter, a MAS-based distributed optimal strategy has been proposed to the optimal

resource management in an islanded microgrid. The proposed strategy not only minimizes

the generation cost to all participants, but also maintains the supply-demand equality condi-

tion within the microgrid system. The effectiveness of the proposed distributed strategy is

demonstrated by the simulation that uses the IEEE test systems. To tackle the more practical

constraints of resource management, voltage limits, line capacities, and network reconfigu-

ration will be considered in future work.
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Figure 5.12: The actual power output of RGs and ESSs
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Figure 5.13: The supply-demand mismatch update



Chapter 6

Distributed Finite-Time Optimal

Resource Management for Microgrids

Based on Multi-Agent Framework

6.1 Introduction

The key issues proposed in Section 3.3.2 mean that a fast convergence algorithm is required

to coordinate both dispatchable and non-dispatchable energy resources to effectively main-

tain microgrid stability under different operation modes.

In this chapter, a two-level optimization system is proposed for optimal resource manage-

ment with a fast convergence speed. At the top level, the proposed algorithm generates a

reference point of optimal power output through local communication. The algorithm only

requires information among neighbouring participants without a central control coordina-

tion, and simultaneously accomplishes resource optimization in a finite-time while respect-

ing system constraints. The bottom-level control is responsible for the reference tracking

of each corresponding participant in a microgrid. The convergent rate of the proposed al-

gorithm is compared with other consensus-based algorithms through simulation studies.

Furthermore, an actual islanded system is presented to demonstrate the overall effectiveness

of the proposed strategy.

87
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6.2 Multi-agent System Architecture of a Microgrid

In this section, the topology of the communication network for a microgrid is first intro-

duced. Next, agents are defined in a microgrid context, and the cost function of each type of

agents is formulated for distributed optimization.

6.2.1 Multi-agent System Framework

In the MAS framework, a microgrid consists of a utility grid, non-dispatchable DGs includ-

ing WTs and PVs, conventional dispatchable synchronous generators (SGs), ESSs and non-

controllable load demands. A Point of Common Coupling (PCC) of the utility grid is used to

measure the power delivered/withdrawn and decide the operation mode of the micro- grid.

In the MAS framework, each participant in the microgrid is assigned to an intelligent agent

that is able to interconnect with its adjacent agents to accomplish established objec- tives. A

two-level control model, namely the top-level control and bottom-level control, is deployed

to each agent as depicted in Fig. 6.1. The top-level control is a communication network for

each agent to transfer information that is generated by an optimal strategy. Both the control

mode and the physical agent platform are located at the bottom-level control. According to

the control schemes in [73],the control mode is used to adjust the power output of the agent

to the reference signal generated by the top-level, and the settings of different control modes

can be decided by the agents local operation conditions. Furthermore, the physical agent

platform is the electrical components that transmit the power generated/consumed.

6.2.2 The Agent Description under MAS Framework

In this section, agents are defined in the microgrid context under the proposed MAS frame-

work, and the corresponding cost functions are defined for the algorithm design.
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Figure 6.1: The communication network of agents in a microgrid

Dispatchable Agents

Conventional Generator Agents Conventional generator agents include fuel generators

and gas plants. The generation cost of this type of agent is usually expressed as a typical

quadratic function of active power output, i.e.,

Ck(PG,k) =
1
2

akP2
G,k +bkPG,k + ck, Pmin

G,k ≤ PG,k ≤ Pmax
G,k (6.1)

where non-negative ak, bk, and ck are the cost coefficients for kth generator; Pmin
G,k and Pmax

G,k

are the lower and upper bounds of the power output, respectively. The marginal cost function

is the derivative of the cost function with respect to PG,k, which is used to later algorithm

design.

Storage Agents Agents The storage agents can be treated as a dispatchable agent since

they have the capacity to transfer power to absorb excessive power and compensate for

insufficient power bidirectionally. Integrating storage agents to a microgrid may require

additional costs, and thus, it is ideal to charge the storage agents when the marginal cost

is low, and discharge them when the electricity rate is high otherwise [132]. Furthermore,

battery life directly depends on different DoD scenarios in each cycle time [133], and the

degradation cost is also an essential factor that may affect the economic decision for batteries

[134]. To this end, inspired by [132], a general cost function for the jth battery is proposed



CHAPTER 6. FINITE-TIME DISTRIBUTED RESOURCE MANAGEMENT 90

by considering DoD:

C j(PB, j) =
1
2

a j(PB, j +3Pmax
B, j (DoD))2

+b j((PB, j +3Pmax
B, j (DoD))+ c j, Pmin

B, j ≤ PB, j ≤ Pmax
B, j (6.2)

where a j, b j, and c j are the non-negative quadratic coefficients; Pmin
B, j and Pmax

B, j are the

minimal and maximum charging rate, respectively. The DoD is the current depth of charge,

and the marginal cost is defined as the derivative of the cost function with respect to PB, j.

From the cost function design, it is worth noting that the marginal cost is proportional to the

DoD and the power withdrawn.

Utility Agent When the microgrid is operated under the grid-connected mode, the utility

agent will monitor the power transfer between the utility grid and the microgrid through the

PCC. Accordingly, the microgrid updates its current electricity rate based on the broadcast-

ing of the utility grid. The cost function can be assumed as a function with constant marginal

cost [132],

CU = Pr×PU (6.3)

where Pr is the current electricity rate and PU is the exchanged power between the utility

and the microgrid. During the grid-connected mode operation, the marginal cost of each

dispatchable agent should be equal to the marginal cost given by the utility grid, which is

equal to the electric rate.

Nondispatchable Agents

Renewable Agents The RGs, including WTs and PVs, are considered as non-dispatchable

since they are usually controlled in MPPT mode. Therefore, the forecast of their generation

cannot be accurate because of the stochastic property and intermittency.

Load Demand Agents The load demands, consisting of industrial and residential loads,

have the stochastic property of the consumer behaviours, so they cannot be treated as dis-

patchable due to the unpredictable nature of power requirements.



CHAPTER 6. FINITE-TIME DISTRIBUTED RESOURCE MANAGEMENT 91

Due to the intermittency of renewable generation, the operating condition of a microgrid

may change frequently and unexpectedly. In order to ensure the performance and stability

of the microgrid, the system should converge to the required target in a timely manner. As

a result, a faster convergence rate of a distributed optimal solution is required to meet the

challenges of microgrid development.

6.3 Finite-time Distributed Optimal Solution for the Islanded

Microgrid

In this section, a finite-time distributed optimal solution is developed for the islanded mi-

crogrid to address the problems in the centralized strategies in the microgrid application.

The islanded microgrid should ensure supply-demand balance in a cost-effective way. To

this end, the objective for agents in an islanded microgrid is to balance supply and demand,

and minimize generation/operation costs in the meantime. The objective function can be

formulated as:

Min ∑
k⊆G

Ck(PG,k)+ ∑
j⊆B

C j(PB, j)

s.t PD = PL−PR = ∑
k⊆G

PG,k + ∑
j⊆B

PB, j

Pmin
G,k ≤ PG,k ≤ Pmax

G,k

Pmin
B, j ≤ PB, j ≤ Pmax

B, j (6.4)

where PD is the net power demand; PL and PR are all demands of load agents and all non-

dispatchable generation, respectively.

For convenience, we denote Pi as the output power, and Pmin
i and Pmax

i as the lower and

upper bound of ith dispatchable agent, respectively. We further define ωi, σi and ci as the
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coefficients of ith cost function. Then (6.4) can be written as

Min ∑
i∈n

Ci(Pi)

s.t ∑
i∈n

Pi = PL−PR

hi(Pi) = (Pmin
i −Pi)(Pmax

i −Pi)≤ 0. (6.5)

The solution for optimal resource management can be obtained using a centralized approach,

which requires a control centre and bi-directional communication lines between the con-

troller and the connected agents. The central controller collects all data first, e.g., the cost

functions, the local constraints, and the power generated/consumed. Then, it solves the opti-

mal problem and broadcasts the solution to all agents. However, due to the high penetration

of RGs, more frequent updates and a higher convergence speed are required. The central-

ized strategy may lose its control efficiency if operating conditions change frequently and

unpredictably. To address this problem, the following sections will introduce two distributed

solutions for optimal resource management.

6.3.1 Alternative Formulation

Inequality constraints may give rise to difficulties in optimal control design. Before present-

ing the optimal solution, an alternative formulation of the optimization problem is developed

for dealing with inequality constraints by using ε-exact penalty function proposed in [17],

i.e.,

pε,i(hi(Pi)) =



0, hi(Pi)≤ 0

hi(Pi)
2

2ε
, 0≤ hi(Pi)≤ ε

hi(Pi)−
ε

2
, hi(Pi)≥ ε

where ε is a positive coefficient. Thus the objective function is further written as:

Min Cε(P) = ∑
i∈n

Cε,i(Pi)

s.t ∑
i∈n

Pi = PL−PR (6.6)
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where Cε,i(Pi) = Ci(Pi)+ µpε,i(hi(Pi)), and P = [P1, . . . ,Pn]
T . µ is a positive weight of the

penalty function.

Let P∗ = [P∗1 , . . . ,P
∗
n ]

T be the optimal solution for (6.5), and P̂∗ = [P̂∗1 , . . . , P̂
∗
n ]

T be the so-

lution for (6.6). Then, following Proposition 6 in [17], for µ = 1−n
1−
√

nµ∗, the relationship

between (6.5) and (6.6) is

0≤C(P∗)−Cε(P̂∗)≤ εµn, (6.7)

where µ∗ > max{η∗} with η∗ = {η∗1, . . . ,η∗n} is the Lagrange multiplier vector satisfying

the KarushKuhnTucker (KKT) condition [135]. According to the Proposition 4 in [136], the

upper bound of η∗ is given as

max{η∗i }n
i=1 ≤

2max{maxPi∈Pfea,i

∣∣OCi(Pi)
∣∣}n

i=1

min{PM
i −Pm

i }n
i=1

, (6.8)

where OCi(Pi) is the gradient of Ci(Pi), and Pfea,i = {Pi ∈ R |∑i∈n Pi = PL−PR and (Pmin
i −

Pi)(Pmax
i −Pi)≤ 0}, for i ∈ n.

Remark 6.3.1. To ensure the ε-solution is equal to the solution of the original optimization

problem exactly, the local bound of each dispatchable agent is further modified as hi(Pi) =

(Pmin
i −Pi)(Pmax

i −Pi)+ ε ≤ 0 that can meet the accurate requirement of the system. Note

that s can be chosen to be significantly small so that it does not affect the convergence of

the original problem. After the change of local bounds, the ε-feasible set is the same as the

feasible set of the original optimization problem. The proof can be obtained by adopting a

similar approach in [17].

