683 research outputs found

    A Graph Model for Imperative Computation

    Get PDF
    Scott's graph model is a lambda-algebra based on the observation that continuous endofunctions on the lattice of sets of natural numbers can be represented via their graphs. A graph is a relation mapping finite sets of input values to output values. We consider a similar model based on relations whose input values are finite sequences rather than sets. This alteration means that we are taking into account the order in which observations are made. This new notion of graph gives rise to a model of affine lambda-calculus that admits an interpretation of imperative constructs including variable assignment, dereferencing and allocation. Extending this untyped model, we construct a category that provides a model of typed higher-order imperative computation with an affine type system. An appropriate language of this kind is Reynolds's Syntactic Control of Interference. Our model turns out to be fully abstract for this language. At a concrete level, it is the same as Reddy's object spaces model, which was the first "state-free" model of a higher-order imperative programming language and an important precursor of games models. The graph model can therefore be seen as a universal domain for Reddy's model

    Decidability and syntactic control of interference

    Get PDF
    AbstractWe investigate the decidability of observational equivalence and approximation in Reynolds’ “Syntactic Control of Interference” (SCI), a prototypical functional-imperative language in which covert interference between functions and their arguments is prevented by the use of an affine typing discipline.By associating denotations of terms in a fully abstract “relational” model of finitary basic SCI (due to Reddy) with multitape finite state automata, we show that observational approximation is not decidable (even at first order), but that observational equivalence is decidable for all terms.We then consider the same problems for basic SCI extended with non-local control in the form of backwards jumps. We show that both observational approximation and observational equivalence are decidable in this “observably sequential” version of the language by describing a fully abstract games model in which strategies are regular languages

    Syntactic Control of Interference Revisited

    Get PDF
    In Syntactic Control of Interference (POPL, 1978), J. C. Reynolds proposes three design principles intended to constrain the scope of imperative state effects in Algol-like languages. The resulting linguistic framework seems to be a very satisfactory way of combining functional and imperative concepts, having the desirable attributes of both purely functional languages (such as pcf) and simple imperative languages (such as the language of while programs). However, Reynolds points out that the obvious syntax for interference control has the unfortunate property that fi-reductions do not always preserve typings. Reynolds has subsequently presented a solution to this problem (ICALP, 1989), but it is fairly complicated and requires intersection types in the type system. Here, we present a much simpler solution which does not require intersection types. We first describe a new type system inspired in part by linear logic and verify that reductions preserve typings. We then define a class of bireflective models, which provide a categorical analysis of structure underlying the new typing rules; a companion paper Bireflectivity, in this volume, exposes wider ramifications of this structure. Finally, we describe a concrete model for an illustrative programming language based on the new type system; this improves on earlier such efforts in that states are not assumed to be structured using locations

    A Fully Abstract Game Semantics for Parallelism with Non-Blocking Synchronization on Shared Variables

    Get PDF
    We present a fully abstract game semantics for an Algol-like parallel language with non-blocking synchronization primitive. Elaborating on Harmer\u27s game model for nondeterminism, we develop a game framework appropriate for modeling parallelism. The game is a sophistication of the wait-notify game proposed in a previous work, which makes the signals for thread scheduling explicit with a certain set of extra moves. The extra moves induce a Kleisli category of games, on which we develop a game semantics of the Algol-like parallel language and establish the full abstraction result with a significant use of the non-blocking synchronization operation

    Full abstraction for the second order subset of an ALGOL-like language

    Get PDF
    We present a denotational semantics for an ALGOL-like language ALG, which is fully abstract for the second order subset of ALG. This constitutes the first significant full abstraction result for a block structured language with local variables. As all the published "test equivalences" [13, 8, 23 for Algol-like languages are contained in the second order subset, they can all be validated (easily) in our denotational model. The general technique for our model construction -- namely "relationally structured locally complete partial orders" with "relation preserving locally continuous functions" -- has already been developed in [13], but our particular model differs from the one in [13] in that we now use a larger set of relations. In a certain sense it is the "largest possible" set of relations, an idea which we have successfully used in [32] to obtain a fully abstract model for the second order subset ot the functional language PCF [26]. The overall structure of our full abstraction proof is also taken from [32], but for the single parts of the proof we had to solve considerable new problems which are specific to the imperative (Algol- like) setting

    Thin Games with Symmetry and Concurrent Hyland-Ong Games

    Get PDF
    We build a cartesian closed category, called Cho, based on event structures. It allows an interpretation of higher-order stateful concurrent programs that is refined and precise: on the one hand it is conservative with respect to standard Hyland-Ong games when interpreting purely functional programs as innocent strategies, while on the other hand it is much more expressive. The interpretation of programs constructs compositionally a representation of their execution that exhibits causal dependencies and remembers the points of non-deterministic branching.The construction is in two stages. First, we build a compact closed category Tcg. It is a variant of Rideau and Winskel's category CG, with the difference that games and strategies in Tcg are equipped with symmetry to express that certain events are essentially the same. This is analogous to the underlying category of AJM games enriching simple games with an equivalence relations on plays. Building on this category, we construct the cartesian closed category Cho as having as objects the standard arenas of Hyland-Ong games, with strategies, represented by certain events structures, playing on games with symmetry obtained as expanded forms of these arenas.To illustrate and give an operational light on these constructions, we interpret (a close variant of) Idealized Parallel Algol in Cho

    Topics in Programming Languages, a Philosophical Analysis through the case of Prolog

    Get PDF
    [EN]Programming languages seldom find proper anchorage in philosophy of logic, language and science. is more, philosophy of language seems to be restricted to natural languages and linguistics, and even philosophy of logic is rarely framed into programming languages topics. The logic programming paradigm and Prolog are, thus, the most adequate paradigm and programming language to work on this subject, combining natural language processing and linguistics, logic programming and constriction methodology on both algorithms and procedures, on an overall philosophizing declarative status. Not only this, but the dimension of the Fifth Generation Computer system related to strong Al wherein Prolog took a major role. and its historical frame in the very crucial dialectic between procedural and declarative paradigms, structuralist and empiricist biases, serves, in exemplar form, to treat straight ahead philosophy of logic, language and science in the contemporaneous age as well. In recounting Prolog's philosophical, mechanical and algorithmic harbingers, the opportunity is open to various routes. We herein shall exemplify some: - the mechanical-computational background explored by Pascal, Leibniz, Boole, Jacquard, Babbage, Konrad Zuse, until reaching to the ACE (Alan Turing) and EDVAC (von Neumann), offering the backbone in computer architecture, and the work of Turing, Church, Gödel, Kleene, von Neumann, Shannon, and others on computability, in parallel lines, throughly studied in detail, permit us to interpret ahead the evolving realm of programming languages. The proper line from lambda-calculus, to the Algol-family, the declarative and procedural split with the C language and Prolog, and the ensuing branching and programming languages explosion and further delimitation, are thereupon inspected as to relate them with the proper syntax, semantics and philosophical élan of logic programming and Prolog
    • …
    corecore