6.3.2 Finite-time Distributed Optimal Energy Management

By invoking the ε-penalty function, a finite-time distributed optimal solution is proposed to

solve the optimization problem (6.6). The update dynamics for ith dispatchable agent is

Ṗi =∑
j∈n

ai j(OCε, j(Pj)−OCε,i(Pi))
2− p

q

+ ∑
j∈n

ai j(OCε, j(Pj)−OCε,i(Pi))
p
q (6.9)

where p and q are the positive odd integers satisfying p < q. The dynamics is distributed

in the sense that each dispatchable agent only requires local available information and the

information from its adjacent agents through a local communication network.
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Theorem 6.3.1. Consider the optimization problem in (6.6) with the dynamics (9), the fea-

sible set Pfea is time-invariant, and any trajectory starting from Pfea converges to the solution

set of (6.6) in a finite-time.

Proof. A candidate function V1 = |∑n
i=1 Pi| is considered since the active power of ESSs

would be negative/positive when they are charged/discharged. Also it should be noted that

PD 6= 0, we only consider the cases for PD > 0 or PD < 0 accordingly. Firstly, if ∑
n
i=1 Pi > 0,

V1 = ∑
n
i=1 Pi and the derivative of V1 is

V̇1 =
n

∑
i=1

∑
j∈n

ai j(OCε, j(Pj)−OCε,i(Pi))
2− p

q

+
n

∑
i=1

∑
j∈n

ai j(OCε, j(Pj)−OCε,i(Pi))
p
q = 0. (6.10)

Then, if ∑
n
i=1 Pi < 0, V1 =−∑

n
i=1 Pi and the derivative is

V̇1 =−

 n

∑
i=1

∑
j∈n

ai j(OCε, j(Pj)−OCε,i(Pi))
2− p

q

+
n

∑
i=1

∑
j∈n

ai j(OCε, j(Pj)−OCε,i(Pi))
p
q

= 0. (6.11)

From the above results, it concludes that the total power output of network is conserved and

the feasible set Pfea is time-invariant.

Next, we show that the trajectories starting from Pfea will converge to the solution set in a

finite-time manner. Note that the solution to (6.6) is unique so that P∗ will be the unique

solution to the minimization problem. Denote V2 = ∑
n
i=1Cε,i(Pi)−∑

n
i=1Cε,i(P∗i ) as a candi-

date function. It is worth noting that V2 ≥ 0, and V2 = 0 when Pi = P∗. From (6.9), and let

ξi ∈ OCε,i(Pi),
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V̇2 =
n

∑
i=1

ξi[∑
j∈n

ai j(ξ j−ξi)
2− p

q + ∑
j∈n

ai j(ξ j−ξi)
p
q ]

=
1
2

n

∑
i, j=1

ai j(ξi−ξ j)(ξ j−ξi)
2− p

q +
1
2

n

∑
i, j=1

ai j(ξi−ξ j)(ξ j−ξi)
p
q

=− 1
2

n

∑
i, j=1

ai j(ξ j−ξi)
3q−p

q − 1
2

n

∑
i, j=1

ai j(ξ j−ξi)
q+p

q

=− 1
2

n

∑
i, j=1

[a
2q

3q−p
i j (ξ j−ξi)

2]
3q−p

2q − 1
2

n

∑
i, j=1

[a
2q

q+p
i j (ξ j−ξi)

2]
q+p
2q . (6.12)

Following the Corollary 2 in [137] and Lemma 3.4 in [138], it can be obtained that

V̇2 ≤−
1
2

n
p−q

q
n

∑
i, j=1

[a
2q

3q−p
i j (ξ j−ξi)

2]
3q−p

2q − 1
2

 n

∑
i, j=1

a
2q

q+p
i j (ξ j−ξi)

2


q+p
2q

=−1
2

n
p−q

q [2ξ
T LBξ]

3q−p
2q − 1

2
[2ξ

T LCξ]
q+p
2q (6.13)

where ξ = [ξ1, . . . ,ξn]
T . Consider the graphs GB and GC with the adjacency matrices AB =

[aB
i j]n×n and AC = [aC

i j]n×n, respectively. Then LB and LC are the corresponding Laplacian

matrices of GB and GC respectively. Define

ΓB = 2ξ
T LBξ≥ 2λ2(LB)

∥∥∥∥ξ− 1
n
(1T

n ξ)1T
n

∥∥∥∥2

2
(6.14)

ΓC = 2ξ
T LCξ≥ 2λ2(LC)

∥∥∥∥ξ− 1
n
(1T

n ξ)1T
n

∥∥∥∥2

2
. (6.15)

Since Cε(P) is strongly convex, for P̂ = [P̂1, . . . , P̂n], it follows that

Cε(P̂)≥Cε(P)+(ξ− 1
n
(1T

n ξ)1T
n )(P̂−P)+

k
2

∥∥∥P̂−P
∥∥∥2

. (6.16)

It is worth noting that the minimum of (6.16) is Cε(P)− 1
2k

∥∥∥ξ− 1
n(1

T
n ξ)1T

n

∥∥∥ for constant P.

For P̂ = P∗, we have V2 ≤− 1
2k

∥∥∥ξ− 1
n(1

T
n ξ)1T

n

∥∥∥. Therefore,

V̇2 ≤−
1
2

n
p−q

q [4kλ2(LB)V2]
3q−p

2q − 1
2
[4kλ2(LC)V2]

q+p
2q

≤−1
2

n
p−q

q [4kλV2]
3q−p

2q − 1
2
[4kλV2]

q+p
2q

=−1
2

[
n

p−q
q [4kλV2]

q−p
q +1

]
([4kλV2]

q+p
2q ), (6.17)

where λ = min {λ2(LB), λ2(LC)}> 0. Let δ =
√

4kλV2, then

δ̇ =−n
p−q

q λδ
2q−p

q −λδ
p
q . (6.18)
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With Lemma 4.1 in [138] and Comparison Lemma in [125], we conclude that

lim
t→T1

V2 = 0, (6.19)

where T1 is given by

T1 ≤
πqn

q−p
2q

2λ(q− p)
. (6.20)

Note that V2 → 0 implies ∑
n
i=1Cε,i(Pi)−∑

n
i=1Cε,i(P∗i ) = 0, which can deduce that ξ ∈

span{1n}. Since 1T
n P0 = PL−PR with P0 = [P1,0, . . . ,Pn,0]

T , it concludes that the trajectories

starting from Pfea converge to the set of solutions of the optimal problem.

6.4 Finite-time Distributed Solution for Grid-connected Mi-

crogrid

Once the operation mode of a microgrid is switched to the grid-connected mode, the partic-

ipants in the microgrid should follow the marginal cost set by the utility agent, which can be

treated as a tracking problem, i.e.,

OCε,1(P1) = OCε,2(P2) = · · ·= OCε,n(Pn) = OCU . (6.21)

To address this problem, a finite-time distributed solution is proposed as:

Ṗi =∑
j∈n

ai j(OCε, j(Pj)−OCε,i(Pi))
2− p

q + ∑
j∈n

ai j(OCε, j(Pj)−OCε,i(Pi))
p
q

+gi(Pr−OCε,i(Pi))
2− p

q +gi(Pr−OCε,i(Pi))
p
q (6.22)

where Pr = OCU , and gi is the pinning gain of ith dispatchable agent. Define ei = Pr− ξi,

where ξi ∈ OCε,i(Pi), and then the derivative of ei is given as

ėi = ξ̇i · Ṗi = ωi

(∑
j∈n

ai j(ξ j−ξi)
2− p

q + ∑
j∈n

ai j(ξ j−ξi)
p
q )+gi(Pr−ξ

2− p
q

i )+gi(Pr−ξi)
p
q )


= ωi

(∑
j∈n

ai j(e j− ei)
2− p

q + ∑
j∈n

ai j(e j− ei)
p
q )−gi(ei)

2− p
q −gi(ei)

p
q

 (6.23)

where O2Ci(Pi) = ωi > 0. Suppose ωi is known by ith dispatchable agent, and the commu-

nication network satisfies the condition in weights that ωiai j = ω ja ji.
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Theorem 6.4.1. Suppose the graph is connected. Then, by applying (6.22), the distributed

tracking problem (6.21) is solved in a finite-time.

Proof. Consider a candidate Lyapunov function, V3 =
1
2 ∑

n
i=1 ei · ei, and then differentiating

V3 yields

V̇3 =
n

∑
i=1

eiωi

(∑
j∈n

ai j(e j− ei)
2− p

q + ∑
j∈n

ai j(e j− ei)
p
q )−gi(ei)

2− p
q −gi(ei)

p
q


=

1
2

n

∑
i, j=1

[(ωiai j)(ei− e j)(e j− ei)
2− p

q ]+
1
2

n

∑
i, j=1

[(ωiai j)(ei− e j)(e j− ei)
p
q

−
n

∑
i=1

[(ωigi)(ei)
3q−p

q −
n

∑
i=1

[(ωigi)(ei)
q+p

q

=− 1
2

n

∑
i, j=1

[(ωiai j)
2q

3q−p (e j− ei)
2]

3q−p
2q − 1

2

n

∑
i, j=1

[(ωiai j)
2q

q+p (e j− ei)
2]

q+p
2q

−
n

∑
i=1

[(ωigi)
2q

3q−p (ei)
2]

3q−p
2q −

n

∑
i=1

[(ωigi)
2q

q+p (ei)
2]

q+p
2q .

As a result,

V̇3 ≤−
1
2

 n

∑
i, j=1

(ωiai j)
2q

3q−p (e j− ei)
2 +2

n

∑
i=1

(ωigi)
2q

3q−p (ei)
2


3q−p

2q

− 1
2

 n

∑
i, j=1

(ωiai j)
2q

q+p (e j− ei)
2 +2

n

∑
i=1

(ωigi)
2q

q+p (ei)
2


q+p
2q

. (6.24)

Define

Θ =
n

∑
i, j=1

(ωiai j)
2q

3q−p (e j− ei)
2 +2

n

∑
i=1

(ωigi)
2q

3q−p (ei)
2

Φ =
n

∑
i, j=1

(ωiai j)
2q

q+p (e j− ei)
2 +2

n

∑
i=1

(ωigi)
2q

q+p (ei)
2. (6.25)

Let Gα and Gβ be the graphs with αi j = (ωiai j)
2q

3q−p and βi j = (ωiai j)
2q

q+p , respectively. The

Laplacian matrix of each graph is Lα and Lβ. Gb = diag(gb,i) with gb,i = (ωigi)
2q

3q−p , and

Gc = diag(gc,i) with gb,i = (ωigi)
2q

q+p are the diagonal matrix of pinning gains of each graph.

Then, following Lemma 4 in [139], one has

Θ = 2e(Lα +Gb)e≥ 2λ1(Lα +Gb)eT e > 0

Φ = 2e(Lβ +Gc)e≥ 2λ1(Lβ +Gc)eT e > 0 (6.26)
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which can be rewritten as 4λ1(Lα +Gb) ≤ Θ

V3
and 4λ1(Lβ +Gc) ≤ Φ

V3
. Then, following the

similar lines in the proof of Theorem 6.3.1, (6.24) can be reformulated as

V̇3 ≤−
1
2

n
p−q

q [4λ1(Lα +Gb)]
3q−p

2q − 1
2
[4λ1(Lβ +Gc)]

q+p
2q

≤− 1
2

n
p−q

q [4λ1]
3q−p

2q − 1
2
[4λ1]

q+p
2q (6.27)

where λ1 =min{λ1(Lα+Gb), λ1(Lβ+Gc)}. Similarly, with Lemma 4.1 in [138] and Com-

parison Lemma in [125], there is

lim
t→T2

V3 = 0, (6.28)

where T2 is given by

T2 ≤
πqn

q−p
2q

2λ1(q− p)
. (6.29)

Note that V3→ 0 implies ei→ 0, i.e., OCε,i(Pi)→ Pr. Thus the tracking problem (6.21) is

solved in a finite-time.

6.5 Simulation Results and Analysis

In this section, three case studies are provided to verify the effectiveness of the proposed

finite-time algorithm. The simulation studies are carried out in IEEE 14-bus system, where

Fig. 6.2 depicts the topology of the test system that includes three conventional generators,

two storage systems, one renewable generator and nine loads. Table. 6.1 gives the parame-

ters of each type of agents.

In Case 6.1, to verify the faster convergence property, the proposed finite-time algorithm is

compared with other two optimization solutions for the resource management in microgrids.

Case 6.2 investigates the performance of the proposed strategy under different conditions of

microgrid operation. In Case 6.3, an actual islanded system is built to test the proposed

algorithm. Finally, a modified IEEE 162-bus system [131] is adopted for verifying the

scalability of the proposed algorithm.

Remark 6.5.1. Note that the upper bounds of the settling-time T1 and T2 only depend on

the designed parameters p, q, the communication network structure and the volume n of the

given system. As a result, the convergence time can be estimated based on the algorithm

and network design.
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Figure 6.2: IEEE 14-bus system

Table 6.1: Parameters of simulation studies
ωi σi Pmin

i Pmax
i

G1 0.082 3.25 20 65
G2 0.068 4.2 20 65
G3 0.071 5.08 20 70
ESS1 0.3 0.07 -45 45
ESS2 0.4 0.062 -50 50
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6.5.1 Case 6.1

The resource management problem has been solved in many studies by using the MAS

framework. In [3], the authors proposed a distributed gradient algorithm (DGA) for the

maximum social welfare in a microgrid by considering the actual situation of renewable

energy. Also, a Laplacian-gradient dynamics (LGD) in [112] is proposed for the economic

dispatch problem, which achieves supply-demand balance while minimizing the total gener-

ation cost. However, [3] solves the problem in the undirected graph and the fast convergence

requirement of a microgrid is not considered in [112]. In contrast, we solve the optimal re-

source management problem by adopting a finite-time approach. To demonstrate the fast

convergence property of the proposed algorithm, the proposed finite-time algorithm is first

compared with the DGA and the LGD in this case. The communication network keeps the

same configuration and is assumed to be connected during the simulation study. Fig. 6.3

shows the performance of the proposed finite-time algorithm. The results indicate that the

marginal costs of each dispatchable agent converges to the optimal value in a finite-time.

To give a marked comparison, Fig. 6.4 and 6.5 depict the comparative evaluation of the

marginal cost update. Furthermore, as shown in Table. 6.2, the setting time of the proposed

algorithm (1.2s) is shorter compared with the DGA (4.3s) and LGD (5.9s). As the results

show, the proposed algorithm leads to a faster convergence compared with the algorithm

proposed in [3] and [112],which is an indispensable part of microgrid operation because of

the intermittent and unpredictable nature of non-dispatchable agents.

Table 6.2: The setting time of different algorithms

Finite-time DGA LGD

T 1.2s 4.3s 5.9s

It is worth noting that the setting time of the proposed finite-time algorithm depends on the

parameter selection and the communication network structure. Once the size of the micro-

grid is increased, the network information may change and the upper bounds on the setting

time will change accordingly. However, the proposed algorithm solves the optimal resource

management problem using a distributed and sparse approach, and hence, it is scalable for

a large-scale network, which is verified in Case 5.4. Also, real islanded microgrids are usu-

ally small-scale due to the mission-critical application so that they usually have the limited
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Figure 6.3: The marginal cost update with the proposed finite-time algorithm

inverters. The applicability of the proposed algorithm for an actual islanded system is tested

in Case Case 5.3.

6.5.2 Case 6.2

As the results in Case 6.1 show, the proposed algorithm is applicable for microgrids under

the unpredictable change of the operation mode. Then, in this case, the proposed algorithm

is applied to a microgrid under both islanded and grid-tied modes to verify the effectiveness

of the proposed algorithm during different operation modes of the microgrid. The microgrid

is supposed to be operated in islanded mode at 0s, and be connected to the grid at 5s. During

the simulation study, we assume a spanning tree exists in the communication network, which

is used to ensure the convergence of the proposed algorithm. Fig. 6.6 and 6.7 give the

updates of the marginal cost and actual output power during the microgrid operation. As

Fig. 6.6 shows, the marginal cost of each dispatchable agent converges to the optimal value

initially. After the microgrid is connected to the grid at 5s, the marginal cost converges to

a new value because it is controlled to follow the reference set by the utility. The results

show that both of them converge to the optimal value in a finite-time, and the setting time is

bounded.
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Figure 6.4: The marginal cost update with the distributed gradient algorithm
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Figure 6.5: The marginal cost update with the Laplacian-gradient dynamics
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Figure 6.6: The marginal cost update with the proposed finite-time algorithm
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Figure 6.7: The actual output power
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6.5.3 Case 6.3

With the above results, Case 6.3 is then adopted to demonstrate the potentiality of the prac-

tical application of the algorithm. In this case, an actual islanded system located in Inner

Mongolia of China [2] is developed to demonstrate the effectiveness of the proposed algo-

rithm. The single line diagram of the islanded system is shown as Fig. 6.8, which consists of

eight SGs, two wind power plants and three aluminium smelting loads. The relevant config-

urations of each participant can be found in [140]. In this islanded system, the penetration

of wind power generation is up to 30% and therefore the stability of the islanded system is

crucial. Due to stochastic wind power generation, there is a requirement

In this simulation study, the coefficients for SGs are analytically selected to proper practical

conditions [140]. Three aluminium smelting loads are regarded as constant loads. Further-

more, renewable resources should be used as much as possible. As a result, it is assumed that

the two wind power plants are operating properly and that the maximum available power of

these plants should be equal to their capacity.

By supposing the communication network is connected, Fig. 6.9 and 6.10 show that the

marginal cost of each dispatchable agent converges to the optimal value first, and the actual

power outputs converge to the optimal values accordingly. However, the islanded system

may encounter the tripping problem of SGs. As a result, the algorithm is further adopted

to verify the effectiveness of the algorithm when the SG is tripped. In the simulation, the

SG4 is supposed to be suddenly tripped at 5s, and the rest of SGs then share the mismatch to

maintain the supply-demand balance. Therefore, as shown in Fig. 6.9 and 6.10, the marginal

cost converges to a new optimal value and actual power outputs changes to new optimal

values in a faster convergence manner consequently after 5s. It is worth noting that the SG3

and SG5 respond to the tripping of SG4 first as they are adjacent to SG4.

Remark 6.5.2. The intermittency of the wind power generation would cause the supply-

demand mismatch, which could be treated as a constant variation in a short time. In the

Case 6.3, since the SG tripping may cause load variation, by considering the SG tripping

during simulation, the results could verify the effectiveness of the algorithm for the load

demand variation from another side. At the same time, the storage system can be integrated

into the system by deploying the formulated cost function and the proposed algorithm.
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Figure 6.8: An actual islanded system in China [2]

6.5.4 Case 6.4

In this case, the IEEE 162-bus system is adopted to further evaluate the performance of the

proposed strategy. The adopted system is modified with nine generators and eight ESSs

and the initial condition is given by [131] with a total load demand of 18422 MW. The

communication network is assumed weight-balanced and strongly connected.

Deploying the algorithm at 0s, the results in Fig. 6.11 and Fig. 6.12 show the proposed

strategy can guarantee the marginal costs to converge to the optimal value while the allo-

cated active powers to optimal values correspondingly. Thus the scalability of the proposed

algorithm is demonstrated.

6.6 Conclusion

This chapter introduces a MAS-based finite-time distributed optimization strategy to the op-

timal resource management in a microgrid under both islanded and grid-connected modes.
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Figure 6.9: The marginal cost update with the proposed finite-time algorithm for an actual
islanded microgrid
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The proposed strategy can minimize the generation cost of each participant while maintain-

ing the supply-demand balance. Achieving a fast convergence is necessary for facilitating

the development of a microgrid because the changes in a microgrid can be frequent and un-

predicted. A finite-time algorithm is adopted to achieve a higher convergence speed, which

is beneficial to the low-inertial microgrid to maintain its power balance in the presence of

unknown changes and agent trips.



Chapter 7

Consensus-Based Distributed Fixed-time

Economic Dispatch under Uncertain

Information in Microgrids

7.1 Problem Formulation

7.1.1 Objective Function in the Microgrid

The objectives of an islanded microgrid are to fulfil the demand required by loads to main-

tain the supply-demand balance and to minimise the operating cost of contained DERs. To

achieve the economical operation of the microgrid, as discussed below, cost functions are

designed for DERs according to their different features.

Controllable Distributed Generators

In the proposed model, the microgrid consists of CGs as the controllable generators. Denot-

ing NCG as the set of CGs in the microgrid, the generation cost of the jth CG, is expressed

as a quadratic function of active power generation [141],

C j(Pj) := a jP2
j +b jPj + c j, ∀ j ∈NCG, (7.1)

109
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where a j, b j and c j > 0 are cost coefficients of the jth CG.

Battery Energy Storage Systems

For the optimal plan of BESS operation, a key factor is the degradation of battery cells

subjected to repeated charging/discharging cycles. Experiments in [142] have shown that

the increase in the cycle depth would suffer a constant marginal cost if the battery is limited

within a certain operational range. Also, [143] introduces a fixed per-kWh degradation

model to represent battery degradation. In this work, the fixed per-kWh degradation model

is modified by replacing the DoD of the battery under nominal conditions within a certain

DoD range, i.e., ∀b ∈Nb with Nb is the set of BESSs,

Bb(Pb) :=
|Pb|

CNb(Dmax
b −Dmin

b )/100% ·2Ccap.
b

, (7.2)

where Pb is the power output of the bth BESS; CNb is the cycle number that the battery

could be operated within [Dmin
b ,Dmax

b ]. Ccap.
b is the capacity of the bth BESS. Therefore, the

operating cost of a BESS is formulated as

Cb(Pb) :=Cini.Bb(Pb)+abP2
b + cb,∀b ∈Nb, (7.3)

where Cini. is the initial investment cost of BESSs; the last two terms penalize the fast charg-

ing/discharging that could be harmful to battery life [144], and ab and cb are positive con-

stants. Therefore, Cb(Pb) := abP2
b +bb|Pb|+ cb with bb =

Cini.
CNb(Dmax

b −Dmin
b )/100%·2Ccap.

b
.

Renewable Generators

Since current Feed-in Tariffs (FITs) are designed to encourage the uptake of renewable and

low-carbon generation [145], the generation cost of RGs could be neglected. In this work,

the objective of RGs is to track the short-term forecast of the maximum renewable gener-

ation capacity. To this end, a pseudo-cost function is designed to minimize the mismatch

between the predicated generation and actual generation, i.e.,

Cr(Pr) := cr(Pr−Ps.t.
r )2

= crP2
r −2crPrPs.t.

r + cr(Ps.t.
r )2,∀r ∈NRG, (7.4)
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where Pr and Ps.t.
r are the power generation and the short-term predicated maximum gener-

ation capacity of the rth RG. cr is defined as 1
Ps.t.

r
such that ar =

1
Ps.t.

r
, br =−2 and cr = Ps.t.

r .

Therefore, the equal power sharing of RGs respecting the short-term forecast of the maxi-

mum capacity is achieved when the marginal cost of RGs is equal [146].

To conclude, the objective function of local controllers in the microgrid is formulated as

min

NCG

∑
j

C j(Pj)+
Nb

∑
b

Cb(Pb)+
NRG

∑
r

Cr(Pr)

 (7.5a)

s.t.
NCG

∑
j

Pj +
Nb

∑
b

Pb +
NRG

∑
r

Pr = Pd, (7.5b)

Pmin
j ≤ Pj ≤ Pmin

j , ∀ j ∈NCG, (7.5c)

Pmin
b ≤ Pb ≤ Pmin

b , ∀b ∈Nb, (7.5d)

Pmin
r ≤ Pr ≤ Pmin

r , ∀r ∈NRG. (7.5e)

where Pd is the load demand, and (7.5b) is adopted to ensure the supply-demand balance

in the microgrid. Pmin
(·) and Pmax

(·) are the minimal power capacity and the maximum power

capacity of the (·), respectively. For convenience, we denote N := NCG ∪Nb ∪NRG. We

write CP = ∑
N
i Ci(Pi),∀i ∈N , where Pi is used to represent the power of the ith participant.

Therefore, the Lagrangian function of (7.5) is expressed by

L(P,λ) = ∑
i∈N

Ci(Pi)+λ(Pd− ∑
i∈N

(Pi)) (7.6)

where P = [P1, . . . ,PN ]
T and N is the total number of the participants, and λ is a Lagrangian

multiplier. Using saddle point dynamics [147], the centralised solution is given by

P∗i =
λ∗−bi

2ai
, λ
∗ =

Pd−∑i∈N
bi

2ai

∑i∈N
1

2ai

, (7.7)

where P∗i is the optimal solution of (7.5). When considering the capacity constraints, the

marginal cost is the partial derivative of Ci w.r.t. Pi, such as λi = aiPi + bi. In [49], a well-

known solution is introduced as the equal incremental cost criterion, i.e.,
2aiPi +bi = λ∗, if Pmin

i < Pi < Pmax
i

2aiPi +bi > λ∗, if Pi = Pmin
i ,

2aiPi +bi < λ∗, if Pi = Pmax
i ,

(7.8)
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where λ∗ is the optimal incremental cost.

The above optimization problem can be solved by either centralized methods or distributed

methods. However, with increasing penetration level of the intermittent and uncertain re-

newable generation, these methods may lose their effectiveness since the operating condition

of a microgrid could change frequently and unexpectedly. Furthermore, uncertain informa-

tion exists in the computation processes of gradients and communication channels [148].

Furthermore, the predicated information of renewable generation could be inaccurate, and

capacity loss could be caused by repeated charging/discharging cycle results in a varying

battery capacity. The uncertainties could significantly undermine the accuracy and effec-

tiveness of traditional EMS. Therefore, a novel distributed EMS with faster convergence

and robustness against uncertain information is required to meet the new challenges of mi-

crogrid development.

7.2 Distributed Fixed-time Energy Management System un-

der Uncertainty

In this section, a distributed fixed-time EMS under uncertain information is proposed for

each microgrid. The uncertainties mentioned in Section 7.1.1 are modelled by a time varying

signal ωi(t) in the update dynamics of the ith agent, i,e., Ṗi = ui+ωi(t), i = [1, . . . ,N], where

N is the numbers of participants in the microgrid.



CHAPTER 7. FIXED-TIME ECONOMIC DISPATCH 113

7.2.1 Algorithm Design

A distributed EMS with a fast convergence speed is given by

Ṗi = uo
i +ur

i +ωi(t), (7.9a)

uo
i =−α1

N

∑
j=1

ai jsigp1(λi−λ j)−β1

N

∑
j=1

ai jsigq1(λi−λ j), (7.9b)

λ̇i = 2ai

(
uo

i +α2sigp2(Pi−
λi−bi

2ai
) (7.9c)

+β2sigq2(Pi−
λi−bi

2ai
)

)
, (7.9d)

ur
i =−k1

(
α0sig

1
2 (si)+β0sigq0(si)

)
+φi, (7.9e)

φ̇i =−k2

(
α

2
0

1
2

sign(si)+α0β0(
1
2
+q0)sig

1
2+q0−1(si)

+β
2
0q0sig2q0−1(si)

)
, (7.9f)

si = Pi−Pi(0)−
∫ t

0
uo

i (τ)dτ, (7.9g)

where sigp(·) = sign(·)|·|p. k1 and k2 are positive constants to be designed. p(·) and q(·) are

real numbers satisfying 0 < p(·) < 1 < q(·). α(·) and β(·) are positive constants.

Theorem 7.2.1. The proposed distributed optimisation algorithm (7.9) solves the formu-

lated problem (7.5) in fixed-time despite the existence of uncertain information.

Proof. The proof includes the following steps: 1) Prove that limt→T0 si = ṡi = 0; 2) Prove

that limt→T1 Pi =
λi−bi

2ai
; 3) Prove that limt→T2 λi = λ j = λ̄; 4) By 3), λi = λ∗, Pi = P∗i .

1) Taking the time derivative of (7.9g), for i ∈N , one has

ṡi =−k1

(
α0sig

1
2 (si)+β0sigq0(si)

)
+ψi, ψi = φi +ωi(t) (7.10a)

ψ̇i =−k2

(
α

2
0

1
2

sign(si)+α0β0(
1
2
+q0)sig

1
2+q0−1(si)

+β
2
0q0sig2q−1(si)

)
+ ω̇i (7.10b)

Define a vector ζT
i = [ξi,ψi] with ξi = α0sig

1
2 (si)+β0sigq0(si). Note that ψi = ξ′iξi, where
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ξ′i =
1
2α0|si|−

1
2 +q0β0|si|q0−1. Therefore, we can write

ζ̇i = ξ
′
i

−k1ξi +ψi

−k2φi +
ω̇i
ξ′i

= ξ
′
i(Aξi +B

ω̇i

ξ′i
), (7.11)

where A =

−k1 1

−k2 0

 and B =

0

1

. To facilitate the forthcoming robust stability analysis,

assuming that the perturbation term satisfies the following condition, i.e.,

ϑi =

ζi

ω̇i
ξ′i


T  R S

ST −1


ζi

ω̇i
ξ′i

≥ 0. (7.12)

where R =−1
2(κ1κT

2 +κ2κT
1 ) and S = 1

2(κ
T
1 +κT

2 ). In particular, consider that κT
2 =−κT

1 =

g
[

1 0

]
with g > 0 such that R = κ1κT

2 and S = 0. Therefore, assuming that |ω̇i| is bounded

such as |ω̇1| ≤
∣∣∣1

2gα2
0

∣∣∣, ϑi ≥ 0 is guaranteed by g(ξ′iξi) ≥|ω̇i|. In the sequel, a convergence

analysis of (7.10) is provided. A Lyapunov function candidate is chosen as V = ∑
N
i=1Vi =

V1 +V2, where V1 = ∑
N
i=1V1,i = ∑

N
i=1 ζT

i Piζi with a positive symmetric definite matrix Pi ∈

R2×2, and V2 = ∑
N
i=1V2,i = ∑

N
i=1 µ1

∣∣ξi
∣∣2− µ2sig

1
q0 (ξi)sig

2q0−1
q0 (ψi) + µ3φ2

i . First, the time

derivative of V1 along (7.9) is given by

V̇1 =
N

∑
i=1

ξ
′
i

(
ζ

T
i (A

T Pi +PiA)ζi ++
ω̇i

ξ′i
BT Piζi +ζ

T
i PiB

ω̇i

ξ′i

)

=
N

∑
i=1

ξ
′
i

ζi

ω̇i
ξ′i


T AT Pi +PiA PiB

BT Pi 0


ζi

ω̇i
ξ′i


≤

N

∑
i=1

ξ
′
i

(ζi

ω̇i
ξ′i


T AT Pi +PiA PiB

BT Pi 0


ζi

ω̇i
ξ′i

+ϑi

)
. (7.13)

Let ε > 0 such that the following Algebraic Riccati Inequality,

AT Pi +PiA+ εPi +R+PiBBT Pi ≤ 0, (7.14)
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are satisfied, and we further have

V̇1 ≤
N

∑
i=1

ξ
′
i

ζi

ω̇i
ξ′i


T AT Pi +PiA+R PiB

BT Pi −1


ζi

ω̇i
ξ′i


≤

N

∑
i=1
−εξ

′
iV1,i

=
N

∑
i=1
−ε

(
1
2

α0|si|−
1
2 +q0β0|si|q0−1

)
V1,i. (7.15)

Recall λmin(Pi)
∥∥ζi
∥∥2

2≤ ζT
i Piζi≤ λmax(Pi)

∥∥ζi
∥∥2

2, and |si|
1
2 ≤
∥∥∥ 1

α0
ζi

∥∥∥
2
≤
(

V
1
2

1

α0λ

1
2
min(Pi)

)
. There-

fore

V̇1 ≤−ε
1
2

α
2
0

N

∑
i=1

λ
1
2
min(Pi)V

1
2

1,i− εq0β0

N

∑
i=1
|si|q0−1V1,i

≤−ε
1
2

α
2
0r0

( N

∑
i=1

V1,i

) 1
2

=−ε
1
2

α
2
0r0V

1
2

1 , (7.16)

where r0 = mini=1,...,N λ
1
2
min(Pi)≥ 0, and λmin(Pi) is the minimal eigenvalue of Pi.

Then, the time derivative of V2 is given as

V̇2 =
N

∑
i=1

(
−
∣∣ξi
∣∣ 1−q0

q0 ξ
′
i

(
2µ1k1

∣∣ξi
∣∣ 3q0−1

q0 +
1
q0

µ2|ψi|
3q0−1

q0

− 1
q0

µ2k1ξisig
2q0−1

q0 (ψi)− k̃2
2q0−1

q0
µ2
∣∣ξi
∣∣2|ψi|

q0−1
q0

−2(µ1− k̃2µ3)sig
2q0−1

q0 (ξi)ψi

))
, (7.17)

where due to |ω̇i| ≤ g
∣∣ξ′iξi

∣∣, there exists ω̇i = g̃ξ′iξi with g̃≤ g, and then k̃2 = k2− g̃. Using

Young’s inequality such as ΘΞ ≤ cσ1 Θσ1
σ1

+ c−σ2 Ξσ2
σ2

with 1
σ1

+ 1
σ2

= 1 for sig
2q0−1

q0 (ξi)ψi,

ξisig
2q0−1

q0 (ψi) and
∣∣ξi
∣∣2|ψi|

q0−1
q0 , respectively, one can obtain that

V̇2 ≤
N

∑
i=1

(
−
∣∣ξi
∣∣ 1−q0

q0 ξ
′
i

(
Γ1
∣∣ξi
∣∣ 3q0−1

q0 +Γ2|ψi|
3q0−1

q0

))
, (7.18)

where choosing µ1 = k2µ3, Γ1 = µ2ϒ1−2gµ3
2q0−1
3q0−1δ

3q0−1
2q0−1
1 with ϒ1 = 2k2k1−k1

1
3q0−1γ

3q0−1
q0

2 −

2(k2− g)2q0−1
3q0−1γ

3q0−1
2q0

3 and Γ2 =
1
q0

µ2ϒ2− 2gµ3
q0

3q0−1δ
− 3q0−1

q0
1 with ϒ2 = 1− k1

2q0−1
3q0−1γ

− 3q0−1
2q0−1

2 −

(k2− g) (2q0−1)(q0−1)
(3q0−1)q0

γ
− 3q0−1

q0−1
3 . Following the similar analysis of the single system in [149],

there always exists
(

q2
0

3q0−1
2gµ3
µ2ϒ2

) q0
3q0−1

< ϒ1 <
(

3q0−1
2q0−1

µ2ϒ1
2gµ3

) 2q0
3q0−1 to guarantee Γ1 > 0 and
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Γ2 > 0 by selecting k2 large enough. Then, denoting Γmin = min{Γ1,Γ2} and kmin =

mini=1,...,N minsi
pα0|si|p−q0+q0β0

(α0|si|p−q0+β0)
q0−1

q0

, we obtains that

V̇2 ≤−Γminkmin

N

∑
i=1

(∣∣ξi
∣∣ 3q0−1

q0 +|ψi|
3q0−1

q0

)
≤ 0. (7.19)

Notably, using Young’s inequality for sig
1
q
(ξi)sig

2q−1
q
(ψi), it can be obtained that ∃δ4 >

0,
(

µ1 − µ2
δ4

2q0

)∣∣ξi
∣∣2 +(µ3 − 2q0−1

2q0
µ2δ
− 2q0

2q0−1
4

)
ψ2

i ≤ V2,i ≤
(

µ1 + µ2
δ4

2q0

)∣∣ξi
∣∣2 +(µ3 +

2q0−1
2q0

µ2δ
− 2q0

2q0−1
4

)
ψ2

i , and V2,i is positive definite if (2q0−1)
2q0−1

2q0

2q0k
1

2q0
2

≤ µ3
µ2

which is guaranteed

by selecting k2 large enough. Then we have V2,i ≤ 2µ3 max{1,k2}(
∣∣ξi
∣∣2 +ψ2

i ). It finally

obtains that

V̇2 ≤−2Γminkmin

(
1

4µ3 max{1,k2}

) 3q0−1
2q0

N

∑
i=1

V
3q0−1

2q0
2,i

≤−2Γminkmin

(
1

4µ3 max{1,k2}

) 3q0−1
2q0
( N

∑
i=1

V2,i

) 3q0−1
2q0

. (7.20)

Notably, recall that

λmin(Pi)
∥∥ζi
∥∥2

2 ≤ ζ
T
i Piζi ≤ λmax(Pi)

∥∥ζi
∥∥2

2 (7.21)

and

θmin
∥∥ζi
∥∥2

2 ≤V2,i ≤ 2µ3 max{1,k2}
∥∥ζi
∥∥2

2 (7.22)

where θmin = min{µ1 +µ2
δ4

2q0
, µ3 +

2q0−1
2q0

µ2δ
− 2q0

2q0−1
4 } so

Vi ≤ (λmax(Pi)+2µ3 max{1,k2})
∥∥ζi
∥∥2

2 . (7.23)

Thus

V̇ ≤−
N

∑
i=1

ε
1
2

α
2
0λmin(Pi)

∥∥ζi
∥∥

2−
1
q0

Γminkmin

(
1

4µ3 max{1,k2}

) 3q0−1
2q0

θ

3q0−1
2q0

min

∥∥ζi
∥∥ 3q0−1

2q0
2

≤−ν1V
1
2 −ν2V

3q0−1
2q0 , (7.24)

where ν1 =
ε

1
2 α2

0 mini=1,...,N λmin(Pi)

(maxi=1,...,N λmax(Pi)+2µ3 max{1,k2})
and

ν2 =
1
q0

kmin

(
θmin

4µ3 max{1,k2}(maxi=1,...,N λmax(Pi)+2µ3 max{1,k2})

)
. (7.25)
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Using Thereom 5 in [150] with k = 1, it can be concluded that V = 0 with a setting time T0.

Therefore, si converges to zero in a fixed-time with T0 =
1

ν2(1−
3q0−1

2q0
)
+ 2

ν1
, i.e.,limt→T0 si =

ṡi = 0.

2) For t ≥ T0, it has Ṗi = uo
i . Define P̄i =

λi−bi
2ai

, and a Lyapunov function candidate as

V3 =
1
2 ∑

N
i=1(Pi− P̄i)

2. The time derivative of V3 along (7.9) is given by

V̇3 =−
N

∑
i=1

(Pi− P̄i)

(
α2sigp2(Pi−

λi−bi

2ai
)

+β2sigq2(Pi−
λi−bi

2ai
)

)
=−α2

N

∑
i=1

(
(Pi− P̄i)

2
) 1+p2

2 −β2

N

∑
i=1

(
(Pi− P̄i)

2
) 1+q2

2

≤−α2

( N

∑
i=1

(Pi− P̄i)
2
) 1+p2

2

−β2N
1−q2

2

( N

∑
i=1

(Pi− P̄i)
2
) 1+q2

2

=−2
1+p2

2 α2

(
V2

) 1+p2
2

−2
1+q2

2 β2N
1−q2

2

(
V2

) 1+q2
2

. (7.26)

where the inequality comes from Lemma 1 in [151]. Finally, using Thereom 5 in [150], it

can be concluded that limt→T1 Pi =
λi−bi

2ai
with a setting time T1 =

1

2
1+p2

2 α2

+ 1

2
1+q2

2 β2N
1−q2

2
+T0.

3) In this step, we aim to show that limt→T2 λi = λ j. From 2), as t ≥ T1, it has Pi =
λi−bi

2ai
and

therefore,

λ̇i =−2ai

(
α1

N

∑
j=1

ai jsigp1(λi−λ j)−β1

N

∑
j=1

ai jsigq1(λi−λ j)

)
. (7.27)

A Lyapunov function candidate is defined as V4 = ∑
N
i=1

1
4ai

e2
i with ei = λi− 1

N ∑
N
j=1 λ j. The

time derivative of V4 along (7.9) is given by

V̇4 =−α1

N

∑
i=1

ei

N

∑
j=1

ai jsigp1(λi−λ j)−β1

N

∑
i=1

ei

N

∑
j=1

ai jsigq1(λi−λ j)

=− 1
2

α1

N

∑
i, j=1

ai j
∣∣ei− e j

∣∣p1+1− 1
2

β1

N

∑
i, j=1

ai j
∣∣ei− e j

∣∣q1+1

≤−ν3V
p1+1

2
4 −ν4V

q1+1
2

4 , (7.28)

where ν3 =
1
2α1

(
8λ2(L)

mini=1,...,N ai

) p1+1
2

and ν4 =
1
2β1N

1−q1
1

(
8λ2(L)

mini=1,...,N ai

) q1+1
2

Therefore, we can

conclude limt→T2 λi = λ j with the setting time T2 = T1 +
1

ν3(1−p1)
+ 1

ν4(q1−1) by Thereom 5

in [150].
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4) From (7.27), we have ∑
N
i=1

λ̇i
2ai

= 0 which implies ∑
N
i=1

λi(t)
2ai

is invariant for t ≥ T1, i.e.,

∑
N
i=1

λi(t)
2ai

= ∑
N
i=1

λi(T1)
2ai

= ∑
N
i=1(Pi(T1) +

bi
2ai

), since limt→T1 Pi =
λi(T1)−bi

ai
. Invoking 3), as

t ≥ T2, one obtains λi = λ j = λ̄ =
∑

N
i=1(Pi(T1)+

bi
2ai

)

∑
N
i=1

1
2ai

, ∀i, j ∈ N. In addition, from (7.9g), and

assuming ∑
N
i=1 Pi(0) = PD, it has

N

∑
i=1

Pi = α1

N

∑
i, j=1

ai j

∫ t

0
(λ j(s)−λi(s))

1− p1
q1 ds

+β1

N

∑
j=1

ai j

∫ t

0
(λ j(s)−λi(s))

1+ p1
q1 +

N

∑
i=1

Pi(0) = PD. (7.29)

Thus, based on (7.2.1) and (7.29), we have λ̄ =
PD+∑

N
i=1

bi
2ai

∑
N
i=1

1
2ai

= λ∗, which further implies

Pi = P∗i = λ∗−bi
2ai

as t ≥ T2. The proof is completed.

7.3 Simulation Study

In this section, we demonstrate the performance of the proposed algorithm through sev-

eral case studies under different operational conditions. Two configurations of the islanded

microgrid are considered in this study, which are simulated using a modified IEEE 13-bus

system in Matlab/Matpower. In Case 7.1, the effectiveness of this algorithm is firstly veri-

fied under constant load demands, and a scalability analysis is provided. Case 7.2 tests the

performance of the proposed algorithm under plug-and-play operation. Lastly, in Case 7.3,

the focus is the capability of the proposed algorithm to handle time-varying operational

conditions.

In above case studies, we assumes that the uncertainties of the jth CG and the bth BESS

are ωb = j sin(0.5it) and ωb = 1.5bsin(0.6bt). For the rth RG, the uncertainty is ωr =

r sin(0.8rt)+ dr, where dr is the constant uncertainty to emulate the short-term prediction

error.

7.3.1 Parameter Setup

The minimum/maximum power rates of all BESSs are [-10 10] MW. The total cycle number

of battery cells of BESSs is 10000 when BESSs operate within the state of charge [20,80]
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%.

Configuration 1

In this configuration, one CG, four BESSs and one PV are located at the microgrid. The

parameters of CGs are given as a1,1 = 0.047 and b1,1 = 0.58. The capacities of BESSs are

[12 7 10 8] MWh. The initial investment costs of battery cells of three BESSs are 0.58 $/Wh,

0.52 $/Wh, 0.5 $/Wh and 0.6 $/Wh, respectively. Therefore, the parameters of BESSs are

ab,1 = [0.185,0.215,0.198,0.172],∀b∈N 3
b . The short-term prediction of the maximum PV

generation is 2.5 MW.

Configuration 2

In this configuration, the microgrid is operated under increased penetration of renewable

generation, i.e., two CGs, two BESSs, one WT and one PV. The parameters of CGs are given

as a j,1 = [0.052,0.059] and b j,1 = [0.68,0.55],∀ j ∈ N 2
CG. The capacities of BESSs are [9,

7] MWh. The initial investment costs of battery cells of three BESSs are 0.52 $/Wh and 0.5

$/Wh, respectively. The parameters of two BESSs are ab,1 = [0.185,0.208],∀b ∈ N 2
b . The

short-term predictions of the maximum WT/PV generation are [3, 2.5] MW

7.3.2 Algorithm Implementation with Local Constraints

The proposed method in (7.9) does not include the local inequality constraints. In this

section, to avoid violations of the local constraints of capacities, an algorithm in Algorithm 2

is further refined for the ith participant.

7.3.3 Case 7.1

In this case, the effectiveness of the proposed algorithm is verified by the microgrid under

the Configuration 1. The local load demand is 70 MW. The results are given in Figs. 7.1

- 7.3. As shown in Figs. 7.1 - 7.2, the incremental costs of all participants converge to the
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Algorithm 2 Distributed Fixed-time EMS in the Microgrid
Initialization: for all i ∈N

Local EMS: α0, α1 and α2; β0, β1 and β2; k1 and k2; p1, and p2; q0, q1 and q2; Local
device: ∑i∈N Pi(0) = Pd(0)

Consensus Algorithm: :
1: Update (Pi,λi) for i ∈N using (7.9), and check the local capacity by

Pi =

{
Pmax

i , if Pi > Pmax
i

Pmin
i , if Pi < Pmin

i
(7.30)

Define two auxiliary variables, i.e., ρi, ςi,

ρi =

{
λi−bi

2ai
−Pi, if i ∈Ω

0, Otherwise
ςi =

{
0, if i ∈Ω

1
2ai

, Otherwise

where Ω is the set of participants at their minimum/maximum capacity;
2: Update (Pi,λi) with local constraints by

xi =

{
Pmin

i /Pmax
i if i ∈Ω

λ∗−bi
2ai

, , Otherwise
(7.31)

where λ∗ = λi+ρi/ςi and Żi =−α3 ∑
N
j=1 ai jsigp3(Zi−Z j)−β3 ∑

N
j=1 ai jsigq3(Zi−Z j)

3: return P∗i if Pmin
i ≤ P∗i ≤ Pmax

i ;

Table 7.1: The computation time of different numbers of participants

Num. of participants 6 18 48 96 102

Computation time 0.025s 0.037s 0.057s 0.084s 0.149s

optimal value in the fixed time, and in the meantime, the active power outputs converge

to the corresponding optimal values. The total active power satisfies the supply-demand

equality constraint as shown in Fig. 7.3. Results have shown that the optimisation objective

is fulfilled in the fixed-time.

To further investigate the scalability, we adopt the proposed algorithm in different num-

bers of participants in a modified IEEE 123-bus system on a PC with Intel(R) Core(TM)

i7-4770 CPU @ 3.40GHz and 4GB RAM. The computation time is given in Table 7.3.3.

The result shows that even for 102 participants (34 CGs, 51 BESSs and 17 RGs), the pro-

posed algorithm can still solve the problem within 1s that proves the capability of practical

implementation in a large-scale system.
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Figure 7.1: The incremental cost of participants
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Figure 7.2: The active power updates of participants
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Figure 7.3: The total active power of participants
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Figure 7.4: The incremental cost of participants under plug-and-play operation
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Figure 7.5: The active power updates of participants under plug-and-play operation

7.3.4 Case 7.2

This case study tests the plug-and-play adaptability of the proposed algorithm. We suppose

that BESS4 in the microgrid fails to operate at 10 s and recovers at 15 s. During the failure,

BESS4 loses its communication with its neighbours, and the remaining participants remain

connected in order to meet the planning requirement and the load demand. The results are

given in Figs. 7.4 - 7.6, which show that the active power outputs of the remaining partici-

pants will converge to the new optimal values, and that the mismatch caused by the BESS4

failure is eliminated. Furthermore, these values will converge to those of the previous ones

after BESS4 is reconnected. The results clearly show the plug-and-play capability of the

proposed algorithm.
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Figure 7.6: The total active power of participants under plug-and-play operation

7.3.5 Case 7.3

In this case, the microgrid under Configuration 2 is considered, which contains an in- creased

level of renewable generation. To investigate the effect of the curtailment of renewable gen-

eration, it is considered that the microgrid suffers the curtailments of WT and PV generation

given by [2, 1.5] MW at 5 s. The results are shown in Figs. 7.7 - 7.9, which are the incre-

mental cost, active power outputs, and total active power of participants. The results show

that when the curtailment occurs, the active power outputs of participants will converge to

new optimal values with a new common point of incremental costs. Also, in Fig. 7.9, the

system balance is guaranteed by the proposed algorithm.

To further investigate the performance of the proposed algorithm under time-varying condi-

tions, a varying demand is considered. Therefore, the proposed algorithm must converge to

optimal results before the next change in the operation. The load demand is changed during

the simulation, such as 62 MW at the beginning, 65 MW at 6 s, and 60 MW at 12 s. The

results are shown in Figs 7.10 - 7.12, which are incremental costs, active power outputs,

and total active power of participants. The results show that the proposed algorithm will

automatically respond to each change in load demands and can fast converge to optimal

solutions before the next change successfully.
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Figure 7.7: The incremental cost under curtailments of renewable generation
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Figure 7.8: The active power update under curtailments of renewable generation
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Figure 7.9: The total active power under curtailments of renewable generation
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Figure 7.10: The incremental cost under varying demand
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Figure 7.11: The active power update under varying demand
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Figure 7.12: The total active power under varying demand
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7.4 Conclusion

This section proposed a novel distributed EMS to address the power management problem in

islanded microgrids based on the MAS framework. The proposed algorithm can be adopted

in a fully distributed manner to reduce the complexity of communication and computation.

In addition, it guarantees a fast convergence speed and robustness against uncertain informa-

tion simultaneously. Several studies have proved that the proposed algorithm can converge

towards the optimal solution with the requirements of fixed-time and robust performances.



Chapter 8

Cooperative Optimal Control of Battery

Energy Storage System under Wind

Uncertainties in a Microgrid

8.1 Introduction

Since high penetration renewable sources will be integrated into future power systems, en-

ergy storage systems are often installed to maintain frequency stability in a microgrid. The

operation condition of a microgrid may change frequently due to the intermittency of renew-

able sources, and BESSs will be charged/discharged accordingly to smooth and balance the

generation of renewable sources. Thus, ESSs should be coordinated in a proper way to

ensure the supply-demand balance while increasing their profits and energy efficiency.

In this chapter, a distributed optimal solution for multiple BESSs is to maintain supply- de-

mand balance while maximizing their welfare and energy efficiency is proposed to BESSs

by enhancing the coordination through a local communication. Each BESS is designated as

an agent, and it only utilizes local information to interact with the neighbouring agents. Ad-

ditionally, since the participants in microgrid may not be willing to release their information

about cost functions, or even the local gradient with other neighbouring agents, the proposed

solution could be implemented without private information to the individual agents.

127
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Figure 8.1: Multiple BESSs System

8.2 Network Model of Multiple Battery Energy Storage

Systems

8.2.1 Overview of Multiple Battery Energy Storage Systems

Fig. 8.1 shows a MAS framework for an architecture of multiple BESSs and wind power

generation, which is connected to the main grid through the PCC. The PCC of the main

grid is used to observe the power delivered/withdrawn and decide the operation mode of the

microgrid. Each BESS consists of several lithium-ion batteries interfaced with a DC-AC

inverter. In the proposed framework, a BESS is designated as an agent, and controlled by

an EMS. A communication network is embedded in the EMS to transfer the information to

and from its neighbouring agents in order to achieve a determined objective. In addition,

following the control strategy in [73], a storage system controller (SSC) is applied to adjust

the power output of the BESS to the signal generated by the communication network.
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8.3 Distributed Energy Management of Battery Energy Stor-

age Systems under Wind Power uncertainties

In a microgrid, the frequency may change rapidly and frequently due to the uncertainties of

wind power generation, which is mainly influenced by the supply-demand mismatch of the

active power. The active power balance at t0 in a microgrid can be represented as

∑
k∈SW

P0
W,k + ∑

i∈SB

P0
B,i = ∑

j∈Sl

P0
l, j, (8.1)

where SW , SB and Sl are the index set of WTSs, BESSs and load demands, respectively; P0
B,i

is the charging/discharging power of ith BESS that can be positive/negative; P0
W,k and P0

l, j

are the wind power generation and load demand of kth WT and jth load, respectively.

Although wind power generation can relieve the burden of frequency regulation, it is de-

ficient in terms of accuracy due to its intermittent nature. Furthermore, when wind power

generation is controlled in the MPPT mode, it cannot be treated as dispatchable. In con-

trast, BESSs have fast response properties and exhibit high performance. As a result, in-

stalling BESSs in a power grid is a promising solution for absorbing excessive power and

compensating for insufficient power.

Then the net power required from the BESS for frequency regulation in the short-term can

be calculated as:

∑
i∈SB

PB,i = ∆PD = ∑
k∈SW

∆PW,k− ∑
j∈Sl

∆Pl, j, (8.2)

where PB,i is the power output of ith BESS; ∆PW,k and ∆Pl, j are active power change of kth

WT and jth load, respectively.

However, as indicated in [97], the output power level is one of the factors affecting the

energy efficiency of a BESS. Thus, a factor called inner energy rate is defined as (8.3) to

express the rate of inner charging or discharging energy of a BESS for output power.

εi =
∆EB,i

PB,i
. (8.3)

where ∆EB,i is the change of battery’s inner energy.

Note that the price of electricity is an important factor that can encourage the BESS to

participate in frequency regulation. As indicated in [29, 152, 153], the price of electricity is
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an effective method of energy management for the participants in a microgrid to adjust their

electricity consumption in a cost-effective way. ToU pricing is adopted, ρ(t), as a variable

to coordinate BESSs to discover the maximum efficient point of the operation. Thus, the

objective is defined as maximizing the total welfare of BESSs by adjusting the price while

considering the efficiency the BESSs and maintaining the active power balance, i.e.,

Max ∑
i∈SB

(
ρ(t)PB,i− εiPB,i

)
(8.4)

where εi is the inner rate energy. The experiment in [97] shows that the function of the inner

rate energy can be written in a piecewise linear function as:

εi = αiPB,i +βi. (8.5)

By substituting (8.5) into (8.4), the objective function can be rewritten as

Max ∑
i∈SB

(
ρ(t)PB,i−

(
αiP2

B,i +βiPB,i

))
s.t ∑

i∈SB

PB,i = ∆PD

Pm
B,i ≤ PB,i ≤ PM

B,i (8.6)

where Pm
B,i and PM

B,i are the lower and upper bound of ith BESS, respectively. The equality

constraint describes the balance between the net power demand and the total output power

of BESSs, and the inequality constraints are the local boundary of the output power for the

ith BESS.

It should be noted that the transmission losses are inevitable, and these are about 5% - 7%

of the total load according to the energy information administration (EIA) [154]. Thus, it

can be modelled by multiplying the load by 5% - 7%.

For multiple BESSs, they may be operated on different SoCs due to the difference in ef-

ficiency. Since the power is predominately shared among BESSs with higher SoCs, some

BESSs will be overloaded even when the required power is lower than the total power ca-

pacities of BESSs. As a result, a proper power sharing method is required to coordinate

BESSs based on their energy level. To this end, the objective function is rewritten as,
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Min ∑
i∈SB

fi(PB,i) (8.7)

s.t ∑
i∈SB

ηiPB,i = ∆PD (8.8)

hi(PB,i) = (Pm
B,i−PB,i)(PM

B,i−PB,i)≤ 0, (8.9)

where fi(PB,i) =
(

αiP2
B,i +βiPB,i

)
− ρ(t)PB,i. ηi is the weight on the contribution of ith

BESS. It can be defined as a ratio of the energy level in order to prevent BESSs from running

out prematurely, i.e.,

ηi =
Ei

∑i∈SB Ei

where Ei is the energy level of ith BESS.

A central coordinator could be deployed to solve the above problem. The coordinator com-

municates with each BESS in the network by a bi-directional communication line to collect

the data required to solve the problem, such as the objective functions, the operational con-

straints and the actual power output. With the received data, it solves the problem and

broadcasts the reference to all connected BESSs. However, due to the high penetration of

wind power generation, the centralized strategy may lose its control efficiency if operating

conditions change frequently and unpredictably. In the following section, a distributed algo-

rithm is proposed to coordinate the BESSs to maintain the active power balance, and in the

meantime, a coordination scheme of BESSs and WTs is presented to overcome the problem

of wind power generation errors.

8.4 Consensus-based Cooperative Algorithm Design

The formulated optimization problem of BESSs in (8.7) is a convex problem with both

equality and inequality constraints. In this section, the solution set is firstly characterized

by the so-called refined Slater condition and theKKT optimality conditions. A consensus-

based distributed cooperative algorithm is presented for discovering the optimal solution of

the energy management problem. Then the implementation of the proposed algorithm is

presented.
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8.4.1 Solution Set of Distributed Energy Management

Let L be the Lagrangian equation with the Lagrangian multiplier λ, one has

L = ∑
i∈SB

((
αiP2

B,i +βiPB,i

)
−ρ(t)PB,i

)
+

∑
i∈SB

ληiPB,i−∆PD

 , (8.10)

It should be noted that the inequality constraints are unnecessary to be added in the aug-

mented function due to they are local and can be treated as boundaries of the problem do-

main [155]. These inequality constraints can be taken into account by applying additional

projection operations, which do not affect the convergence analysis as shown in [127].

Remark 8.4.1. By using the dual decomposition [156], one has

L = ∑
i∈SB

((
αiP2

B,i +βiPB,i

)
− (ρ(t)−λiηi)PB,i

)
+∆PD. (8.11)

It can be found that the Lagrange multiplier λi acts as a virtual price to adjust the real price

and therefore BESSs are coordinated to find the maximum efficient point.

Since the formulated problem is a convex optimization problem with affine constraints, the

global optimality can be ensured by using KKT optimality conditions [157]. Following the

KKT conditions, a point P∗B = {P∗B,1, . . . ,P∗B,n} ∈ R n is a solution of the energy management

problem if and only if there exists a point λ∗ such that

O fi(P∗B,i)+λ
∗
ηi = 0, i ∈ {1, . . . ,n}

η1P∗B,1 + · · ·+ηiP∗B,i = ∆PD. (8.12)

8.4.2 Distributed Cooperative Algorithm Design

In this section, a distributed algorithm is presented for the energy management of BESSs.

Following [158], the active power dynamics of ith BESS can be written as

ṖB,i = uB,i, (8.13)

where uB,i is the control input for ith BESS. In a microgrid, the distributed energy man-

agement of BESSs aims to maximize the efficiency of BEESs under a properly designed
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strategy, which can be achieved by controlling the references of BESSs. Then the design

objective is defined such that the control input only requires the information from neigh-

bouring BESSs, and then PB,i converges to the solution set of the proposed problem (8.7).

To this end, the solution for the problem (8.7) is the following continuous-time distributed

algorithm,

˙PB,i =−O fi(PB,i)−ηiλi

λ̇i =−γ1 ∑
i∈n

ai j(λi−λ j)− γ2 ∑
i∈n

ai j(zi− z j)+ γ3(ηiPB,i− ri∆PD)

żi = ∑
i∈n

ai j(λi−λ j) (8.14)

where γ1, γ2 and γ3 > 0 are the positive constants, respectively. We assume ri is the ability

that ith BESS is able to detect the total required load, and denote r = [r1, . . . ,rn]
T with

1T
n r = 1, for i ∈ n., where 1n = [1,1, . . . ]T ∈ Rn.

To solve the optimization problem in a distributed way, inspired by the centralized saddle-

point dynamics in [159], a mismatch estimator is introduced based on of the idea of dis-

tributed average estimation; the purpose is to observe global information. With the estimator

to observe the supply-demand mismatch, the algorithm (8.14) then can be implemented in

a distributed way since the only information required is the states of ith BESS, i.e. λi and

zi. As a result, each BESS only needs to send/receive the value of λi and zi to its neighbour

BESSs. While considering the privacy concerns of BESSs, the proposed algorithm does not

require BESSs to share their gradients of the cost function with neighbouring BESSs. Fur-

thermore, in view of Remark. 8.4.1, the ToU signal ρ(t) will be adjusted by λi and therefore

multiple BESSs are coordinated to discover the most efficient point.

According to (8.14), the control input for ith BESS is designed as

uB,i =−O fi(PB,i)−ηiλi. (8.15)

Remark 8.4.2. To keep the BESS operating in a feasible mode, various local constraints can

be integrated into the proposed algorithm, such as the SoC constraint and the constraints of

minimum/maximum charging/discharging duration. These local constraints can be dealt

with by the proposed algorithm by including corresponding projection operation.
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8.4.3 Convergence Analysis

To facilitate convergence analysis, the proposed algorithm (8.14) is written in a compacted

form, such as

ṖB =−O f (PB)−ηλ

λ̇ =−γ1Lλ− γ2Lz+ γ3(ηPB− r∆PD)

ż = Lλ (8.16)

where PB = [PB,1, . . . ,PB,n]
T , λ = [λ1, . . . ,λn]

T , O f (PB) = ∑i∈SB fi(PB,i) and z = [z1, . . . ,zn]
T ,

respectively, and let η = Diag(η1, . . . ,ηn). The inspiration of our algorithm is based on mul-

tiple time-scale operations, which applies a distributed estimator to distribute the centralized

saddle-point algorithm. To analyze the convergence, we first consider the equilibrium point

(PB, λ, z) of the proposed algorithm. When executing the algorithm over a connected and

weight-balanced graph, it results in

1T
n ż = 1T

n Lλ = 0, (8.17)

where the fact that 1T
n L = 0 is used to deduce (8.17). Then, the equilibrium point can be

obtained by

0 =−O f (PB)−ηλ (8.18a)

0 =−γ1Lλ− γ2Lz+ γ3(ηPB− r∆PD) (8.18b)

0 = Lλ. (8.18c)

Left multiplying (8.18c) by 1T
n gives

γ31T
n
(
ηPB− rPD

)
= 0 (8.19a)

O f (PB)+ηλ1n = 0. (8.19b)

Thus, it is shown that the equilibrium point (PB, λ, z) satisfies

PB,i = P∗B, λi = λ
∗, zi = z∗, for i ∈ n, (8.20)

where (P∗B, λ∗, z∗) is the solution set of the optimization problem given in (8.12). For the

convenience of the convergence analysis, the states in (8.16) are translated to the equilibrium

point as

P̂B =
(
PB−PB

)
, λ̂ = mT

(
λ−λ

)
, ẑ = mT (z− z) , (8.21)
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where (PB, λ, z) is any equilibrium point of (8.16) and m can be defined as in [160]. Thus,

one has

˙̂PB =−φ−ηmλ̂ (8.22a)

˙̂
λ =−γ1mT Lmλ̂− γ2mT Lmẑ− γ3ηmP̂B (8.22b)

˙̂z = mT Lmλ̂ (8.22c)

where φ =
(
O f (P̂B +PB)− f (PB)

)
. To study the stability of the proposed algorithm, we

consider a candidate Lyapunov function

V =
1
2

γ3P̂T
B P̂B +

1
2

λ̂
T

λ̂+
1
2

γ2ẑT ẑ. (8.23)

The Lie derivative of V along with (8.22) is given as

V̇ = γ3P̂T
B (−φ−ηmλ̂)+ γ2ẑT (mT Lmλ̂)+ λ̂

T (−γ1mT Lmλ̂− γ2mT Lmẑ− γ3ηmP̂B)

=−γ3P̂T
B φ− γ1λ̂

T mT Lmλ̂

=−γ3(P̂B +P∗B−P∗B)φ− γ1λ̂
T mT Lmλ̂,

≤ 0 (8.24)

where the convexity of the cost function, i.e., γ3(P̂B+P∗B−P∗B)φ≥ 0 is invoked for obtaining

the last inequality. So far, it is shown that the trajectories of (8.22) and also (8.14) are

bounded as V̇ ≤ 0. With the invariant set Theorem 1 in [160], it can be concluded that the

points on V̇ = 0 are the equilibrium points of the algorithm.

8.4.4 The Coordination of BESSs under Wind Power Generation Er-

ror

The intermittent nature of wind power generation means that it may lose its accuracy for

maintaining supply-demand balance, whereas BESSs have the characteristic of fast response

and high performance for balancing short-term variations in network power. For this reason,

wind power generation is supplemented by BESSs in real applications.

As depicted in Fig. 8.2, a brief scheme is provided to coordinate the BESSs and wind power

generation for maintaining system stability. The power management system (PMS) can col-

lect the operation points of all participants in the grid to observe the supply-demand balance.
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As shown in the power regulation part, if there is an imbalance in net power, wind power

will be employed to compensate for the mismatch as much as possible firstly. However, the

wind power may be insufficient and inaccurate, and there are also control errors connected

with wind power generation. Therefore, a regulation signal will be generated based on both

the mismatched power and the control error of wind power generation. Following the regu-

lation signal (∆PD), BESSs are then implemented to absorb excessive power or compensate

for insufficient power according to the proposed algorithm.

8.4.5 Algorithm Implementation

By referring to each BESS as an agent, the proposed algorithm is implemented in a dis-

tributed manner under a MAS framework. Each agent consists of two control levels. The

top control level consists of three function modules, i.e., the measurement module, the com-

munication module and the optimal solution discovery module. The measurement module

obtains and updates the local information, and the communication module exchanges the in-

formation with the neighbouring agents. With the information provided by the measurement

and communication module, the optimal solution discovery module updates the information

and generates the output power reference for the bottom control level. Once the power ref-

erence is generated, the bottom-level control is implemented to control the agent to track

this reference, which can follow the control scheme introduced in Fig. 8.3.

8.5 Simulation Results and analysis

In this section, four case studies are provided to verify the effectiveness of the proposed opti-

mization algorithm. In Case 8.1, the proposed algorithm is compared with another resource

management approach to show the advantages of our algorithm. In Case 8.2, a modified

IEEE 14-bus system with five BESSs and two WTs is built in the MATLAB/Simulink that

to demonstrate the convergence of the proposed algorithm under constant renewable gen-

eration and load demand. Case 8.3 is carried out with uncertain output power from the

renewable generation. Finally, the scalability of the proposed algorithm is investigated in

Case 8.4 where a 30-BESSs system is built in the MATLAB/Simulink.
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Figure 8.2: Coordination scheme of wind generation and BESSs
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Figure 8.3: The control diagram for a BESS

Table 8.1: Parameters of simulation studies
αi βi Pmin

B,i (kW) Pmax
B,i (kW) ηi

BESS1 0.2037 1.0460 0 60 0.20
BESS2 0.2815 1.2309 0 65 0.16
BESS3 0.1987 1.0292 0 68 0.24
BESS4 0.2092 1.1245 0 62 0.22
BESS5 0.2247 1.0996 0 70 0.18

During the simulation studies, the ToU signal is adopted as Fig. 8.4 to imitate the tariff in

a real application, which simplifies the signal in [161] but keeping the same property. The

simulation parameters are summarised in Table. 8.1 that are adopted from the experimen-

tal results in [97], and the topology of the communication network is implemented to be

identical to the physical network.

8.5.1 Case 8.1

To reveal the effectiveness of the proposed algorithm, the algorithm in this study is first com-

pared with another continuous algorithm in [3]. Without loss of generality, the ToU pricing

and the supply-demand mismatch are assumed to be a constant value and the operation con-

dition is assumed to be the same for this comparison study. As shown in Figs. 8.5 - 8.6, the

marginal cost of each BESS can converge to its optimal value under both of the algorithms.

However, by replacing the global mismatch estimator by a distributed estimator, the con-

vergence speed of the proposed algorithm is faster than the algorithm in [3]. Additionally,
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Figure 8.4: The time of use tariff

the proposed algorithm guarantees optimality without sharing the information about its own

cost function.

8.5.2 Case 8.2

In this case study, the performance of the proposed distributed strategy is investigated in the

IEEE 14-bus system. The microgrid is operated in the islanded mode and the supply-demand

mismatch is set to be a constant value as 180kW. As shown in Fig. 8.7, the marginal cost of

each BESS converges to the optimal value, and with the change in the ToU tariff during the

simulation, the marginal cost will converge to a new optimal value according to the price

signal. Figs. 8.8 - 8.10 depict the output power references, the supply-demand mismatch

estimation, and the total output power of BESSs, respectively. The results show that the

output power references converge to the optimal value according to the marginal cost update

and at the same time, the supply-demand mismatch is eliminated by the proposed algorithm,

which indicates its promising application in real-time control.
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Figure 8.5: The marginal cost update under the proposed algorithm
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Figure 8.6: The marginal cost update under the algorithm in [3]
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Figure 8.7: The marginal cost update under the proposed algorithm
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Figure 8.8: The output power update under the proposed algorithm
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Figure 8.9: The power balance estimation
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Figure 8.10: The total output power of BESSs
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Figure 8.11: The output power profile of the wind power generation

8.5.3 Case 8.3

Since the output power from the wind power generation will be uncertain and time-varying,

the required power from BESSs will be time-varying when high penetration renewable

sources are integrated into the microgrid. In this case, a simulation study is carried out under

a time-varying output power from the wind power generation to verify the effectiveness of

the proposed algorithm. The microgrid is supposed to be islanded in 0s intentionally. The

WTs in Fig. 5.2 are controlled in the reactive power regulation mode, and the output power

from each WT is given in Fig. 8.11, respectively. During the simulation period, each BESS

implements the proposed algorithm and is controlled by the strategy in Fig.8.3. With the co-

ordination scheme in Fig. 8.2, Figs. 8.12 - 8.13 present the results for the output power and

the power balance estimation, respectively. It can be observed that the power outputs from

BESSs converge to the optimal value, and at the same time, the supply-demand mismatch

8.5.4 Case 8.4

To extend the proposed algorithm to a large-scale system, the algorithm should be designed

to converge to the optimal value in a timely manner. Thus, the scalability of the proposed
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Figure 8.12: The output power update under the proposed algorithm
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Figure 8.14: Single line diagram of the 30-BESS system

algorithm is investigated in this case. To this end, a 30-BESS system is built in Mat-

lab/Simulink, and the single line diagram of the 30-BESS system is shown in Fig. 8.14.

The communication network is designed to be weight-balanced and strongly connected, and

the supply-demand mismatch is assumed as 1000 kW. The scalability is demonstrated by

observing the results in Figs. 8.15 - 8.16, which show that the output power of each BESS

converges to their optimal values while the deviations between demand and supply power

converge to zero.
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Figure 8.15: The output power update under the proposed algorithm
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Figure 8.16: The power balance estimation
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8.6 Conclusion

The coordination problem of BESSs in a microgrid under the high penetration of renewable

sources is investigated in this chapter. A distributed cooperative control strategy is proposed

for BESSs to maintain the supply-demand balance in a microgrid while increasing their

profits and energy efficiency. Based on the proposed MAS framework, the proposed solution

can be implemented in a distributed manner without a central coordinator. In addition,

the results indicate that the optimal solution is achieved without releasing the information

about the cost function. The effectiveness and the scalability of the proposed distributed

strategy are further demonstrated by the simulation using the IEEE test systems and 30-

BESS system.



Chapter 9

Future Works

9.1 Future Research

In further research, there are many open problems to the application of distributed optimiza-

tion on energy management of smart grids.

1. For coordinating the charging process of PEVs, the characteristic of driving behaviours

and load profiles at different specified time and areas should be further considered in

the optimization problem formulation.

2. In absence of power flow constraints, the current solutions can not solve the energy

management problem in the type of optimal power flow with some system operation

constraints, such as voltage, current and line capacity limits. This flaw should be

further investigated.

3. It is possible to incorporate big data analysis for energy management problems. In a

smart grid, there are thousands of smart meters that generate a huge scale of data in a

given time-window. The amounts of data require to be analysed properly and used for

improving energy-use efficiency. However, this part is still not investigated deeply.

4. Most existing results for energy management problems in smart grids are designed in

an open-loop feature, which may face challenges such as model and forecasting inac-

curacies. To capture time-varying operation and economic objectives and constraints,

148
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the time-varying optimization formalism can be leveraged, which is designed by using

the feedback-based information to cope with these inaccuracies.
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erani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke

et al., “Trends in microgrid control,” IEEE Trans. smart grid, vol. 5, no. 4, pp. 1905–

1919, 2014.

[13] R. C. Green, L. Wang, and M. Alam, “The impact of plug-in hybrid electric vehi-

cles on distribution networks: A review and outlook,” Renew. Sustain. Energy Rev.,

vol. 15, no. 1, pp. 544–553, 2011.

[14] W. Su, H. Eichi, W. Zeng, and M. Y. Chow, “A survey on the electrification of trans-

portation in a smart grid environment,” IEEE Trans. Ind. Informat., vol. 8, no. 1, pp.

1–10, Feb 2012.

[15] Z. Zhang and M.-Y. Chow, “Incremental cost consensus algorithm in a smart grid en-

vironment,” in Proc. 2011 IEEE Power and Energy Society General Meeting. IEEE,

2011, pp. 1–6.

[16] Y. Xu and Z. Li, “Distributed optimal resource management based on the consensus

algorithm in a microgrid,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2584–2592,

2015.



BIBLIOGRAPHY 152
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Appendix A

Data for Test Systems

A.1 Line Data for IEEE 14-bus System

Table A.1: Line Data for IEEE 14-bus System

Line
numbers

From To
Line

impedance (p.u.) Susceptance (half charging)
(p.u.)Resistance Reactance

1 1 2 0.01938 0.05917 0.02640
2 1 5 0.05403 0.22304 0.02190
3 2 3 0.04699 0.19797 0.01870
4 2 4 0.05811 0.17632 0.2460
5 2 5 0.05695 0.17388 0.01700
6 3 4 0.06701 0.17103 0.01730
7 4 5 0.01335 0.04211 0.00640
8 4 7 0 0.20912 0
9 4 9 0 0.55618 0
10 5 6 0 0.25202 0
11 6 11 0.09498 0.19890 0
12 6 12 0.12291 0.25581 0
13 6 13 0.06615 0.13027 0
14 7 8 0 0.17615 0
15 7 9 0 0.11001 0
16 9 10 0.03181 0.08450 0
17 9 14 0.12711 0.27038 0
18 10 11 0.08205 0.19988 0
19 12 13 0.22092 0.19988 0
20 13 14 0.17093 0.34802 0
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A.2 Line Data for IEEE 30-bus System

Table A.2: Line Data for IEEE 30-bus System

Line
numbers

From To
Line

impedance (p.u.) Susceptance (half charging)
(p.u.)Resistance Reactance

1 1 2 0.02 0.06 0.03
2 1 3 0.05 0.20 0.02
3 2 4 0.06 0.18 0.02
4 2 5 0.05 0.02 0
5 2 6 0.06 0.18 0.02
6 3 4 0.01 0.04 0
7 4 6 0.01 0.04 0
8 4 12 0 0.23 0
9 5 7 0.05 0.12 0.01
10 6 7 0.03 0.08 0
11 6 8 0.01 0.09 0
12 6 9 0 0.21 0
13 6 10 0 0.56 0
14 6 28 0.07 0.06 0.01
15 8 28 0.06 0.20 0.02
16 9 11 0 0.21 0
17 9 10 0 0.11 0
18 10 20 0.09 0.21 0
19 10 17 0.03 0.09 0
20 10 21 0.03 0.08 0
21 10 22 0.07 0.15 0
22 12 13 0 0.14 0
23 12 14 0.12 0.26 0
24 12 15 0.07 0.13 0
25 12 16 0.01 0.12 0
26 14 15 0.22 0.12 0
27 15 18 0.11 0.22 0
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Table A.3: Continued Line Data for IEEE 30-bus System

Line
numbers

From To
Line

impedance (p.u.) Susceptance (half charging)
(p.u.)Resistance Reactance

28 15 23 0.10 0.21 0
29 16 17 0.08 0.19 0
30 18 19 0.06 0.13 0
31 19 20 0.03 0.07 0
32 21 22 0.01 0.22 0
33 22 24 0.11 0.18 0
34 23 24 0.13 0.27 0
35 24 25 0.19 0.33 0
36 25 26 0.25 0.38 0
37 25 27 0.11 0.21 0
38 27 29 0.22 0.4 0
39 27 30 0.22 0.60 0
40 28 27 0 0.4 0
41 29 30 0.24 0.45 0


